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A B S T R A C T   

To enable modelling of the progressive failure of large, laminated composite components under 
crash or impact loading, it is key to have a numerical methodology that is both efficient and 
numerically robust. A potential way is to adopt an adaptive method where the structure is initially 
represented by an equivalent single-layer shell model, which during the analysis is adaptively 
transformed to a high-resolution layer-wise model in areas where higher accuracy is required. 
Such a method was recently developed and implemented in the commercial finite element solver 
LS-DYNA, aiming at explicit crash analysis (Främby, Fagerström and Karlsson: An adaptive shell 
element for explicit dynamic analysis of failure in laminated composites - Part 1: Adaptive ki
nematics and numerical implementation, 2020). In the current work, the method is extended to 
the case of interacting inter- and intralaminar damage evolution. As a key part, we demonstrate 
the importance of properly regularising the intralaminar failure described by a smeared-crack 
model, and show that neglecting to account for the crack-versus-mesh orientation may lead to 
significant errors in the predicted energy dissipation. We also validate the adaptive approach 
against a four-point beam bending test with matrix-induced delamination growth, and simulta
neously show the capability of the proposed method to – at lower computational expense – 
replicate the results from a refined, non-adaptive model.   

1. Introduction 

In their ambition to reduce vehicle weight, the automotive industry is aiming to increase the share of high-performance carbon 
Fibre-Reinforced Polymers (FRP) in structural parts. Carbon FRP are interesting because of their superior specific properties in terms of 
stiffness, strength and energy absorption (in crushing), cf e.g. Carruthers et al. [1], Jacob et al. [2] or Park et al. [3]. However, the latter 
property is strongly dependent on that the proper failure modes are triggered, and that severe delamination is mitigated (cf e.g. Hull [4] 
and Grauers et al. [5]). As the development of new cars is driven by simulations, and is strongly constrained by safety regulations, 
increasing the share of carbon FRP needs to be assisted by accurate finite element (FE) modelling tools that are efficient enough to 
allow full car crash analyses. To enable such FE simulations at larger scale, most often with an explicit time stepping algorithm, we 
have in an accompanying paper (Part I) [6] proposed an adaptive refinement method for modelling the failure kinematics of laminated 

* Corresponding author. 
E-mail address: johannes.framby@chalmers.se (J. Främby).  

Contents lists available at ScienceDirect 

Engineering Fracture Mechanics 

journal homepage: www.elsevier.com/locate/engfracmech 

https://doi.org/10.1016/j.engfracmech.2020.107364 
Received 6 February 2020; Received in revised form 13 August 2020; Accepted 30 September 2020   

mailto:johannes.framby@chalmers.se
www.sciencedirect.com/science/journal/00137944
https://www.elsevier.com/locate/engfracmech
https://doi.org/10.1016/j.engfracmech.2020.107364
https://doi.org/10.1016/j.engfracmech.2020.107364
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2020.107364&domain=pdf
https://doi.org/10.1016/j.engfracmech.2020.107364
http://creativecommons.org/licenses/by/4.0/


Engineering Fracture Mechanics 244 (2021) 107364

2

Nomenclature 

A matrix for rotation from global to element frame 
Ac crack area 
Ae element (mid) surface area 
a1,a2 element (mid) surface bimedians 
b1,b2 help vectors for determining element frame 
C material stiffness 
Cd,ref weak refinement damping (peak) value 
d damage 
dlim intralaminar damage threshold for activation of strong refinements 
E elastic modulus 
E Green–Lagrange strain 
Ê effective Green-Lagrange strain 
F deformation gradient 
f failure index 
fCZ,lim interlaminar failure threshold for activation of strong refinements 
fref,lim intralaminar failure threshold for activation of weak refinements 
G shear modulus 
𝒢c critical fracture energy 
h thickness 
J Jacobian determinant of deformation gradient 
J Jacobian matrix of element isoparametric mapping 
k cohesive penalty stiffness 
Lc crack length 
Le characteristic length for regularisation of smeared-crack material model 
L□

e element-based characteristic length 
L⊞

e mesh-based characteristic length 
Lef characteristic length for fibre crack 
Lem characteristic length for matrix crack 
Lξ in-plane element length along ξ-axis 
Lη in-plane element length along η-axis 
n midsurface normal vector 
Q matrix for rotation from element to material frame 
R matrix for rotation from material to lamina frame 
rdet(J) element distortion value 
S second Piola–Kirchhoff stress 
Ŝ effective second Piola-Kirchhoff stress 
S0 strength in TSL 
SLT shear strength along fibres 
STT shear strength transverse to fibres 
[[u]] jump in TSL 
Ve (element) volume 
X reference coordinates 
x current coordinates 
Y+ matrix tensile strength 
Z matrix for rotation from global to lamina frame 
ℰ element frame (ξ, η, ζ)
𝒢 global frame (x, y, z)
ℒ lamina frame (1,2, 3)
ℳ material frame (a, b, c)
ΔtCZ duration of strong refinement stabilisation 
Δtref duration of weak refinement damping 
Δθ interface pitch angle (fibre angle difference between two plies) 
Δθdel interface pitch angle threshold for allowing refinements 
Δ𝒲dis dissipated energy 
θ in-plane crack angle with respect to element ξ-axis 
ν Poisson’s ratio 
σ Cauchy stress 
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structures. We acknowledge that similar methods have been proposed for progressive laminate failure e.g. Shor and Vaziri [7], McElroy 
[8] and Adams et al. [9], although we believe that this is one of the first method that is adapted to a dynamic setting and which deals 
with the associated numerical challenges. In our previous paper, we also detailed the implementation of the proposed method in the 
commercially available FE software LS-DYNA, commonly used in crash analysis. 

The focus of the Part I was on the interlaminar fracture. In this second part of the work, we expand the adaptive refinement method 
with models to describe the intralaminar behaviour and handle the interaction between delamination and intralaminar failure. Such 
interaction mainly involves delamination initiation caused by interface stress concentration at the tips of matrix cracks. Ideally, this 
requires modelling of both the intralaminar and the interlaminar cracks as strong discontinuities, cf e.g. Fang et al. [10], Reiner et al. 
[11], Lu et al. [12] and Zhi and Tay [13]. However, for simplicity we propose to model intralaminar fracture using a smeared-crack 
material model, where no explicit intralaminar crack is present. Therefore, to model the intra- and interlaminar interaction we adopt 
an approach suggested by Yun et al. [14], although herein adapted for increased numerical robustness. This interaction works by 
degrading the critical fracture energy of a cohesive zone (CZ) element by the damage state of the adjacent intralaminar elements. 

To properly describe the energy dissipation due to intralaminar failure with a smeared-crack model, the fracture energy must be 
regularised with respect to the element size and crack orientation. Already 1985, Bažant [15] showed that for an isotropic 2D case and 
a finite element mesh of right angled rectangular elements, not only the element size, but also the orientation of the localising strain 
band (representing the crack), needs to be properly accounted for. Despite this, the crack orientation is often neglected, or – as we 
argue in this paper – is inadequately accounted for. Therefore, in this paper we extend Bažant’s idea to the case of generally shaped 
continuum shell elements describing fibre-reinforced laminates with different ply orientations. We show the importance of considering 
both element shape and crack orientation for various cases and element shapes. 

Finally, we validate the adaptive concept including interacting interlaminar and intralaminar failure against a four-point bending 
test reported in the literature. The validation shows that our adaptive refinement method can model the experiment equally well as a 
reference (non-adaptive) simulation. 

By expanding our work from [6] we believe that we take a large step towards realising accurate and computationally efficient 
industrial crash simulations. This is, as mentioned above, crucial for structural composites to have a widespread use in future cars [16]. 

1.1. Outline of paper 

In a first section we make a short summary of the adaptive refinement method followed by presenting intralaminar-based 
refinement indicators. Next, we will focus on the intralaminar material model, the proper regularisation of this and the interaction 
of intra- and interlaminar fracture. We then present some numerical examples to show the performance of our proposed method. We 
end the paper by summarising our work and try to set it into context of other contributions in the field. 

2. Method for adaptive fracture modelling of fibre-reinforced polymers 

As mentioned in the introduction, in [6] we presented the implementation of an adaptive refinement method into the software LS- 
DYNA. The method, which is based on our work in [17], consists of the following steps:  

i The laminated structure is initially represented by a equivalent single-layer (ESL) of solid shell elements through the thickness.  
ii Refinement indicators are used to locate elements where the fracture process cannot be resolved. 

σ0 cohesive interface normal strength 
τ0 cohesive interface shear strength 
ϕ crack angle with respect to element normal 
ψ angle between surface bimedians 
ω in-plane angle between material and element frames 
CZ Cohesive Zone 
DOF Degrees Of Freedom 
ESL Equivalent Single-Layer 
FC Fibre Compression 
FE Finite Element 
FRP Fibre-Reinforced Polymers 
FT Fibre Tension 
LDR Local Delamination Ratio 
LW LayerWise 
MC Matrix Compression 
MCID Matrix-Crack Induced Delamination 
MT Matrix Tension 
SAE Society of Automotive Engineers 
TSL Traction-Separation Law  
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iii These elements are then locally refined through the thickness by enriching the element kinematics to account for material in
terfaces (weak discontinuities).  

iv At interfaces prone to delaminate, CZ elements are inserted such that delaminations (strong discontinuities) can initiate and 
propagate. 

