provided by Chalmers Research

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

A Process-oriented Approach for Migrating Software
to Heterogeneous Platforms

Huco SicA DE ANDRADE

Division of Software Engineering
Department of Computer Science & Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2021

https://core.ac.uk/display/389671409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Process-oriented Approach for Migrating Software to Heteroge-
neous Platforms

HuGgo SicA DE ANDRADE

Copyright (©)2021 Hugo Sica de Andrade
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-439-7
Doktorsavhandlingar vid Chalmers tekniska hogskola, Ny serie nr 4906.
ISSN 0346-718X

Technical Report No 193D

Department of Computer Science & Engineering

Division of Software Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

To my father Hélio, my mother Gina, and my sister Débora.

iv

Abstract

Context: Heterogeneous computing, i.e., computing performed on processors
of different types—such as combination of CPUs and GPUs, or CPUs and
FPGAs—has shown to be a feasible path towards higher performance and less
energy consumption. However, this approach imposes a number of challenges on
the software side that must be addressed in order to achieve the aforementioned
advantages.

Objective: The objective of this thesis is to improve the process of software
deployment on heterogeneous platforms. Through a detailed analysis of the
state-of-the-art and state-of-the-practice, we aim to provide a reasoning frame-
work for engineers to migrate software to be executed on such platforms.
Method: To achieve our goal, we conducted: (i) a literature review in the
form of a systematic mapping study on software deployment on heterogeneous
platforms; (ii) a multiple case study in industry that highlights the main
challenges and concerns in the state-of-the-practice in the area; and (iii) a study
in which we propose and evaluate a decision framework to guide engineers in
migrating software for execution on heterogeneous platforms, with a case study
in the automotive domain.

Results: In the mapping study, we provided a thorough classification of the
identified concerns and approaches to deploying software on heterogeneous
platforms. Among other findings, we discovered a lack of holistic approaches
that include development processes, as well as few validation studies in industrial
contexts. In the second study, we discovered and analyzed common practices
and challenges that companies face when using heterogeneous platforms. One
of such challenges is related to the lack of approaches that cover the software
development lifecycle. In the third study, we proposed a decision framework
that guides engineers in the process of reasoning for migrating software for
execution on heterogeneous platforms. It consists of five stages (assessing,
re-architecting, developing, deploying, evaluating), each containing a set of
aspects to be addressed through the answers to predefined questions.
Conclusions: This thesis addresses a gap that was identified in both theory
and practice concerning the lack of holistic approaches to migrate software for
execution on heterogeneous platforms. Our proposed approach addresses the
problem through systematic guidance for engineers.

Future work: In the future, we intend to further refine the proposed framework
through case studies in domains other than automotive. We will explore its
integration with existing software engineering processes in industrial contexts,
performing in-depth analysis of the required adaptations and providing detailed
solutions within the stages of the framework.

Keywords

Software Engineering, Software Deployment, Software Architecture, Heteroge-
neous Platforms

Acknowledgements

This journey has been possible with the support of the following individuals.

Ivica Crnkovic: thank you for your mentoring during the last several
years. Words cannot properly define my gratitude for your endurance, patience
and support when I had my ups and downs. Learning has been my main goal
all along, and I have definitely learned a lot from you.

Jan Bosch and Christian Berger: thank you for bringing so much perspec-
tive to my life inside and outside work. Through completely different strategies,
you constantly raised the bar and made me believe I could succeed.

Federico Giaimo: thank you for being such an important piece in my PhD
puzzle. More than an office mate, you have been the person who provided me
with support when times were tough and laughter even in the smallest things.
One of the most valuable outcomes of this experience is our friendship.

Truong Ho-Quang, Hang Yin, Yue Kang, Ricardo Caldas: thank you for
the everyday exchanges we had sharing the office. It was great to have someone
to talk to when I needed a break.

Jan, Rodi, Abdullah, Lucas, Alessia, Gul, Michel, David, Miroslaw,
Patrizio, Aiswarya, Lucy, Hamza, Salome, Ann, Magnus, Terese, Sergio, Grischa,
Rebekka, Katja, Pier, Mukelabai, Vard, Ivan, Juraj, Zdravko: thank you for
being great colleagues in this journey. Even in our smallest interactions, such
as corridor chats, you made a difference in my life.

Hélio, Gina and Débora: thank you for your unconditional support
throughout my entire life, no matter what I chose of it. I would not be able to
make it without you. Obrigado! Amo vocés.

Anna Pennlund: thank you for all your kind gestures and daily doses of
support. There were times where you believed in me more than I did myself. 1
will never be able to fully express my gratitude to you. You have been the best
partner I could have asked for. Alskar dig!

vii

List of Publications

Included publications

The following publications are included in this thesis:

[A]

H. Andrade, J. Schréder, I. Crnkovic “Software Deployment on Hetero-
geneous Platforms: A Systematic Mapping Study”

IEEFE Transactions on Software Engineering journal (TSE), 2019. [also
presented as Journal First article at the International Conference on
Software Engineering (ICSE), 2020].

H. Andrade, I. Crnkovic “A Review on Software Architectures for Het-
erogeneous Platforms”

Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC). Nara, Japan, 4-7 December, 2018.

H. Andrade, L. Lwakatare, I. Crnkovic, J. Bosch “Software Challenges
in Heterogeneous Computing: A Multiple Case Study in Industry”
Proceedings of the 45th IEEE FEuromicro Conference Series on Software
Engineering and Advanced Applications (SEAA). Kallithea- Chalkidiki,
Greece, 28-30 August, 2019.

H. Andrade, C. Berger, I. Crnkovic, J. Bosch “Principles for Re-architecting
Software for Heterogeneous Platforms”

Proceedings of the 27th Asia-Pacific Software Engineering Conference
(APSEC). Singapore, 1-4 December, 2020.

H. Andrade, O. Benderius, C. Berger, I. Crnkovic, J. Bosch “HPM-
Frame: A Decision Framework for Executing Software on Heterogeneous
Platforms”

Journal of Systems and Software (JSS), 2020 [Submitted].

ix

Other publications

The following papers were also published during my studies, although not
included in this thesis:

[a]

H. Andrade, I. Crnkovic, J. Bosch “Refactoring Software in the Automo-
tive Domain for Execution on Heterogeneous Platforms”

IEEE J4th Annual Computers, Software, and Applications Conference
(COMPSAC). Virtual event, 13-17 July, 2020.

F. Giaimo, H. Andrade, C. Berger “Continuous Experimentation and
the Cyber-Physical System challenge. An overview on literature and the
industrial perspective”

Journal of Systems and Software (JSS), 2020.

F. Giaimo, H. Andrade, C. Berger “The Automotive Take on Continuous
Experimentation: A Multiple Case Study”

Proceedings of the 45th IEEE Euromicro Conference Series on Software
Engineering and Advanced Applications (SEAA). Kallithea-Chalkidiki,
Greece, 28-30 August, 2019.

A. Rodrigues, G. Rodrigues, A. Knauss, R. Ali, H. Andrade “Enhancing
Context Specifications for Dependable Adaptive Systems: A Data Mining
Approach”

Information and Software Technology journal (IST), 2019.

G. N. Rodrigues, A. Knauss, F. Guimaraes, G. Rodrigues, H. Andrade,
J. Araujo, R. Ali “GoalD: A Goal-Driven Deployment Framework for
Dynamic and Heterogeneous Computing Environments”

Information and Software Technology journal (IST), 2019.

D. Feitosa, A. Ampatzoglou, P. Avgeriou, F. J. Affonso, H. Andrade,
K. R. Felizardo, E. Y. Nakagawa “Design Approaches for Critical Em-
bedded Systems: A Systematic Mapping Study”

In: Damiani E., Spanoudakis G., Maciaszek L. (eds) Evaluation of Novel
Approaches to Software Engineering. ENASE 2017. Communications in
Computer and Information Science, vol 866. Springer, Cham, 2018.

P. Masek, M. Thulin, H. Andrade, C. Berger, O. Benderius “Systematic
Evaluation of Sandboxed Software Deployment for Real-time Software
on the Example of a Self-Driving Heavy Vehicle”

Proceedings of the 19th IEEE International Conference on Intelligent
Transportation Systems (ITSC). Rio de Janeiro, Brazil, 1-4 November,
2016.

H. Andrade “Investigating Software Deployment on Heterogeneous Plat-
forms”

Proceedings of the 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA). Venice, Italy, 5-8 April, 2016.

xi

[

H. Yin, F. Giaimo, H. Andrade, C. Berger, I. Crnkovic “Adaptive Message
Restructuring using Model-Driven Engineering”

In: PLatifi S. (eds) Information Technology: New Generations. Advances
in Intelligent Systems and Computing, vol 448. Springer, Cham, 2016.

H. Andrade, F. Giaimo, C. Berger, 1. Crnkovic “Systematic Evaluation of
Three Data Marshalling Approaches for Distributed Software Systems”
Proceedings of the Workshop on Domain-Specific Modeling (DSM @
SPLASH). Pittsburgh, USA, 27 October, 2015.

F. Giaimo, H. Andrade, C. Berger, I. Crnkovic “Improving Bandwidth
Efficiency with Self-Adaptation for Data Marshalling on the Example of
a Self-Driving Miniature Car”

Proceedings of the 9th European Conference on Software Architecture
Workshops (ECSAW). Dubrovnik/Cavtat, Croatia, 7-11 September, 2015.

H. Andrade, E. Almeida, I. Crnkovic “Architectural Bad Smells in Soft-
ware Product Lines: An Exploratory Study”

Proceedings of the Working IEEE/IFIP Conference on Software Archi-
tecture Companion Volume (WICSA). Sydney, Australia, 7 April, 2014.

xii

Personal Contribution

I was the main driver of all studies appended in this thesis.

In Papers A and B, I have selected the most appropriate method of
literature review and written the review protocol, which included a clear
motivation for the study, research goal and questions, the inclusion/exclusion
criteria for selecting primary studies, and possible classification attributes
(facets). I led discussions with the coauthors throughout the whole process.
I conducted pilot studies by testing different search strings into the search
engines of selected digital libraries. I conducted the paper selection process
with the help of one researcher by applying the predefined criteria, with focus
on the RQs. I read and extracted relevant data from the papers, managing
information through spreadsheets, notes and reference managers. I qualitatively
and quantitatively analyzed the data in the search for clusters, trends and gaps,
presenting the findings in the form of charts, tables, graphs and mindmaps. 1
wrote most of the papers.

