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Abstract
In the automation systems of tomorrow, it is likely that the devices included
have various degrees of autonomy, and include advanced algorithms for per-
ception and control. Human operators will be expected to work together with
collaborative robots as well as with roaming robots for material handling.
The volatile nature of the environment of such intelligent automation sys-

tems lead to an enormous amount of possible situations that can arise and
which need to be suitably handled. This complexity makes development of
control systems for intelligent automation systems difficult using traditional
methods.
As an alternative, this thesis presents a model-based control framework,

which uses a combination of formal specification and automated planning.
The proposed framework allows for defining the intentions of the automation
system on a high level, which enables decisions that influence when things
should occur to be modeled using logical constraints, rather than program-
ming. To achieve a modular framework, low level, reusable, resource models
are composed by 1) formal specification to ensure safety and 2) applying an
abstraction called an operation, which couples the reusable resources to the
intentions of the system. By planning also the resources’ detailed actions,
the operations can, when possible, be completed regardless of the resources’
current state. This eases error-recovery, as resources do not have to be reset
when an error occurs.
Additionally, the thesis proposes an iterative and interactive workflow for

integrating the proposed model-based control framework into a virtual prepa-
ration process, using computer based simulation as a tool for validating formal
specifications. The control framework allows for adding new constraints to a
running system, enabling an efficient and interactive preparation process.
The framework has been applied to a use case from final assembly, which

features human-robot collaboration. Experimental results on the ability to
handle unforeseen errors and planning performance are presented.

Keywords: Control Architectures, Automation, Planning and Coordination,
Robotics.
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CHAPTER 1

Introduction

If there was ever an interesting time to work in an automation research group,
now is not a bad time! During my time as a PhD student collaborative
robots have become commonplace and there have been significant advances
in computer perception and robotics. At the same time, the hype around
artificial intelligence (AI) has been increasing every year.
Given these current trends it seems clear that the automation systems of

tomorrow will most likely look dramatically different from the installations
that exist in industry today. The complexity in system size, software, algo-
rithms, and know-how required to work with the automation systems could be
orders of magnitudes higher than today to encompass these new technologies
and require completely different skills.
In industrial automation, the motto of the engineering work has been, and

still is, the KISS principle: keep it simple, stupid. The meaning of this design
mantra, which has its origins in the engineering departments of the U.S. Navy
in the 1960:s, is that a simple design usually results in a robust engineering
solution. No-one cares for over-engineered and complex solutions that cannot
be fixed with a screw-driver and pressing a “reset” button. So how can we
accommodate the just mentioned new technologies, many of which are very

3



Chapter 1 Introduction

(a) The original manual assembly station (b) Collaborative robot assembly station. A
video clip from the demonstrator: https:
//youtu.be/TK1Mb38xiQ8

Figure 1.1: Transformation of a manual assembly station into a collaborative one.

complex, into not only a simple-to-use system that can aid the users when
something goes wrong, but also into a simple-to-develop system?
This thesis highlights our work on preparation and control of automation

systems, especially in the context of production systems involving collabora-
tive robots and autonomous subsystems. We classify this type of automation
systems as intelligent automation systems. Specifically, the thesis proposes
a framework for creating control systems for such intelligent automation sys-
tems, which tackles high complexity by relying on formal models of the behav-
ior of the different devices in the system. Complexity can then, to some degree,
be handled by computation rather than human reasoning. The framework is
based on a notion of goals that are continuously distributed to all devices in
the automation system, which lets some of the devices take their own decisions
about how to reach these goals. The framework supports preparation of these
intelligent automation systems in an iterative way, which relies on computer
based simulation to validate the correctness of the formal specifications.
The work is motivated by the industrial need that these intelligent automa-

tion systems create, as well as the interesting research challenges that arise
from trying to satisfy these needs. A good example of this is one of the use
cases developed as part of the present research.
This particular case involves conversion of an existing manual assembly

station from a truck engine final assembly line, shown in Figure 1.1a, into

4
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1.1 Preparation and control of automation systems

an intelligent and collaborative robot assembly station, shown in Figure 1.1b.
The aim of the conversion work was to have a robot and an operator work
together to perform assembly of the engine side by side, sharing tools hanging
by wires from the ceiling. A dedicated camera system keeps track of operators,
ensuring safe coexistence with machines. It is desired to let a human operator
be human, and not simply used as an additional cog in the machine. For the
automation system to be able to reach specific goals (in this case, completing
assembly tasks) in an environment together with a human operator, it needs to
be able to take the intentions and actions of the human operator into account.
That is, the automation system may need to adapt the strategy used to reach
its goals depending on what the human operator does. The system may ask
the operator for aid, but should strive towards being independent and keep
out of the way.

1.1 Preparation and control of automation systems

There is a large number of activities involved in the preparation of an au-
tomation system like the one described in the previous section, for example:
identifying which processes that are necessary to perform, identifying the tools
and machinery needed, physical layout of the devices in the system, and pro-
gramming a computer system which can control the devices that make up
the system. These activities can all benefit from computation and simulation
support based on computer models [1]. In this work, these computer assisted
activities are referred to as virtual preparation of automation systems.
Looking back at logical control performed by networks of electrical relays,

control of man-made automation systems has been used in industry for over
100 years. In some ways, how to program such automation systems has stayed
remarkably unchanged, owing to the fact that the main programming language
for programmable logic controllers (PLC:s), called ladder, was designed with
the explicit intention of emulating the existing control by relay logic [2].
The automation systems of today are expected to be modular, reconfig-

urable, and distributed. Many initiatives, both in academia and industry
have pushed for “smarter” automation. Some very broad like Industry 4.0 [3],
but also more focused standardization efforts like IEC 61499 [4] have tried to
enable more intelligent automation.

5
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1.2 Intelligent automation
To define what we mean by intelligent automation, it is useful to start to
define what we mean by intelligence. The Merriam-Webster online dictionary
defines “intelligence” as [5]:

in•tel•li•gence noun

1. the ability to learn or understand or to deal with new or trying situations
: reason
also: the skilled use of reason

2. the ability to apply knowledge to manipulate one’s environment or to
think abstractly as measured by objective criteria (such as tests)

Essentially, it describes the ability to learn new things (knowledge), and to
be able to apply this knowledge to solve tasks in one’s environment. Thomas
Malone defines two categories of intelligence in terms of being able to reach
goals [6]:

• Specialized intelligence: “the ability to achieve specific goals effec-
tively in a given environment”

• General intelligence: “the ability to achieve a wide range of different
goals effectively in different environments.”

When we write intelligence (often intelligent) in this thesis, we refer to
Thomas Malone’s definition of specialized intelligence. Using this definition,
we can define an intelligent automation as a system that can effectively reach
specific goals in a given environment.
From this we can derive a few challenges and differences with traditional

automation systems:

• In an intelligent automation system, goals of the system can change
based on a changing environment. – In traditional automation systems
they can not.
The intelligent automation system is adaptive.

• An intelligent automation system should be able to reach its goals in
many different ways. – In traditional automation systems there exist
only a few ways (maybe one) to reach the goals.

6



1.3 Research questions

The intelligent automation system is flexible.

• An intelligent automation system should be able to interact and co-
operate with the environment, including reasoning about and planning
future actions together with human operators. – A traditional automa-
tion system can only perform cooperative tasks that have been explicitly
programmed.

The intelligent automation system is deliberative.

• In an intelligent automation system things are expected to change unex-
pectedly, so the automation system needs be able to find other ways to
reach the goal. – In traditional automation systems unexpected events
result in failure and may require resetting the system back to an initial
state.

The intelligent automation system is reactive.

• An intelligent automation system can learn new things about the envi-
ronment and use the new knowledge to adapt its strategies. – A tradi-
tional automation system does not learn.

The intelligent automation system is learning.

1.3 Research questions
One way to formulate research questions is to synthesize an industrial need
with a research challenge. Given the needs and research challenges described
previously, three research questions are defined in this section.

RQ1 How could a control framework for an intelligent automation system be
designed?

As we have seen before, the control system would have to be adaptive,
flexible, deliberative, reactive, and learning. Exemplified by the use-case
described earlier, it should be aware of the human operator and be able
to change its behavior in response to what the operator is doing. For
example, it should be able to reach its goals even though the human has
performed tasks “out-of-sequence”.

7
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RQ2 How can we use model-based techniques to reduce complexity when prepar-
ing control systems for intelligent automation systems?

The ability to reach the goals in an intelligent automation system in
many different ways rules out traditional programming for the control
systems, as the amount of cases to handle simply become too many. In
the use-case described earlier, it should not matter where the tools are,
or the robots, or the operator – the goals should be achievable regardless.

RQ3 Could an interplay between simulation and formal methods provide a
foundation for an iterative preparation methodology?

In an intelligent automation system it will be difficult to anticipate (dur-
ing preparation) the different situations that may or may not arise. The
intelligent automation system is complex, and development of any com-
plex system is inherently a creative and iterative process.

A missing keyword here is the learning of the automation system. Learning
is not covered in this thesis, but it could be an excellent research topic for
future work.

1.4 Research approach

The research described in this thesis is to a large extent application oriented.
As such, much of the research activity is spent on implementing experiments
to show the applicability of the proposed methods to modeling and control of
automation systems. During this work the hypotheses often change – slightly
different approaches are tried and tested in order to reach satisfying results.
As such, at times the line between research and solving engineering challenges
is hard to distinguish. It is the author’s view however, that practical imple-
mentation constitutes an important part of the research method, the tweaks
and changes to the approach that are made in order to make the demonstrator
actually work is often where the largest insights are made – curiously these
tend to coincide with the researcher being proven wrong.