This means that every adaptive element in the model can be in one of three stages: a) Unrefined; b) Refined with one or several 
discrete material interfaces; c) Discontinuous, having one or several refined interfaces separated and CZ elements inserted. This is 
illustrated in Fig. 1. The first refinement step, where material interfaces are added through the thickness, we refer to as a weak re
finements and the secondary refinement step, where CZ elements are inserted, we refer to as strong refinements. 

In order to limit the computational costs, the method does not model intralaminar failure with separate DOF. That is, only through- 
the-thickness (and not in-plane) refinements are made. Instead, intralaminar fracture is modelled using a smeared-crack material 
model, which will be the focus of Section 3. Nevertheless, the through-the-thickness refinements will improve the prediction of the 
stress state in the element and thus also improve the prediction of intralaminar fracture. 

The idea of the through-the-thickness refinement is that we can make a two-stage relaxation of the kinematic constraint of the ESL 
shell. In the first weak refinement stage, when we introduce weak discontinuities, we transform the ESL shell to a layerwise (LW) 
element whereby the stress prediction can be improved. In the second strong refinement stage, the weak discontinuities can be 
separated and CZ elements are inserted. This way, delamination initiation and propagation can be modelled. 

2.1. Refinement indicators 

In [6] we presented an interlaminar criterion fCZ, which indicates when strong refinements (with CZ elements) should be intro
duced to model potential delamination growth. Here, we will complement this with intralaminar criteria, which indicates when the 
intralaminar state requires element refinement in order to be accurately resolved. 

2.1.1. Stress-based indicator 
The first indicator is based on the intralaminar failure initiation criteria fI, where I represents the different intralaminar failure 

modes, i.e. matrix tension and compression (MT and MC) and fibre tension and compression (FT and FC). That is, an element is weakly 
refined whenever a criterion reaches a certain limit 

fI⩾fref,lim. (1) 

To avoid sudden jumps in the stress state upon refinement, the refinements should be introduced before any failure is initiated both 
in the unrefined and the refined state of an element. The issue with this is that the full stress state is not well captured by the ESL shell. 
In general, only the in-plane stress components are predicted with sufficient accuracy. Thus, the stress state of the refined element is 
not available. However, as we showed in [17], a stress recovery technique can be used to estimate the full stress state in the refined 
element. Therefore, the refinement criterion in Eq. (1) can be evaluated using both the stress state of the unrefined element as well as a 
recovered stress state in order to avoid sudden failure of the refined element. As mentioned in [6], the recovery technique has not yet 
been added in the current LS-DYNA implementation. 

Fig. 1. The different stages of the adaptive elements: In the unrefined stage the entire laminate is represented by one element through the thickness 
(a); The element can be through-the-thickness refined in order to model weak discontinuities, here exemplified with three refinements (b); The 
refined interfaces from the previous stage can be separated (and have CZ elements added) in order to model strong discontinuities (c). 
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2.1.2. Damage-based indicator 
Delaminations are initiated and propagated by high out-of-plane interlaminar stresses. These stresses are mainly the results of 

either high external loading conditions or sharp discontinuities like edges or ply cracks. In the latter case of ply-crack-induced de
laminations, intralaminar cracks will create a stress concentration in the adjacent interfaces which can cause delaminations to initiate 
and propagate. This is illustrated for matrix cracks in Fig. 7. Thus, even though the out-of-plane stresses are predicted to be low 
(meaning that the interlaminar criterion fCZ from [6] is not met), CZ elements must be introduced. To achieve this also the damage 
levels dI of all plies are monitored. If the damage in a ply reach a certain limit 

dI⩾dlim, (2)  

where once again I represent the different failure modes of the plies, strong refinements with CZ elements are added in the adjacent 
interfaces. 

Remark: The CZ elements introduced at an intralaminar crack will likely directly go to a damaged state. Thus, we will violate the 
requirement to refine before failure is initiated, however, this error will be limited to only a few elements. 

2.1.3. Limiting the amount of refinements 
In general, weak and strong refinements are possible at any interlaminar interface of an element. This may lead to many re

finements through the thickness and thus also high computational cost. As a mean to limit the number of refinements we have added an 
optional feature, which suppresses refinements in interfaces where the pitch angle1 Δθ, is low. That is, if a refinement is indicated at 
any point in the laminate, a search is made down- and upwards for interfaces with pitch angle 

|Δθi|⩾Δθdel, (3)  

which are then triggered for refinement. 
Even though refinement suppression is mainly motivated from a computational efficiency perspective, there is some evidence that 

the most critical delaminations will occur in interfaces with large pitch angles. For example, in the work on Bouligand CFRP laminates 
by Mencattelli and Pinho [18] they concluded that for small pitch angle (|Δθi|⩽10∘) there is an increasing amount of diffused sub- 
critical damage which do not lead to large delaminations. 

Fig. 2. A smeared-crack model uses the characteristic length Le to translate an intrinsic surface traction-separation law (defined by the maximum 
traction S0, the artificial penalty stiffness k and the critical fracture energy 𝒢c) into a volume stress–strain relationship (defined by the maximum 
traction S0, the elastic stiffness E and the scaled critical fracture energy 𝒢c/Le). 

Table 1 
List of parameters used to control the adaptive refinement.  

Parameter Meaning Default 

fref,lim  Ply failure index level when weak refinement is activated. ⩽0.5  
Δθdel  Ply angle difference limit. Used to indicate interfaces where delaminations can grow. > 20◦

dlim  Ply damage level when strong refinement is activated. ≤ 0.5  
Cd,ref  Weak refinement damping (peak) value. ≤ 0.10× Ccrit  

Δtref  Duration of refinement damping. 0.1–0.2 ms 
fCZ,lim  CZ failure index level when Cstrong refinement is activated. ⩽0.5  
ΔtCZ  Duration of CZ element separation during strong refinement. ⩽0.01 ms   

1 Fibre angle difference between two neighbouring plies. 
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In Table 1 we have listed all parameters which control the behaviour of the adaptive refinement, together with suggested default 
values. Most of these values have been found during verification and validation in [6], however, we will discuss the appropriate values 
of fref,lim and dlim in Section 4 below. 

3. Models for progressive failure 

In Part I [6] we presented how the interlaminar fracture is modelled with CZ elements. Here we expand the work by focusing on the 
intralaminar fracture, which we choose to model using a smeared-crack material model [19]. Below we will briefly present the 
particular model used in this paper, including detailing the proper regularisation needed to make the model mesh objective. 
Furthermore, we address the challenge of modelling interaction of intra- and interlaminar fracture and how this is treated in our 
adaptive refinement method. 

3.1. Intralaminar material model 

The idea of a smeared-crack model is that a crack surface, described by an intrinsic traction-separation law (TSL), can be smeared 
over a representative finite element volume to define a stress–strain relation. This smearing, which is achieved using a length 
parameter Le that relates the crack volume to the crack area, is illustrated for a bi-linear TSL in Fig. 2. Since the maximum traction S0 
and the elastic stiffness E are material properties, the critical fracture energy 𝒢c of the TSL must be scaled by Le, such that the correct 
energy is dissipated by the stress–strain relation. In practice, this means that the failure strain εf is dependent on Le as 

εf =

[[
uf
]]

Le
=

2𝒢c

S0Le
. (4)  

The proper calculations of the so-called characteristic length Le will be the focus of Section 3.1.1 below. 
In this paper we have used a simplified intralaminar material model which only consider tensile matrix cracks using a single 

damage variable d. In a large deformation setting, the material model relates the second Piola–Kirchhoff stress S to the Green–Lagrange 
strain E. To calculate the Green–Lagrange strain, represented as the matrix E in the reference lamina frame ℒ0, the model follows the 
same procedure as the LS-DYNA option IHYPER = − 1 [20]. The base of the deformation gradient matrix F, given in global coordinates, 
is rotated to the lamina reference frame as 

F = FZT
0 , (5)  

where Z0 is the rotation from reference global 𝒢0 to reference lamina frame ℒ0 defined in Appendix A. The deformation gradient F, 
which thereby maps from reference lamina to current global, is used to calculate the lamina Green-Lagrangian strain as 

E =
1
2

(
FTF − I

)
=

1
2
(
Z0FTFZT

0 − I
)
= Z0EZT

0 ∈ ℒ0, (6)  

The elastic lamina second Piola–Kirchhoff stress, on Voigt form represented by the vector SV is then determined as 

SV = CVEV ∈ ℒ0, (7)  

where EV is the Voigt vector representation of E and CV is the Voigt matrix form of the material stiffness with the inverse 

Fig. 3. Illustration of a matrix crack at an angle ϕ and how the 3D stress state (left) can be represented as stresses on the fracture plane (right). NB: 
The fibre direction normal stress is not included in damage evolution model and has therefore been omitted here. 

J. Främby and M. Fagerström                                                                                                                                                                                       



Engineering Fracture Mechanics 244 (2021) 107364

7

C− 1
V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
E1

−
ν21

E2
−

ν31

E3
0 0 0

−
ν12

E1

1
E2

−
ν32

E3
0 0 0

−
ν13

E1
−

ν23

E2

1
E3

0 0 0

0 0 0
1

G12
0 0

0 0 0 0
1

G23
0

0 0 0 0 0
1

G31

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)  

In Eq. (8), Ei,Gij and νij are the Young’s and shear moduli and Poisson’s ratios with respect to the lamina longitudinal (1), transverse (2) 
and out-of-plane (3) directions. 