In Paper C, I structured the idea of the paper based on the findings from
our previous studies. I held initial discussions with the coauthors to align
concepts, ideas and goals for the study. I conducted face-to-face semi-structured
interviews with the participating experts based on a predefined set of questions
and topics of interest. The interview guide was created by me and evolved
through discussions with the coauthors. I collected the data through notes and
recordings of the interviews with the help of one researcher, which were later
transcribed. I thoroughly analyzed the data in the search for patterns, resulting
in mindmaps for structure. The topics contained brief rationales, which were
later transformed into the first sketches of the model presented in the paper. I
created both the model and the summaries, evolving them through discussions
with the coauthors. I wrote most of the paper.

In Papers D and E, I elaborated the research plan based on our previous
studies and through discussions with the coauthors. I reviewed the studies
and defined the research design based on the defined research goal. I sketched
the first versions of the proposed framework and presented them in multiple
occasions, such as research workshops, face-to-face meetings and video calls.
I created a questionnaire with both general and specific questions about the
proposed framework. I refined the framework by creating different stages,
aspects and questions, along with its interaction with a typical software en-
gineering process. The impression of the experts was captured through both
their answers to the questionnaire and discussions during workshops, resulting
in improvements of the framework. To evaluate it, I elaborated the design
and conducted a case study with the help of two researchers in the process
of extracting the software architecture and implementing the case application.
I applied the proposed framework to the case, discussing and presenting the
results in the form of text, tables and figures. I wrote most of the papers.

xiv

Contents

[Abstraci] v
|Acknowledgements| vii
G f Publications ix
[Personal Contributionl xiii
1__Introductionl 1
I1.1 Background| 3
[1.1.1 Heterogeneous platforms|. 3

[1.1.2 Software deployment| 4

[1.1.3 Software migration & decision process| 5

I1.2 Research Goal & Scope| 6
1.3 Research Methodology| 7
[1.3.1 Systematic literature reviews| 7

[1.3.2 Exploratory case studies| 8

[1.3.3 Design science| 8

L4 Contributions 9
(1.4.1 Contribution 1: An overview of the main concerns and |

| approaches of software deployment on heterogeneous |
| platforms| Lo oo 10
[1.4.2 Contribution 2: An overview of the common practices and |

| challenges when developing software for heterogeneous |
| platforms in industry|.o 13
[1.4.3 Contribution 3: A decision framework for guiding engi- ‘

[neers in refactoring software for execution on heteroge- |
| neous platforms|. oo 15
[L5 Publicationd 18
I1.6 Threats to Validity| 21
[LY Conclusion| 23
L8 Future Workl 24
Pap A 27
RI Tntroductionl. 28
2.2 Background| 29
[2.2.1 Heterogeneous computing and platforms| 29

[2.2.2 Software deployment| 30

XV

xvi CONTENTS
2.3 Research methodology| 31
[2.3.1 Research questions| 31
232 Conductofsearchl 32
[2.3.3 Screening of papers|. 33
2.3.3.1 Firstiterationlo 34

2332 Seconditeration 35

2.3.4 Data extraction|. 35

2.4 Study results| 35
[2.4.1 The meaning of the term “heterogeneous” 36
[2.4.2 Main purpose of the studies and research type classification| 36
[2.4.3 Primary studies’ meta—datal 39

2.5 RQ1 —The main concerns| 42
[2.5.1 Schedulingl 43
2.5.1.1 Load balancing|. 43

[2.5.1.2 Scheduling executable units|. 43

[2.5.1.3 Utilizing hardware resources| 45

[2.5.2 Software quality|] 46
25271 Performance 47

[2.5.2.2 Portability] 47

2.5.2.3 Efficiency|o 47

[2.5.2.4 Maintainability|. 48

[2.5.2.5 Scalability] 00000, 48

[2.5.3 Software architecturel. 48
[2.5.3.1 Efficient data and memory management|. . . 48

2532 Realtime constraintd 49

[2.5.4 Development process|. 49
[2.5.4.1 Efficiency in the process|. 49

[2.5.4.2 Parallel programming and complexity] 50

2.5.5 Hardware-related concernsl 51
2.0.5.1 Energy consumption|. 51

2.5.5.2 Hardware constraints 52

[2.5.5.3 Design and maintenance] 52

[2.5.5.4 Components malfunctioning| 52

[2.5.6 Summary — Concerns (RQT)| 52

2.6 RQ2 — The main approaches|. 53
[2.6.1 General practices| 53
2.6.1.1 Frameworks and APIsl. 55

[2.6.1.2 Load balancing techniques| 56

[2.6.1.3 Scheduling algorithms| 57

2614 Simulationl 58

2.6.1.60 Visualizationl 58

[2.6.2 Design time practices| 59
2.6.2.1 Modeling sottware and hardware| 59

2.6.2.2 Software / hardware mapping| 60

623 Othermethodd 61

[2.6.3 Runtime practices| 62
[2.6.3.1 Implementing own scheduler| 62

2.6.3.2 Profiling] 63

2.6.3.3 Task queuing| 63

CONTENTS xvil

[2.6.3.4 Maintaining a table with jobs’ states|. 63

[2.6.4 Summary — Approaches (RQ2) 63

2.7 Discussionl 64
2.8 Threats to validity| 0oL 66
29 Related workl oL 67
[2.10 Conclusion and Future Workl 68
|Appendix: Paper A 69
Pap 3 83
B.1 Introductionl. 84
B2 Background| o 85
B3 Research Methodl 86
[3.3.1 Research question| 86
B.3.2 Conduction of searchl. 87
[3.3.3 Screening of papers|. 88
[3.3.4 Keywording using abstracts| 89
[3.3.5 Data extraction and mapping process| 89

BA Resultd. o o o oo 90
3.4.1 Classification scheme|. 90
[3.4.2 Which architecture solutions enable/support deployment |

| strategies for heterogeneous platforms?|. 93
3.4.2.1 Architectural styles| 93

13.4.2.2 Architectural principles| 94

BE _DISCHSSION - -« « v v oo e e e 95
3.6 Threats to Validity] 96
B.7 Related Workl oo 96
B.8 Conclusion| L 97
|Appendix: Paper B| 97
4 Pap) 101
M1 Introductionl.o 102
4.2 Background & Related workf. 103
B3 Thecasedo 104
[4.3.1 Company Al 104
[4.3.2 Company B|. 0. 104
[4.3.3 Company C|. 104
[4.3.4 Company Df. 105

4.4 Research methodology| 105
E4T Datacollectionl o oo 105
[4.4.2 Data analysis| L. 106

4.5 e challenges| o000l 106
4.5.1 Stages of adoption of heterogeneous platforms|. 107
452 ‘Migrating stage] . . . « .« . v oo 108
4.5.3 ‘Establishing a process stage]« o o oo . . . 109
454 ‘Scaling up’ Stage]. . « « . v v 110
4.5.5 ‘Refining the process’ stage « v o v oo v oot 111

M6 DISCUSSION - « « v oo v v e e e e e e 112

xviii CONTENTS

4.8 Conclusion and Future workl 114
Pap D 117
BI Tntroductionl. L 118
[.1.1 Motivation example| 119

5.2 Research Methodology| 120
5.3 Re-architecting for Heterogeneous Platforms|. 121
[5.3.1 Determining the impact on the software architecture| . . 121

[5.3.2 Mapping software and hardware| 122

[5.3.3 Determining the overall architecture design| 123

[0.3.4 Refactoring software components| 125

b.4d Casestudy| 126
[.4.1 The case: OpenDLV plattorm|. 126

[5.4.2 Applying the approach|. 128

p.4.2.1 Determining the impact on the sottware archi- |

[tecturelo oo 128
9.4.2.2 Mapping software and hardware| 129

9.4.2.3 Determining the overall architecture design| . . 130

p.4.2.4 Refactoring software components|. 130

[5.4.3 Summary of the results| 131

b5 Related Workl 131
5.6 Conclusions & Future Workl 132

6 Paper E 135
[6.1 Tntroductionl. 136
[6.1.1 Research goall 136

6.1.2 Contribution| L. 136

[6.1.3 Terminology| 137

[6.1.4 Structure of the paper| 137

6.2 Motivation: Example in the automotive domain|. 137
6.3 Research Methodology| 141
6.4 Case Study] 142
6.5 The HPM Frameworkl 143
[6.5.1 Assessing| Lo 144

6.5.1.1 Analyzing the functionality to be executed on |

| the accelerator(s)] 144
16.5.1.2 Determining the hardware to be used| 145

16.5.1.3 Determining the impact on the overall system |

| and stakeholders oL 146
16.5.1.4 Determining the feasibility of the project| . . . 146

[6.5.2 Re-architecting| 147

6.5.2.1 Mapping sottware and hardware| 147

16.5.2.2 Determining the impact on the new architecture|148
16.5.2.3 Determining the overall architecture design| . . 149

[6.5.3 Developingl 150
6.5.3.1 Adopting a software development process| . . . 150
16.5.3.2 Refactoring software components|. 151

[6.5.4 Deploying| 151

6.5.4.1 Determining the deployment process|. 152

CONTENTS Xix

16.5.4.2 Preparing the target hardware] 152

[6.5.5 Evaluatingl o0 oo, 153
16.5.5.1 Ensuring that the functionality has been main- |

[tammed| 153
[6.5.5.2 Determining the outcomes of refactoring] . . . 153

[6.5.6 Framework overviewlo 154

6.6 The Framework in the Sottware Development Process| 154
6.7 Evaluation: Feedback from practitioners| 156
[6.7.1 Highlights from the interaction with the experts| 158

[6:8 Threats to validity] . . - - « o v v v i 160
B9 Related WorKl . . .+« o v oot oo 161
6.10 Conclusion & Future workl 162

XX

CONTENTS

Chapter 1

Introduction

The role of software continues to gain importance in modern society. Computer
programs now have a long track of strongly pushing for evolution in domains
far beyond the obvious, such as applied mathematics. Software has completely
transformed the lives of billions of people in their common activities through
ubiquitous computing. Industry has also greatly benefited from extensive
digitalization of processes and automatization of activities previously performed
by humans. There is currently no forecast that is contrary to the idea that
software will continue to gain space in society. The most prominent use
of software nowadays is arguably in the field of Artificial Intelligence (AI),
which focuses on providing solutions to very complex computational problems.
Machine learning algorithms, for instance, allow for automatic data analysis
through which systems can learn from data, identify patterns and make decisions
with minimum human intervention [1].

