
Numerical analysis of least squares and perceptron learning for
classification problems

Downloaded from: https://research.chalmers.se, 2021-08-31 12:10 UTC

Citation for the original published paper (version of record):
Beilina, L. (2020)
Numerical analysis of least squares and perceptron learning for classification problems
Open Journal of Discrete Applied Mathematics, 3(2): 30-49
http://dx.doi.org/10.30538/psrp-odam2020.0035

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/389671343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Article

Numerical analysis of least squares and perceptron
learning for classification problems

Larisa Beilina

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-42196
Gothenburg, Sweden.; larisa@chalmers.se

Received: 5 May 2020; Accepted: 1 July 2020; Published: 9 August 2020.

Abstract: This work presents study on regularized and non-regularized versions of perceptron learning and
least squares algorithms for classification problems. The Fréchet derivatives for least squares and perceptron
algorithms are derived. Different Tikhonov’s regularization techniques for choosing the regularization
parameter are discussed. Numerical experiments demonstrate performance of perceptron and least squares
algorithms to classify simulated and experimental data sets.

Keywords: Classification problem, linear classifiers, least squares algorithm, perceptron learning algorithm,
Tikhonov’s regularization.

MSC: 65F22, 68T05, 90C47.

1. Introduction

M achine learning is a field of artificial intelligence which gives computer systems the ability to “learn”
using available data. Recently machine learning algorithms become very popular for analyzing of

data and make prediction [1–4]. Linear models for classification is a part of supervised learning [1]. Supervised
learning is machine learning task of learning a function which transforms an input to an output data using
available input-output data. In supervised learning, every example is a pair consisting of an input object
(typically a vector) and a desired output value (also called the supervisory signal). A supervised learning
algorithm analyzes the training data and produces an inferred function, which can be used then for analyzing
of new examples. Supervised Machine Learning algorithms include linear and logistic regression, multi-class
classification, decision trees and support vector machines. In this work we will concentrate attention on study
the linear and logistic regression algorithms. Supervised learning problems are further divided into Regression
and Classification problems. Both problems have as goal the construction of a model which can predict the
value of the dependent attribute from the attribute variables. The difference between these two problems is
the fact that the attribute is numerical for regression and logical (belonging to class or not) for classification.

In this work are studied linear and polynomial classifiers, more precisely, the regularized versions of
least squares and perceptron learning algorithms. The WINNOW algorithm for classification is also presented
since it is used in numerical examples of Section 6 for comparison of different classification strategies. The
classification problem is formulated as a regularized minimization problem for finding optimal weights in
the model function. To formulate iterative gradient-based classification algorithms the Fréchet derivatives for
the non-regularized and regularized least squares algorithms are presented. The Fréchet derivative for the
perceptron algorithm is also rigorously derived.

Adding the regularization term in the functional leads to the optimal choice of weights such that they
make a trade-off between observed data and obtaining a minimum of this functional. Different rules are
used for choosing the regularization parameter in machine learning, and most popular are early stopping
algorithm, bagging and dropout techniques [5], genetic algorithms [6], particle swarm optimization [7,8],
racing algorithms [9] and Bayesian optimization techniques [10,11]. In this work are presented the most
popular a priori and a posteriori Tikhonov’s regularization rules for choosing the regularization parameter
in the cost functional. Finally, performance of non-regularized versions of all classification algorithms with
respect to applicability, reliability and efficiency is analyzed on simulated and experimental data sets [12,13].

Open J. Discret. Appl. Math. 2020, 3(2), 30-49; doi:10.30538/psrp-odam2020.0035 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 31

The outline of the paper is as follows. In Section 2 are briefly formulated non-regularized and regularized
classification problems. Least squares for classification are discussed in Section 3. Machine learning linear
and polynomial classifiers are presented in Section 4. Tikhonov’s methods of regularization for classification
problems are discussed in Section 5. Finally, numerical tests are presented in Section 6.

2. Classification problem

The goal of regression is to predict the value of one or more continuous target variables t = {ti}, i =

1, ..., m by knowing the values of input vector x = {xi}, i = 1, ..., m. Usually, classification algorithms are
working well for linearly separable data sets.

Definition 1. Let A and B are two data sets of points in an n-dimensional Euclidean space. Then A and
B are linearly separable if there exist n + 1 real numbers ω1, ..., ωn, l such that every point x ∈ A satisfies
∑n

i=1 ωixi > l and every point x ∈ B satisfies ∑n
i=1 ωixi < −l.

The classification problem is formulated as follows:

• Suppose that we have data points {xi}, i = 1, ..., m which are separated into two classes A and B. Assume
that these classes are linearly separable.

• Our goal is to find the decision line which will separate these two classes. This line will also predict in
which class will the new point fall.