8
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1.5 Research journey

Integrated virtual preparation

The research journey of the author started with the VIRTCOM-II project,
which started in 2014 and ended in the fall of 2017. According to the project
web page [7]: “The VirtCom project aims to result in a completely inte-
grated work chain from virtual preparation, through automatically generated
PLC code, to virtual and physical commissioning.” The description continues:
“Having such an integrated work chain, with software tools for optimization
and verification, achieves sustainable production facilities adaptable to future
requirements on flexibility, availability, product variety, human safety, etc.”.
One idea prevalent in industry on how to cope with these issues is to use

computer based simulation for testing and validation of the automation sys-
tem. If a production system is meticulously modeled on the level of sensors
and actuators, it is possible to control a simulation of this model using the
same hardware and software that will eventually control the real system. Pair-
ing an actual industrial control system with such a simulation is called virtual
commissioning (VC) [8]. During the past decade VC has matured and become
a standard engineering task at many production facilities and automation so-
lution companies. It has primarily been viewed as an extension of the current
workflow – a final step in the automation engineering process that enables
additional validation.
Another idea for increasing quality is to carefully verify and validate the

developed control software, preferably automatically. Control of modern pro-
duction systems, especially in the automotive industry, is still very much based
on programmable logic controllers (PLC:s), due to the real time constraints
of production and the need for high capacity I/O. Despite a large research
body on formally verifying PLC software (e.g. [9]) industrial uptake of such
methods is still at low levels [10].
By combining existing work on model based development of production

system logic with VC validation, the contribution of this author towards such
an integrated work chain is described in Paper A, and Paper D, included in this
thesis. During the VITCOM-II project the author additionally contributed
to development of VR-based VC [11], and applying the proposed work chain
to automatically create formal models of existing robot station behavior [12],
[13].

9
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Human-robot collaboration, complex subsystems, and
degrees of autonomy

After VIRTCOM-II had finished, the author subsequently started to work in
a project called UNIFICATION, which was started in 2017 and ended in the
fall of 2020. In project UNIFICATION, much of the work revolved around
the previously described conversion of an existing assembly station in the AB
Volvo Skövde plant, pictured in Figure 1.1. Volvo Group Trucks Operations
has defined the following vision to better influence the research and develop-
ment of next generation automation systems: Future Volvo factories [14], will
be re-configurable and self-balancing to better handle rapid changes, produc-
tion disturbances, and diversity of products. Collaborative robots and other
machines can support operators at workstations, where they use the same
smart tools and are interchangeable with operators when it comes to perform-
ing routine tasks. Operators are supported with mixed reality technology, and
are provided with digital work instructions and 3D geometry while interacting
intuitively with robots and systems. Workstations are equipped with smart
sensors and cameras that feed the system with real-time status of products,
humans, and other resources in the environment. Moreover, they are sup-
ported by advanced yet intuitive control, dynamic safety, online optimization
and learning algorithms.
The work in UNIFICATION resulted in re-thinking how to design control

systems that need to feature these new technologies. The work has resulted
in a number of publications in addition to the ones included in this thesis,
among them work on formalizing the requirements for human robot collab-
oration in assembly [15], defining the challenges in implementing such sys-
tems [16], designing communication between the different sub-systems [17],
virtual preparation of the system [18], and application of model based control
design [19].

1.6 Contributions
The thesis presents the following contributions, which we connect to the al-
ready mentioned research questions below.
Paper A introduces a framework for modeling discrete control systems in an

iterative fashion, with VC models being used earlier in the preparation work

10



1.7 Outline

for validation of formal specifications. While the paper has a small example,
the ideas presented in that paper is used and built upon in all the remaining
work, and is again given focus in Paper D. In Paper D, we apply the same
workflow to help us write formal specifications for an intelligent automation
system. These two papers both contribute to knowledge around RQ3.

Paper B shows, with the help of a practical example, how, given a formal
representation of the possible actions that can be taken by the resources in
an automation system, simple specifications can help ease the modeling work-
flow by moving the formal specifications out from the resources, increasing
reusability of the involved resource components. This is also something which
was alluded to as a goal in Paper A and expanded on in Paper C. These
contributions relate to RQ2.
The main contribution of Paper C is the insight that, when working with in-

telligent automation systems, there is a need to merge traditional automation
with automated planning and reasoning in a seamless way. While automated
planning can help deal with complexity, current automated planning frame-
works often deal with a single agent that takes decisions for themselves, or
sending out commands to agents one at a time. In this paper we propose a
framework for control of intelligent automation systems where we allow for
intricate interdependencies between resources to be modeled using the formal
specifications from Paper A, B, and D. Paper E adds additional insight into
how the framework can handle various error situations. Paper C and Paper E
contribute to knowledge that can help answer RQ1.

1.7 Outline
This thesis consists of two parts. Part I is a general introduction to the field
and puts the appended papers into context. Part II contains the appended
papers. Part I is organized as follows: Chapter 2 gives a background to dis-
crete control of automation systems in general terms, but it also gives some
important definitions that will be used throughout the thesis. Chapter 3 gives
an overview of the computational tools used in this thesis and their semantics.
In Chapter 4, we discuss system integration in intelligent automation systems.
The main results of the appended papers are summarized in Chapter 5. Chap-
ter 6 contains a summary of the appended papers. The thesis ends with some
closing remarks and directions for future work in Chapter 7.
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CHAPTER 2

Discrete control of automation systems

In this chapter we give a basic overview of the challenges of developing robust 
and flexible automation systems and try to give a  sense of the trade-offs that 
need to be made during development. Additionally, an example is given which 
is used to explain different concepts throughout the thesis.

Automation systems engineering is fundamentally about managing state. 
In contrast to other types of computer programming, where we need to make 
sure that our algorithms are correctly implemented, when programming con-
trol systems for automation systems, we need to correctly manage the physical 
state of all resources involved in the system, such as industrial robots, motors 
on conveyor belts, sensors, as well as the state of all products in the system. 
Some state can be actively measured, while some needs to be estimated based 
on past actions and observations. The state of these resources will be dis-
tributed physically and needs to be communicated in some way to a control 
system.
We can view the problem of developing a robust automation control system 

as essentially computing the best next actions to be taken given the current 
state of the automation system. However, given that there may be an infinite 
number of different states the automation system can be in, this is quite

13



Chapter 2 Discrete control of automation systems

difficult, if even possible.
So, we naturally start abstracting the problem. Consider a control system

for the automation system illustrated in Figure 2.1, which shows a conveyor
belt, a product of some kind that is transported on the conveyor, a robot, and
a bin. Instead of representing where an industrial robot is in space and what
the velocities of its joints are, perhaps we simply take note of which robot
program is currently executing, and maybe if the robot has signaled an error.
Instead of using an encoder to keep track of how far the conveyor belt has
moved, perhaps we only keep track of a sensor which can detect if there is a
at the end of the conveyor.
And so the system is abstracted and discretized, but still there are many

more possible states than we can manage to deal with as human developers.
As one last simplification, we decide on one particular state as our initial
state. Finally! We can reason about the system; given that the conveyor is
stopped, a product is at the beginning of the conveyor and the robot is idle,
we can now determine the possible valid actions, and perhaps even the “best”
action that we want the control system to take in this particular state.

Figure 2.1: Example automation system consisting of a conveyor belt, a robot, and
a bin. A product is being transported on the conveyor.

Let us imagine that one of the tasks of the automation system is to move
the product on the conveyor from the beginning of the conveyor to the end of
it, where the robot can pick it up and put it in the bin. One way to program
this behavior is to define one action that moves the product to the end of
the conveyor, one were the robot picks up the product, and one where the
robot puts the product in the bin. Then we can say that whenever we start
the system, we should run the sequence of actions move product to end of
conveyor, followed by robot pick up the product, followed by robot put product
in bin. Piece by piece the control system can then be built up by reasoning
about different sequences that can begin in different starting states.

14



2.1 States and state variables

Or, instead of reasoning about sequences, we can reason directly about the
underlying system state. For example: if a product is detected at the start of
the conveyor, the conveyor is stopped, and the robot is idle: start conveyor.
If a product is detected at the end of the conveyor and the robot is idle; run
the program that picks up the product. When the robot has finished picking
up the product, run the program that puts the product in the bin.
Both approaches are common and often a combination is used to solve the

problem at hand. Control system engineers are skilled in this way of thinking,
and combined with best practices and standardized interfaces developed over
the years, it has been possible to develop the large and complex automation
solutions used in industry today. Nevertheless, developing a robust automa-
tion system is a challenging task.

2.1 States and state variables
As the state of the system is of fundamental importance, let’s define it a bit
more formally. The convention used in this thesis is to represent the state of
the control system in terms of state variables:
Definition 1: A state variable v has a domain V = {x1, . . . , xn}, where

each element in V is a possible value of v.For simplicity, we will use the
following notation when defining a variable: v = {x1, . . . , xn}.
In practice, an enumeration {x1, . . . , xn} can be represented by a combina-

tion of m binary variables to encode an integer so that n ≤ 2m.
State variables are used when describing the state of a system, where a state

is defined as follows:
Definition 2: A state S is a set of tuples S = {〈vi, xi〉, . . . , 〈vj , xj〉}, where

vi is a state variable and xi ∈ Vi is the current value of the state variable.
Each state variable can only have one value at a time.

Example 2.1: State of a control system

For the example in Figure 2.1 with a the product, a conveyor with a
sensor for the product at each end and a motor, and robot which can
pick up products from the conveyor and drop them in the bin, a simple
representation of the state using only boolean variables could be:
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• conveyor1 = {false, true}. The sensor at the beginning of the con-
veyor, true means a product is detected.

• conveyor2 = {false, true}. The sensor at the end of the conveyor,
true means a product is detected.

• conveyorm = {false, true}. Output to the motor, true means the
motor is on, which runs the conveyor belt forward, false means the
motor is off.

• pickups = {false, true}. An output to the robot which signals that
it should run a program that picks up a product.

• dropoff s = {false, true}. An output to the robot which signals that
it should run a program that drops the product it is holding in the
bin.

• pickupf = {false, true}. An input from the robot which signals that
the program that picks up the product has finished.

• dropoff f = {false, true}. An input from the robot which signals
that the program that drops off the product has finished.

Then the initial state of the system described above is S0 = {〈conveyor1,

true〉, 〈conveyor2, false〉, 〈conveyorm, false〉, 〈pickups, false〉, 〈dropoff s,

false〉, 〈pickupf , false〉, 〈dropoff f , false〉}.