In order to evaluate failure initiation and damage evolution the model follows the same procedure as in [21], where the elastic 
(trial) transverse and out-of-plane lamina stresses and strains are rotated to the potential matrix crack plane, inclined an angle ϕ to the 
out-of-plane direction, as illustrated in Fig. 3. The failure initiation criterion is then evaluated using the stresses on the crack plane as 

fMT = max
ϕ

[(
〈Sn(ϕ)〉+

Y+

)2

+

(
St(ϕ)
STT

)2

+

(
Sl(ϕ)
SLT

)2
]

(9)  

where 〈 • 〉+ are the positive Macauley brackets and Y+, STT and SLT are the maximum matrix tensile and shear stresses. That is, in each 
time step the fracture plane angle ϕ which maximises the criterion in Eq. (9) is sought. 

If the criterion in Eq. (9) reaches unity the crack plane is considered fixed and the crack angle is stored as ϕ0. Furthermore, the 
failure onset resultant stress Ŝ0 and strain Ê0 are saved along with the angle between the shear stresses λ0 and the angle between the 
resultant shear stress and the normal stress ω0. The effective failure strain is then computed as 

Êf =
2𝒢̂c,MT

Ŝ0Lem
(10)  

where 𝒢̂c,MT is the effective fracture toughness for matrix tension 

𝒢̂c,MT = 𝒢Ic,MTsin2
(

ω0

)
+𝒢IIc,MTcos

(
ω0

)
cos

(
λ0

)
+𝒢IIc,MTcos

(
ω0

)
sin

(
λ0

)
(11)  

and Lem is the matrix crack characteristic length defined in Eq. (22) in the Section 3.1.1 below. 
In each time step following the failure onset the elastic trial stresses (evaluated using Eq. (7)) are rotated to the crack plane ϕ0 and 

the effective damage-driving stress and strain are computed using the stress angles λ0 and ω0 as 

Ŝ = Snsin
(

ω0

)
+

⃒
⃒
⃒Stcos

(
λ0

)
+ Sl

(
sin

(
λ0

)⃒
⃒
⃒sin

(
ω0

)
, (12)  

where | • | represent the absolute value, and 

Ê = Ensin
(

ω0

)
+

⃒
⃒
⃒Etcos

(
λ0

)
+Elsin

(
λ0

)⃒
⃒
⃒cos

(
ω0

)
. (13)  

Using these, the instantaneous damage is calculated as 

dinst = max

[

0,min

[

1,
Êf

(
Ê − Ê0

)

Ê
(

Êf − Ê0

)

]]

(14)  

and to account for irreversibility the damage variable is defined as 

d(t) = max
τ⩽t

[dinst(τ)]. (15)  

The damage d is used to degrade the trial stresses on the crack plane 

S̃i =
(

1 − d
)

Si i = n, t, l (16)  

together with the Poisson’s ratios. The degraded crack stresses are then rotated back to the lamina frame. The procedure above will 
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make the effective stress ̂S on the crack plane follow a bi-linear law similar to that in the right side of Fig. 2, i.e. the damage variable has 
a value of 0 at onset of failure (Ê = Ê0) and 1 at final failure (Ê = Êf ). 

Since LS-DYNA expects the Cauchy stress to be returned we use the deformation gradient F to push forward the updated lamina 
second Piola–Kirchhoff stress 

σ = J− 1FSFT
= J− 1FZT

0 SZ0FT = J− 1FSFT ∈ 𝒢t, (17)  

where 

J = det
(

F
)
= det

(
F
)
. (18)  

3.1.1. Proper regularisation of fracture energy 
According to Eq. (4), a smeared-crack material model needs to be regularised with a characteristic length Le such that the correct 

amount of energy is dissipated. To calculate this length there are primarily two strategies. Le can be considered as a mesh property, 
where you calculate the volume of the failed elements as the crack passes through the mesh. Bažant [15] derived this type of mesh- 
based characteristic length for a crack passing at an angle θ through a 2D mesh of rectangles with side lengths Lξ and Lη as 

L⊞
e,⊥ = Lξ

⃒
⃒
⃒sin

(
θ
)⃒
⃒
⃒+Lη

⃒
⃒
⃒cos

(
θ
)⃒
⃒
⃒, (19)  

as illustrated in Fig. 4a. The expression in Eq. (19) assumes that the crack is perpendicular to the mesh surface. For cracks inclined an 
angle ϕ to the mesh surface (cf Fig. 5), Eq. (19) can be expanded to 

L⊞
e = (Lξ|sin(θ)| + Lη|cos(θ)|)

⃒
⃒
⃒cos

(
ϕ
)⃒
⃒
⃒+ h

⃒
⃒
⃒sin

(
ϕ
)⃒
⃒
⃒ = L⊞

e,⊥

⃒
⃒
⃒cos

(
ϕ
)⃒
⃒
⃒+ h

⃒
⃒
⃒sin

(
ϕ
)⃒
⃒
⃒, (20)  

where h is the thickness of the element. 
Alternatively, Le can be considered as an elemental property, where the imagined crack surface area Ac in each element is smeared 

over the element volume Ve as 

L□
e =

Ve

Ac
, (21)  

which is illustrated in Fig. 4b. An example of this can be found in the work by Chiu et al. [22]. 
The potential drawback of the mesh-based expression in Eqs. (20) and (19) is that in its original form it assumes a mesh of right 

angled (rectangular) elements. However, a clear benefit is that it considers a problem which arises when the crack growth is not 
aligned to the mesh lines. In this case, overlapping elements are activated in order to model a crack through the mesh, as can be 
observed in Fig. 5. That is, the fracture energy is regularised both with respect to the element size and the orientation of the crack 

Fig. 4. Illustration of a crack passing through a 2D mesh at an angle of θ with respect to the ξ-axis of the mesh. This results in a crack band with 
overlapping elements in the direction perpendicular to the crack. (a): The characteristic length can be treated as a mesh property where the length is 
equal to the (average) width of the band (Eq. (19) or (20)). In this particular case with uniform and regular mesh, the characteristic lengths will be 
the same in all elements. NB: The dashed line is only added for illustration purposes and does not describe the actual position of the crack. (b): 
Alternatively, the characteristic length can be treated as an elemental property where the overlap of elements is not taken into account. Instead the 
characteristic length is simply the ratio of the element volume with respect to the crack area in each individual element (Eq. (21)). 
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growth in relation to the mesh lines. This last part is ignored when treating Le as a pure elemental property in Eq. (21), even if the 
elemental crack area Ac is calculated with the correct crack orientation in mind. Notably, if using the element-based expression in Eq. 
(21) to estimate the characteristic length, the energy dissipation per crack area is over predicted when the crack growth path does not 
align with the mesh lines (up to doubled2). Therefore, we will below expand the mesh-based characteristic length expression in Eq. 
(20) with additional modification for non-rectangular elements. 

In an FRP, matrix cracks can form parallel to the fibre direction while fibre fracture will primarily occur perpendicular to the fibres. 
Thus, two corresponding characteristic lengths Lem and Lef need to be calculated for each unique ply orientation. Furthermore, for solid 
shell elements the bottom and top surfaces are not necessarily identical and the side lengths can vary through the thickness. Thus, each 
element ply requires a separate set of characteristic lengths Lem,i and Lef,i. To estimate these, the following assumptions are made:  

• In each ply of an element there can only be one matrix crack and one fibre crack.  
• The mesh is fairly regular, which includes that the in-plane shape of each element layer is fairly rectangular and the thickness of the 

element is fairly constant.  
• The geometry of the element changes little prior to fracture. 

This way the characteristic lengths in each element ply can be calculated3 following Eq. (20) based on the undeformed element 
geometry. The characteristic lengths in ply i then become 

Fig. 5. Illustration of a crack surface in an element volume.  

Fig. 6. Illustration of how a general quadrilateral surface (left) is simplified to a rectangle with side lengths Lξ and Lη (right).  

2 When the crack is perpendicular to the mesh surface and crosses the diagonal of the element.  
3 Even though we consider the characteristic length as a mesh property. 
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Lem,i =
(
Lξ,i

⃒
⃒sin

(
θi
)⃒
⃒+ Lη,i

⃒
⃒cos

(
θi
)⃒
⃒
)⃒
⃒cos

(
ϕi
)
| + hi|sin

(
ϕi
)
|

Lef,i = Lξ,i|cos
(
θi
)
| + Lη,i|sin

(
θi
)
|

(22)  

where Lξ,i, Lη,i and hi are the side lengths and the thickness of the ply and θi is the ply fibre angle with respect to the ξ-axis of the element 
(cf Appendix A for definition). In Eq. (22) we have assumed that fibre cracks always are perpendicular to the midsurface, i.e. ϕ = 04. 

The matrix crack angles ϕi are the results of the stress state of the element as described in Section 3.1. Thus, they are determined 
during the simulation. However, Lξ,i and Lη,i can be calculated at the start of the simulation. 

Since the in-plane geometry of the elements is not necessarily rectangular, the side lengths need to estimated, meaning that there 
will be an error for elements which deviate from this shape. For a general quadrilateral element surface the side lengths are estimated 
by projecting the surface bimedians a1 and a2 on the element coordinate axes ξ and η, respectively, as shown in Fig. 6. Since each 
element layer is an interpolation of the bottom and top surfaces, only the side lengths at the bottom and the top of the element are 
estimated, i.e. 