In the non-regularized classification problem the goal is to find optimal weights ω = (ω1, ..., ωM), M is
the number of weights, in the functional

F(ω) =
1
2
‖t− y(ω)‖2 =

1
2

m

∑
i=1

(ti − yi(ω))2 (1)

with m data points. Here, t = {ti}, i = 1, ..., m, is the target function with known values, y(ω) = {yi(ω)} :=
{y(xi, ω)}, i = 1, ..., m, is the classifiers model function.

Algorithm 1 Gradient Algorithm for classification.

• Step 1. Initialization:

– Assume that every training example x = (x1, ..., xm) is described by m attributes with values xi = 0
or xi = 1.

– Label examples of the first class with t(x) = 1 and examples of the second class t(x) = 0. Assume
that all examples where t(x) = 1 are linearly separable from examples where t(x) = 0.

– Denote by y(x, ω) the classifier’s model function.
– Initialize weights ω0 = {ω0

i }, i = 1, ..., M to small random numbers. Compute the sequence of ωi
N

for all N > 0 in the following steps.
• Step 2. Compute gradient

Gk
i = −(t− y(ωk

i)) · y′ωi
(ωk

i) + γωk
i , i = 1, ..., M. (2)

• Step 3. Update the unknown parameter ω := ωk+1 using (2) as

ωk+1
i = ωk

i + ηGk
i , (3)

where η is the learning rate or step size in the gradient update which is usually taken as η = 0.5 [4].
• Step 4. For the tolerance 0 < θ < 1 chosen by the user, stop computing the functions ωk

i and set ωN
i =

ωk
i if either ‖Gi(ω

k
i)‖L2 ≤ θ, or norms ‖Gi(ω

k
i)‖L2 abruptly grow, or computed ‖ωk

i ‖L2 are stabilized.
Otherwise, set k := k + 1 and go to Step 2.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 32

To find optimal vector of weights ω = {ωi}, i = 1, ..., M in the regularized classification problem, the
regularization term is added to the functional (1):

F(ω) =
1
2
‖t− y(ω)‖2 +

1
2

γ‖ω‖2 =
1
2

m

∑
i=1

(ti − yi(ω))2 +
1
2

γ
M

∑
j=1
|ωj|2. (4)

Here, γ is the regularization parameter, ‖ω‖2 = ωTω = ω2
1 + ... + ω2

M, M is the number of weights. In
order to find the optimal weights in (1) or in (4), the following minimization problem should be solved

min
ω

F(ω). (5)

Thus, we seek for a stationary point of (1) or (4) with respect to ω such that

F′(ω)(ω̄) = 0, (6)

where F′(ω) is the Fréchet derivative acting on ω̄.
More precisely, for the functional (4) we get

F′(ω)(ω̄) =
M

∑
i=1

F′ωi
(ω)(ω̄i),

∂F
∂ωi

(ω)(ω̄i) := F′ωi
(ω)(ω̄i) = −(t− y) · y′ωi

(ω̄i) + γωi(ω̄i), i = 1, ..., M.

(7)

The Fréchet derivative of the functional (1) is obtained by taking γ = 0 in (7). To find optimal vector
of weights ω = {ωi}, i = 1, ..., M can be used the Algorithm 1 as well as least squares or machine learning
algorithms.

For computation of the learning rate η in the Algorithm 1 usually is used optimal rule which can be
derived similarly as in [14]. However, as a rule take η = 0.5 in machine learning classification algorithms [4].
Among all other regularization methods applied in machine learning [5–11], the regularization parameter γ

can be also computed using the Tikhonov’s theory for inverse and ill-posed problems by different algorithms
presented in [15–19]. Some of these algorithms are discussed in Section 5.

3. Least squares for classification

The linear regression is similar to the solution of linear least squares problem and can be used for
classification problems appearing in machine learning algorithms. We will revise solution of linear least
squares problem in terms of linear regression.

The simplest linear model for regression is

f (x, ω) = ω0 · 1 + ω1x1 + ... + ωMxM. (8)

Here, ω = {ωi}, i = 0, ..., M are weights with bias parameter ω0, {xi}, i = 1, ..., M are training examples.
Target values (known data) are {ti}, i = 1, ..., N which correspond to {xi}, i = 1, ..., M. Here, M is the number
of weights and N is the number of data points. The goal is to predict the value of t in (1) for a new value of x
in the model function (8).

The linear model (8) can be written in the form

f (x, ω) = ω0 · 1 +
M

∑
i=1

ωi ϕi(x) = ωT ϕ(x), (9)

where ϕi(x), i = 0, ..., M are known basis functions with ϕ0(x) = 1.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 33

3.1. Non-regularized least squares problem

In non-regularized linear regression or least squares problem the goal is to minimize the sum of squares

E(ω) =
1
2

N

∑
n=1

(tn − f (x, ω))2 =
1
2

N

∑
n=1

(tn −ωT ϕ(xn))
2 :=

1
2
‖t−ωT ϕ(x)‖2

2 (10)

to find optimal weights ωi, i = 0, ..., M, in the minimization problem

min
ω

E(ω) = min
ω

1
2
‖t−ωT ϕ(x)‖2

2, (11)

for points xn, n = 1, ..., N. The problem (11) is a typical least squares problem of the minimizing the squared
residuals

min
ω

1
2
‖r(ω)‖2

2 = min
ω

1
2
‖t−ωT ϕ(x)‖2

2 (12)

with the residual r(ω) = t−ωT ϕ(x). The test functions ϕ(x) form the design matrix A

A =

1 ϕ1(x1) ϕ2(x1) . . . ϕM(x1)

1 ϕ1(x2) ϕ2(x2) . . . ϕM(x2)

1 ϕ1(x3) ϕ2(x3) . . . ϕM(x3)
...