In Example 2.1, there are 27 = 128 possible states. If the size of the system
is doubled (i.e. an additional conveyor and robot is added) there will be
1282 = 16384 possible states. It is this combinatorial growth that makes it
hard to develop robust and flexible automation control systems. It is also the
reason why choosing one or only a few initial states to start from reduces the
complexity. Then the reachable states will only be those that can be reached
from the initial states, which depends on what we allow the system to do in
the different states. The fewer actions we allow the system to take in each
state, the easier it is to reason about the system.
The trade-off here is quite clear: increasing flexibility (i.e. allowing the

system to be in more states) is very costly in terms of reasoning about the
system.
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2.2 Actions and transitioning between states

2.2 Actions and transitioning between states

In the above section, the actions taken by the system are very loosely de-
fined. What do we mean by “start the conveyor” or “robot should pick up the
product”?
In this thesis we reason about the actions in terms of how the actions update

the system state. If the system is in some state S1 it can transition to the
state S2 by the action a. Usually, an action can only happen in a subset of
the system states. Consider the example in Figure 2.1 again: “if a product is
detected at the start of the conveyor, the conveyor is stopped, and the robot
is idle: start conveyor”. To model this using actions, it is necessary to be able
to “guard” the action so that it can only happen in the appropriate states. In
this thesis we denote a guard and an action as a transition.
Definition 3: A transition t has a guard g, which is a boolean function

over a state, g : S → {false, true}, and a set of action functions A where
a : S → S which updates the assignments to the state variables in a state. We
often write a transition as g/A to save space.
Given a set of state variables and a set of transitions, it is possible to evolve a

given state S into S′, S′′, etc. by repeatedly applying the actions of transitions
whose guards evaluate to true in the current state. In the appended papers,
we often write that a transition is taken. Transitions are taken one at a time.

Example 2.2: Actions of a control system

Continuing the example in 2.1, a transition that models “if a product
is detected at the start of the conveyor, the conveyor is stopped, and
the robot is idle: start conveyor”, could be expressed as: conveyor1 ∧
¬conveyorm ∧¬pickups ∧¬dropoff s / conveyorm := true, assuming that
the robot is idle when both of pickups and dropoff s are false.
We write conveyor1 as shorthand for conveyor1 = true and ¬conveyor2

as shorthand for conveyor2 = false. Applying the transition to S0 =
{〈conveyor1, true〉, 〈conveyor2, false〉, 〈conveyorm, false〉, 〈pickups, false〉,
〈dropoff s, false〉, 〈pickupf , false〉, 〈dropoff f , false〉} yields a new state S1 =
{〈conveyor1, true〉, 〈conveyor2, false〉, 〈conveyorm, true〉, 〈pickups, false〉,
〈dropoff s, false〉, 〈pickupf , false〉, 〈dropoff f , false〉}.
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2.3 Effect transitions

In this thesis we make a distinction between transitions that the control system
takes and transitions that are only there to inform us of what is expected
to happen in the real world. We denote the later type of transition effect
transitions. This is discussed more in Chapter 5. In other literature it is
common to denote the set of effect transitions as a model of the environment
or a plant model. We will continue to implement our example automation
system to see why this is important.
Recall that we had the following control strategy in mind. 1) If a product

is detected at the start of the conveyor and the conveyor is stopped and the
robot is idle: start conveyor. 2) If a product is detected at the end of the
conveyor and the robot is idle: run the program that picks up the product.
3) When the robot has finished picking up the product, run the program that
drops the product in the bin.
Given the transition defined in Example 2.2, the first part of implementing

the strategy is already done. We introduce another transition, conveyor2 ∧
¬pickups ∧ ¬dropoff s / pickups := true. The robot is considered idle if no
start signal have been given. This allows the second sentence in the example
to be handled.
Finally, pickupf ∧ ¬pickups ∧ ¬dropoff s / dropoff s := true implements the

third part of the strategy. This starts the robot program that drops the
product in the bin upon finished the pickup program.
Consider now that we would like to test that the logic of our automation

system is correct, before deploying it in the real world. We can test the system
by placing it in a certain state and checking if the intended action is taken, i.e.
checking that no bugs where introduced while translating the description of
the indented behavior into computer executable code. But how would we test
whether the indented outcome is reached from the initial state, through the
different actions that should be taken and ending up with the robot dropping
the product in the bin? An assumption made when we defined the control
actions above is that if the first sensor on the conveyor detects the product,
and the motor driving the conveyor is on, the second sensor will eventually
detect the product.
One way to test that the logic is correct is to attach the developed control

system to a simulated version of the automation system, which would contain
virtual mirrors of the sensors, conveyor, and the robot. The simulation would
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2.3 Effect transitions

simulate the physics of the product moving on the conveyor belt as well as the
robot motions. Then, after starting the conveyor motor, the physics simula-
tion will eventually register that the product has moved to the second sensor.
Now the control system can execute its next action, picking up the product
with the robot. This requires detailed modeling of the physical reality on the
level of sensors and actuators. Software tools for performing such simulations
are described in Chapter 4.
Another way to test that the logic is correct is to model the movement of the

product as a transition. Perhaps conveyor1∧conveyorm / conveyor2 := true?
This is however lacking information about the time it takes for the product
to travel across the conveyor to the other sensor – by applying this transition
the product would instantly appear at the far end of the conveyor. While
sufficient to test this simple scenario, it is not ideal. For a more complete ex-
ample it is most likely important to know that a product is on the conveyor,
somewhere between the sensors. To model this we add an additional boolean
state variable to our control system, let’s name it product_between, and mod-
ify the transition which starts the motor to set product_between to true in its
actions. Then we define an effect transition as product_between ∧ conveyorm

/ conveyor2 := true, product_between := false, which models that if there
is a product between the sensors and the motor is still running, the product
will arrive.
Similarly, effect transitions can be modeled for the robot finishing its tasks

(for example pickups := true / pickupf := true), as well as modeling that the
second sensor will stop detecting the product when it has been picked up.

Example 2.3: Actions of a control system

With the effect transitions it becomes possible to run a (discrete) simula-
tion to see if it is always the case that given the initial state, we will end
up with the robot holding the product. In the following table, conveyor1,
conveyor2, and conveyorm are abbreviated to c1, c2, and cm. pickups,
dropoff s, are abbreviated to ps and ds, as well as pickupf and dropoff f ,
to pf and df . Finally true is abbreviated to t and false to f .
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Chapter 2 Discrete control of automation systems

c1 c2 cm ps ds pf df pb action
t f f f f f f f start motor
f f t f f f f t sense at conveyor 2
f t f f f f f f robot start pick up
f f f t f f f f robot finish pick up
f f f t t f f f robot start drop off
f f f t f t f f robot finish drop off
f f f t f t t f -

The type of check performed in Example 2.3 can be done using a variety 
of formal methods, which will be discussed further in Chapter 3. These 
methods can mathematically prove whether some property always hold. The 
example high-lights that in order to be able to reason about the system 
without simulating the dynamics, the environment needs to be properly 
modeled.
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CHAPTER 3

Formal methods

This chapter continues where the previous chapter left off and gives a brief
introduction to the different formal methods used in the appended papers.
Specifically, we present supervisory control theory (SCT) and model checking
(MC). Additionally, bounded model checking (BMC) is presented as well as
how MC can be used also for automated planning.
Formal methods are a class of mathematical constructs that help reason

about correctness of systems. There are generally two types of properties one
would like to verify: that something bad cannot happen, which we call safety
properties, and that something good will eventually happen, which we call
liveness properties. Recall Example 2.3 where we wanted to check whether,
from an initial state, we can always reach the state where the robot is holding
the product. This is a typical liveness property. In our example, a safety
property could be that the motor of the conveyor can never run when the
robot is picking up the part.
In addition to verification, a formal model can also be used to directly syn-

thesize restrictions to a system in order to achieve desired properties. When
composing several resources that make up an automation system, synthesis
allows keeping the original formal representations of the different resources of
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the automation system unchanged by instead relying on global specifications
to affect the composed behavior. This decreases the need for modeling special
cases in detail and increases the reusability of the formal models. Another
way to achieve this is to apply automated planning, where we compute how
to transition between states in the in the system in order to reach certain goal
states. This reduces the need to model control decisions, for example steps
1-3 in Section 2.3.

3.1 Supervisory Control Theory
Supervisory Control Theory (SCT) [20] is a model-based framework for veri-
fication and synthesis of discrete event systems. The system to be verified is
modeled by composing several finite automata, which models different parts
of the system. Finite automata have states, and events, which transitions the
automata between the states. Composition is done by the synchronous com-
position operator, where shared events happen either in all plants at the same
time, or not at all. Terminal states can be marked.
Synthesis in SCT is performed by introducing additional specification au-

tomata, which may include forbidden states. Synthesis can be performed with
respect to avoiding any forbidden states (ensuring controllability) and making
sure that all marked states are reachable (ensuring nonblocking). The result of
the synthesis is a supervisor that disables events in a way that leaves the most
number of reachable states – we say that the supervisor should be maximally
permissive.

S1S0 S2

start_motor sense_at_conveyor2

Figure 3.1: Events which transitions the example automation system between the
states S0, S1, and S2.

Synthesis w.r.t. controllability only makes sense if the environment is mod-
eled – otherwise the solution is to simply disable all events that lead to for-
bidden states. In SCT, the environment is modeled as uncontrollable events.
Uncontrollable events cannot be disabled during synthesis. Recall the example
in Chapter 2 where a product is transported on a conveyor. Uncontrollable
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events can capture the fact that if the product is between the two sensors
and the motor is on, the product will eventually appear in front of the second
sensor. In this case the event that takes the plant model to the state where
the product has arrived would be uncontrollable. In Figure 3.1 this part of
Example 2.3 is modeled as a finite automaton where the “start motor” event
is controllable and the “sense at conveyor2” is uncontrollable.
As the specifications are created from automata, it is possible to create very

complex dynamic specifications, which can remember an arbitrary number of
previous events.

Guard extraction
One extension to SCT is using Extended Finite Automata (EFA) [21] as the
input “language”. EFA:s are finite automata extended with variables of finite
domain. This makes it possible to model the system with variables, as in
Example 2.1. The events of the automata can have guards and actions over
these finite domain variables, like the transitions defined in Definition 3.
For systems modeled with EFA:s, guard extraction [22] is a useful technique

where, after synthesis, the supervisor is represented as additional guards on
the controllable events.

Example 3.1: Guard extraction

Continuing the example in 2.3, we show how to write a specification
instead of changing the guard predicate of a transition (using the termi-
nology of Chapter 2 instead of events).
Consider that the conveyor (including the sensors) and the robot are

two separate resources that should be reusable without one another. The
transition defined in Example 2.2, conveyor1 ∧¬conveyorm ∧¬pickups ∧
¬dropoff s / conveyorm := true, refer to both resources and as such it
would be difficult to reuse in another automation system.
Instead the conveyor could be modeled independently: conveyor1 ∧

¬conveyor2 / conveyorm := true, part_between := true. This would
allow turning on the motor if there was something detected at the first
sensor and nothing at the second. If it is important that the robot is idle
when the conveyor is running, we can instead formulate a specification
that should always be true: conveyorm =⇒ ¬pickups ∧ ¬dropoff s. The
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implication states that if the motor is on, the robot is in its home position.
The synthesis algorithm will make sure that any states where this is not
true are removed.
In this case, performing guard extraction from the supervisor would

result in · · ·∧¬pickups∧¬dropoff s automatically added to the transition
of the conveyor. Additionally, it would result in · · · ∧ ¬conveyorm added
to the transitions that start the robot programs.