Lξ,j = a1,j ⋅ ξ = ‖a1,j‖rψ
Lη,j = a2,j ⋅ η = ‖a2,j‖rψ

j = bot, top and rψ =
sin ψ

2 + cos ψ
2̅̅̅

2
√ , (23)  

where ‖ • ‖ represent the vector norm and ψ is the angle between the bimedians. Then the side lengths of each ply in the element can be 
interpolated as 

Lξ,i = riLξ,bot +
(
1 − ri

)
Lξ,top

Lη,i = riLη,bot +
(
1 − ri

)
Lη,top

ri =
ζtop − ζi

ζtop − ζbot
=

1 − ζi

2
, (24)  

where ζi is the position of the ply (mid) surface and ζbot and ζtop are the bottom and top coordinates along the element normal ζ. 
Next, we need to calculate the angle between the fibre direction and the mesh lines. Following the definitions of the element and the 

lamina coordinate systems in Appendix A this is simply a rotation around the midsurface normal 

θi = ω+ βi, (25)  

where βi is the ply fibre direction with respect to the material a-axis (defined from analysis input) and ω is the angle between the 
material and element frames, calculated from the element-to-material rotation matrix Q as 

ω = sgn[arcsin(Q12)]arccos(Q11). (26) 

To end this subsection, we want to emphasise that even with proper regularisation of the fracture energy, smeared-crack material 
models will show a spurious sensitivity to develop damage growth along the mesh lines of the FE-model. That is, this problem is not 
avoided by using a mesh-based characteristic length calculation. Instead, to overcome this sensitivity, the material model needs to be 
extended with some type of crack-tracking functionality which controls the growth direction, e.g. that by Mukhopadhyay and Hallett 
[23]. While crack-tracking does not solve the fundamental ill-posedness of the smeared-crack approach, it forces the crack to follow 
certain directions, e.g. that a matrix crack must be parallel to the fibre direction. In the results section we will elaborate on the 
consequence of using crack tracking or not together with the different options for calculating the characteristic length. For 
completeness we have added the calculation of the element-based characteristic length in Appendix B. 

3.2. Interaction between smeared ply crack and delamination 

Matrix cracks, which can form at comparatively low loads, are common initiation points for delamination. In Fig. 7 the process of 

Fig. 7. The process of matrix-crack induced delamination: First, a transverse matrix crack starts to form (a); When the matrix crack is fully evolved 
it will lead to a shear stress concentration at the interface (b); If the shear stresses are high enough delaminations can propagate (c). Adapted 
from [24]. 

4 We acknowledge that a kink band crack is not necessarily strictly perpendicular to the fibre direction or the midsurface. 
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so-called Matrix-Crack Induced Delamination (MCID) is illustrated, where high interlaminar shear stresses at the vicinity of a matrix 
crack tip lead to the initiation of delaminations. 

Capturing the interaction of intra- and interlaminar failure is challenging when using a smeared-crack approach to model the 
intralaminar fracture. This since there will be no explicit intralaminar crack present to generate a stress concentration. The problem is 
illustrated in Fig. 8 where we also compare two methods for modelling intralaminar cracks and how they interact with adjacent 
interlaminar CZ elements. If the intralaminar crack is smeared, the neighbouring CZ element will not exhibit any significant shear 
stresses. 

To remedy this problem we have followed the approach proposed by Yun et al. [14], where they argue that a significant interaction 
exists between delamination and intralaminar failure. To capture this in an FE model, where a smeared-crack intralaminar damage 
model is used, they suggest to reduce the critical fracture energy of a CZ element by the damage state of the adjacent intralaminar 
elements, i.e. 

𝒢̂Ic = 𝒢Ic(1 − dintra),

𝒢̂IIc = 𝒢IIc(1 − dintra).
(27)  

In Eq. (27) dintra is the maximum intralaminar damage of the adjacent ply elements. As the intralaminar damage evolves the fracture 
energy of an adjacent CZ element will decrease (potentially down to zero). To achieve a reduction in cohesive fracture energy the 
penalty stiffness is held constant, which will result in a decreased failure separation. The consequence of this reduction is illustrated in 
the left side of Fig. 9. To avoid snap-back in the response we have, in contrast to [14], added a reduction of the cohesive strengths if the 
reduced fracture energies in Eq. (27) would result in a failure separation lower than the initiation separation: 

Fig. 9. If intralaminar damage is initiated this is used to reduce the critical fracture energy of a directly adjacent CZ element. This reduction will 
initially decrease the failure jump [[ûf ]] up to the point where the reduced failure jump [[ûf ]] equals the intitation jump [[u0]] (left). After this the 
initiation stress σ0 is reduced in order to avoid snap-back (right). 

Fig. 8. Methods for modelling ply cracks and delaminations: To capture the discontinuous jump in shear deformation the CZ element should be 
separated at the ply crack. This requires to model the crack with individual DOF, i.e. as a strong discontinuity, which is done in the work by e.g. Fang 
et al.[10] and Lu et al.[25] (left); When using a smeared-crack material model there is no explicit ply crack and the shear discontinuity is not 
captured (right). 
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σ̂0 =

⎧
⎪⎪⎨

⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅

2kI 𝒢̂Ic

√

if 𝒢̂Ic <
σ2

0

2kI

σ0 else

,

τ̂0 =

⎧
⎪⎪⎨

⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2kII 𝒢̂IIc

√

if 𝒢̂IIc <
τ2

0

2kII

τ0 else

.

(28)  

This is illustrated in the right side of Fig. 9. An alternative to reducing the failure separation, would be to decrease the penalty stiffness 
(while keeping the onset and failure separation constant) as in Quintanas-Corominas et al. [26]. However, due to implementation 
reasons this approach was not used. 

In practice, the reduction in Eq. (27) is a smooth removal of the CZ element adjacent to an intralaminar crack. While there might 
exist more advanced methods yielding better predictions of the intra- and interlaminar interaction, we have adopted the approach of 
reducing the fracture energy since it is very easy to implement. 

This approach will to a large extent neglect the fracture energy dissipated by the delamination in the element at the intralaminar 
crack. However, as we pointed out in the introduction, even though delamination is one of the governing failure mechanisms in the 
crushing of laminated FRP it is not a primary energy absorbing mechanism. Instead, delaminations influence the overall deformation 
pattern and thereby the occurrence of other failure mechanisms. We therefore conclude that for general engineering applications it is 
more important to capture the interaction between intra- and interlaminar failure than the correct energy dissipation in an individual 
CZ element. 

4. Results 

In this section we will present some numerical examples to show the performance of our proposed method. The method is still a 
proof of concept and some key aspects necessary for performing simulations of crash problems, e.g. including the refined surfaces in the 
global contacts, are out of scope for the present work. Furthermore, crash problems are naturally chaotic and we therefore instead 
show examples where different aspects of fracture modelling are isolated. The intent of the numerical examples is to show that the 
concepts presented in the present article can be used in conjunction with our adaptive modelling method, presented in Part I [6]. We 
will first focus on how the choice of characteristic length calculation can affect the results and then we will validate the adaptive 
approach against experimental test. 

Fig. 10. Characteristic element lengths for rectangular elements with side ratios 1–1 at different mesh to fibre offset angles θ. Due to the same side 
lengths the fibre and matrix results are identical and overlayed in the plot. The maximum error for the mesh-based characteristic length (Eq. (22)) is 
0.9% and for the element-based characteristic length (Eq. (B.3)) is 99.0%. 
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4.1. Regularisation of fracture energy 

In Section 3.1.1 we covered how a smeared-crack material model needs to be regularised with a characteristic length Le such that 
the correct amount of energy is dissipated. Furthermore, we explained that we treat the matrix and fibre characteristic lengths as mesh 
properties (as opposed to element properties) and showed how we can calculate the lengths in each element. 

In this section we will show how the numerical results are affected by the characteristic lengths. The calculation of the matrix 
characteristic length in Eq. (22) is dependent on the crack inclination ϕ, which is a result of the loading conditions and thus not 
available in the beginning of the simulation. Therefore we will in this part only consider (matrix and fibre) cracks perpendicular to the 
midsurface (ϕ = 0). 

Fig. 12. Characteristic element lengths for non-rectangular elements with a distortion value of rdet(J) = 0.55 at different mesh to fibre offset angles θ. 
The side ratio is estimated to 2–1. The maximum error for the mesh-based characteristic length (Eq. (22)) is 0.9% and for the element-based 
characteristic length (Eq. (B.3)) is 98.1%. 

Fig. 11. Characteristic element lengths for rectangular elements with side ratios 3–1 at different mesh to fibre offset angles θ. The maximum error 
for the mesh-based characteristic length (Eq. (22)) is 0.9% and for the element-based characteristic length (Eq. (B.3)) is 97.1%. 
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4.1.1. Comparison to numerically calculated characteristic length 
In the first example we want to show the ability of the mesh-based characteristic lengths calculation in Eq. (22) to obtain a correct 

estimation. To achieve this we run a series of analyses on 2D meshes of 101 by 101 rectangular elements with different side length 
ratios Lξ/Lη (Lη is held constant), where the angle θ between the mesh and cracks is varied. The correct (numerical) characteristic 
lengths are computed by dividing the total volume of all elements needed to represent an inclined crack path by the total area of a 
corresponding crack (length × thickness). At the same time, in each individual element, we compute the mesh-based and the element- 
based characteristic lengths using Eq. (22) and (B.3), respectively. 