...
.

...
1 ϕ1(xN) ϕ2(xN) . . . ϕM(xN)

 , (13)

and the regression problem (or the least squares problem) is written as

min
ω

1
2
‖r(ω)‖2

2 = min
ω

1
2
‖Aω− t‖2

2, (14)

where A is of the size N×M with N > M, t is the target vector of the size N, and ω is vector of weights of the
size M.

To find minimum of the error function (10) and derive the normal equations, we look for the ω where the
gradient of the norm ‖r(ω)‖2

2 = ||Aω − t||22 = (Aω − t)T(Aω − t) vanishes, or where (‖r(ω)‖2
2)
′
ω = 0. To

derive the Fréchet derivative, we consider the difference ‖r(ω + e)‖2
2 − ‖r(ω)‖2

2 and single out the linear part
with respect to ω. More precisely, we get

0 =lim
‖e‖0

(A(ω + e)− t)T(A(ω + e)− t)− (Aω− t)T(Aω− t)
||e||2

=lim
‖e‖0

((Aω− t) + Ae)T((Aω− t) + Ae)− (Aω− t)T(Aω− t)
||e||2

=lim
‖e‖0

‖(Aω− t) + Ae‖2
2 − ‖Aω− t‖2

2
||e||2

= lim
‖e‖0

‖Aω− t‖2
2 + 2(Aω− t) · Ae + ‖Ae‖2

2 − ‖Aω− t‖2
2

||e||2

=lim
‖e‖0

2eT(AT Aω− ATt) + eT AT Ae
||e||2

Thus,

0 = lim
‖e‖0

2eT(AT Aω− ATt) + eT AT Ae
||e||2

. (15)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 34

The second term in (15) can be estimated as

lim
‖e‖0

|eT AT Ae|
||e||2

≤ lim
‖e‖0

||A||22||e||22
||e||2

= lim
‖e‖0
||A||22||e||2 → 0 (16)

Thus, the first term in (15) must also be zero, and thus,

AT Aω = ATt (17)

Equations (17) is a symmetric linear system of the M×M linear equations for M unknowns called normal
equations.

Using definition of the residual in the functional

1
2
‖r(ω)‖2

2 =
1
2
‖Aω− t‖2

2 (18)

can be computed the Hessian matrix H = AT A. If the Hessian matrix H = AT A is positive definite, then ω is
indeed a minimum.

Lemma 1. The matrix AT A is positive definite if and only if the columns of A are linearly independent, or when
rank(A) = M (full rank).

Proof. . We have that dim(A) = N ×M, and thus, dim(AT A) = M×M. Thus, ∀v ∈ RM such that v 6= 0

vT AT Av = (Av)T(Av) = ‖Av‖2
2 ≥ 0. (19)

For positive definite matrix AT A we need to show that vT AT Av > 0. Assume that vT AT Av = 0. We
observe that Av = 0 only if the linear combination ∑M

i=1 ajivi = 0. Here, aji are elements of row j in A. This will
be true only if columns of A are linearly dependent or when v = 0, but this is contradiction with assumption
vT AT Av = 0 since v 6= 0 and thus, the columns of A are linearly independent and vT AT Av > 0.

The final conclusion is that if the matrix A has a full rank (rank(A) = M) then the system (17) is of the
size M-by-M and is symmetric positive definite system of normal equations. It has the same solution ω as the
least squares problem minω ‖Aω− t‖2

2 and can be solved efficiently via Cholesky decomposition [20].

3.2. Regularized linear regression

Let now the matrix A will have entries aij = φj(xi), i = 1, ..., N; j = 1, ..., M. Recall, that functions φj(x), j =
0, ..., M are called basis functions which should be chosen and are known. Then the regularized least squares
problem takes the form

min
ω

1
2
‖r(ω)‖2

2 +
γ

2
‖ω‖2

2 = min
ω

1
2
‖Aω− t‖2

2 +
γ

2
‖ω‖2

2. (20)

To minimize the regularized squared residuals (20) we will again derive the normal equations. Similarly as
was derived the Fréchet derivative for the non-regularized regression problem (14), we look for the ω where
the gradient of 1