3.2 Model checking
In model checking, properties are checked on a model. This model is repre-
sented by a Kripke structure. The summary here is mostly condensed from
the book by Baier and Katoe [23].

Definition 4: The Kripke structure M is a tuple M = 〈S, I,R,AP,L〉,
where S is a set of states, I ∈ S is a set of initial states, R ∈ S × S is a
transition relation, AP is a set of atomic propositions, and L : S → 2AP is a
labeling function, defining which propositions are true in each state.
The example in Chapter 2 can be represented by a Kripke structure as

follows:

S = {s0, s1, s2, . . . }
I = {s0}
R = {〈s0, s1〉, 〈s1, s2〉, . . . }

AP = {conveyor1, conveyor2, conveyorm, . . . }
L = {〈s0, {conveyor1}〉, 〈s1, {conveyor1, product_between}, . . . 〉}

The specifications that can be checked on this structure can be written in
many different ways. Two of the most well known are both extensions to
propositional logic: Linear Temporal Logic (LTL) [24] and Computation Tree
Logic (CTL) [25].
In LTL, propositional logic is extended with temporal operators for ex-

pressing properties that relates to sequencing of states (i.e. discrete time).
For example, there is an operator for expressing properties on the next state
(©), that some formula should always (�) hold, that it should eventually hold
(♦), and that one formula should hold until another one does (U). For exam-
ple, the formula �(conveyor1 → ♦pickups) expresses that it is always the case
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that if the first conveyor sensor detects a product, the system will eventually
start the robot pick-up procedure (pickups = true). A LTL model checking
problem is to prove this given a set of valid initial states, or if it cannot, give
a counterexample.
An algorithm for checking LTL formulas on a model defined by a Kripke

structure is to translate the negation of the specification formula to a nonde-
terministic büchi automata (NBA). This NBA will contain all the behaviors
that the LTL formula considers bad. If the intersection of the Kripke struc-
ture and the NBA is empty, the formula is proven valid, e.g. there exist no
sequence of actions which violates the formula. Otherwise, counterexamples
can be found by examining this intersection.
While LTL formulas can only reason about a single sequence of actions,

in CTL, specifications can express branching. This is important since the
Kripke stucture can itself express branching – a given state may have multiple
successor states. This allows for checking whether, for example, a certain state
can always be reached, something that is not possible to express in LTL.
There are many model checking tools which support both LTL and CTL, a

couple of notable ones are Spin [26] and NuSMV [27]. While the models to be
verified in NuSMV are described in a low-level input language, Spin supports a
high level language called Promela from which the Kripke structure is derived.

3.3 SAT and bounded model checking
The disposition in this section is based on [28]. SAT is the classic computer sci-
ence problem of proving whether there exists an interpretation (an assignment
of true or false to all atoms) of a formula such that the formula is satisfied (i.e.
evaluates to true). The atoms are boolean variables. For example, consider
the following propositional formula

x1 ∧ ¬x2

This formula is satisfiable with the interpretation x1 = true, x2 = false.
A SAT solver reads an input file in conjunctive normal form (CNF) and

returns either a satisfying interpretation or that the formula is unsatisfiable.
CNF is a conjunction of disjunctions of literals. Literals are either positive or
negative atoms, i.e. either an atom or a negated atom. Every propositional
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formula can be expressed in CNF, at some cost, either in the size of the
formula (paying by introducing new literals), or by computing the canonical
CNF representation (paying by solving a computationally difficult problem).
SAT was the first problem to be proven NP-complete (an important result

since it means that all problems in the complexity class of NP can then be
reduced to SAT). Even though the problem is NP-complete (implies that to
solve it an algorithm must be of exponential complexity w.r.t. the problem
size), modern SAT-solvers are tremendously powerful tools and can handle
problem instances with millions of literals.
Taking advantage of this, in bounded model checking (BMC) [29], the Kripke

structure together with the specifications are instead formulated as a SAT
problem with a bounded size. The bound defines in how many steps from
the initial state to look for counterexamples. The transition relation and
the negated specifications are iteratively unrolled up to this bound. At each
step a SAT problem is solved. If the problem is satisfiable, a specification
has been violated, and the resulting assignment can be used to reconstruct a
counterexample.
In contrast to MC and SCT, BMC is not complete unless the bound is high

enough. In practice, this upper bound is often too large to be practically
feasible. However, errors can surprisingly often be found in a relatively short
amount of steps. As such, BMC is more useful as a tool for finding errors
than to prove the absence of errors, which is the goal of SCT and MC.

3.4 Automated planning
Recall that in MC, the procedure for checking whether a specification holds,
the specification is first negated before it is transformed into a Büchi au-
tomata. What happens if the specification is not negated? Then instead the
intersection between the model and the specificion BA is an accepting run, i.e.
one particular (infinite) trace which satisfies the specification. Using a model
checker as a backend for automated planning was first suggested in [30], and
extended to non-deterministic effects in [31]. Planning with non-deterministic
effects is often solved with cyclic plans, by solving a CTL problem where the
goal should always be reachable under a fairness assumption (that eventually
one of the nondeterministic effects will happen). This has a strong relation to
controller synthesis [32].
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When BMC is used for planning, the maximum length of the plan is bounded
by the maximum number of steps. As the planning problem is iteratively en-
coded into SAT problems of increasing length, the first satisfiable problem
instance will constitute the shortest (in the number of steps) way to reach
the goal state under a given set of specifications. Essentially this arrives at a
planning problem formulated as a SAT problem, which has been used in the
planning community since [33], but with a powerful temporal specification
language for constraining the plans.
In the field of automated planning, planning problems are often written in

the Planning Domain Definition Language (PDDL) [34], but in this work, we
are interested in computing plans which fit well with the automata-centric
approach for modeling the automation system. It is interesting to see that
also the input languages for model checking is of interest to the planning
community [35] as an alternative to PDDL, citing human-robot collaboration
as one of the cases where this makes sense.
One downside to using a BMC solver to perform the planning is that the

counterexample trace is a totally ordered plan. In contrast to a partial order
plan, totally ordered plans have a fixed sequential execution order [36]. The
partial order plan can thus execute some steps in parallel, where the ordering
of actions do not matter. This is important in automation where it is com-
mon that different resources are able to perform their tasks in parallel. To
efficiently use BMC as a planner, post-processing of the produced plans must
be performed.
By using automated planning we can further simplify the modeling activity.

It allows us to remove the parts of the model that drives the system forward
and instead automatically find our way through the state space towards a
given goal. Additionally, the planner can be used to chose suitable parameters
automatically.

Example 3.2: Automated planning

Continuing the example in 3.1, we show how to simplify our system fur-
ther by applying automated planning. In Example 3.1, we used for-
mal specification to avoid having to write resource-specific details into
the transitions manually. After guard extraction, we were left with
the transition (let’s call it t1) conveyor1 ∧ ¬conveyor2 / conveyorm :=
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true, product_between := true together with a new specification. In
Section 2.3 we discussed modeling effects and introduced the transition
product_between ∧ conveyorm / conveyor2 := true, product_between :=
false. Let’s call this transition t2.

If we instead of writing t1 as above, which is essentially a manually
written rule or control policy, only describe the effects of turning on
the motor, like we did with t2, t1 could be replaced with conveyor1 ∧
¬part_between ∧ conveyorm / conveyor1 := false, part_between :=
true. This takes the control (i.e. when to turn it on and off) of the
motor (conveyorm) out of the system model. We instead leave it to an
automated planner to take the decision at run-time, depending on the
goal of the system. To move the product from the beginning to the end
of the conveyor, we can let the planner find the correct sequence of ac-
tions resulting in conveyor2 going high. From the initial state S0 from
Example 2.1, this involves turning on the motor, which the planner knows
will be followed by t1 and t2, which reaches the goal.

Already now we are able to cancel the act of moving the product to the
end of the conveyor, without writing anything new, by simply changing
the goal to ¬conveyor2, which will make the planner stop the motor to
avoid t2 from being taken.
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CHAPTER 4

Preparation and system integration

Developing a control system, as discussed in Chapter 2, is one of the tasks of
preparing an automation system. As we will see in Paper A and Paper D, we
suggest that developing the discrete control should start early, and run in par-
allel to other preparation activities. This chapter will give a brief introduction
to the virtual preparation tools used in industry today.
In order to achieve early iterations of the discrete control design work, there

is a need to be able to integrate the different resources in the system in a plug-
and-play manner. With a large number of algorithms in the loop required
to achieve intelligent automation, system integration becomes a challenging
task in itself. As the appended papers concerns a framework for working
with composing resources based on the Robot Operating System (ROS), an
introduction to ROS is also given in this chapter.

4.1 Virtual preparation and commissioning
Industry leading software tools supporting virtual preparation, such as Process
Simulate [37] and Delmia [38], combine several different aspects, including 3D
workstation layouts, device kinematics and logic for simulation, robot OLP,
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and material flows, into a single complex software package.
Figure 4.1 shows the user interface of Process Simulate, simulating a pro-

duction station with four robots. Historically these tools were sprung from
robot off-line programming (OLP) tools, which have been a big success –
robot programs are routinely generated in a 3D simulation environment and
downloaded onto the robot controllers on the factory floor, needing very little
manual adjustment. To support OLP, the simulation tools include support for
validation of production feasibility (e.g. reachability and collision clearance),
optimization of robot motions, and they also include support for different
robot vendors. More features have been added over the years to enable the
simulation of complete assembly sequences, including modeling of other de-
vices (e.g. clamping devices, turn tables), transportation of materials, and
simulation of human workers to evaluate ergonomics. To be able to simulate
the complete operation of a production station, assembly sequences have his-
torically been entered manually. During the past decade, virtual commision-
ing (VC) support has been added, allowing the tools to expose the simulation
model to a real control system.
VC defines the act of letting a candidate control system implementation,

running on its intended hardware, control a software simulation of the pro-
duction system in what is often called a hardware-in-the-loop setup [39]. The
motivation is to reduce physical commissioning time (in [40], savings of 50%
is reported) by finding and fixing errors well ahead of the the physical com-
missioning activity. In addition, VC enables tests that would be prohibitively
expensive (virtual products are cheap) or even impossible to run on a physical
system (e.g. performing tests which could endanger staff or risk damaging
expensive equipment).