In Figs. 10 and 11 the characteristic lengths are plotted for meshes with element side ratio of 1–1 and 3–1. Furthermore, we show an 
example of how the cracks pass through the central part of the mesh when θ = 70∘. The plots show that the mesh-based Eq. (22) can 
estimate the correct characteristic lengths of the elements very well, while the element-based Eq. (B.3) underestimate the length up to a 

Fig. 13. Characteristic element lengths for non-rectangular elements with a distortion value of rdet(J) = 0.27 at different mesh to fibre offset angles θ. 
The side ratio is estimated to 2–1. The maximum error for the mesh-based characteristic length (Eq. (22)) is 0.9% and for the element-based 
characteristic length (Eq. (B.3)) is 98.8%. 

Fig. 14. Characteristic element lengths for randomly shaped elements with an average distortion value of rdet(J) = 0.65 at different mesh to fibre 
offset angles θ. The side ratio is estimated to 2–1. The maximum error for the mesh-based characteristic length is 4.6% and for the element-based 
characteristic length (Eq. (B.3)) is 69.4%. 
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factor of two. For example for the square element mesh in Fig. 10, a crack passing at θ = 45∘ will yield a numerically calculated 
characteristic length of 

̅̅̅
2

√
Lξ. The mesh-based characteristic length (Eq. (22)) is the also 

̅̅̅
2

√
Lξ, while the element-based characteristic 

length (Eq. (B.3)) is Lξ/
̅̅̅
2

√
. 

To also show the performance on a mesh of non-rectangular elements, we vary the shape of the elements by distorting the element 
nodes in opposite diagonal directions, which results in a mesh of identical non-rectangular elements. As a consequence of non- 
rectangular elements, the side element lengths Lξ and Lη need to be estimated according to Eq. (23). 

To quantify the element shape distortion we compute the determinant of the Jacobian matrix J of the element isoparametric 
mapping using 2 x 2 Gauss quadrature points (see e.g. Ottosen and Petersson [27]) and take the minimum over the maximum value of 
all points: 

rdet(J) =
min[det(Ji)]

max
[
det

(
Jj
)] i, j = 1, 2, 3 or 4. (29)  

The distortion value in Eq. (29) is 1.0 for a rectangular element and the element will become concave when rdet(J) < 0.27 (due to the 
choice of the Gaussian quadrature scheme). In Figs. 12 and 13 we have plotted the results for different distortion values, where once 
again we can observe that the mesh-based Eq. (22) can accurately compute the correct lengths, whereas the element-based Eq. (B.3) 
cannot. 

Finally, to show the performance on a non-repeating mesh, we randomly distort the nodes up to half an element side length in any 
in-plane direction and compute the characteristic lengths. In Fig. 14 we have compared the average mesh-based5 and element-based 
characteristic lengths for the cracked elements to the correct characteristic lengths. Even though we are comparing average values it is 
clear that the mesh-based characteristic lengths in Eq. (22) matches the correct lengths also in this case. 

In summary, if the characteristic lengths are treated purely as element properties the energy dissipation would be over predicted by 
up to a factor of two. However, by treating them as mesh properties and estimating the side element lengths for non-rectangular 
elements, very accurate predictions can be obtained. 

4.1.2. Mesh direction sensitivity 
The calculation of the characteristic lengths calculation in Eq. (22), assumes that the crack growth will depend only on the fibre 

direction. However, as we have already mentioned the smeared-crack material models can suffer spurious sensitivity to develop 
damage growth along the mesh lines. Thus, if this is not handled, e.g. by a crack-tracking technique, the results might be inaccurate. 

To evaluate the mesh direction sensitivity we consider an off-axis tensile test where a plate, with length L = 20 mm, width W = 10 
mm and thickness h = 1 mm, is subjected to uniaxial displacement Δx along the length direction. The fibres are oriented at an angle of 
θ = 45◦ to the loading direction and, as illustrated in Fig. 15, oblique ends of 63◦ are used to enable a uniform stress field, cf Sun and 

Fig. 15. Geometry for off-axis tensile test used to evaluate the calculation of characteristic length and mesh direction sensitivity.  

Table 2 
Ply material properties used in off-axis tensile test example. Please note that isotropic fracture toughness (and strength) is assumed.  

E1  E2,E3  G12 ,G13  G23  ν21,ν31  ν32  Y+ STT  SLT  𝒢c  

(GPa) (GPa) (GPa) (GPa) (–) (–) (MPa) (MPa) (MPa) (J/m2) 

50 10 5 5 0.06 0.4 40 40 40 800  

5 NB: the mesh-based characteristic length is computed in each individual element. 
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Chung [28]. The material properties used for this example are given in Table 2. 
The plate is meshed with quadrilateral shell elements (solid shell element formulation 3 in LS-DYNA) and the mesh lines are 

progressively skewed towards the ends to enable a regular mesh in the central 10 × 10 mm2 part of the plate. Three different models 
are used: i) With a fixed crack path, which corresponds to using a crack-tracking technique6; ii) With a free crack path, where the 
central 2 × 2 elements have reduced strength (30 MPa) to trigger fracture; and iii) A reference model where a fixed crack is modelled 
using cohesive elements (solid elements formulation 19 with material model MAT138). The FE-models are illustrated in Fig. 16. 

The first two models are run twice: first using an element-based characteristic length, corresponding to Eq. (B.3), and secondly 
using the mesh-based characteristic length in Eq. (22). Since the correct crack growth path is 45◦ to the mesh lines, the element-based 
characteristic length will be half of the mesh-based (cf Fig. 11), which should lead to twice as much energy dissipation. To evaluate the 
results we will compare load versus displacement of the five different cases and the level of the dissipated energy in the crack. 

In Fig. 17, the load–displacement response is plotted for all five cases. We can notice that the cases with an element-based char
acteristic length will result in higher maximum load and displacement, compared to the corresponding mesh-based characteristic 
length cases. In addition, the results in Fig. 18 show that the element-based cases dissipate twice the amount of energy in the cracks 
compared to the mesh-based cases (as expected). This figure also confirms that the reference model dissipate the same amount of 
energy as the analytical value, 

Δ𝒲dis = 𝒢ch
W

sinθ
.

As shown in Fig. 19, when no crack tracking is employed the crack grows perpendicular to the loading direction along the mesh 

Fig. 17. Normalised load–displacement response (in relation to the maximum values of the reference) for the different cases in the off-axis tensile 
test example. 

Fig. 16. The three different FE-models used in off-axis tensile test. The fixed crack path model has a resolution of 42 × 21 elements, while the two 
other have a resolution of 40 × 20 elements. 

6 Please note that this approach serves no practical use in general simulations, it is only intended to illustrate the effect of forcing the crack to 
follow a certain direction. 
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Fig. 20. Four point bending example from [24]. The load pins have a radius of 4 mm.  

Fig. 18. Amount of dissipated energy in the crack (in relation to the analytical value) for the different cases in the off-axis tensile test example.  

Fig. 19. Comparison of damage patterns in plate for fixed and free crack paths (using mesh-based characteristic lengths). The plots are taken from 
the simulations using a mesh-based characteristic lengths. However, the damage pattern is the same in the equivalent element-based simulations 
since the choice of characteristic length does not control the crack direction. Please note that the plots are at different displacement levels. 
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lines, regardless of the choice of characteristic length type. This leads to an underprediction of the maximum force and displacement 
levels. Furthermore, the amount of dissipated energy is approximately 40% too low for the mesh-based characteristic length while the 
element-based matches the correct dissipation level better (11% to high). If crack tracking is used, it is evident that the model with 
mesh-based characteristic length match the reference results well (within 4%) while the element-based model overpredicts the force 
response and especially the energy dissipation (112% to high). 

The results above are in line with the reasoning in Section 3.1.1, i.e. when the crack growth does not follow the mesh lines a mesh- 
based characteristic length calculation should be used. However, if the correct crack growth cannot be ensured and growth is expected 
to always be along the mesh lines the mesh-based characteristic length can underpredict the force and energy dissipation. Then, it 
might be better to use an element-based characteristic length instead, since this will predict the correct response better. The choice of 
characteristic length is therefore largely dependent on which phenomena the analysis is to be able to capture correctly. If the correct 
crack path is important to capture, a crack-tracking algorithm will likely be necessary, which must then be combined with a mesh- 
based characteristic length. 

4.2. Matrix-crack induced delamination 

In this example we demonstrate the ability of our proposed adaptive refinement method to simulate fracture of laminated FRP by 
simulating matrix-crack induced delamination in a four-point beam bending. The model set-up is the same as in the experimental study 
performed by Mortell et al.[24]. 

The beam, which has a layup of [904/07/904], is illustrated in Fig. 20. The bottom 90-layers of the beam are modelled with the 
smeared-crack material model given in Section 3.1, with the limitation of only allowing cracks perpendicular to the beam midsurface 
(ϕ = 0). Since no inclined cracks were identified in the experiments this is considered a reasonable simplification. The rest of the beam 
is modelled as an orthotropic linear elastic material, i.e. final failure of the beam when the 0-layers fail is not included. Furthermore, 
only delamination of the bottom 90/0 interface is considered and cohesive delamination failure is prevented at the ends of the beam 
(up to 1 mm from the edge). 