One particular aspect becomes relevant as more and more responsibil-
ities are attributed to software and realized through the implementation of
functionalities: performance. The performance of a system also relies on its
hardware capability, which must not only be sufficient for a smooth execution
of a predetermined set of features, but also cheap enough to make products
financially viable. This is particularly challenging in the case of embedded
systems, which are often limited in resources and many times have real-time
and interface constraints [2]. In the past, the requirements for hardware perfor-
mance were fulfilled by (i) boosting the frequency of processing units (PUs)
or by (ii) adding transistors onto processors. Since boosting the frequency
of processors is becoming difficult [3], performance is primarily achieved by
increasing the transistor count. However, the number of transistors built on
chips has broken several records in recent times (e.g., Cerebras Wafer Scale
Engine featuring over 1.2 trillion transistors [4]). Making use of this many
transistors is difficult due to the inherent complexity in managing the circuit
logic.

The most promising way to fulfill these high demands for performance
is to employ heterogeneous platforms, i.e., hardware platforms consisting of
more than one type of processors. Heterogeneous platforms combine pro-
cessors such as: multi-core Central Processing Units (CPUs), Graphics Pro-
cessing Units (GPUs) Application-Specific Integrated Circuits (ASICs) and

2 CHAPTER 1. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs). Using such platforms creates the
impression of dedicated units that can be adapted to a wide range of application
domains. These dedicated units can significantly increase the overall system’s
performance and energy management through, for instance, optimizing the
workload distribution according to the types of data to be processed. There
currently exists a variety of processing units that can be used as accelerators,
though the development of technologies has made GPUs and FPGAs popular
due to their flexibility in improving the performance of applications in several
domains. In particular, GPUs have gained significant attention due to their
cost benefit in processing graphics in both industrial and consumer electron-
ics contexts. In the latter, the popularization is mainly driven by personal
computers and mobile phones.

Despite the fact that the difficulty in programming for such platforms
is decreasing [5], there are multiple concerns that must be addressed in order
to handle the inherent complexity of both hardware and software in such
environments. Compared to traditional CPU-based programming, software
development for heterogeneous platforms requires the developer to acknowledge
several aspects of the underlying hardware as soon as in the design phase, when
different software deployment strategies may be modeled and analyzed. For in-
stance, the memory shared between the processors must be explicitly managed
even when using comprehensive hardware manufacturer development frame-
works such as CUDA for NVIDIA GPUs [6]. Further, by using heterogeneous
platforms, the software architecture is assumed to follow a primary/secondary
pattern, as the main flow of the application is typically executed by the CPU
while the computationally heavy portion of the algorithm is dispatched to the
accelerator.

In real-world software engineering contexts, the adoption of heterogeneous
platforms is gradual, driven by necessity, and very dependent on the application
that is to be executed. It is common practice that software is first developed for
execution on CPUs and then migrated to a solution based on multiple processors,
due to prototyping and the evaluation of need for additional performance. The
change is typically guided by a particular performance benchmark that is
previously defined in the requirements and achieved through the selection of a
particular hardware solution. Such software migration may require changes not
only to the source code itself, but also to the overall software architecture, the
development processes, and the business practices that are currently in place. In
some cases, a software project might start already with heterogeneous platforms
in place for execution of applications that are known to be highly demanding on
computational power. However, even in such cases, the hardware costs must be
justified through the performance benchmarking of implementations based on
CPUs. In this sense, the migration of software for execution on heterogeneous
platforms represents a relevant activity that must be addressed by engineers in
the process of adopting heterogeneous platforms.

This thesis consists of an introduction chapter that covers the overall
description of the research, followed by a collection of five papers. The papers
have been formatted to fit the layout of the thesis, being included as individual
chapters. This introduction chapter covers the overall description of the research
and is organized as follows. Section [1.1]introduces the background of this work.
Section presents the research goal, scope, and research questions of this

1.1. BACKGROUND 3

thesis. Section describes the research methodologies used in this work.
Section [I.4] summarizes the contributions of this thesis and discusses their
connections to the research questions. Section [I.5] presents an overview of
the publications included in this thesis. Section discusses the threats to
the validity of this work. Then, Section presents the conclusions. Finally,
Section [L.§ describes our intentions for future work.

1.1 Background

In this section, we provide the background for the main topics covered in
this thesis: heterogeneous platforms (heterogeneous computing), software
deployment, and software refactoring.

1.1.1 Heterogeneous platforms

During our investigation, we discovered that the literature refers to the term
“heterogeneous platform” in different ways. Besides meaning different processors,
we found that this term also refers to platforms containing processors of the
same type, but with different capacities. For instance, a system that includes
2 CPUs with a different number of cores and/or clock frequencies is often
called heterogeneous. Another situation in which the term is commonly found
is when the types and other characteristics of the processors are omitted, being
discussed only their differences in capacity. For example, strictly combinatorial
problems consider a cost formula and a few performance attributes of the
processors in order to determine the best deployment strategy.

In this thesis, we adopted the following definition of heterogeneous com-
puting: complex systems composed of different kinds of processing units which
use different processing paradigms and are designed for different types of tasks
which work together in order to provide the best processing performance for
diverse computing needs 7). In this sense, we consider a heterogeneous platform
as a hardware set consisting of at least two different types of processors that
are specialized in different types of tasks.

An example of heterogeneous hardware architectures is shown in Figure[T.]
[3]. In Figure (a), the single-chip Cell Broadband Engine Architecture
(CBEA) is depicted consisting of a traditional CPU core and eight single-
instruction multiple data (SIMD) accelerator cores. Each core can run separate
programs and communicate through a fast on-chip bus. Its main design criteria
is to maximize performance while consuming minimum power. Figure [I.I(b)
illustrates a GPU with 30 highly multi-threaded SIMD accelerator cores in
combination with a standard multicore CPU. The GPU has superior bandwidth
and computational performance. It is designed for high-performance graphics,
where throughput of data is key. In Figure ¢), a standard multi-core CPU
is paired with an FPGA consisting of an array of logic blocks. FPGAs can
also incorporate regular CPU cores on-chip, making it a heterogeneous chip by
itself. FPGAs offer fully deterministic performance and are designed for high
throughput, for example, in telecommunication applications.

4 CHAPTER 1. INTRODUCTION

CPuU FPU CPU N FPGA
f('"ﬂ‘L Coel)| | Casg, 1 Ceeey 1
Cell BEA PO g Hypesaepan i
=J[=l=I=) Cmop | Cmio cwmgo | Cem E
e
o || e | e ||
Main Mewiory Main Meaory GPU Mersary Main: Mensory (NUMA}
(a) CBEA (b) CPU in combination with GPU (c) CPU in combination with FPGA

Figure 1.1: Example of heterogeneous hardware architectures as shown in [3]:
(a) Cell Broadband Engine (heterogeneous chip), (b) a CPU in combination
with a GPU, and (¢) a CPU in combination with an FPGA.

1.1.2 Software deployment

The concept of deployment also varies according to the context in which the
study is performed. For business research, it may refer to strategies for update
releases of a mobile app. For technology research, deployment may refer to the
tools that are used to facilitate and enable deployment, e.g., Docker [8]. For
fundamental research, it may refer to the mathematical strategies to optimize
load balance in a heterogeneous environment.

In the context of software engineering, software deployment comprises a
set of activities resulting in a system that is available for use [9]. These activities
can be very diverse and include a wide range of processes, such as users training,
integration of new features into the existing system, the actual installation of
software on the underlying hardware, etc. A typical deployment activity refers
to the activities in the process of installing software on hardware, including
the decision about the units in which software components will be executed
(component allocation). The activities include partitioning the software system
into components and planning their execution on different processing units.

As we conducted this work, we realized that the activities performed in
the typical deployment stage are heavily influenced by activities in previous
stages in the software process. For instance, we learned that one common way
to realize deployment onto heterogeneous platforms is by using a development
framework, which needs to be applied as soon as in the architecture phase. For
this reason, we extend the concept of deployment to include all activities that
are relevant throughout the software engineering process to successfully execute
software onto a heterogeneous platform. Further, we focus on deployment from
the software perspective rather than from the hardware perspective.

One example representation in the domain of cyber-physical systems is
shown in Figure where a deployment scenario is depicted. On the hardware
side, there is a heterogeneous platform consisting of an FPGA, n CPUs and m
GPUs that are available for processing data, and these units have interfaces
with different types of sensors and actuators. The software is decomposed
into components that can be deployed according to different configurations,
while the following assumptions might be relevant: (i) instructions might
execute in a shorter time on the FPGA when compared to CPUs or GPUs,
however programming for FPGAs is complex and more time consuming; (ii)
two dependent applications might be executed faster in different executing
units, however the communication between them might be compromised by

1.1. BACKGROUND 5

Application: HW & SW component models.. -
Pid Code
—<o_
/(o—
Nl 4]
\ Time: ... EFPs
AN Memory: ...
Allocation, > | Energy: ...
mapping, @
synthesis
Vision
3D-sensor < NxCPU Visualiza-
Sensors > 8 /\/ > tion and
Sonar] w Mx GPU actuators

Figure 1.2: Generic modelling scenario of cyber-physical systems, depicting
software deployment on a heterogeneous platform [10].

the available bandwidth; (iii) allocating components and highly parallelizable
applications on a single executing unit (e.g., GPU) might be less complex, but
also compromises energy efficiency. Other aspects may also be considered, such
as the impact of the technology used to encapsulate processes for software
deployment or the underlying environment in which the application is executed.

1.1.3 Software migration & decision process

The most important challenge to software engineering when employing het-
erogeneous platforms is the fact that legacy CPU-based applications are not
ready for execution on such hardware. Due to the inherent differences in the
architecture and development processes, the software must be migrated prior
to deployment. The term refers to the set of steps that engineers take in order
to make an existing CPU-based application executable on a heterogeneous
platform. Migration is not only performed in legacy CPU-based applications,
but also in the implementation of new functionalities, since a CPU-based
implementation is typically used to measure performance of the system using
accelerators. It is generally simpler and faster to create prototypes and proofs
of concept, targeting execution on CPUs. In this case, the CPU-based imple-
mentation is used as benchmark to assess the behavior of applications deployed
on heterogeneous platforms.