4.2 A new automation paradigm
The general trend in automation is clearly moving in the direction of integrat-
ing more intelligent robotics that can perform tasks dynamically in a changing
environment [41], [42], as well as integrating collaborative robots [43], [44] and
other semi or fully autonomous machines such as AGVs [45], [46].
The application described in Section 1 (to be described in more detail in Sec-

tion 5.2), and intelligent automation in general, features interesting challenges
from an integration perspective. Some parts of the system can be classified
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Figure 4.1: Siemens Process Simulate simulating a production station with four
robots.

as more traditional automation, such as signal handling for tool connectivity,
execution of “special” maneuvers with the robot for attaching the different
tools, and controlling the different tools by setting inputs and outputs. Other
parts of the application, such as robot motion planning and the tracking of
human objects and products, belong more to the fields of robotics, computer
perception, and artificial intelligence. The intelligent automation system is a
combination of all these fields.
Supporting intelligent automation with the traditional virtual preparation

tools will be a challenge, as the system does not always behave in predicable
ways. Also, the monolithic structure with the tools containing everything
needed for simulation will be a hindrance from an integration perspective.
From a control perspective there are other challenges. Computer perception

and manipulation based on machine learning is not perfect, which means that
there will be more error states that needs to be handled compared to today.
An intelligent automation system described in [47] for example, reports 95%
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success rate for picking up parts. Other research on grasping reports number
between 84%–94% [48], 91% [49]. This means more execution paths and
thus more complex control systems. Combined with the existing challenges
of automation software development, such as safety, reliability, and efficiency,
new tools and development processes are required.
Another challenging task is how to achieve long-term robustness without

sacrificing flexibility. If the semi-autonomous robots of an industrial automa-
tion system cooperate with human operators [50], and can ask for help in
intuitive ways, either using natural language [51], or projecting intentions and
desires [52], the existence of the human operators in the system becomes an
enabler for robust intelligent automation systems, as they can intervene when
something goes wrong [53]. This means that is needs to be possible for oper-
ators to influence the automation system to a large degree.

4.3 The robot operating system (ROS)
In order to ease integration and development of different types of online algo-
rithms for sensing, planning, and control of the hardware, various platforms
have emerged as middle-ware solutions, of which one stands out, the so-called
Robot Operating System (ROS) [54]. ROS has been incredibly successful,
with the original paper having almost 8000 citations according to Google
Scholar [55]. In the current version of ROS (ROS2 [56]), the communication
architecture is based on the Data Distribution Service (DDS) [57] to enable
large scale distributed systems to be built on top of it. Even though ROS2 is
not hard real-time [58], the decision to build upon DDS paves the way for the
use of ROS2-based architectures in real-world industrial automation systems,
as we have previously shown in [59].
ROS systems are composed of a set of nodes communicating by sending

typed messages over named topics using a publish/subscribe mechanism. This
enables a quick and semi-standardized way to introduce new drivers and algo-
rithms to a system. Figure 4.2 shows an early prototype of the application sim-
ulated in the ROS visualization tool RViz. The simulated robot in the figure
can immediately be used with the motion planning framework MoveIt! [60],
which builds on the Open Motion Planning Library [61] that provides a mul-
titude of state of the art motion planning algorithms. The open-source and
collaborative nature of ROS creates a great network effect. For example, with

32



4.3 The robot operating system (ROS)

robot motion planning readily available, this also opens up for building on
top of that, for example the ROS2 Grasp Library [62] which provides plug-in
object grasping based on machine learning. This composability of eases pro-
totyping. By providing driver software, ROS also makes it easy to move from
simulation to reality. As these libraries continue to mature, and with DDS as
an improved communications layer, ROS has the potential to provide a good
base for developing future automation solutions.

Figure 4.2: Protoyping application described in Section 1. A scene in RViz for
testing robot motion planning. A virtual robot is hanging from a pillar
in the ceiling, moving a part from an autonomous kitting vehicle onto
a diesel engine mounted on an automated guided vehicle. Obstacles
can be moved in or out in this environment dynamically.

When composing a system of heterogeneous ROS nodes, care needs to be
taken to understand the behavior of each node. While the interfaces are
clearly separated into typed messages on named topics, knowledge about the
workings of each node is not readily available. This is especially true when
nodes have internal states that are not visible to the outside world.
To coordinate different ROS nodes in an automation system, one can think

about using a control system designed to work with ROS nodes. To do this,
a control system needs to know both how to control the node, as well as how
the nodes behave.
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4.4 Existing control frameworks for intelligent
automation

There exist several frameworks in the ROS community for helping the user
with composing and executing (mainly robot) tasks. For example, the frame-
work ROSPlan [63] that uses PDDL-based models for automated task plan-
ning and dispatching, SkiROS [64] that simplifies the planning with the use
of a skill-based ontology, eTaSL/eTC [65] that defines a constraint-based
task specification language for both discrete and continuous control tasks or
CoSTAR [66] that uses Behavior Trees for defining the tasks. Below is a
summary of how they work.

ROSPlan

ROSPlan features an elegant interface to structure knowledge, planning and
execution of plans which uses standard ROS interfaces, allowing any ROS
nodes to query the planner easily. Both sequential and temporal plans can
be produced and executed. While originally supporting PDDL2.1 with deter-
ministic and temporal planning, it has recently been extended to also support
probabilistic planning [67], which enables not only non-determinism but also
allow effects which have probabilities associated with them.

SkiROS

The core concept in SkiROS is the composition of reusable robot skills. These
skills are essentially parameterized computer programs that should be easy
to adapt to new situations by changing the parameters. Together with a
representation of the world state, the skills can be sequenced autonomously
using a PDDL-based planning system to reach goal states, but they can also be
used to compose manually defined tasks. An ontology is used to organize the
knowledge about the world needed by the robots, which includes for example
the relation between objects, their locations, if they are graspable etc. SkiROS
has been tested with some success in kitting applications in an industrial
setting [68].
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CoSTAR
CoSTAR uses Behavior Trees (BTs) [69] for defining and executing tasks cou-
pled with a novel approach to integrate computer vision systems. Rather than
relying on planning, BTs allow for a more manual, but easy way to instead
program what should happen in different situations. For example, it is possible
to define sequences of subtrees, where the different subtrees can in turn define
actions that should be performed in order of importance until one of them
succeeds. Because there is no planning system involved, BTs are very efficient
to execute. However, this also means that it may be difficult recover from a
failure using BTs – when all manually defined options have been exhausted,
the BT enters an error state.
CoSTAR allows for easy composition of computer vision algorithms by

defining pipelines that transform output from machine learning algorithms
into predicates that can be referenced in the BT execution. This, combined
with the easy programming, allows the system to quickly react to changes in
the perceived state of the world.
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CHAPTER 5

Preparation and control of intelligent automation systems

With the three chapters of preliminaries out of the way, this chapter is in-
tended to give an overview of the contents of the appended papers and high-
light the main results of the thesis. It also aims to highlight how the different
papers connect to each other.
The frameworks described in Section 4.4, do support intelligent automation

as defined in Section 1.2 in that they can reach the goal from many differ-
ent states (they are flexible), they can adapt to a changing environment, and
they can react to unexpected changes. They support development in different
ways; SkiROS focuses on knowledge capture and generalization of robot skills,
ROSPlan allows for easy integration with powerful PDDL-based planning en-
gines, and CoSTAR features a novel way to incorporate computer perception
algorithms based on machine learning.
A general theme is that they are more focused on robotics rather than

automation. They tend to ignore the challenges of traditional automation
by, for example, not offering sufficient support for detailed control of the
execution of actions and the management of IO state. Usually the actions to
be performed are implemented by computer programs, which can succeed or
fail.
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There is also work in the automation community to try to have planners
being integral parts of the automation system, notable work being [70] which
also proposes a hierarchical architecture, and the work described in [71] which
uses a planner to continuously compute production plans while being able to
react to unexpected events.
The PDDL-based execution environments of Skiros and Rosplan can indeed

automatically retry actions that have failed, but it is difficult to have them
perform detailed control of interdependent resources, which are common in
automation. It is our desire to be able to control individual state machines of
the resources in the automation system, and also be able to express constraints
between them, as we saw in Chapter 3. These constraints must be known to
the control system in order to be able to start the system from many different
states, for example after unforeseen errors have occurred.
In contrast to the ROS frameworks discussed above, the control framework

to be presented in this chapter is less focused on robotics and instead allows a
number of highly interdependent resources to be modeled independently and
composed using a combination of formal specification and planning. To allow
for the possibility to restart the automation system, the framework promotes
lifting details about the resource state up to the control system. To conclude:
in order to take advantage of the tremendous amount of work put into the
ROS ecosystem for intelligent automation, there is a need for yet another
control framework.

5.1 The Sequence Planner control framework
This section presents the control framework that is the main contribution of
this thesis. In this thesis, as well as in the appended papers, we refer to the
framework as Sequence Planner (SP). The framework is implemented in the
latest iteration of the software Sequence Planner. Since Sequence Planner has
existed in many shapes over the years, this section clarifies the history of SP.
Initially [72], the focus of SP was on supporting engineers in developing con-
trol code for programmable logical controllers (PLCs). With time, algorithms
to handle product and automation system interaction [73], and to visualize
complex operation sequences using multiple projections [74] were developed,
as well as integration of formal verification and synthesis using Supremica [75].
Online monitoring of production systems [76] and emergency department on-
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line planning support [77] have also been developed under the Sequence Plan-
ner name. The work in this thesis is implemented in the latest iteration of the
software. To avoid confusion, from now on SP refers to the control framework
presented in this thesis.
SP is based on a notion of goals, where a goal defines a set of states the

automation system is desired to be in. For example, consider a product that
can be in an “unassembled”, or “assembled” state. Then, a goal of the system
can be that this product should be in its “assembled” state. To reach this
state, the automation system may need to take many different actions – it
should follow a recipe or a plan. In an intelligent automation system, these
actions will most likely be taken in an uncertain environment. This means
that plans need to be able to change. SP handles this by constantly replanning
to find a suitable set of actions to take given the state of the system.
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Figure 5.1: Overview of the SP control framework.