2 ||Aω− t||22 +
γ
2 ‖ω‖2

2 = 1
2 (Aω− t)T(Aω− t) + γ

2 ωTω vanishes. In other words, we consider
the difference (‖r(ω + e)‖2

2 +
γ
2 ‖ω + e‖2

2)− (‖r(ω)‖2
2 +

γ
2 ‖ω‖2

2), then single out the linear part with respect to
ω to obtain:

0 =
1
2

lim
‖e‖0

(A(ω + e)− t)T(A(ω + e)− t)− (Aω− t)T(Aω− t)
||e||2

+ lim
‖e‖0

γ
2 (ω + e)T(ω + e)− γ

2 ωTω

||e||2

=
1
2

lim
‖e‖0

‖(Aω− t) + Ae‖2
2 − ‖Aω− t‖2

2
||e||2

+ lim
‖e‖0

γ
2 (‖ω + e‖2

2 − ‖ω‖2
2)

‖e‖2

=
1
2

lim
‖e‖0

‖Aω− t‖2
2 + 2(Aω− t) · Ae + ‖Ae‖2

2 − ‖Aω− t‖2
2

||e||2
+

γ

2
lim
‖e‖0

‖ω‖2
2 + 2eTω + ‖e‖2

2 − ‖ω‖2
2

||e||2

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 35

=
1
2

lim
‖e‖0

2eT(AT Aω− ATt) + eT AT Ae
||e||2

+
γ

2
lim
‖e‖0

2eTω + eTe
||e||2

.

The term

lim
‖e‖0

|eT AT Ae|
||e||2

≤ lim
‖e‖0

||A||22||e||22
||e||2

= lim
‖e‖0
||A||22||e||2 → 0. (21)

Similarly, the term

lim
‖e‖0

|eTe|
||e||2

= lim
‖e‖0

||e||22
||e||2

→ 0. (22)

We finally get

0 = lim
‖e‖0

eT(AT Aω− ATt)
||e||2

+
γeTω

||e||2
.

The expression above means that the factor AT Aω− ATt+ γω must also be zero, or (AT A+ γI)ω = ATt,
where I is the identity matrix. This is a system of M linear equations for M unknowns, the normal equations
for regularized least squares.

Figure 1. Least squares for classification.

Figure 1 shows that the linear regression or least squares minimization minω ‖Aω− t‖2
2 for classification

is working fine when it is known that two classes are linearly separable. Here the linear model equation in the
problem (12) is

f (x, y, ω) = ω0 + ω1x + ω2y (23)

and the target values of the vector t = {ti}, i = 1, ..., N in (12) are

ti =

{
1 red points,
0 green points.

(24)

The elements of the design matrix (13) are given by

A =

1 x1 y1

1 x2 y2

1 x3 y3
...

...
. . .

1 xN yN

 . (25)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 36

3.3. Polynomial fitting to data in two-class model

Let us consider the least squares classification in the two-class model in the general case. Let the first class
consisting of l points with coordinates (xi, yi), i = 1, ..., l is described by it’s linear model

f1(x, c) = c1,1φ1(x) + c2,1φ2(x) + ... + cn,1φn(x). (26)

Let the second class consisting of k points with coordinates (xi, yi), i = 1, ..., k is also described by the same
linear model

f2(x, c) = c1,2φ1(x) + c2,2φ2(x) + ... + cn,2φn(x). (27)

Here, basis functions are φj(x), j = 1, ..., n. Our goal is to find the vector of parameters c = ci,1 = ci,2, i =
1, ..., n of the size n which will fit best to the data yi, i = 1, ..., m, m = k + l of both model functions, f1(xi, c), i =
1, ..., l and f2(xi, c), i = 1, ..., k with f (x, c) = [f1(xi, c), f2(xi, c)] such that the minimization problem

min
c
‖y− f (x, c)‖2

2 = min
c

m

∑
i=1

(yi − f (xi, c))2 (28)

is solved with m = k + l. If the function f (x, c) in (28) is linear then we can reformulate the minimization
problem (28) as the following least squares problem

min
c
‖Ac− y‖2

2, (29)

where the matrix A in the linear system
Ac = y

will have entries aij = φj(xi), i = 1, ..., m; j = 1, ..., n, i.e. elements of the matrix A are created by basis functions
φj(x), j = 1, ..., n. Solution of (29) can be found by the method of normal equations derived in Section 3.1:

c = (AT A)−1 ATb = A+b (30)

with pseudo-inverse matrix A+ := (AT A)−1 AT .
For creating of elements of A different basis functions can be chosen. The polynomial test functions

φj(x) = xj−1, j = 1, ..., n (31)

have been considered in the problem of fitting to a polynomial in examples presented in Figures 2. The matrix
A constructed by these basis functions is a Vandermonde matrix, and problems related to this matrix are
discussed in [20]. Linear splines (or hat functions) and bellsplines also can be used as basis functions [20].

Figures 2 present examples of polynomial fitting to data for two-class model with m = 10 using basis
functions φj(x) = xj−1, j = 1, ..., d, where d is degree of the polynomial. Using these figures we observe that
least squares fit data well and even can separate points in two different classes, although this is not always the
case. Higher degree of polynomial separates two classes better. However, since Vandermonde’s matrix can be
ill-conditioned for high degrees of polynomial, we should carefully choose appropriate polynomial to fit data.