Software migration requires careful analysis of the existing requirements
and functionalities in order to determine the extent to which they are relevant
to the business. The process can be seen as an opportunity to improve the
software itself as well as the development processes that are currently in use. In
the case of legacy applications, it is not uncommon that the knowledge about
technical details of the system is scarce across the organization, demanding that
the business goals are revisited. Architecture erosion, i.e., a mismatch between
the planned architecture and the actual architecture [11], is a phenomenon
that might be identified and addressed in this process. Furthermore, the
architectural pattern might be updated, such as in the case of a transformation
from monolithic to a microservices architecture [12]. As there is no standard
heterogeneous architecture currently in use, the cost of each migration seems

6 CHAPTER 1. INTRODUCTION

to include many architecture-specific issues that must be addressed. Most
concerns in migrating are related to software/hardware mapping and the
required changes to the interfaces, along with adaptations in the messages that
are passed between components.

Among other tasks, the migration of applications to heterogeneous plat-
forms includes software refactoring [13]. The term refers to the process of
restructuring code without changing the application’s external behavior while
improving non-functional properties. The refactoring approach has become
more prominent in recent years due to the rise in the number of programming
models, languages and frameworks for expressing parallelism [14]. Furthermore,
models that are specific to particular accelerators, such as GPUs, have also
appeared and need to be considered [15]. Typically, parallelism must be ex-
pressed in initially sequential applications in order to fully take advantage of
the capabilities of heterogeneous platforms. In terms of implementation details,
the current technologies require programmers to explicitly handle memory
spaces between different processing units. Thus, the process of migrating
software must account for the increased complexity in the code in addition
to the changes in the architecture. Furthermore, the migration might require
changes in the existing software engineering processes that are in place, as
well as in the adoption of new software development frameworks, tools, and
deployment routines.

The aforementioned challenges to software migration must be addressed
through a decision process in order to achieve the desired benefits of hetero-
geneous platforms. Particularly in industry, such process must be clear and
systematic in guiding engineers due to the need of reproducibility. A typical
decision process includes the identification of a decision, information gather-
ing, and assessing alternative solutions [16]. In the context of heterogeneous
platforms, an effective decision process must contain all relevant aspects of
migration for engineers to reason upon and ultimately address according to
their software engineering contexts. In this sense, the application of a step-by-
step decision process based on predefined steps reduces the risks in the project
connected to diverse interpretations and engineering actions.

1.2 Research Goal & Scope

The ultimate goal of this thesis is to provide a decision framework for engineers
in the process of migrating software for execution on heterogeneous platforms.
This goal implies an investigation of both academic and industrial contexts in
order to provide: (i) an overview of the state-of-the-art of software deployment
on heterogeneous platforms; (ii) an overview of the common challenges and
practices in industry when developing software for heterogeneous platforms;
and (iii) a decision framework that supports reasoning in the task of migrating
software for execution on heterogeneous platforms.

The topic of heterogeneous platforms is often referred to as a discipline
in the area of hardware engineering. In this work, however, we consider
the software engineering perspective, which covers methods, processes, and
techniques that enable and lead to the execution of software on such platforms.
Based on the research goal, we formulated three research questions, as follows.

1.3. RESEARCH METHODOLOGY 7

RQ1: What are the main concerns and approaches in software deployment on
heterogeneous platforms?

As the first step towards understanding the area of research, we aimed
to investigate the state-of-the-art of software deployment on heterogeneous
platforms, focusing on the main concerns and approaches that can be found
in the literature. The purpose of RQ1 is to obtain an overview of the body of
knowledge in the area by revealing concerns and approaches that are relevant
when deploying software on heterogeneous platforms.

RQ2: What are the challenges in industry concerning software development
for heterogeneous platforms?

The purpose of RQ2 is to obtain an overview of the scenario in industry
regarding the development of software for heterogeneous platforms. For this,
we aimed at identifying the challenges that must be addressed and charac-
teristics that are relevant about companies in different domains when using
heterogeneous platforms.

RQ3: What is a relevant process for engineers to follow when migrating
software to heterogeneous platforms?

Based on the overviews obtained from both academia and industry con-
texts, we narrow the scope of research in order to propose an approach ad-
dressing the migration problem. With RQ3, we aim to identify aspects that
are relevant to successfully migrate software for execution on heterogeneous
platforms.

1.3 Research Methodology

We used four different research methods to address the formulated research
questions, as follows.

1.3.1 Systematic literature reviews

To address RQ1, we conducted a systematic literature review in the form of
a mapping study. Mapping studies differ from classic systematic literature
reviews in their broadness and depth [17.[18]. Instead of rigorously searching,
analyzing and assessing studies, selected information is extracted from the
primary studies in order to obtain an overview of the current state-of-the-art
of research in a particular field.

We aimed at performing a systematic approach to increase reliability of
the study and enable reproducibility in the future. The search included the
most relevant academic databases in computer science and followed a set of
predefined inclusion and exclusion criteria. After the selection of studies from
the libraries, we performed the snowballing procedure [19] to also cover related
papers. The review selected 146 primary studies, and therefore collected a large
amount of data to be analyzed and discussed. We followed the standard rigorous
procedure for systematic mapping studies, and complemented with a bottom-up
approach to find similar common characteristics of the studies. Finally, we
provided different classifications in order to obtain a better understanding of
the area.

8 CHAPTER 1. INTRODUCTION

1.3.2 Exploratory case studies

To address RQ2, we conducted an exploratory study in the form of a multiple
case study in industry. The study was designed based on the guidelines
for conducting and reporting case studies in software engineering [20]. The
process included the assessment of the scenario in four companies through semi-
structured interviews with experienced practitioners in the area of heterogeneous
computing. In total, ten participants with different roles and from companies
in different domains were interviewed face-to-face by two researchers. Each
interview had the duration of 30 to 60 minutes and was recorded with the
participant’s consent. The interview questions were prepared in advance,
piloted and discussed among the authors. The data collection followed an
interview guide and included the recorded audios and notes taken by the
researchers during the interviews. The data analysis was performed using
thematic synthesis [20], resulting in a mindmap structure (available online [21]).
It contains all aspects that were discussed during the interviews organized in
clusters.

1.3.3 Design science

To address RQ3, we conducted the studies based on the design science method-
ology. In summary, design science research (or constructive science research)
focuses on establishing and operationalizing research when the desired goal is
an artifact or a recommendation [22]. The application of this approach results
in new ideas or a set of analytical techniques that enable the development of
research |23]. In practice, the conducted research activities were separated into
3 stages: exploration, conceptualization and evaluation.

The exploration stage consisted of studying the available literature and
analyzing the current state-of-the-practice in industrial contexts through work-
shops and discussions with experts in industry. These meetings occurred in the
context of an Al project in partnership with several companies in the Nordics.
This stage resulted in the discovery of several concerns and approaches related
to the development of software for heterogeneous platforms.

The conceptualization stage included an iterative sketch of the solution
based on the knowledge acquired during exploration. In this case, we prepared
the first versions of the proposed framework and discussed its details with
the experts. Several aspects were refined based on their comments through
discussions among the researchers involved. Then, we iterated and continued
to refine the proposal until it reached a certain level of maturity. Both positive
and negative feedback was collected in the meeting occasions. The result was
a decision framework containing different stages, aspects, and questions that
should be answered.

Then, the evaluation stage consisted of preparing, distributing, and
analyzing the results of a questionnaire that was sent to several companies.
The questionnaire was designed with the intention of capturing the expert’s
feedback about the framework through explicit, open questions about their
daily activities regarding the topic. These questions were derived from the
concerns and questions proposed in the framework, allowing for questioning
about each stage of the framework. Then, we performed qualitative analysis
that resulted in a set of aspects that are described in the publications as the

1.4. CONTRIBUTIONS 9

highlights of the process. In addition to the questionnaire, we also conducted a
case study in order to demonstrate the usability of the approach in practice.
We selected a functionality in the domain of self-driving vehicles developed
within a research facility associated with Chalmers University of Technology.

1.4 Contributions

In this section, we present a summary of the three research contributions,
followed by their relation to the papers included in this thesis. These contribu-
tions are the outcome of our investigation on the topics that were previously
described, aiming to answer the research questions that were elaborated.

The main contributions of this thesis are the following;:

1. An overview of the main concerns and approaches of software deployment
on heterogeneous platforms;

2. The identification of common practices and challenges when developing
software for heterogeneous platforms in industry; and

3. A decision framework for guiding engineers in refactoring software for exe-
cution on heterogeneous platforms.

Table 1.1: Mapping between contributions, topics, research questions, papers,
and research methods.

Contributions Topics Questions | Papers Research methods
. . Software deployment: concerns and approaches Paper A Systematic mapping study
Contribution 1 Software architecture solutions RQL Paper B (literature review)
Contribution 2 Challenges in industry: adoption framework RQ2 Paper C | Exploratory study (case study)
Contribution 3 SofFvi'are 'architectur.e: pri_ncipl'es RQ3 Paper D Design science
Decision framework for migration Paper E (case study)

We started by conducting a systematic literature review in the form of a
mapping study to obtain an overview of the area through the literature, leading
to Contribution 1. This study revealed several concerns that are relevant and
approaches that can be used for deploying software on heterogeneous platforms.
Then, we conducted an exploratory study that provided an overview of the
common practices in industry, including the challenges that companies typically
face when developing software for heterogeneous platforms, which led to Con-
tribution 2. Finally, we delivered Contribution 3 by synthesizing the knowledge
obtained in the previous studies to propose a systematic approach to guide
engineers in the process of migrating software for execution on heterogeneous
platforms. The relation between research questions, contributions, papers, and
their main topics is shown in Table In the next subsections, we provide a
summary of the contributions, extracted from the papers.

10 CHAPTER 1. INTRODUCTION

1.4.1 Contribution 1: An overview of the main concerns
and approaches of software deployment on hetero-
geneous platforms

We systematically searched and analyzed the literature in order to obtain
an overview of the research area through the mapping study methodology.
We considered papers indexed by trusted libraries in computer science and
followed a pre-defined process to formulate the research questions, conduct the
research, screen the papers, and extract data from them. Then, the synthesis
was performed in the search for gaps, trends, and patterns that allow for an
overview of the research area.
Contribution 1 is associated with the following research question:

RQ1: What are the main concerns and approaches in software deployment on
heterogeneous platforms?