Figure 5.1 shows an overview of the proposed framework. Fast replanning
is achieved by planning on two levels. On the high level with the opera-
tion planner that determines a rough course of actions, and on the low level
with the transition planner that issues detailed goal states to the resources
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in the system. Reusable resources are composed into a global model and
constrained via specifications to avoid undesired behavior. Operations define
how the resources can interact to solve individual tasks of the automation
system by defining low-level goals for the transition planner as predicates over
the resource state. The operations abstract away the detailed resource state,
which makes it possible for intentions to define high-level goals for the opera-
tion planner of the system. The high-level goals are predicates over decision
variables, which are the link between the two layers. Additional operational
specifications model high level constraints, such as in which order operations
are allowed to be executed.
This allows complexity during preparation to be reduced, as programming is

replaced with defining goals for the automation system, combined with safety
constraints and operational constraints. Preparation efforts shift from writing
and testing software to writing and testing goals and specifications.
Combined with the fact that the current valuations of the state variables

define the current state, the ability to continuously re-plan enables a great deal
of flexibility w.r.t. state variables changing in an unexpected way. For exam-
ple, if parts in the system are continuously tracked, the system can change its
plan on the fly if parts have been moved.

State variables
The current valuations of all state variables in the automation system make
up the current system state, as in Definition 2. SP uses a state-based control
design, where resources continuously receive goal states from SP, and contin-
uously update measured states, which are inputs to SP. Since the framework
is aimed at controlling devices with a varying degree of autonomy, it becomes
necessary to be able to control both low-level “dumb” devices (e.g. an ac-
tuator or a light) and “intelligent” devices, which may be able to take their
own decision on how to reach their goals. For example, consider a simple
indicator light, it may have a goal state ∈ {off , on} and a measured state
with the same domain. In contrast, a robot may have a more complex goal
state that includes a position to in space, perhaps with additional parameters
such as maximum joint velocity. For one particular set of valuations of the
system variables, there is no notion of how we arrived at the state in question
– this means that memory needs to be explicitly added to the control system.
Memory is modeled using estimated state variables. As in Definition 1, the
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variables in SP are of finite domain.

Example 5.1: Conveyor resource state

Consider again the example in Figure 2.1. The conveyor and the robot
would be different resources. The resources have states defined by re-
source variables: goal state, measured state, and estimated state. For
example, the table below describes how the conveyor resource could be
modeled and controlled in SP.

Variable Domain Type
conveyor1 {false, true} measured
conveyor2 {false, true} measured
conveyorm {false, true} goal
conveyore {false, true} estimated

Estimated state variables model state that the control system can not
directly measure, but needs to keep track of. A part being on the conveyor
(conveyore) is an example of such a state – there is no sensor for it so a
memory needs to be introduced. The estimated position of the product
is a variable internal to SP.

Transitions
Transitions are defined as in Definition 3, with the distinction that they, just
like the state variables, have a type. The type defines in which context the
transition can be taken. The types of transitions are:
Controlled transitions are taken when their guard condition evaluates to

true, only if they are also activated by the planning system.
Automatic transitions are always taken when their guard condition evaluates

to true, regardless of if there are any plans active or not. All automatic
transitions are taken before any controlled transitions can be taken. This
ensures that automatic transitions can never be delayed by the planner.
Effect transitions define how the measured state is updated, and as such

they are not used during control like the control and automatic transitions.
They are important to keep track of however, as they are needed for online
planning and formal verification algorithms (recall the discussion on modeling
the environment in Chapter 2). They are also used to determine if the plan is
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correctly followed – if expected effects do not occur it can be due to an error.

Decision variables and operations
An automation system can generally be thought of as moving around and
applying transformations to some item of interest. In the example described
in Chapter 2, this item is clearly the product. In other cases it may be less
clear, for example in an automation system for controlling an elevator, but
there is almost always some notion of a goal for the system. In the case of
the elevator, we might model it so that the position of the elevator is such an
item of interest. A goal state could then express that the elevator should be
on a certain floor.
We model the state of such items of interest as estimated variables called

decision variables. These can be synchronized with resource states at points in
time when it is possible to measure them, but they can also be pure memory
variables, like the estimated variables. The decision variables can change
suddenly by external, not modeled, events, which may or may not trigger a
need for replanning.

operation

precondition

effect

low level goal / action

Figure 5.2: We use this graphical notation to visualize operations. An operation
consist of a precondition, which is a predicate over the decision vari-
ables, a goal state which is a predicate over the resources variables,
actions with which to update the state variables upon reaching the
goal, and a set of effects to the decision variables of completing the
operation.

Describing what can, and should, happen to these items of interest is a
natural starting point for modeling an automation system. To define this we
introduce the operation. The operation is defined in Definition 5 of Paper C,
but at a glance, operations bind combinations of resource variables to decision
variables. Figure 5.2 shows a graphical representation of the operation. An
operation consist of a precondition, which is a predicate over the decision
variables, a goal state which is a predicate over the resources variables, actions
with which to update the state variables upon reaching the goal, and a set of
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effects to the decision variables of completing the operation. To the transition
planner, an operation exist as an automatic transition between the goal state
and the effect actions. In this way, the operations can be state-less during
execution, and manual interventions that change the state will keep the control
system state in synchrony.

Example 5.2: The operation abstraction

Consider again the case of the conveyor belt and robot discussed in
Chapter 2. To model the product, we introduce a decision variable,
p ∈ {s1, s2, r}, where s1 and s2 are represent the start and end of the
conveyor belt, and r that it is being held by the robot. With the product
starting at the beginning of the conveyor, initially p = s1.
An operation, Om, for moving the product over the conveyor belt can

then be defined with the guard predicate (pm) p = s1, effect (em) p = s2,
goal predicate (gm) conveyor2, and no actions gj = ∅.
When the operation is active, the transition planner tries to reach the

goal state p = s2. If the product is placed in front of the second sensor, the
control system will assign p := s2, regardless of whether the operation is
activated by the operation planner or not, due to the automatic transition
created by the operation.

An operation can refer to the state of more than one resource in its goal.
This, combined with resource specifications are the main way resources are
composed in the proposed framework.

Resource specifications
Resource specifications define invariant propositions that must always hold.
Because the effects and automatic transitions occur outside of the control of
the transition planner, these transitions must be taken into account before
taking any controlled transitions, so that states that break the specification
are not reached. Paper B shows how we use a technique called guard ex-
traction to ensure that such propositions always hold. This synthesizes new
guard expressions for the controlled transitions, which ensure that the planner
cannot visit any undesired states.
As discussed in Example 3.1, this allows for separating the resource models
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and the logic, which depends on the specific requirement of the automation
system under development. Combined with the operation abstraction for
defining how the system progresses, which is also dependent on the specific
requirements, resources can be reusable. This contributes towards answering
RQ2 in Section 1.3.

Intentions and operational specifications
Intentions (defined in Definition 6 of Paper C) are used to define high level
planning problems w.r.t. the decision variables. For example, an incoming
production order could trigger an intention that has as its goal that a certain
product should be produced.
There are often constraints that need to be adhered to w.r.t. the decision

variables. In production systems, for example, it is common that assembly
tasks must occur in a certain sequence. This is modeled using operational
specifications. These specifications influence how the operation planner plans
the sequences of operations required to reach the current goals. An example
of this is described in Section 5.6 of Paper D, where the order of tightening
bolts during assembly is important.

Operation and transition planners
The transition runner, (top part in Figure 5.3) keeps track of the current
state of all resource states, decision variables, operations, and intentions. It
continuously applies transitions (controlled and automatic), which update the
system state, reacting to any changes to incoming state from the ROS nodes
on the network.
When the guard expression of a transition is evaluated to true in the current

state, the transition is taken and the state is updated by the transition’s ac-
tion functions. The state variables relating to resource goals are continuously
published to the appropriate ROS2 topics.
Controlled transitions are given additional guard expressions every time a

new plan is computed, which defines the execution order and what external
state changes that needs waiting for. Intentions and operations are active
based on their state. This state can safely be changed arbitrarily in order to
cancel running operations or active intentions, as the planner will not allow
any forbidden states to be reached.
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Figure 5.3: Illustration of how the control system continuously deliberates new
plans for both the operations and resources.

Because the system is modeled with effect transitions, it is possible for the
transition runner to continuously monitor if an effect does not occur within
some time bound, or if the “wrong” effect occurs. When an effect does not
occur within a (user specified) timeout period, the effect is disabled in the
generated planning problem. For example, there may exist an effect which
transitions between a “request” state and a “response” state for a particular
resource. Keeping track of the duration an effect has been enabled provides
a general way to specify behavior for timeouts. If the system leaves the state
where an effect is active, the timestamp for that effect is reset.
A special case of effects not occurring in time is if a resource fails to com-
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municate with SP, for example due to a network, hardware, or software error.
This leads to the resource being marked as unavailable, which disables all
transitions related to it.
The transition runner also keeps track of which operations that are in an

error state, and keeps this information updated based on continuously check-
ing if the operation can be completed from the current state. This is done
by periodically executing a one-off planning request in the background. If an
operation can be completed, the error state is automatically removed. This
allows the system to continue automatically when errors have been cleared.
The operation planner (to the right in Figure 5.3) continuously computes

sequences of operations in order to reach the goals of the currently active inten-
tions while adhering to the operational specifications described in Section 5.1.
This is done by generating a BMC problem based on the preconditions and ef-
fects of the operations, the operation specifications, and the current state of all
decision variables. Then, a model checker is called using a heuristic that tries
to solve for different plan lengths in parallel [78]. The model checker tries
to prove that the desired goal state is not reachable under the operational
specifications. If the goal state is reachable, a counterexample is produced,
which is converted into a plan. The computed plan is of total order, but a
post-processing step is applied where operations can be started in parallel if
there are no dependencies between them. More about the operation planner
can be read in Section 2.6 of Paper C.
In the same way, the transition planner (bottom left Figure 5.3) tries to

reach the goal of all currently executing operations. It has constraints defined
by the invariant formulas (and synthesis results) described in Section 5.1.
The operations and the decision variables naturally define a hierarchy, where

the operations define an abstraction of how products and important abstract
information about resource state can change in the system. In order to pro-
duce correct plans this abstraction needs to be ordered monotonic [79], which
means that the transition planner must make sure not to change any other
decision variables than the ones in the current goal. Otherwise, the transition
planner may end up reversing progress already made by the operations.
In SP the strategy is to let the planner decide on the “correct” outcome

whenever there is non-determinism in the model, and instead re-plan upon
encountering an unexpected result. This means that non-determinism at the
transition planner level must be properly modeled by the operations. This is
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done by creating variants of operations, which are copies of the same opera-
tion, but with different actions and goal states. When an operation that has a
variant is executing, the goal of the transition planner is set to the disjunction
of the operation variants’ goals. For example, consider a sensor (sens?) that
scans the color of a product, determining that the product is either red or
green. An operation “scan” could exist in two variants, one with a goal pred-
icate sens? = red and an outcome that a decision variable is assigned “red”
and one with a goal predicate sens? = red and the outcome that a decision
variable is assigned “green”. The goal for the transition planner would then
be sens? = red ∨ sens? = green. When sens? receives one of the values, the
decision variable is updated accordingly. This may trigger re-planning of the
operation planner if the “correct” outcome was not achieved.