4. Machine learning linear and polynomial classifiers

In this section we will present the basic machine learning algorithms for classification problems:
perceptron learning and WINNOW algorithms. Let us start with considering of an example: determine the
decision line for points presented in Figure 3. One example on this figure is labeled as positive class, another
one as negative. In this case, two classes are separated by the linear equation with three weights ωi, i = 1, 2, 3,
given by

ω1 + ω2x + ω3y = 0. (33)

In common case, two classes can be separated by the general equation

ω0 + ω1x1 + ω2x2 + ... + ωnxn = 0 (34)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 37

Figure 2. Least squares in polynomial fitting to data for different polynomials defined by (31).

Algorithm 2 Regularized perceptron learning for classification.

• Step 1. Initialization:

– Assume that every training example x = (x1, ..., xn) is described by n attributes.
– Label examples of the first class with c(x) = 1 and examples of the second class as c(x) = 0. Assume

that all examples of the first class where c(x) = 1 are linearly separable from examples of the second
class where c(x) = 0.

– Let us denote by h(x) the classifier’s hypothesis which will have binary values h(x) = 1 or h(x) = 0.
Initialize h(x) = 0 for examples c(x) = 1 and h(x) = 1 for examples c(x) = 0.

– Initialize weights ω0 = {ω0
i }, i = 1, ..., M to small random numbers. Compute the sequence of ωi

m

for all m > 0 in the following steps.
• Step 2. If ∑n

i=0 ωm
i xi > 0 we will say that the example belongs to the first class and h(x) = 1.

• Step 3. If ∑n
i=0 ωm

i xi < 0 we will say that the example belongs to the second class and h(x) = 0.
• Step 4. Update weights ω := ωm+1 = {ωm+1

i }, i = 1, ..., M using

ωm+1
i = ωm

i + η · ([c(x)− h(x)] · xi + γ ·ωm
i), (32)

where η is the learning rate usually taken as η = 0.5 [4].
• Step 5. If c(x) = h(x) for all learning examples - stop. Otherwise set m := m + 1 and return to step 2.

which also can be written as

ωTx =
n

∑
i=0

ωixi = 0 (35)

with x0 = 1. If n = 2 then the above equation defines a line, if n = 3 - plane, if n > 3 - hyperplane. The
problem is to determine weights ωi and the task of machine learning is to determine their appropriate values.
Weights ωi, i = 1, ..., n determine the angle of the hyperplane, ω0 is called bias and determines the offset, or
the hyperplanes distance from the origin of the system of coordinates.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 38

Figure 3. Decision lines computed by the perceptron learning algorithm for separation of two classes using Iris
dataset [12].

4.1. Perceptron learning for classification

The main idea of perceptron is binary classification. The perceptron computes a sum of weighted inputs

h(x, ω) = ωTx =
n

∑
i=0

ωixi (36)

and uses the binary classification
y(x, ω) = sign(h(x, ω)). (37)

When weights are computed, the linear classification boundary is defined by

h(x, ω) = ωTx = 0.

Thus, the perceptron algorithm determines weights in (36) via binary classification (37).
Binary classifier y(x, ω) in (37) decides whether or not an input x belongs to some specific class:

y(x, ω) =

{
1, if ∑n

i=1 ωixi + ω0 > 0,
0, otherwise,

(38)

where ω0 is the bias. The bias does not depend on the input value x and shifts the decision boundary. If the
learning sets are not linearly separated the perceptron learning algorithm does not terminate and will never
converge and classify data properly, see Figure 7-a).

The algorithm which determines weights in (36) via binary classification (37) can be reasoned by
minimization of the regularized residual

F(ω) = ‖r(x, ω)‖2
2 = ‖(t− y(x, ω))ξδ(x)‖2

2 +
1
2

γ‖w‖2
2, (39)

where ξδ(x) for a small δ is a data compatibility function to avoid discontinuities which can be defined
similarly with [21] and γ is the regularization parameter. Taking γ = 0 algorithm will minimize the
non-regularized residual (39). Alternative, it can be minimized the residual

r(x, ω) = −tTy(x, ω) = − ∑
i∈M

tiyi = − ∑
i∈M

ti sign(h(xi, ω)) (40)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 39

over the set M ⊂ {1, ..., m} of the currently miss-classified patterns which is simplified for the case of the
perceptron algorithm to the minimization of the following residual

r(x, ω) = −tTh(x, ω) = − ∑
i∈M

tihi = − ∑
i∈M

ti sign(h(xi, ω)) =
m

∑
i=1
| − tihi|+ (41)

with
| − tihi|+ = max(0,−tihi), i = 1, ..., m.