In the literature, the majority of studies discussing heterogeneous plat-
forms referred to a combination of CPU and GPU processing units, as shown

in Figure [T.3]

CPU+GPU

CPU+GFU+FPGA

CPU+GPU+others

CPU+FPGA

FPGA+others

CPU+GPU+FPGA+others _

CPU+FPGA+others

[Unspecified] _

Figure 1.3: Distribution of primary studies according to the types of processors
being discussed.

Most primary studies (91.7%) proposed solutions to a particular problem,
rather than providing evaluations of existing approaches or opinions on a topic.
The validation in the papers mostly focused on demonstrating the applicability
of the proposed approach through a simple example or through experiments in
a case study.

More than 100 concerns were identified in the selected primary studies.
They were organized into the following categories: scheduling, software qual-
ity, software architecture, development process and hardware. Fach category
contains several sub-categories showing the complexity of the concerns.

Scheduling: refers to the means and the order in which portions of the
software are executed, in different levels of granularity. The main discussion in
this topic is about load balancing, and how challenging it is to avoid imbalance

1.4. CONTRIBUTIONS 11

in runtime. Scheduling often referred to either tasks, kernels, or complete
applications.

Software quality: refers to overall quality attributes of the software, such
as performance and maintainability. The most addressed topic is performance,
followed by portability, efficiency, maintainability and scalability.

Software architecture: includes concerns related to the management of
the architecture-level attributes of systems containing heterogeneous platforms.
The main concern in software architecture is the efficient management of data
and memory. This topic includes discussions about the means to transfer data
and the communication requirements between processors.

Development process: refers to the activities and challenges that are
relevant from the perspective of a software engineering process. The main
related concern is the efficiency in the process, including the use of different
programming models, vendor-specific tools and libraries. The complexity in de-
veloping software for heterogeneous platforms, including parallel programming,
is also a concern.

Hardware: includes technical concerns that are directly related to the
physical portion of the system. The main concerns are related to the hardware
constraints, energy consumption and the possibility of components malfunc-
tioning.

The discovered approaches were classified into general practices, design
time practices, and runtime practices. In other words, we clustered practices
that can be applied to design time, runtime, or that are applied orthogonally.
General practice approaches provide general principles, rather than focusing
on life cycle, while theoretical frameworks can be applied to both design and
runtime.

General practices: include techniques that are orthogonal to the binding
time in the software development process (design time and runtime). These
techniques can be used in either or in both stages, such as development
frameworks. Most approaches to realize software for heterogeneous platforms
are frameworks and APIs, such as CUDA and OpenCL. Further, several load
balancing techniques and scheduling algorithms are used to determine which
and when each portion of the software is executed on a given processor. In
the development process, simulation and visualization techniques are typically
used to predict the behavior of the applications.

Design time practices: refer to the set of approaches and methods per-
formed at design time, aiding in the optimization of the mapping between
software portions and hardware portions (e.g., profiling, cost functions). In
several approaches, the tasks and resources are modelled using graphs and
abstract specifications, while performance models are used to estimate the
execution time of the tasks. In terms of software architecture, the following
styles are used: layered architectures, pipelined architectures and master-slave
architectures. Some architectural principles are also used, such as: separation
of concerns, aspect-oriented architectures, standardized architectures, and the
use of dedicated communication structures.

Runtime practices: refer to mechanisms that perform changes during
runtime, such as running a giving kernel once on all available processors and
storing performance results. Several solutions implement their own scheduler
that is used at runtime for allocating taks to processors. Further, the schedule

12 CHAPTER 1. INTRODUCTION

2
®

Runtime
practices - === 15 }----- 13 !
!
Design time
practices . ° @ GD- 5 - {3} _____

APPROACHES (RQ2)

General . T T S S ¢ VLRI I &) T
practices ° 18 5 @'
T H

CONCERNS (RQ1): Schedulng SW Quality Architecture DE:?{')“CZ";:’“ Harware Evaluaon Simulation

Programming
framework /
algorithm / ool

Load balancing /
Resource mgmt.

Domain-specific ---{ 18 }------[16 J-=----{ 14 Foeee--- 9;) 2).......... D_ __________________

application

Scheduling I PP T () T :) () DU - S RN,
ﬁ techniques 12) }
[=] v
=} f
=
@ ;
5 :
o "
g Task mapping ---{ 17 Jeeeeeo{g }oceeaoo o {BF e 5} --------- 'D --------- 2) ------------------
Q
o
4
=
@
=
= Performance andfor
% energy model } 1@ @

SIS (@ (D @
Improve energy -----{g Jo--eeeee- .(@ @ 2} @. D __________________

consumption

Architecture A N N
for heterogeneous @ ‘D {7/’ 1 2
Address
memory issues @ """""

®
®
g

Figure 1.4: Distribution of studies according to the concerns (RQ1), approaches
discussed (RQ2) and their main purposes.

1.4. CONTRIBUTIONS 13

at runtime is estimated through profiling, which executes small portions of the
workloads and their execution times are collected. Other techniques such as
task queueing and tracking of the states of the jobs are also used.

Figure depicts the distribution of studies according to the concerns,
approaches and the main purposes of these studies. It shows a concentration
of studies discussing the following concerns: scheduling, software quality, ar-
chitecture, and slightly less the development process. They are almost equally
distributed over the approaches i.e., design time, runtime, and general practices.
Most studies discussing these concerns have as their main purpose to develop
a programming framework, algorithms, or tools for deployment optimization.
A large portion of the studies propose practices that are orthogonal to the
software deployment binding time, and can be applied either at design time
or runtime, or represent a more complete approach that includes both. On
the other hand, concerns like hardware, evaluation and simulation are not as
widely discussed, and thus represent opportunities for research. In summary, we
identified a lack of holistic approaches to developing software for heterogeneous
platforms, since most studies focused on particular concerns (e.g., scheduling
of tasks). Further, there were very few studies that presented validation or
evaluation research, which indicates a relative immaturity of the field and thus
opportunity for future research.

1.4.2 Contribution 2: An overview of the common prac-
tices and challenges when developing software for
heterogeneous platforms in industry

We conducted a multiple case study in industry in order to obtain an overview
of the common practices and challenges in industry when developing software
for heterogeneous platforms. The exploratory study included semi-structured
interviews with experts from companies in different domains. The interviews
mainly focused on concerns and approaches, as defined in the previous studies.
Contribution 2 is associated with the following research question:

RQ2: What are the challenges in industry concerning software development
for heterogeneous platforms?

The data obtained from the interviews indicated that the companies
were in different stages regarding the use of heterogeneous platforms in their
products. Thus, the experts in the companies experience scenarios with different
characteristics, with different challenges, and use different tactics to address
them. To structure the results, we condensed the challenges into a classification
that describes the different stages that the companies are in regarding the
adoption of heterogeneous platforms. The classification includes 4 stages:
Migrating, Establishing a process, Scaling up, and Refining the process. In
addition to the challenges in each stage, we collected the main goal of the
company in using heterogeneous platforms, the type of applications that are
developed, the practitioners’ take on software architecture, and (iv) the type of
toolchains that are used. The overview of the structure is shown in Figure

In the migrating stage, the challenges are mostly related to building up
hardware-specific expertise in the development teams. Depending on the type

14 CHAPTER 1. INTRODUCTION
1) Migrating 2) Establishing a process 3) Scaling up 4) Refining the process
[Trade-off analysis | [Adapt existing processes | [Trade-off analysis | [Optimize solutions |
[merease | [mcrease | [Scale solutions | [Energy efficiency |
[| [Prototypes | [Large-scale | [Type of |
[Local tests | [Local tests | [Usecloudsenvices | [Al applications |
[Based on HW manufacturers | [Based on HW manufacturers | [Based on HW manufacturers | [software architecture |
[standard solutions | [standarg solutions | | standard solutions w/ mods | [Based on HW manufacturers |
[Based on HW manufacturers | [Based on HW manufacturers | [Based on AW, | Cloud:vesed
[Standard tools | [Standard tools | [Standard tools | [Toolchain |
[Hwieamingcuve | [HW abstraction | [quality of support for sw_|
[swieamingcurve | [Developmentefiort | [quality of support for HW | [chatienges |
[Changes in the codebase | [Lack of support]

Figure 1.5: Stages of adoption of heterogeneous platforms.

of hardware that is chosen, the learning curve must be taken into account
in the trade-off analysis for adoption. When establishing a process, there
are difficulties in complying with the differences introduced by heterogeneous
platforms in the development process. For instance, it is not straightforward
to establish a process when new frameworks or deployment routines must
be adopted. In the automotive domain, there are challenges related to the
introduction of new hardware resources, such as heating, management of energy
consumption and lack of physical space. Companies in the scaling up stage
were concerned with the quality of support that is provided by manufacturers
and framework providers. When refining a process, there is a challenge in
adjusting to hardware evolution, as the product life cycles in some domains are
long. Further, there are typically high costs involved in changing the software
when new hardware is introduced.

In summary, it is clear that the adoption of heterogeneous platforms
requires additional efforts throughout the development process, particularly in
the initial phase of using heterogeneous platforms. Practitioners typically rely
on the tools and frameworks that are provided by the manufacturers, therefore
the topics previously discovered in the literature were either not discussed in
the detail or not brought up at all during this study. The concerns identified in
the literature are mostly on system level (low-level), rather than on application
level. In contrast, the challenges reported by the practitioners are on a higher
level of abstraction, such as the lack of hardware expertise and the lack of
tool support. Their focus is on the improvement of development processes,
organization issues and high-level software design.

1.4. CONTRIBUTIONS 15

1.4.3 Contribution 3: A decision framework for guiding
engineers in refactoring software for execution on
heterogeneous platforms

Based on the identified challenges in both academia and industry, we proposed
a decision framework for migrating software to heterogeneous platforms. The
study was performed based on the design science methodology, through which we
analyzed the current practices and proposed a solution based on our interactions
with experts in industry. In the context of heterogeneous platforms in industry,
we identified the need for a decision process that contains all relevant aspects
of migration. The decision process must contain steps for engineers to follow
in order to reason upon the issues that may arise and effectively prepare
the software for execution on heterogeneous platforms. Furthermore, the
application of a step-by-step decision process based on predefined steps reduces
the risks in the project connected to diverse interpretations and engineering
actions.
Contribution 3 is associated with the following research question:

RQ3: What is a relevant process for engineers to follow when migrating
software to heterogeneous platforms?