At the moment the implementation of the adaptive method does not include any sub-element deletion technique. This has the 
implication that if cracks form in two adjacent elements their bottom shared nodes will be unconstrained, which can lead to negative 
element volumes in the analysis. If this happens, LS-DYNA will terminate the simulation - a feature that cannot be deactivated. 
Therefore we have enforced a minimum crack-spacing distance of two times the element length, which will prevent negative volumes. 
In [24], Mortell et al. observed crack spacing of approximately 2 mm, thus we are (for this reason) limited to use elements with in-plane 
side lengths below 1 mm to minimise the effect of the crack-spacing enforcement. 

The ply material is HTA/6376 and the material properties, given in Tables 3 and 4, are taken from Reiner et al. [29]. However, 
please note that the interlaminar strengths have been reduced by 50% in order to allow the use of elements with an in-plane length of 
0.25 mm and still have a good representation of the cohesive delamination failure (the suitable strength reduction is found through 
simulations and strategies from [30]). Furthermore, the beam density is assumed to be ρ = 1, 600 kg/m3 and a cohesive density of 
ρCZ = 0.8 kg/m2 has been added to increase the critical time step. 

The beam is modelled with one user element through the thickness. However, the adopted solid shell kinematics is not suitable to 
model bending with one element through the thickness, cf details in [6]. Therefore, an initial weak refinement has been activated at the 
eighth interface (from the bottom). In practice, this means that the beam actually consists of two solid shell elements through the 
thickness, although described internally in the user element. Besides the initial weak refinement, three different cases are examined: 1) 
an initial strong refinement of the bottom 90/0-interface; 2) an adaptive refinement of the bottom 90/0-interface without stabilisation 
and 3) an adaptive refinement of the bottom 90/0-interface with stabilisation. Here stabilisation refers to the procedure presented in 
Part I [6], where non-physical oscillations related to the introduction of refinements are removed. For the weak refinements, this is 
achieved by applying a mass-weighted nodal damping (DAMPING_GLOBAL) for a short period while for the strong refinements, an 
approach by Menouillard and Belytschko [31] is used. For the adaptive cases the 90/0 weak refinement is activated when the matrix 
tension failure initiation criterion fMT reaches 0.3 and the strong refinement when it reaches 1.0 (i.e. when intralaminar damage 
initiates). By setting Δθdel > 0, refinement activation in any of the bottom 90-layers will result in a refinement of the bottom 90/0- 

Table 3 
Ply material properties used in the MCID example.  

E1  E2,E3  G12,G13  G23  ν21,ν31  ν32  Y+ 𝒢mt,Ic  

(GPa) (GPa) (GPa) (GPa) (–) (–) (MPa) (J/m2) 

140 10 5.2 3.9 0.0214 0.5 62 432  

Table 4 
Interface material properties used in the MCID example.  

σI  𝒢Ic  kI  σII  𝒢IIc  kII  

(MPa) (J/m2) (GPa/mm) (MPa) (J/m2) (GPa/mm) 

52.2 432 1000 70 1002 1000  
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interface. 
The load is applied by displacing the two top load pins downwards at a constant speed of 0.4 mm/ms (with a linear ramp over the 

first 1 ms) and the total simulation time is 21 ms. 
To stabilise the weak refinement a small amount of damping is applied over a short time period [6]. By first analysing the oscil

lations in the non-stabilised adaptive simulation, it can be found that the smallest (dominating) angular frequency is ωn = 556 rad/ms. 
Choosing a damping ratio of 5% thereby means adding damping with a damping constant of Cd,ref ≈ 56 rad/ms, according to the 
procedure proposed in [6]. To have as little effect of the damping as possible on the global beam response, we let the damping degrade 
linearly7 over the damping duration Δtref = 0.2 ms. 

The strong refinement is stabilised by gradually releasing the nodes of the CZ elements [6]. The separation is done over 100 time 
steps, which in this case yields a duration of ΔtCZ = 0.0024 ms. 

To validate the simulation results we compare the load vs. displacement curves from the experiment and the so-called Local 
Delamination Ratio (LDR) [24]. LDR compares the length of an individual delamination e to the through-thickness height hcrack of the 
transverse intralaminar crack which initiated the delamination (cf Fig. 21): 

LDR =
e

hcrack
. (30) 

Fig. 22. Load–displacement curve for the non-adaptive reference simulation, where a strong refinement is activated in the bottom 90/0-interface 
from the start of the simulation, compared to the experiment [24]. At the experimental failure displacement (Δz = 6.6 mm), the load is approxi
mately 11% lower and the total work is 7.6% lower in the simulation compared to the experiment. 

Fig. 21. Illustration of through-thickness height hcrack of the intralaminar crack and the delamination length e used to calculate Local Delamination 
Ratio in Eq. (30) as defined in [24]. ©2014 Elsevier Ltd. 

7 If the damping is turned of abruptly when the damping time is over, the slenderness of the beam will yield vibrations. 
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4.2.1. Load–displacement response 
In Fig. 22 we compare the load–displacement response of the reference (non-adaptive) simulation to the experimental counterpart. 

Up to the point of delamination propagation at Δz = 2.2 mm the simulation matches the experiment. Thereafter, the response is softer. 
Since fibre failure is not included in the simulation we cannot compare the failure load, but at the experimental failure displacement 
Δz = 6.6 mm the simulation load is approximately 11% lower and the total work is 7.6% lower. However, we want to emphasise that 
stiffening effects such as matrix bonding at transverse cracks and fibre bridging, which were observed in the experiment, are not 
included in the simulation. 

Fig. 24. Load–displacement curve for adaptive simulation, where a weak refinement is activated in the bottom 90/0-interface when fMT (in the 
bottom 90 layers) reaches 0.3 and a strong refinement when fMT reaches unity, compared to the experiment [24]. The weak refinement is stabilised 
with a damping of Cd,ref = 56 rad/ms linearly degraded over Δtref = 0.2 ms. At the experimental failure displacement (Δz = 6.6 mm), the load is 
approximately 9% lower and the total work is 3.9% lower in the adaptive simulation compared to the experiment. 

Fig. 23. Load–displacement curve for adaptive simulation, where a weak refinement is activated in the bottom 90/0-interface when fMT (in the 
bottom 90 layers) reaches 0.3 and a strong refinement when fMT reaches unity, compared to the experiment [24]. No stabilisation of the refinements 
are made. At the experimental failure displacement (Δz = 6.6 mm), the load is approximately 11% lower and the total work is 4.3% lower in the 
adaptive simulation compared to the experiment. 
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Furthermore, after delamination propagation, high-frequency vibrations can be observed in the simulation response. These are a 
side effect of the element-wise propagation of the delaminations, and thus hard to avoid without decreasing the in-plane element size 
(or decreasing the interlaminar strengths). Besides this, the dynamic effects in the simulation are small, and the kinetic energy is found 
to be three orders of magnitude lower than the total energy. 

The load–displacement response of the non-stabilised adaptive simulation is plotted in Fig. 23, where we can observe oscillations 
after the weak refinement is activated at Δz ≈ 1.0 mm. Initially, the magnitude of the oscillations are comparable to the vibrations 

Fig. 25. Load–displacement curve for adaptive simulation, where a weak refinement is activated in the bottom 90/0-interface when fMT (in the 
bottom 90 layers) reaches 0.3 and a strong refinement when fMT reaches unity, compared to the experiment [24]. The weak refinement is stabilised 
with a damping of Cd,ref = 56 rad/ms linearly degraded over Δtref = 0.2 ms and the strong refinement is gradually separated over 100 time steps 
(ΔtCZ = 0.0024 ms). At the experimental failure displacement (Δz = 6.6 mm), the load is approximately 9% lower and the total work is 3.9% lower 
in the adaptive simulation compared to the experiment. 

Fig. 26. Damage levels in CZ element along the beam (solid blue lines) at a displacement of Δz = 4.0 mm. The positions of the matrix cracks are 
indicated with dashed vertical lines. 
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associated to the delamination propagation in the reference simulations. However, the magnitude increases at the end. This type of 
non-physical oscillations, which are related to the refinement and not the dynamic problem itself, was one of the topics in our previous 
paper [6] and they can disrupt the solution, causing unwanted damage propagation. 

The result of stabilising the weak refinement is shown in Fig. 24, where we can observe strong qualitative similarities to the 
reference simulation in Fig. 22. The load response is a bit too high throughout the simulation, however, this is mostly related to a too 
stiff response of the unrefined beam. To reduce the initial incorrect stiffness, the beam must be modelled with more element through 
the thickness, which defeats the purpose of adaptive refinements. 

When the strong refinement is activated in the adaptive simulation with weak refinement stabilisation (can be seen as a small 
disturbance at Δz ≈ 1.3 mm in Fig. 24) there is an immediate (but small) damage initiation in many of the CZ elements. As we 
mentioned already in [6], this is a strong indicator that the refinement needs to be stabilised. By activating stabilisation of the strong 
refinement this non-physical CZ damage initiation can removed. As can be seen in Fig. 25, the effect of this is negligible on the load 
response, however, the refinement-induced damage initiation in the CZ elements is removed. 