The Algorithm 2 presents the regularized perceptron learning algorithm where in update of weights (32)
was used the following regularized functional

F(ω) =
1
2
‖(t− y(x, ω))ξδ(x)‖2

2 +
1
2

γ‖w‖2
2 =

1
2

m

∑
i=1

((ti − yi(x, ω))ξδ(x))2 +
1
2

γ
n

∑
i=1

w2
i . (42)

Here, γ is the regularization parameter, t is the target function, or class c in the algorithm 2, which takes values
0 or 1.

To find optimal weights in (42) we need to solve the minimization problem in the form (5)

F′(ω)(ω̄) = 0, (43)

where F′(ω) is a Frechet derivative acting on ω̄. To derive F′(ω) for (39) we seek the ω where the gradient of
1
2 ||r(x, ω)||22 +

γ
2 ‖ω‖2

2 vanishes. In other words, we consider for (39) the difference (‖r(x, ω + e)‖2
2 +

γ
2 ‖ω +

e‖2
2)− (‖r(x, ω)‖2

2 +
γ
2 ‖ω‖2

2), then single out the linear part with respect to ω to obtain:

0 =
1
2

lim
‖e‖0

‖(t− y(x, ω + e))ξδ(x)‖2
2 +

γ
2 ‖ω + e‖2

2 − ‖(t− y(x, ω))ξδ(x)‖2
2 −

γ
2 ‖ω‖2

2
||e||2

=
1
2

lim
‖e‖0

‖(t−∑n
i=0 ωixi −∑n

i=0 eixi)ξδ(x)‖2
2 − ‖(t− y(x, ω))ξδ(x)‖2

2
||e||2

+ lim
‖e‖0

γ
2 (ω + e)T(ω + e)− γ

2 ωTω

||e||2

=
1
2

lim
‖e‖0

‖(t− y(x, ω)− eTx)ξδ(x)‖2
2 − ‖(t− y(x, ω))ξδ(x)‖2

2
||e||2

+ lim
‖e‖0

γ
2 (ω + e)T(ω + e)− γ

2 ωTω

||e||2

=
1
2

lim
‖e‖0

‖(t− y(x, ω)) ξδ(x)‖2
2 − 2(t− y(x, ω)) · eTx ξδ(x) + ‖eTx ξδ(x)‖2

2
||e||2

−1
2

lim
‖e‖0

‖(t− y(x, ω)) ξδ(x)‖2
2

||e||2
+ lim
‖e‖0

γ
2 (ω + e)T(ω + e)− γ

2 ωTω

||e||2

=
1
2

lim
‖e‖0

−2(t− y(x, ω)) · eTx ξδ(x) + ‖eTx ξδ(x)‖2
2

||e||2
+

γ

2
lim
‖e‖0

2eTω + eTe
||e||2

.

The second part in the last term of the above expression is estimated as in (22). The second part in the first
term is estimated as

lim
‖e‖0

|(eTx ξδ(x))T eTx ξδ(x)|
||e||2

= lim
‖e‖0

|(xTe ξδ(x))T xTe ξδ(x)|
||e||2

≤ lim
‖e‖0

||x ξδ(x)||22||e||22
||e||2

= lim
‖e‖0
||x ξδ(x)||22||e||2 → 0.

(44)

We finally get

0 = lim
‖e‖0
− xTe(t− y(x, ω)) ξδ(x)

||e||2
+

γeTω

||e||2
.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 40

The expression above means that the factor −xT(t− y(x, ω)) ξδ(x) + γω must also be zero, or

F′(ω)(ω̄) =
n

∑
i=1

F′ωi
(ω)(ω̄i),

F′ωi
(ω)(ω̄i) = −(t− y) · ξδ(x) · y′ωi

(ω̄i) + γωi = −(t− y) · xi · ξδ(xi) + γωi, i = 1, ..., n.

(45)

The non-regularized version of the perceptron Algorithm 2 is obtained taking γ = 0 in (45).

4.2. Polynomial of the second order

Coefficients of polynomials of the second order can be obtained by the same technique as coefficients for
linear classifiers. The second order polynomial function is:

ω0 + ω1 x1︸︷︷︸
z1

+ω2 x2︸︷︷︸
z2

+ω3 x2
1︸︷︷︸

z3

+ω4 x1x2︸︷︷︸
z4

+ω5 x2
2︸︷︷︸

z5

= 0. (46)

This polynomial can be converted to the linear classifier if we introduce notations:

z1 = x1, z2 = x2, z3 = x2
1, z4 = x1x2, z5 = x2

2.

Then equation (46) can be written in new variables as

ω0 + ω1z1 + ω2z2 + ω3z3 + ω4z4 + ω5z5 = 0 (47)

which is already the linear function. Thus, the Perceptron learning Algorithm 2 can be used to determine
weights ω0, ..., ω5 in (47).