The interactions with experts resulted in initial sketches of the pro-
posed Heterogeneous Platform Migration framework (HPM-Frame), which was
evolved through their feedback. It consists of 5 stages, namely: Assessing,
Re-architecting, Developing, Deploying, and Fvaluating. Each stage includes a
number of main concerns that should be addressed and questions that should
be answered in order to obtain decision support for the migration procedure.
The stages are briefly described as follows.

Assessing. This stage mainly reasons about the feasibility of system
migrating towards heterogeneous platforms. It assesses the advantages, dis-
advantages, and the preliminary impact of migrating. The bottlenecks of the
system must be identified based on a selected set of non-functional properties
to be improved. As early as in the assessing stage, the hardware to be used
must be identified in order to adjust the subsequent steps accordingly. Then,
the possibility of redesigning the identified portion should be preliminarily as-
sessed through the identification of constraints. Further, a preliminary analysis
must be conducted in order to determine the impact on the existing software
architecture, and the consequences of such changes in the project.

Re-architecting. This stage determines the necessary changes to the soft-
ware architecture. It focuses on identifying a software/hardware configuration
that is suitable according to the predefined non-functional requirements. In
other words, it determines which portions of the software will be executed by
each processing unit. Initially, it examines the existing data flow, in order to
obtain understanding of the present structure and communication behavior.
The ultimate goal in this stage is to determine the overall architecture design
according to the necessary components, communication requirements, and
technology constraints.

Developing. The goal of this stage is to implement the solution through
code, realizing the planned changes in the architecture design. It selects
a software development process that is suitable according to the context,

16 CHAPTER 1. INTRODUCTION

including the identification of tools, frameworks and programming languages
to be adopted. Furthermore, this stage addresses the problem of refactoring of
software components. This practice consists of specifying interfaces between
components and rewriting parts of the code to enable their execution on an
accelerator.

Deploying. This stage determines the preparations that are for the
software to be executed on heterogeneous platforms. It reflects the decisions
made in the re-architecting stage in order to ensure that the communication
requirements are addressed, and the functionalities are preserved. A deployment
process is determined, including the frequency of deliveries, timing and resource
constraints, and other specific issues. Depending on the project, the need of
hardware preparations prior to deployment is also addressed in this stage.

Evaluating. The goal of this stage is to evaluate the solution and the
outcomes of the migration process. The main activity in this stage is to
ensure that the functionality provided through the migrated software has been
preserved. Additionally, the functionalities that were not subject of change must
also be tested. Finally, the outcomes of the migration process are evaluated
concerning both the expected gains in performance and the project trade-off of
undergoing migration.

An overview of HPM-Frame is shown in Table It presents the stages,
aspects, and questions that are respective to each aspect. The stages follow
the reasoning process considering the different phases of software development
for heterogeneous platforms. In practice, these phases may not necessarily
be followed sequentially as shown in the table, but rather suggest a flow that
includes revisiting and feedback loops in the process.

The proposed stages can be integrated with classical software development
processes and therefore assume a complementary role to the reasoning that
is typically performed in the development applications. Figure [I.6] shows an
example of a decision process flow following the decision framework, considering
an iterative development process. It highlights the main decision process flow
that includes the activities that are preliminary to each aspect being addressed.
The feedback loops between the different aspects are highlighted as development
iterations, through which relevant aspects that were previously analyzed are
revisited.

The evaluation of the framework consisted of the synthesis of data from
multiple sources: interviews and questionnaires with industrial experts in
the automotive and AI domain (partner companies), and a hybrid academia-
industrial environment (case study). We demonstrated the applicability of
the approach through a case study in the automotive domain, in which we
implemented an edge detector as a 2D convolution operation in two versions:
one using CPU only, and the other using a combination of CPU and GPU.

17

1.4. CONTRIBUTIONS

sooueurtogrod ur sured o) 'sa SuL10jovyal jo (11050/1500) Jo-oprl) o) sem jeyA el
/BULI070RJAI 10 1500 1) sem JeYM g0 SOW02INO SULI0}ORJOY
(A1[1qeurejurent ‘outr) uorndaxe “§-0) passre soururioped ur sured pajdadxa oY) a1 1eD ONILYNTVAL
J8utiojoejor 9)1dsop poatesard oo SOTYI[RUONOUN] oY) 9ARI] :0€D) Burysey Aypeuorjoun,y
,UOTIND9Xa 10] papasu suorjeredard o1} a1e 1eyA\ 650 uorjeredard aremprel
/syun 3uissoooad 198Ie) 91} UO snje)s WoIsAs pur viep suiaes Jo soniiqedes oy) o1e JRYA 87D
198 e se pofordop(a1) oq jsnwt syusuoduiod e 10 ‘Apjuspusdopur pasordop oq syuouodwod ue) :Lzd) v01d JuotAopde OHNIAOTIAA
;(reqruus pue ‘Ayoeden 9omosel ‘sjurerysuod Surmry) sseooxd juowAo[dop o) UI JSIX SIUTRIISUOD IPIYAN 950 Aorded
Jarqerear o JuewrAo[dep orareuAp [[im 10 ‘aseyd juewidopasp ' Ul ATUO d[qe[IRAR 9q JuaTAO[dap [[IA\ :GT0)
suriojyeld o) UoMI9q PalIdJsuRI) 9q RIRp [[IM MOH Fgd) Sum0yYejoI 5yUSIOdWOD HIEMYOG
/sueuoduiod snoeusB01919Y] A1) 10] pauyap o [[IM orjIqul Jo adA) Jeyp :€zd) T) T
/(919 “quetndojeasp aaryeradooo ‘Suryse) ‘yuawido[aasp) sse001d Juatdo[aAdp o1} 109]J® [[I4 SaSueyd ey 250 HNIJOTAAAA
/posn oq [im sedendue] Surumreigold pue syromouwryy ‘s[oo) ey 150 sso001d Juotndopadp arem)jog
joremprey ‘sogendue] Surure1so1d ‘sy1omaure) ‘S|00) SUTISIXS O} JO SUOIIRIIWI]) 818 JeyM 05D
JUOIJROTUNUITIOD PR ‘sjuauodurod ‘9Injon)s [ein09Iyore poSuryd/ Mol JO SULID) Ul 9INJI9IYIIR WAISAS MU A} o [[IM JeyM 61D USISOP AINJINNDIR [[BIDAQ)
;8309dse ssaulst pur 9[040 9JI] 0} PIJR[OI SHUSWAINDAL PUR SJUIRIISUOD B} UO SINJOSIYDIR MU oY) Jo jorduur oy st jeym 81D B
/PUWIT}-UNI R SJUSWIMbal puR $)UTRIISTOD B[} UO AIMNJINIYDIR MU d1[) Jo joedwt) ST ey L1 i . p S
Jsyun guisseooxd pue sjueuodurod aremijos usamiaq surddewr o) oq [[Im 1A\ 9T0) ONILOELIHOYV-HY
Juniojaad suorjendyuod [eryuajod o) op MO :GIDH) Surddewr oremprer] pue orem)jos
. (8)I0ye1919000 01} Aq PaIMOLXD 9q [[IM SSIYI[RUOIIOUN] PIYMN FTIT)
;sonpaadoad [euorjounj-uou Surpaesol 95urRYd o) Jo seouenbasuod 10ylo aq pnom 'Yz €10
/PPIRISIW 90UO SOIYI[RUOIIOUN O} DAJOAD PUR UTRIUIRU 0} §)S00 9]} ¢ P[om YW ZI0) stisATeue A)1qiqises) j00lo1g
;S98uet o) JO 1500 9} 9 Pom ey 110
;(uorpdediad 1osn ‘oFejurApR 19MIRW ‘JO}IRWI-01-dUI1}) S$IJaUL(SSauIsN(pajdadxa ay) are jeyp 01D
/91040 o711 pue vouruIojod s WVISAS 9} uo joeduwl oY) 9q P[NOM JRYM 60 stsAeue joeduy
/PIM)D9)TIR SUI)SIXS 9} U0 joeduit aY) 8¢ pnom jeyp 8D
;/98UeTD B[} 10] PaPasU SI UIRYD[00] dYIads-10puaa 1eyA LD HNISSASSV
/POsn 9 P[NOYS 10PUdA drempPIey JeyAM 90 UOISIOAP dIemMpPIR
,Posn 8¢ pnoys aaempiey jo ad4y yeym 60
solqezipreted aremijos Sursixa oY) s H)
jamun uissoooad Jo od4) JuoIefIp ' U0 AJJUSDYJO 010w ULI0J10d U0Ijounj pajoo[os oY) PO €0 siskreue Ayeuonoung
joouenniojrod 10910q oambal ww)sAs oty jo syred PRI 50 : : :
,W9)sAS 91} UT SDAUL[}10(dIAY) 81y T
suorjsang) syoadsy so8e)g

“MIomoure.ay MQMQOmNOM o[} JO MIIAIRA() :G'T =[],

18 CHAPTER 1. INTRODUCTION

Assessing Re-architecting Developing Deploying Evaluating

a) Functionality
analysis
+
b) Hardware identification

— a) SW and HW mapping
4

“~._ b) Overall architecture
design

c) Preliminary impact

a) SW and HW
analysis

4
b) Overall architecture
design
+

¢) Impact on the
SW architecture

Functionality
testing

| a) SW development
process Deployment
bt process
b) SW components Target HW
refactoring T

d) Feasibility analysis

Refactoring
outcomes

—* Main process flow —+ Preliminary activites * Development iterations

Figure 1.6: Decision process flow within the framework.

1.5 Publications

In this section, we list the publications appended to this thesis. The complete
version of the papers can be found in the chapters following this introduction.
They have been reformatted in order to comply with the layout of this thesis.