Example 5.3: Planning and error handling

In Example 5.2, an operation Om was introduced, to move the product,
modeled by the decision variable p, from one end of the conveyor to the
other.
Consider what would happen if, on its way from one end to the other,

we lift the product off from the conveyor. The control system now expects
conveyor2 to go high, due to the effect transition product_between /
conveyor2 := true, part_between := false that we added in Section 2.3,
since this transition will be part of the plan to reach the goal.
Because we interfered and removed the product, there is now a mis-

match between the estimated state of the control system and reality.
Eventually we time out on the effect transition, which will cause the next
replan to fail due to the goal of Om being unreachable. The failed plan
puts Om in an error state and it will no longer be included by the oper-
ation planner. Any unrelated operations will continue their execution in
the mean time.

Figure 5.4 shows an example of how an error can propagate in the hierarchy.
The figure shows an intention, “tighten all bolts”, which has a goal that all
“bolts” in the system should be tightened. The bolts can be tightened by a
robot holding a tool built for this purpose (Paper E includes a more thorough
description of the system). An operation plan has been computed, which
reaches the goal that all bolts should be tightened. The plan includes locating
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the proper tool using a 3d camera, attaching the robot to the tool, and then
using the tool to tighten the bolts.

locate
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timeout detected, replan

replan fail, operation state := error

tighten
all bolts

replan with operation disabled

1

2

3

Intentions

Operations

Resources

Figure 5.4: Propagating errors in the planning hierarchy.

During execution, a low level effect fails to occur (1). This disables the prob-
lematic effect transition, which triggers a replan with the transition planner.
If this replan fails (2), the operation that posted the goal is identified and is
put into its error state (pink color). Thus, the system learns which operations
are currently not possible to complete. It may or may not be able to continue
execution with this new knowledge. A new operation plan is computed, (3)
in Figure 5.4, with the operation disabled. In this case, no plan was found,
and the intention is also disabled.

Maintenance transitions (MTs)
In the case that execution cannot continue, the exact cause of the problem
needs to be possible for an operator to pin-point. The planner can be used to
aid the operator by suggesting a solution to the problem. This is done with
the help of maintenance transitions (MTs).
MTs are controlled transitions that are only active when checking if the

disabled operations can be restarted. Their purpose is to give the planning
system more freedom to operate in, by encoding specific actions that the
operator can take (in the physical world) to solve problems.
For example, clearing an error state off a resource can be modeled as an

MT if clearing the error cannot, or should not, be done automatically by the
control system. It is common that resources include a reset maintenance
transition, which sets the state of the resource to some predefined (safe) state.
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By letting the planning system correct errors via MTs, safety is ensured –
either the goals can be reached without violating any safety constraints, or
they cannot be reached at all.

5.2 Applications and results
We end this thesis by taking a closer look at the application in the UNIFI-
CATION project. The application concerns transforming an existing manual
assembly station from a truck engine final assembly line, shown in Figure 1.1a,
into an intelligent and collaborative robot assembly station, shown in Fig-
ure 1.1b.
In the application, diesel engines are transported from station to station in a

predetermined time slot on Automated Guided Vehicles (AGVs). Material to
be mounted on a specific engine is loaded by an operator from kitting facades
located adjacent to the line. An autonomous mobile platform (MiR100) carries
the kitted material to be mounted on the engine, to the collaborative robot
assembly station.
In the station, a robot and an operator work side by side to mount parts

on the engine, sharing tools suspended from the ceiling. A dedicated camera
system keeps track of operators, ensuring safe coexistence with machines. The
camera system can also be used for gesture recognition.
Before the collaborative mode of the system starts, an authorized operator

has to be verified by a RFID tag. After verification, the operator is greeted
by the station and operator instructions are shown on a screen. If no operator
is verified, some operations can still be executed independently by the robot.
However, violation of safety zones triggers a safeguard stop.
After the AGV and the kitting material have arrived, a Universal Robots

(UR10) robot and an operator together lift a heavy ladder frame on to the
engine. After placing the ladder frame on the engine, the operator informs the
control system with a button press on a watch, or with a gesture, after which
the UR10 leaves the current end-effector and attaches itself to the nutrunner
used for tightening bolts. During this tool change, the operator starts to place
24 bolts, which the UR10 will tighten with the nutrunner.
During the tightening of the bolts, the operator can mount three oil filters.

If the robot finishes the tightening operation first, it leaves the nutrunner in
a floating position above the engine and waits for the operator. When the
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operator is done, the robot attaches a third end-effector and starts perform-
ing the oil filter tightening operations. During the same time, the operator
attaches two oil transport pipes on the engine, and uses the same nutrunner
to tighten plates that hold the pipes to the engine. After executing these
operations, the AGV with the assembled engine and the empty MiR100 leave
the collaborative robot assembly station.
The transformation has undergone several iterations during the course of the

project. The first iteration was a semi-static one, with both the UR10 robot
and the nutrunner hanging in a fixed positions from the ceiling. An early
simulation of this setup can be seen in Figure 4.2. In the setup described in
Paper D, the fixed position of the robot is replaced with a robot on a movable
pallet and tools that hang from wires in the ceiling. The robot has a 3d camera
mounted on it for localizing tools and products.

Applying IVPC for an intelligent automation system
When trying to solve the complexities of intelligent automation using a plan-
ning framework, traditional preparation work such as optimizing robot pro-
grams off-line can no longer be done with the expectation that these programs
will run uninterrupted. The control system may take other decisions due to
external events, or there may exist temporary obstacles in the environment.
It is still important to perform off-line preparation to ensure an efficient au-
tomation system. Even though a robot is semi-autonomous, in our use case it
is still required to work with placement of the robot, product geometries, etc.
Additionally, there is a need to simulate the system to study the sometimes
hard to predict actions of the planner.
An interesting feature of the control framework is that, with the exception

of the invariant expansions described in Section 5.1, there is no off-line compu-
tation necessary when changing the components of the control system. This
means that we can add, remove, or change both resources, operations, and
state variables, without needing to compile or download anything.
Paper D describes how we worked with virtual preparation to compute

sequence constraints for the control system with a dedicated software for robot
motion planning called IPS [80], as well as how we used virtual validation of
our control design, which can be built step by step during the process. The
preparation process follows a concept introduced in Paper A, called Integrated
Virtual Preparation and Commissioning (IVPC). In IVPC virtual preparation
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(a) No collision when locating the engine. (b) Red triangles highlight the collision be-
tween the new tool and the workpiece
when locating the engine.

Figure 5.5: Changing tools todo.

is extended to include formalized control system development and VC. IVPC
features an iterative workflow that is centered around VC for validation and
a model based control system design. If this workflow includes a two-way
communication between the VC (which we assume also contains tools for
virtual preparation) simulation software and the control system, not only can
the simulation software be used to validate the control system, but also provide
information from which it is possible to automatically generate constraints for
the control system model. This enables a truly interactive workflow that
enables rapid iterations at the same desk, reducing both handovers between
engineering disciplines and mental context switches.
Paper D describes the process of importing resource models, and then step

by step adding operations that can initially be completed very easily by the
planner. Resource specifications are added while a simulation is running,
which forces the planner to start avoiding certain states. Similarly, operational
specifications, which define sequencing of the assembly tasks are added to the
live automation system. While the original concept for IVPC described in
Paper A had in mind control code generation based on formal models, how
IVPC was applied in Paper D provides a more tightly integrated and pleasant
development experience.
In Paper D we describe how the operational specifications can be used to

define preferred orderings of operations in an interactive way. Consider for
example the case where multiple resources have operations that can complete
some task, but the different tasks need to happen in a certain order. The
simulation allows us to experiment with what will happen if the operator
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performs tasks “out of sequence”, or if certain resources become unavailable.
Another example of the iterative workflow shown in Paper D revolves around

wanting to change to a different type of nutrunner tool. If preparation and
control design is performed as parallel activities, they both influence each
other. While it was, with the old tool, possible to scan the engine even with
the tool attached, the control system entered an error state on the scan engine
operation once the tool had been changed. Figure 5.5 illustrates the behavior.
The connection with the planner also allows traditional model checking to be
performed on the models. Any counterexamples found can then, because they
are just plans, be visualized in the simulation software as done in [81].
This interactive formal modeling, presented in Paper A and Paper D, con-

tributes towards RQ3 in Section 1.3.

Investigating error recovery
As discussed in Section 5.1, both transitions, operations, and intentions can
be disabled during runtime. This can be used to handle, or work around,
errors, dynamically changing what the system is allowed to do.
Paper E investigates how the control framework handles a variety of error

situations. The use case from Paper D was extended with an additional robot
and a number of different error scenarios were manually triggered. The errors
all fell into one of the following categories.

• Unresponsiveness A resource does not respond in time. For example,
communication failure or equipment malfunction (e.g. a sensor that
does not give the expected result).

• Task failure A resource fails to perform its current task. This may be
both expected and unexpected failures.

• Unexpected events The state unexpectedly changes. For example, con-
sider the case of a product slipping away from the grip of a robotic
gripper.

• Specification errors The automation system breaks safety specifications
or cannot make progress. This can occur due to mistakes in program-
ming, or as a consequence of previous errors.