Suppose that weights ω0, ..., ω5 in (47) are computed. To present the decision line one need to solve the
following quadratic equation for x2:

ω0 + ω1x1 + ω2x2 + ω3x2
1 + ω4x1x2 + ω5x2

2 = 0 (48)

with known weights ω0, ..., ω5 and known x1 which can be rewritten as

ω5︸︷︷︸
a

x2
2 + x2 (ω2 + ω4x1)︸ ︷︷ ︸

b

+ω0 + ω1x1 + ω3x2
1︸ ︷︷ ︸

c

= 0, (49)

or in the form
ax2

2 + bx2 + c = 0 (50)

with known coefficients a = ω5, b = ω2 + ω4x1, c = ω0 + ω1x1 + ω3x2
1. Solutions of (50) will be

x2 =
−b±

√
D

2a
,

D = b2 − 4ac.
(51)

Thus, to present the decision line for polynomial of the second order, first should be computed weights
ω0, ..., ω5, and then the quadratic equation (49) should be solved the solutions of which are given by (51).
Depending on the classification problem and set of admissible parameters for classes, one can then decide
which one classification line should be presented, see examples in section 6.

4.3. WINNOW learning algorithm

To be able compare perceptron with other machine learning algorithms, we present here one more
learning algorithm which is very close to the perceptron and called WINNOW. Here is described the simplest
version of this algorithm without regularization. The regularized version of WINNOW is analyzed in [22].
Perceptron learning algorithm uses additive rule in the updating weights, while WINNOW algorithm uses
multiplicative rule: weights are multiplied in this rule. The WINNOW algorithm Algorithm 3 is written for

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 41

Figure 4. Perceptron learning algorithm for separation of two classes by polynomials of the second order.

Algorithm 3 WINNOW for classification

• Step 1. Initialization:

– Assume that every training example x = (x1, ..., xn) is described by n attributes.
– Label examples of the first class with c(x) = 1 and examples of the second class as c(x) = 0. Assume

that all examples of the first class where c(x) = 1 are linearly separable from examples of the second
class where c(x) = 0.

– Initialize the classifier’s hypothesis h(x) = 0 for examples c(x) = 1 and h(x) = 1 for examples
c(x) = 0.

– Choose parameter α > 1, usually α = 2.
– Initialize weights ω0 = {ω0

i }, i = 1, ..., M to small random numbers. Compute the sequence of ωi
m

for all m > 0 in the following steps.

• Step 2. If ∑n
i=0 ωm

i xi > 0 we will say that the example is positive and h(x) = 1.
• Step 3. If ∑n

i=0 ωm
i xi < 0 we will say the the example is negative and h(x) = 0.

• Step 4. Update weights ω := ωm+1 = {ωm+1
i }, i = 1, ..., M using the formula

ωm+1
i = ωm

i · α(c(x)−h(x))·xi .

• Step 5. If c(x) = h(x) for all learning examples - stop. Otherwise set m := m + 1 return to step 2.

c = t and y = h in (45). We will again assume that all examples where c(x) = 1 are linearly separable from
examples where c(x) = 0.

5. Methods of Tikhonov’s regularization for classification problems

To solve the regularized classification problem the regularization parameter γ can be chosen by the
same methods which are used for the solution of ill-posed problems. For different Tikhonov’s regularization
strategies we refer to [15–19,23]. In this section we will present main methods of Tikhonov’s regularization
which follows ideas of [15–17,19,23].

Definition 2. Let B1 and B2 be two Banach spaces and G ⊂ B1 be a set. Let y : G B2 be one-to-one. Consider
the equation

y(ω) = t, (52)

where t is the target function and y(ω) is the model function in the classification problem. Let t∗ be the
noiseless target function in equation (52) and ω∗ be the ideal noiseless weights corresponding to t∗, y(ω∗) = t∗.
For every δ ∈ (0, δ0) , δ0 ∈ (0, 1) denote

Kδ(t∗) =
{

z ∈ B2 : ‖z− t∗‖B2
≤ δ

}
.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 42

Let γ > 0 be a parameter and Rγ : Kδ0(t
∗) G be a continuous operator depending on the parameter γ.

The operator Rγ is called the regularization operator for (52) if there exists a function γ0 (δ) defined for δ ∈ (0, δ0)

such that
lim
δ0

∥∥∥Rγ0(δ) (tδ)−ω∗
∥∥∥

B1
= 0.

The parameter γ is called the regularization parameter and the procedure of constructing the approximate
solution ωγ(δ) = Rγ(δ)(tδ) is called the regularization procedure, or simply regularization.

One can use different regularization procedures for the same classification problem. The regularization
parameter γ can be even the vector of regularization parameters depending on number of iterations in the
used classification method, the tolerance chosen by the user, number of classes, etc..