Paper A

Software Deployment on Heterogeneous Platforms: A Systematic
Mapping Study
H. Andrade, J. Schroder, I. Crnkovic

IEEE Transactions on Software Engineering journal (TSE)

Abstract: Context: Multiple types of processing units (e.g., CPUs,
GPUs and FPGAs) can be used jointly to achieve better performance in
computational systems. However, these units are built with fundamentally
different characteristics and demand attention especially towards software
deployment. Objective: The goal of this work is to summarize the state—of—
the—art of software deployment on heterogeneous platforms. We provide an
overview of the research area by searching for and categorizing relevant studies,
as well as discussing gaps and trends of the field. We are interested in the main
concerns (RQ1) and the approaches used (RQ2) when deploying software on
heterogeneous platforms. Method: In order to achieve our goal, we performed
a systematic mapping study, which refers to a method for reviewing literature
with basis on predefined search strategies and a multi—step selection process.
Results: We selected and analyzed 146 primary studies from multiple sources
and found that the area of research is dominated by solution proposals. The

1.5. PUBLICATIONS 19

majority of the studies discuss concerns about scheduling, the quality of the
software, and its architecture. A large number of studies focuses on the problem
of scheduling tasks and processes. We found approaches that are applied at
different binding times (i.e., design time, runtime, orthogonal). Conclusion:
The evaluation of the proposed solutions in an industrial context is missing.
Also, the proposed methods have not been evaluated in development processes.
Most of the methods address a particular concern, or a few concerns, while
there is a lack of a holistic approach.

Paper B

A Review on Software Architectures for Heterogeneous Platforms
H. Andrade, I. Crnkovic

Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC). Nara, Japan, 4-7 December, 2018

Abstract: The increasing demands for computing performance have
been a reality regardless of the requirements for smaller and more energy
efficient devices. Throughout the years, the strategy adopted by industry was
to increase the robustness of a single processor by increasing its clock frequency
and mounting more transistors so more calculations could be executed. However,
it is known that the physical limits of such processors are being reached, and
one way to fulfill such increasing computing demands has been to adopt a
strategy based on heterogeneous computing, i.e., using a heterogeneous platform
containing more than one type of processor. This way, different types of tasks
can be executed by processors that are specialized in them. Heterogeneous
computing, however, poses a number of challenges to software engineering,
especially in the architecture and deployment phases. In this paper, we conduct
an empirical study that aims at discovering the state-of-the-art in software
architecture for heterogeneous computing, with focus on deployment. We
conduct a systematic mapping study that retrieved 28 studies, which were
critically assessed to obtain an overview of the research field. We identified
gaps and trends that can be used by both researchers and practitioners as
guides to further investigate the topic.

Paper C

Software Challenges in Heterogeneous Computing: A Multiple Case
Study in Industry
H. Andrade, L. Lwakatare, I. Crnkovic, J. Bosch

Proceedings of the 45th IEEE FEuromicro Conference Series on Software
Engineering and Advanced Applications (SEAA). Kallithea-Chalkidiki, Greece,
28-30 August, 2019

20 CHAPTER 1. INTRODUCTION

Abstract: One way to improve the performance of embedded systems is
through heterogeneous platforms, i.e., using hardware containing more than
one type of processor, like CPU + GPU or CPU + FPGA. This approach has
shown improved performance, particularly in the domain of artificial intelligence,
in which computationally demanding models must be trained and executed.
However, these computational environments pose various challenges to software
engineering, since applications must be designed and developed differently
while accounting for target hardware architectures that are inherently different.
Companies interested in migrating to heterogeneous platforms must be aware
of the changes to the software development processes that are required to
accommodate such solution. In this paper, we conducted a multiple case study
that aims to discover the challenges and common practices when developing
software for heterogeneous platforms in industrial contexts. First, we organized
semi-structured interviews with companies on the automotive, automation, and
telecommunication domains. Then, we analyzed and structured the data in
order to create a classification describing the software engineering challenges
faced by companies using heterogeneous platforms. The companies involved in
this study are in different stages of maturity concerning the use of heterogeneous
platforms. Thus, the classification takes into consideration these levels to
describe the challenges accordingly.

Paper D

Principles for Re-architecting Software for Heterogeneous Platforms
H. Andrade, C. Berger, I. Crnkovic, J. Bosch

Proceedings of the 27th Asia-Pacific Software Engineering Conference
(APSEC). Singapore, 1-4 December, 2020

Abstract: The demands on software continues to increase through the
constant addition of functionalities and high expectations from users. In
particular, performance has been the focus in many projects with the goal
of fulfilling complex and hard requirements across a variety of domains. One
way to achieve satisfactory levels of performance is through heterogeneous
computing, i.e., systems that contain more than one type of processing unit,
such as CPUs, GPUs, and FPGAs. However, applications are typically designed
to be executed on CPUs, and re-architecting software for execution on such
heterogeneous hardware architectures entails several challenges that must be
addressed. In this paper, we propose a framework that supports engineers
in the process of making architectural decisions to re-architect software for
execution on heterogeneous platforms. We present several relevant aspects
that should be addressed in the process, along with suggestions on how to
create design solutions using different existing approaches. The framework was
developed based on multiple interactions with three industrial partners and
evaluated through a computer vision application in the automotive domain.

1.6. THREATS TO VALIDITY 21

Paper E

HPM-Frame: A Decision Framework for Executing Software on Het-
erogeneous Platforms
H. Andrade, O. Benderius, C. Berger, I. Crnkovic, J. Bosch

Journal of Systems and Software (JSS), 2020 [Submitted]

Abstract: Heterogeneous computing is one of the most important com-
putational solutions to meet rapidly increasing demands on system performance.
It typically allows the main flow of applications to be executed on a CPU
while the most computationally intensive tasks are assigned to one or more
accelerators, such as GPUs and FPGAs. The refactoring of systems for execu-
tion on such platforms is highly desired but also difficult to perform, mainly
due the inherent increase in software complexity. After exploration, we have
identified a current need for a systematic approach that supports engineers
in the refactoring process—from CPU-centric applications to software that
is executed on heterogeneous platforms. In this paper, we introduce a deci-
sion framework that assists engineers in the task of refactoring software to
incorporate heterogeneous platforms. It covers the software engineering life
cycle through five steps, consisting of questions to be answered in order to
successfully address aspects that are relevant for the refactoring procedure. We
evaluate the feasibility of the framework in two ways. First, we capture the
practitioner’s impressions, concerns and suggestions through a questionnaire.
Then, we conduct a case study showing the step-by-step application of the
framework using a computer vision application in the automotive domain.

1.6 Threats to Validity

In this section, we provide an overview of the threats to the validity of this work.
They are discussed using a classification introduced in |24], which distinguishes
validity between the following aspects: construct validity, internal validity,
external validity, and reliability. Detailed threats to validity to each included
paper are discussed in their respective chapters.

Construct validity addresses the extent to which operational measures
that are studied actually represent the researchers’ intentions according to
the research questions [25]. The findings in Paper A and Paper B could have
potentially been affected by this threat, since the data extraction process was
extensive and involved more than one researcher. In order to mitigate this risk,
we held weekly meetings between the researchers to align concepts, obtain a
common understanding of the topic, and create the research questions. Constant
meetings also enabled a systematic process for applying the inclusion/exclusion
criteria in the paper selection procedure. The results of each iteration were
discussed in meetings and disagreements were solved in these occasions by a
third researcher. In Paper C, the threats to construct validity include possible
diverse interpretations by the involved parties: researchers, and experts in
industry. We mitigated these threats through discussing and reviewing an

22 CHAPTER 1. INTRODUCTION

interview guide among the researchers, verifying that the interview questions
were aligned with the aim of the study. The interview guide was piloted prior to
the conduction of the interviews. Further, common terminology and concepts
were established in the beginning of each interview in order to minimize the risk
of misunderstandings. Such strategy to minimize diverse understanding among
stakeholders was also used in Paper D and Paper E, in which we structured
the questionnaire, interviews, discussions, and case studies with focus on the
proposed framework. We explicitly addressed each stage in the framework in
order to reduce the risk of mismatching in the evaluation.

Internal validity concerns the examination of the causal relations in
a study [25]. It refers to situations in which the researcher establishes a
causal relationship between two events without considering the possibility of
additional factors. In Papers A and B, there is a risk that the conclusions
about the state-of-the-art drawn from the primary studies were also affected by
papers outside the selected set. In order to minimize this risk, we conducted a
standard systematic mapping study method that includes a predefined set of
inclusion/exclusion criteria, pilot searches, and the calibration of the search
string. We reduced the risk of missing relevant studies by performing the
search in leading academia databases in the field. In Paper C, we discussed
the challenges faced by the experts in the area from their own perspective.
There could exist other external factors in industrial contexts leading to those
challenges that we were not aware of. We minimized this risk by interviewing
experts with different experience levels and from different companies. Regarding
Papers D and E, the research activities were designed with basis on the findings
from our previous studies and discussions we had with experts in the area.
There is a possibility that external factors were not considered in understanding
the context, therefore leading to misleading interpretations of the phenomena.
To minimize this risk, we structured the data and elaborated a set of steps
that were evaluated both qualitatively (via interviews and a questionnaire) and
quantitatively (via a case study) by experts in multiple companies.

External validity concerns the extent to which it is possible to generalize
the findings, and to what extent the findings are of interest to people outside
the investigated case [25]. This threat is potentially present in this thesis mainly
in Papers C, D and E. The findings in Paper C concern specific scenarios in
a limited set of companies. Generalizing such findings may be a challenge,
since the processes established in other companies might differ to a great
extent. However, we minimize this threat by standardizing the data analysis
and presenting the findings in the form of a model. In different contexts,
this model can be used as basis to understanding cases that have similar
characteristics of those investigated in this study. Regarding Papers D and
E, there is an assumption that the questions would still be valid in different
contexts. The proposal in the framework is based on the experiences shared by
the participating experts, bringing a narrow perspective of the phenomenon in
a particular context of their work. The scenarios can vary greatly in different
companies, thus generalizing the results may be a challenge. Assessing the
effects of applying the framework in such different contexts is part of future work.
We minimized this threat by including multiple practitioners with different
levels of experience in the procedures. The application of the framework was
restricted to an example in the automotive domain.