4.2.2. Damage evolution in the cohesive interface 
In the experiment 15 matrix cracks were observed along the beam, with five of these found in the central load span (between the top 

load pins). Interestingly, the same intralaminar crack pattern was also formed in the current non-adaptive reference simulation (in 
total 15 matrix cracks out of which five are in the load span). These resulting matrix cracks are indicated as dashed lines in Fig. 26a, 
where also the CZ element damage at a displacement of Δz = 4.0 mm is plotted. Furthermore, the minimum crack distance is 1.5 mm, 
which is three times the enforced crack-spacing distance. We can thereby conclude that the crack-spacing enforcement has not 
restricted the formation of matrix cracks in the simulation. 

Compared to the non-adaptive reference simulation, we observe the same crack pattern and similar cohesive damage development 
also for the adaptive simulations with stabilisation (both only weak and strong cases), cf Fig. 26c and d. However, when no stabilisation 
is applied, only 14 matrix cracks form and the CZ element damage pattern appears very different with non-smooth evolution along the 
beam, as shown in Fig. 26b. The jagged shape in Fig. 26b indicates that much of the CZ damage is related to the coupling of the 
intralaminar damage to the reduction of the CZ critical fracture energy, described in Section 3.2. That is, there is non-physical 
intralaminar damage present when the weak refinement is not stabilised. In addition, compared to the reference simulation, there 
are more CZ elements with damage, even out towards the ends of the beam. 

In Fig. 27 we have compared experimental and simulation LDR-curves (cf Eq. (30) for definition) for the five load-span matrix 

Fig. 27. Local Delamination Ratio for the five load-span matrix cracks in the simulations (solid lines) compared to the experiment (dashed lines). 
Since the delamination cracks in the simulations evolve element by element (when full CZ damage is reached) the simulation curves grow in a step- 
wise manner. 
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cracks. Overall, the simulations overestimate the delamination growth, which is in line with the softer load response of the simulations 
compared to the experiment. However, the adaptive simulations with stabilisation (Fig. 27c and d) qualitatively compares well with 
the reference simulation (Fig. 27a), although with a slightly lower delamination growth prediction. In contrast, the adaptive simu
lation without stabilisation (Fig. 27b) predicts a very different and generally larger delamination growth compared to the other 
simulations. 

4.2.3. Interaction between smeared ply crack and delamination 
To evaluate the effect of the proposed coupling between intra- and interlaminar damage in Section 3.2, the non-adaptive reference 

simulation was rerun with this coupling deactivated. 
The load–displacement response, plotted in Fig. 28, is similar to the reference response in Fig. 22. However, instead of the expected 

15 matrix cracks along the beam, 25 cracks appear of which nine are in the load span (compared to five in the experiment and the 
reference). Furthermore, the CZ element damage, plotted in Fig. 29a, is underestimated compared to the reference case in Fig. 26a. The 
LDR-curves for the nine load-span matrix cracks are plotted in Fig. 29b, which shows that no delamination cracks form in the load-span 
for the duration of the simulation. 

Fig. 28. Load–displacement curve for the non-adaptive simulation without coupling between intra- and interlaminar cracks (cf Section 3.2), 
compared to the experiment [24]. At the experimental failure displacement (Δz = 6.6 mm), the load is approximately 11% lower and the total work 
is 6.7% lower in the simulation compared to the experiment. 

Fig. 29. Non-adaptive simulation without coupling between intra- and interlaminar cracks (cf Section 3.2). (a): Damage levels in the CZ element 
along the beam (solid blue line) at a displacement of Δz = 4.0 mm. The positions of the matrix cracks are indicated with dashed vertical lines. (b): 
No delaminations initiate at the nine load-span matrix cracks during the simulation, yielding a local delamination ratio of zero (solid lines). Also the 
local delamination ratio of the five experimental cracks are plotted (dashed lines). 
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4.2.4. Discussion 
If we compare the computational time of the initially refined and the unrefined models up to a load displacement of Δz = 1.0 mm, 

we find that the unrefined model is approximately 8% faster. While this is only a moderate computational save, we would like to 
emphasise that all (including the non-active) extra DOF used to define the adaptive refinements are updated by the LS-DYNA solver 
during the entire simulation. Thus, the improved computational efficiency is only related to the internal computations of the user 
element. 

Section 4.2.3 shows that the coupling between intra- and interlaminar cracks, proposed in Section 3.2, does not affect the resulting 
load–displacement response to any large extent. However, when the coupling is deactivated the damage extent in the CZ elements is 
underpredicted whereas the number of matrix cracks is overestimated. 

Finally, in Fig. 30, the load–displacement curves are shown for all simulations. To facilitate a comparison, all curves have been 
filtered with an SAE 20 kHz filter. It can be observed that all simulations compare quite well to the experimental curve, however, the 
adaptive simulation without stabilisation (red line with circular markers) show a different vibration pattern compared to the other 
simulations. This is particular evident towards the end of the simulation. We can therefore conclude that the simulations with adaptive 
refinement can model the experiment, however, the weak refinement may have to be stabilised. More importantly, however, it is clear 
that the adaptive simulations can achieve a similar prediction as the reference simulation. 

5. Concluding remarks 

In a sequel of two connected papers (Part I and II), we have addressed the challenge of developing accurate modelling tools that are 
efficient enough to allow full car crash FE simulations. In Part I [6], we presented the implementation of an adaptive refinement 
method for modelling of multiple and arbitrarily located delamination cracks using an ESL shell model in the LS-DYNA explicit solver, 
including necessary stabilisation techniques. The method enables the laminated structure to initially be represented by a single layer of 
solid shell elements through the thickness. Refinement indicators are then used to activate so-called weak refinements (weak dis
continuities), which facilitates a better prediction of stress state and intralaminar damage, and strong refinements (strong disconti
nuities) needed for a proper representation of growing delamination cracks. In this second part of the work we completed the 
interlaminar-based refinement indicator, presented in [6], with indicators based on intralaminar criteria in order to model both 
intra- and interlaminar progressive failure and the interaction thereof. 

In order to limit the computational costs, the proposed method does not model intralaminar failure with separate DOF. That is, only 
through-the-thickness and not in-plane refinements are made. Instead, we propose to use a smeared-crack model to represent intra
laminar fracture (in this paper limited to matrix cracking). In particular, we discuss how the interaction between intra- and inter
laminar failure can be considered by coupling the cohesive fracture energy to the intralaminar damage state of the adjacent layers. If 
this coupling is not present, the damage evolution of the CZ elements is restricted and the correct intra- and interlaminar crack 
propagation cannot be predicted. Moreover, we demonstrate the importance of considering both the element size and the crack 

Fig. 30. Load–displacement curves for all simulation filtered with an SAE 20 kHz filter, compared to experiment [24].  
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orientation when properly regularising such smeared-crack models. 
In our numerical examples we first show that the presented mesh-based regularisation scheme can accurately compute the char

acteristic length of the cracked elements. In contrast to a more traditional element-based regularisation, for which the energy dissi
pation can be overpredicted by up to a factor of two. However, as showed in the second example, the choice of characteristic length 
type does not control the growth direction of the crack. When the crack-growth direction show clear mesh-orientation dependency, the 
element-based characteristic length actually yields better energy dissipation predictions. This is because the error in crack-path 
prediction is compensated by another error in the energy regularisation. Nevertheless, when the crack follows the correct crack 
path (either by chance or by forcing it) a mesh-based characteristic length must be used for correct energy dissipation prediction. 

The intralaminar model we presented in Section 3.1 is intended to be used primarily for development purposes and we 
acknowledge that a more advanced model needs to be adopted in order to properly model the intralaminar failure of FRP. Thus, the 
next step is to use a state-of-the-art material model, e.g. similar to Maimí et al. [32], Gutkin and Pinho [33] or Costa et al. [21], in the 
future. 

In the four-point beam bending example it is evident that the adopted solid shell kinematics (LS-DYNA element formulation 3) is 
not fully suitable to model bending problems. Therefore, in future work it should be investigated if alternative shell formulations 
further increase the accuracy (or the computational efficiency) of the proposed method such that bending problems can be modelled 
with one element through the thickness. This example also shows that computational efforts can be saved by employing adaptive 
refinements. However, as we mentioned already in Part I [6], we are currently not fully exploiting the computational efficiency of the 
adaptive refinement approach. To better achieve this the refinement should be limited to an in-plane patch which then can expand if 
necessary and a less expensive element formulation should be employed. By implementing these features the computational efficiency 
is expected to increase as larger parts of the structure can remain in an unrefined and computationally efficient state during the 
simulation. 

Finally, we conclude that our adaptive refinement method, presented in Part I [6] and expanded in this paper, can reproduce 
similar results as a high-fidelity model while saving computational effort. This will help to enable computationally efficient crash 
simulations of laminated structures, which in the long run will help to develop automotive structures made of carbon FRP. 
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Appendix A. Coordinate transformations 

The transformation between the reference global 𝒢0 and current lamina ℒt frames is done using the rotation tensor 

Zt = RQAt : 𝒢0 → ℒt (A.1)  

where At is the rotation from the reference global to the current element frame (𝒢0 → ℰt), Q is the rotation from element to material 
frame (ℰt → ℳt) and R is the rotation from material to lamina frame (ℳt → ℒt). 