Figure 5.6 shows one example of an error situation. In this experiment
the robot to the left, r2, has stopped responding for an unknown reason.
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However, it is still attached to the smart tool (orange), which is needed to
complete assembly. Additionally, r2 is physically blocking the space around
the bolts. In Paper E we are interested to know if this particular situation can

Figure 5.6: Simulation showing one of the experiments performed in Paper E. In
this experiment the robot to the left, r2, has stopped responding for
an unknown reason. However, it is still attached to the smart tool
(orange), which is needed to complete assembly. Additionally, r2 is
physically blocking the space around the bolts.

be recovered from, even if r2 stays disconnected. The control system looks
for a plan that includes MT:s and suggests a solution to the operator that
it should manually put the tool back to its initial hanging position (which is
an MT). Out of nine situations tested, the operator had to intervene in four
of them. After manual intervention, restarting production was possible in all
cases.

Planning performance
Paper C includes some benchmarks on the performance of the two different
planners that are included here. Because the operation planner and the tran-
sition planner effectively define a hierarchy, there exist a trade-off in how much
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Figure 5.7: Planning performance.

information should be encoded in the decision variables. For example, it is
not necessary to model the knowledge of which tool the robot is holding as a
decision variable, because when the time comes to bolt, the transition plan-
ner would figure out that it is necessary and perform the necessary resource
transitions. However, changing the tool is a costly (in time) operation and so
the location of the tool should be encoded as a decision variable.
The transition planning model benchmarked includes 6 resources and has

84 transitions (of which 30 are auto transitions coming from operations), 58
specifications, and 1.02434e22 reachable states. The operation planning model
is orders of magnitudes smaller with 1.61248e9 reachable states, with 30 tran-
sitions modeling the operations.
The plots in Figure 5.7 show the planning times for the transition planner

and operation planning ordered by plan length. Each cross is one plan com-
puted. The plans were computed on a consumer grade laptop computer. In
this system, the responsiveness is enough at around 1 second, which suggests
that for a system of this size, the transition planner can comfortably search
between 15-20 steps into the future while keeping adequate responsiveness.
Even though the system can handle great flexibility, for the most part things
progress nominally, in which case the system does not need to replan. For a
system of this size, planning performance does not appear to be a hindrance.
Combined with the usability also after unexpected situations as described in
Section 5.2, this contributes to answering RQ1 in Section 1.3.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Martin Dahl, Kristofer Bengtsson, Patrik Bergagård, Martin Fabian,
and Petter Falkman
Integrated virtual preparation and commissioning: supporting formal
methods during automation systems development
8:th IFAC Conference on Manufacturing Modeling, Management & Con-
trol,
IFAC-PapersOnLine,
49(12), pp. 1939-1944, 2016.

This paper proposes a framework, Integrated Virtual Preparation and Com-
missioning, where virtual commissioning models are used as a base for prepa-
ration and control system implementation assisted by formal methods. The
extensive use of simulation in virtual commissioning allows computation re-
sults from formal methods to be continuously validated by visual inspection
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and using existing analysis tools (e.g. collision detection methods). The
framework is applied in a case study, where the combination of a simulation
model and a formal model is used as an aid in generating operation sequences
for validation during production preparation.

6.2 Paper B
Martin Dahl, Kristofer Bengtsson, Martin Fabian, Petter Falkman
Guard extraction for modeling and control of a collaborative assembly
station
Workshop on Discrete Event Systems, Nov. 2020,
To appear in conference proceedings.

This paper presents an earlier iteration of the proposed control framework,
which is why it uses different notation than the following Papers. It focuses
on how invariant propositions over the resource descriptions can be expressed
by extending the original guards using guard extraction. Planning and verifi-
cation can then be performed directly on the system with additional guards.
While the specification language is limited to invariant propositions, we find
that in practice many common safety specifications can be expressed like this
when combined with the notion of uncontrollability.

6.3 Paper C
Martin Dahl, Endre Erős, Kristofer Bengtsson, Martin Fabian, Petter
Falkman
Sequence Planner: A framework for control of intelligent automation
systems
Submitted to Robotics and Computer-Integrated Manufacturing.

Paper C presents a control framework for automation systems featuring
collaborative robotics and other machines with some degree of autonomy. To
develop robust automation solutions, there is also a need for reliably coor-
dinating a number of complex subsystems. The proposed framework helps
with this complex task by relying on supporting algorithms for control logic
synthesis and online planning. The framework is applied to an industrial use
case.
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6.4 Paper D
Martin Dahl, Christian Larsen, Endre Erős, Kristofer Bengtsson, Mar-
tin Fabian, Petter Falkman
Interactive formal specification for efficient preparation of intelligent au-
tomation systems
Submitted to CIRP Journal of Manufacturing Science and Technology.

The intelligent automation systems of the future will consist of an increasing
amount of complex resources, such as collaborative robots or and autonomous
roaming robots for material handling. To be used in an automation system,
these complex resources need to be coordinated, both with each other and
with respect to high level specification on the goals of the automation system.
In Paper D we apply the framework for virtual preparation with a model-
based control system in the loop presented in Paper A to a case study of
an intelligent and collaborative automation system. This allows for new re-
sources, operations, and constraints to be integrated into a running virtual
system, enabling a truly integrated preparation approach.

6.5 Paper E
Martin Dahl, Endre Erős, Kristofer Bengtsson, Martin Fabian, Petter
Falkman
Application of the Sequence Planner control framework to an intelligent
automation system with a focus on error handling
Submitted to Machines, special issue on Mechatronic System for Auto-
matic Control.

In the new, intelligent automation systems discussed in this thesis, various
error states are expected to occur more often, highlighting the need for good
support in error handling. This paper studies, using a case study, how well the
control framework presented in Paper B can recover after errors. It presents
the key insights that were gained during implementation.
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CHAPTER 7

Concluding remarks and future work

This thesis introduced a framework for model based control of distributed
devices, with intelligent automation in mind. We have used it to control
robots, tools, human-machine interfaces, and have successfully been able to
restart after errors. We have chosen techniques which do not require long times
spent recomputing synthesis problems to guarantee safety specifications. This
allows for very fast iteration times, which, combined with interactive simula-
tion, supports the creative process. This Chapter provides some concluding
remarks and directions for future work. The conclusions are grouped around
the research questions introduced in Section 1.3.

RQ1 How could a control framework for an intelligent automation system be
designed?
As we noted in the discussion about intelligent automation in Sec-
tion 1.2, the control system needs to be able to adapt to its surroundings
and be able to find multiple ways to reach the goals. To this end a goal-
oriented control framework based on automated planning is proposed.
The control system continuously communicate goal states for each in-
dividual resource. What these goal states should be is computed with
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the help of automated planning. This makes it possible to change the
goals of the system on the fly, even half-way through another process.
This satisfies the requirements of being adaptive, deliberate and to some
extent reactive. As a system designed around online planning cannot be
real-time, we cannot reach high levels of reactivity on the coordination
level – this must be handled in the resources.

RQ2 How can we use model-based techniques to reduce complexity when prepar-
ing control systems for intelligent automation systems?
In the classic paper about software engineering “No silver bullet” [82]
by by Brooks and Kugler, the phrase silver bullet became popularized.
Brooks and Kugler’s argument is that there will be no programming
language, or new methodology, that can give an order of magnitude
increase in productivity (this would be the silver bullet), because the
essential problem of software is fundamentally difficult and even though
many different representations can be used in search of an engineering
solution, the essential problems are still there.
Using model-based techniques allows for declarative specification of the
intentions of the system, rather than focusing on the how. Formal specifi-
cation and synthesis, combined with automated planning can essentially
eliminate “if-then-else” programming.
It is however the authors view that the model-based techniques are not a
silver bullet. The essential problems are fundamentally in the details of
the automation system. When we shift towards a model-based approach,
we shift the problem from writing correct code to modeling the problem
properly. When things go wrong, abstractions break and we are anyway
forced to understand what is happening in the system. Someone needs
to know the details.
What the model-based techniques do offer is a structured way to tackle
complexity, which could (some day) be condensed into engineering work
tasks.

RQ3 Could an interplay between simulation and formal methods provide a
foundation for an iterative preparation methodology?
Continuing the reasoning from RQ2, with the following quote, also from
Brooks and Kugler: The hardest single part of building a software sys-
tem is deciding precisely what to build. No other part of the conceptual
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work is to difficult as establishing the detailed technical requirements,
including all the interfaces to people, to machines, and to other software
systems. No other part of the work so cripples the resulting system if
done wrong. No other part is more difficult to rectify later.

The earlier errors can be found, the less costly it is to fix them. As the
previous quote hints at, it is also possible to build something correctly
even though what was built turns out to be the wrong thing. The
advent of agile methodologies that focus on quick iterations and changing
requirements is a response to this aspect.

The interactive framework proposed in this thesis can help with this
point. Different resources and specifications can be tested out in a live
environment to gain an understanding of details in the system that may
not be apparent in earlier planning phases. This is especially true for
an intelligent automation system, where both resources and operators
may behave in unexpected ways. Using the framework presented in this
thesis, the control system can evolve into a full-grown prototype already
during early preparation.

Future work
One weakness of the presented framework is that it does not provide a gen-
eral way to avoid deadlock situations. While it is possible to perform model
checking w.r.t. liveness, this is limited to small systems due to the state space
explosion problem. This means that testing becomes a crucial activity, but
this has not been worked on within the scope of this thesis.
The framework as it is presented in this thesis is limited to variables with

a boolean or enumeration type domain. Today there exist mature solvers
for problems of the class Satisfiability Modulo Theories (SMT), where theo-
ries are integrated into the core of the SAT solving algorithm. Examples of
such theories are arithmetics with real numbers, pointer and array logic, and
bitvectors. This allows for a much more expressive modeling language as well
as the possibility to perform optimization with a cost function compared to
just finding the shortest plan in number of steps taken.
As an example, consider the case shown in Paper D where the user is inter-

actively entering sequence specifications. It is not difficult to envision, that if
operations had a cost related to them (or an execution time), that the user
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could be entering constraints for a mathematical programming or constraint
satisfaction problem instead. This would enable on-line optimization of the
operations instead of just finding one particular plan. Combined with learning
how long an operation takes (which can vary depending on the state of the
involved resources), some interesting results could potentially emerge.
Another interesting thing to learn are the effect transitions. Given a set

of resources and formal models of their behavior it could be possible to learn
what happens when they interact in a simulated environment. We could find
out that some states are not reachable, or what happens to the products in
the system by observing such a simulation.
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