1.7. CONCLUSION 23

Reliability refers to the extent to which the data and analysis are depen-
dent on the specific researchers [25]. In this thesis, we aimed at maintaining the
reproducibility of the studies by using well-established, systematic approaches
for research. In particular in Papers A and B, we systematically reviewed the
literature, establishing inclusion/exclusion criteria beforehand, and elaborating
a review protocol. In Paper C, we elaborated an interview guide that was used
when interacting with all the companies involved in the study. In Paper C,
the questions in the questionnaire were created with focus on clarity and the
interviews allowed experts to request face-to-face clarification when needed.
The interviews were conducted based on a preproduced interview guide. In
Papers D and E, we proposed a systematic, step-by-step approach to migrating
software to heterogeneous platforms in order to reduce the possibility of diverse
interpretations. The case studies were conducted by following the steps of the
framework in the scenarios presented in the cases. All assets produced in the
conduction of the studies have been made publicly available for verification
and reproducibility.

1.7 Conclusion

Heterogeneous computing is a technology that enables higher levels of perfor-
mance in computer systems by employing hardware platforms containing more
than one type of processor. This technology allows for lower cost and energy
usage compared to homogeneous, CPU-based platforms, since different types
of data can be processed by units that are specialized in them. Heterogeneous
computing has been gaining importance lately particularly due to the high
demands of performance in, among others, artificial intelligence systems, which
include machine learning and deep learning applications. In addition to lower
execution time through software/hardware mapping, heterogeneous platforms
may also achieve lower levels of energy consumption, which are of primary
importance in domains such as embedded systems. The current state of practice
indicates that it typically is challenging to obtain expertise in the area, as
well as tools and processes that cover the entire software engineering process.
Furthermore, most applications are built initially for CPUs and then ported
manually to heterogeneous platforms, suggesting a strong need in industry for
an approach that supports engineers (developers, analysts, architects) in the
process of migrating software for execution on heterogeneous platforms.

This thesis presents the motivation, procedures, and findings of our re-
search conducted in the area of software deployment on heterogeneous platforms.
The overall goal of the thesis is to provide engineers with a decision frame-
work for migrating software for execution on heterogeneous platforms. We
investigated both academia and industrial contexts in order to provide: (i) an
overview of the state-of-the-art of software deployment on heterogeneous plat-
forms; (ii) an overview of the common challenges and practices in industry when
developing software for heterogeneous platforms, and (iii) a decision framework
that supports reasoning in the task of migrating software for execution on
heterogeneous platforms.

We provided an overview of the state-of-the-art through an extensive
systematic literature study that “mapped out” the field of research, obtaining

24 CHAPTER 1. INTRODUCTION

domain knowledge, and identifying gaps that indicated possibilities for future
investigation. Several concerns and approaches for software deployment on
heterogeneous platforms were identified and discussed. Most concerns in the
area are related to particular problems in implementing such systems, such as
the scheduling of tasks and processes, ensuring software quality, and designing a
software architecture that is most suitable. In terms of existing approaches, the
majority of proposals are directed to general practices, i.e., practices that can be
applied to either design time or runtime, or that are applied orthogonally. The
majority of the primary studies refer to solution proposals, with few evaluation
or validation studies in industrial contexts, which represents opportunity for
future research in the area. Further, the study showed that a number of existing
architectural design principles and architectural patterns can be used in the
development of software for heterogeneous platforms.

In terms of challenges and practices in industry, we found that companies
that are in different stages of adoption of heterogeneous platforms typically face
different challenges regarding to (i) actually migrating existing software; (ii)
establishing a process for developing software for such platforms; (iii) scaling up
production in software development; and (iv) refining the software engineering
process to optimize results. On several occasions, the companies mentioned
difficulties in obtaining expertise in the area, as well as the lack of existing tools
and processes that cover the complete development life cycle. Other challenges
were also mentioned, such as the difficulties in managing software complexity
and establishing continuous deployment & integration of these systems.

Given the results of the aforementioned studies, we proposed a decision
framework to guide engineers in the process of migrating software to hetero-
geneous platforms. The framework contains 5 stages that should be followed,
namely: Assessing, Re-architecting, Developing, Deploying and Evaluating. The
proposed aspects are connected to a typical software engineering process that
allows for feedback loops and re-visitation of other stages. Each stage includes
aspects that should be observed and questions that should be answered in order
to obtain reasoning in the migration process. The details were elaborated with
basis on the perspectives we obtained from both academia and industry. The
framework was presented to — and evolved with — multiple industrial partners
in the form of meetings and workshops. The relevance of the approach was
evaluated through a set of interviews and a questionnaire that was sent out in
order to obtain feedback from these experts. The applicability of the approach
was demonstrated through a case study in the automotive domain. We have ob-
served that good practice in the adoption of heterogeneous computing typically
consists of incremental engineering, including experimentation, simulation, and
continuous integration and deployment of parts of the system.

1.8 Future Work

As future work, we intend to continue investigating topics in the area of
software engineering for heterogeneous platforms by considering the following
possibilities:

Performing evaluation studies. As discovered in the mapping study, there
are very few studies evaluating existing techniques, while the vast majority of

1.8. FUTURE WORK 25

them proposes solutions to a given problem. Our main intention in the future
is to evaluate the proposed framework in an industrial scenario. The goal of
this next study is to observe how effective the use of the framework is when a
well defined software engineering process is already in place. For instance, the
focus would be on the measurable impact of the adoption of the framework
through experiments. One possibility is to organize focus groups and discuss
the modifications in the processes among different stakeholders. We intend
to observe the differences in companies with different levels of maturity in
adopting heterogeneous platforms.

Further exploring industrial settings. Especially with the popularization of
artificial intelligence techniques, heterogeneous platforms can help in improving
the performance of software systems in industry. It would be relevant to
investigate how heterogeneous platforms can be useful in the context of modern,
typically industrial software development processes, such as DevOps. Further,
one could also investigate the integration between our proposed framework with
existing well established software development frameworks for heterogeneous
platforms, such as OpenCL.

Other domains & compliance. The case studies we conducted focused
primarily on automotive systems. We intend to apply our proposed approach
in different domains in order to capture differences and similarities in the
results we obtained from such domain. The proposal then can be extended
into either an umbrella framework that is applicable to systems regardless
of their domains, or the framework could be further refined to incorporate
domain-specific characteristics. For instance, in the case of automotive systems,
the stages in framework could comply with standards that are widely used
today, such as Simulink models, ISO 26262, and/or other regulatory norms
that are currently in effect.

26

CHAPTER 1.

INTRODUCTION

	Abstract
	Acknowledgements
	List of Publications
	Personal Contribution
	Introduction
	Background
	Heterogeneous platforms
	Software deployment
	Software migration & decision process

	Research Goal & Scope
	Research Methodology
	Systematic literature reviews
	Exploratory case studies
	Design science

	Contributions
	Contribution 1: An overview of the main concerns and approaches of software deployment on heterogeneous platforms
	Contribution 2: An overview of the common practices and challenges when developing software for heterogeneous platforms in industry
	Contribution 3: A decision framework for guiding engineers in refactoring software for execution on heterogeneous platforms

	Publications
	Threats to Validity
	Conclusion
	Future Work

	Paper A
	Introduction
	Background
	Heterogeneous computing and platforms
	Software deployment

	Research methodology
	Research questions
	Conduct of search
	Screening of papers
	First iteration
	Second iteration

	Data extraction

	Study results
	The meaning of the term ``heterogeneous''
	Main purpose of the studies and research type classification
	Primary studies' meta–data

	RQ1 – The main concerns
	Scheduling
	Load balancing
	Scheduling executable units
	Utilizing hardware resources

	Software quality
	Performance
	Portability
	Efficiency
	Maintainability
	Scalability

	Software architecture
	Efficient data and memory management
	Real–time constraints

	Development process
	Efficiency in the process
	Parallel programming and complexity

	Hardware–related concerns
	Energy consumption
	Hardware constraints
	Design and maintenance
	Components malfunctioning

	Summary – Concerns (RQ1)

	RQ2 – The main approaches
	General practices
	Frameworks and APIs
	Load balancing techniques
	Scheduling algorithms
	Simulation
	Visualization

	Design time practices
	Modeling software and hardware
	Software / hardware mapping
	Other methods

	Runtime practices
	Implementing own scheduler
	Profiling
	Task queuing
	Maintaining a table with jobs' states

	Summary – Approaches (RQ2)

	Discussion
	Threats to validity
	Related work
	Conclusion and Future Work

	Appendix: Paper A
	Paper B
	Introduction
	Background
	Research Method
	Research question
	Conduction of search
	Screening of papers
	Keywording using abstracts
	Data extraction and mapping process

	Results
	Classification scheme
	Which architecture solutions enable/support deployment strategies for heterogeneous platforms?
	Architectural styles
	Architectural principles

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Appendix: Paper B
	Paper C
	Introduction
	Background & Related work
	The cases
	Company A
	Company B
	Company C
	Company D

	Research methodology
	Data collection
	Data analysis

	The challenges
	Stages of adoption of heterogeneous platforms
	`Migrating' stage
	`Establishing a process' stage
	`Scaling up' stage
	`Refining the process' stage

	Discussion
	Threats to validity
	Conclusion and Future work

	Paper D
	Introduction
	Motivation example

	Research Methodology
	Re-architecting for Heterogeneous Platforms
	Determining the impact on the software architecture
	Mapping software and hardware
	Determining the overall architecture design
	Refactoring software components

	Case study
	The case: OpenDLV platform
	Applying the approach
	Determining the impact on the software architecture
	Mapping software and hardware
	Determining the overall architecture design
	Refactoring software components

	Summary of the results

	Related Work
	Conclusions & Future Work

	Paper E
	Introduction
	Research goal
	Contribution
	Terminology
	Structure of the paper

	Motivation: Example in the automotive domain
	Research Methodology
	Case Study
	The HPM Framework
	Assessing
	Analyzing the functionality to be executed on the accelerator(s)
	Determining the hardware to be used
	Determining the impact on the overall system and stakeholders
	Determining the feasibility of the project

	Re-architecting
	Mapping software and hardware
	Determining the impact on the new architecture
	Determining the overall architecture design

	Developing
	Adopting a software development process
	Refactoring software components

	Deploying
	Determining the deployment process
	Preparing the target hardware

	Evaluating
	Ensuring that the functionality has been maintained
	Determining the outcomes of refactoring

	Framework overview

	The Framework in the Software Development Process
	Evaluation: Feedback from practitioners
	Highlights from the interaction with the experts

	Threats to validity
	Related Work
	Conclusion & Future work

	Bibliography