In order to calculate At we start by calculating the coordinates xI which defines the current midsurface of the element 

xI =
xI + xI+4

2
I = 1…4, (A.2)  

where xI are the vertex nodes of the element. In the centre point xC of the element we construct an element coordinate system, 
following the LS-DYNA Invariant Node Numbering (INN) method (cf Fig. A.31), described by the basis vectors ξ, η and ζ:  

1. Create the midsurface bimedians a1 and a2, i.e. the vectors through the mid points of midsurface edges.  
2. Create midsurface normal 

n = a1 × a2    

3. Create vector b1 as the bisector to (normalised) a1 and a2 

J. Främby and M. Fagerström                                                                                                                                                                                       



Engineering Fracture Mechanics 244 (2021) 107364

26

b1 =
a1

‖a1‖
+

a2

‖a2‖

4. Create vector b2 orthogonal with n and a1 

b2 = n × b1    

5. Rotate back (45◦) to get ξ and η 

ξ =
1̅
̅̅
2

√

(
b1

‖b1‖
−

b2

‖b2‖

)

η =
1̅
̅̅
2

√

(
b1

‖b1‖
+

b2

‖b2‖

)

and ζ is then 

ζ =
n
‖n‖

These basis vectors are then used to define the transformation from reference global to current element frame (𝒢0 → ℰt), expressed 

in matrix form as 

At = [ ξ η ζ ]T : 𝒢0 → ℰ t. (A.3) 

In Eq. (A.1) it is assumed that the material and lamina frames rotate with the element such that Q and R can be defined in the 
reference configuration and be constant throughout the simulation. The material directions are defined in global coordinates on the 
input deck and an element to material transformation matrix can therefore be calculated as 

Q = Y0AT
0 : ℰ t → ℳt, (A.4)  

where Y0 are the input material directions and A0 is the global to element transformation matrix at time zero (i.e. x = X in Eq. (A.2) to 
(A.3)). We have chosen to define the material directions using LS-DYNA AOPT = 3 [34], which like the element coordinate system is 
constructed using the midsurface. This means that Q will be a rotation ω around the midsurface normal 

Fig. A.31. The element coordinate system (ξ, η, ζ) is constructed in the centre point by defining a midsurface (left) on which help vectors are used to 
calculate the directions (right). Please note that •̂ refers to a normalised vector. 
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Q =

⎡

⎣
Q11 Q12 0
− Q12 Q11 0

0 0 1

⎤

⎦ =

⎡

⎣
cos(ω) sin(ω) 0
− sin(ω) cos(ω) 0

0 0 1

⎤

⎦. (A.5) 

Finally, the rotation from material to lamina frame (ℳt → ℒt) is given in matrix form as 

R =

⎡

⎣
cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

⎤

⎦, (A.6)  

where β is the angle between the material first axis and the lamina fibre direction as illustrated in Fig. A.32. Each layer of the element 
need to have the angle β given as model input. 

Appendix B. Element-based characteristic lengths 

To estimate the element-based characteristic length, we make the following assumptions:  

• A crack pass through the centre point of the element;  
• The geometry of the element changes very little prior to fracture;  
• We can separate the length into one part representing cracks perpendicular to the midsurface and one to represent the inclination of 

the crack (this assumes that the element thickness h is fairly constant). 

The definition of the element-based characteristic length in Eq. (21) can then be approximated as 

L□
e =

Ve

Ac
≈ L□

e⊥

⃒
⃒
⃒
⃒cos

(

ϕ
)⃒
⃒
⃒
⃒+ h

⃒
⃒
⃒
⃒sin

(

ϕ
)⃒
⃒
⃒
⃒, (B.1)  

where 

Fig. A.32. The material coordinate system (a, b, c) is a rotation (ω) of the element coordinate system (ξ, η, ζ) around the midsurface normal (left) 
and similarly the lamina coordinate system (1,2, 3) is a rotation (β) of the material coordinate system (right). 

Fig. B.33. Example of matrix and fibre cracks on a quadrilateral midsurface. The crack paths are assumed to pass the centre point XC and the crack 
lengths can be calculated by finding where the positive and negative lamina direction vectors pass the midsurface edges. 
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L□
e⊥ =

Ae

Lc
(B.2) 

is the characteristic length for cracks perpendicular to the midsurface, calculated by relating the ply midsurface area Ae to the crack 
length Lc (cf Fig. B.33). To derive the expression in Eq. (B.1), we have used that Ve ≈ Aeh and Ac ≈ Lch/|cos(ϕ)|, together with the fact 
that the characteristic length must be equal to the thickness h for crack angles of ϕ = 90∘ Fig. 5. It is noteworthy that the only difference 
between the element-based expression in Eq. (B.1) and the corresponding mesh-based in Eq. (20) is how the parts representing cracks 
perpendicular to the midsurface L□

e⊥ and L⊞
e⊥ are calculated. 

As mention before, matrix cracks can form parallel to the fibre direction while fibre fracture will primarily occur perpendicular to 
the fibres. Thus, two corresponding element-based characteristic lengths L□

em and L□
ef need to be calculated for each unique ply 

orientation. Furthermore, for solid shell elements the ply midsurface areas Ae,i can vary through the thickness. Thus, each element ply 
requires a separate set of characteristic lengths L□

em,i and L□
ef,i, however, we will drop the ply index i in the following. 

Using Eq. (B.1) the element-based characteristic lengths for a matrix and a fibre crack become 

L□
em ≈ L□

em⊥|cos
(
ϕm

)
| + h|sin

(
ϕm

)
|

L□
ef ≈ L□

ef⊥

, (B.3)  

where 

L□
em⊥ =

Ae

Lcm

L□
ef⊥ =

Ae

Lcf

(B.4)  

and we have, once again, assumed that the fibre cracks always are perpendicular to the midsurface, i.e. ϕf = 0. 
The angle ϕm is a result of the loading of the element as described in Section 3.1. However, we can calculate L□

em⊥ and L□
ef⊥ based on 

the element geometry and the fibre direction. This calculation requires to estimate the ply midsurface area Ae and the lengths of the 
potential matrix and fibre cracks, Lcm and Lcf , illustrated in Fig. B.33. Since we assume small geometrical changes of the element prior 
to fracture this is done using the reference nodal coordinates at the beginning of the simulation. We have in the following restricted our 
calculations to general hexahedral elements and do not allow for wedge elements to be used. 

We first define the ply fibre and transverse direction vectors E1 and E2, following the procedure in Appendix A. A potential matrix 
crack will be parallel to the fibre and thus along the E1 direction. Similarly, a fibre crack will be perpendicular to the fibre, i.e. along the 
E2 direction. This is illustrated in Fig. B.33 and the matrix and fibre crack lengths on the midsurface are 

Lcm = L1+ + L1−
Lcf = L2+ + L2− .

(B.5)  

The lengths Ll (l = 1 + ,1 − ,2 + ,2–) in Eq. (B.5) are the distances from the midsurface centre point XC, along the positive and negative 
lamina directions, to the edges of the midsurface, i.e. they are given by finding 

Ll⩾0 such that min
Ll

( ⃦
⃦Pl − Pij

⃦
⃦
)
, (B.6)  

where Pl and Pij are the points with the closest distance between the lamina direction vectors and the edge vectors (which are likely 
skew): 

Pl = XC + LlEl l = 1+, 1− , 2+, 2−
Pij = Xi + μij

(
Xj − Xi

) (
i, j
)
=

(
1, 2

)
,
(
2, 3

)
,
(
3, 4

)
,
(
4, 1

)
μij ∈ R.

Finally, the area of the midsurface is calculated using the diagonal vectors of the midsurface 

Ae =
1
2

⃦
⃦
⃦
⃦

(

X3 − X1

)

×

(

X4 − X2

)⃦
⃦
⃦
⃦, (B.7)  

where × denotes cross product. 
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[21] Costa Sérgio, Bru Thomas, Olsson Robin, Portugal André. Improvement and validation of a physically based model for the shear and transverse crushing of 

orthotropic composites. J Compos Mater 2019;53(12):1681–96. 
[22] Chiu Louis NS, Falzon Brian G, Boman Romain, Chen Bernard, Yan Wenyi. Finite element modelling of composite structures under crushing load. Compos Struct 

2015;131:215–28. 
[23] Mukhopadhyay Supratik, Hallett Stephen R. A directed continuum damage mechanics method for modelling composite matrix cracks. Compos Sci Technol 

2019;176:1–8. 
[24] Mortell DJ, Tanner DA, McCarthy CT. In-situ SEM study of transverse cracking and delamination in laminated composite materials. Compos Sci Technol 2014; 

105:118–26. 
[25] Lu X, Chen BY, Tan VBC, Tay TE. A separable cohesive element for modelling coupled failure in laminated composite materials. Compos Part A: Appl Sci Manuf 

2018;107:387–98. 
[26] Quintanas-Corominas A, Turon A, Reinoso J, Casoni E, Paggi M, Mayugo JA. A phase field approach enhanced with a cohesive zone model for modeling 

delamination induced by matrix cracking. Comput Methods Appl Mech Eng 2020;358:112618. 
[27] Ottosen Niels Saabye, Petersson Hans. Introduction to the finite element method. Prentice Hall; 1992. 
[28] Sun CT, Chung Ilsup. Oblique end tab design for testing off-axis composite specimens. Composites 1993;24(8):523–619. 
[29] Reiner J, Veidt M, Dargusch M, Gross L. Progressive matrix cracking induced delamination: a comparison of finite element modelling techniques. In: ECCM17 - 

17th European Conference on Composite Materials, Munich, Germany; 2016. 
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