For two Banach spaces B1 and B2 let Q be another space, Q ⊂ B1 as a set and Q = B1. In addition, we
assume that Q is compactly embedded in B1. Let G ⊂ B1 be the closure of an open set. Consider a continuous
one-to-one function y : G B2. Our goal is to solve

y(ω) = t, ω ∈ G. (53)

Let
y(ω∗) = t∗, ‖t− t∗‖B2

< δ. (54)

To find an approximate solution of equation (53), we construct the Tikhonov regularization functional
Jγ(ω),

Jγ(ω) =
1
2
‖y(ω)− t‖2

B2
+

γ

2
‖ω‖2

B1
:= ϕ(ω) +

γ

2
ψ(ω), (55)

Jγ : G R,

where γ = γ(δ) > 0 is a small regularization parameter.
The regularization term γ

2 ψ(ω) encodes a priori available information about the unknown solution such
that sparsity, smoothness, monotonicity, etc... Regularization term γ

2 ψ(ω) can be chosen in different norms,
for example:

• γ
2 ψ(ω) = γ

2 ‖ω‖
p
Lp , 1 ≤ p ≤ 2.

• γ
2 ψ(ω) = γ

2 ‖ω‖TV , TV means “total variation”.
• γ

2 ψ(ω) = γ
2 ‖ω‖BV , BV means “bounded variation”, a real-valued function whose TV is bounded (finite).

• γ
2 ψ(ω) = γ

2 ‖ω‖2
H1 .

• γ
2 ψ(ω) = γ

2 (‖ω‖L1 + ‖ω‖2
L2).

We consider the following Tikhonov functional for regularized classification problem

Jγ(ω) =
1
2
‖y(ω)− t‖2

L2
+

γ

2
‖ω−ω0‖2

L2
:= ϕ(ω) +

γ

2
ψ(ω), (56)

where terms ϕ(ω), ψ(ω) are considered in L2 norm which is the classical Banach space. In (56) ω0 is a good first
approximation for the exact weight function ω∗, which is called also the first guess or the first approximation.
For discussion about how the first guess in the functional (56) should be chosen we refer to [15,16,24].

In this section we will discuss following rules for choosing regularization parameter in (56):

• A-priori rule (Tikhonov’s regularization)

– For ‖t− t∗‖ ≤ δ a priori rule requires (see details in [15]):

lim
δ0

γ(δ)→ 0, lim
δ0

δ2

γ(δ)
→ 0.

• A-posteriori rules:

– Morozov’s discrepancy principle [17,19,25].
– Balancing principle [17].

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 43

A-priori rule and Morozov’s discrepancy are most popular methods for the case when there exists
estimate of the noise level δ in data t. Otherwise it is recommended to use balancing principle or other
a-posteriori rules presented in [15–19,23].

5.1. The Tikhonov’s regularization

The goal of regularization is to construct sequences {γ (δk)} ,
{

ωγ(δk)

}
in a stable way so that

lim
k∞

∥∥∥ωγ(δk)
−ω∗

∥∥∥
B1

= 0,

where a sequence {δk}∞
k=1 is such that

δk > 0, lim
k∞

δk = 0. (57)

Using (54) and (56), we obtain

Jγ (ω∗) =
1
2
‖y(ω∗)− t‖2

B2
+

γ(δ)

2
‖ω∗ −ω0‖2

Q (58)

≤ δ2

2
+

γ(δ)

2
‖ω∗ −ω0‖2

Q . (59)

Let
mγ(δk)

= inf
G

Jγ(δk)
(ω) .

By (59)

mγ(δk)
≤

δ2
k

2
+

γ (δk)

2
‖ω∗ −ω0‖2

Q .

Hence, there exists a point ωγ(δk)
∈ G such that

mγ(δk)
≤ Jγ(δk)

(
ωγ(δk)

)
≤

δ2
k

2
+

γ (δk)

2
‖ω∗ −ω0‖2

Q . (60)

Thus, by (56) and (60)

1
2

∥∥∥y(ωγ(δk)
)− t

∥∥∥2

B2
+

γ (δk)

2

∥∥∥ωγ(δk)
−ω0

∥∥∥2

Q
= Jγ

(
ωγ(δk)

)
. (61)

From (61) follows that

1
2

∥∥∥y(ωγ(δk)
)− t

∥∥∥2

B2
≤ Jγ

(
ωγ(δk)

)
, (62)

γ (δk)

2

∥∥∥ωγ(δk)
−ω0

∥∥∥2

Q
≤ Jγ

(
ωγ(δk)

)
. (63)

Using (63) and then (60) one can obtain

∥∥∥ωγ(δk)
−ω0

∥∥∥2

Q
≤ 2

γ (δk)
Jγ

(
ωγ(δk)

)
≤ 2

γ (δk)
·
[

δ2
k

2
+

γ (δk)

2
‖ω∗ −ω0‖2

Q

]
(64)

from what follows that ∥∥∥ωγ(δk)
−ω0

∥∥∥2

Q
≤

δ2
k

γ (δk)
+ ‖ω∗ −ω0‖2

Q . (65)

Suppose that

lim
k∞

γ (δk) = 0 and lim
k∞

δ2
k

γ (δk)
= 0. (66)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 44

Then (65) implies that the sequence
{

ωγ(δk)

}
⊂ G ⊆ Q is bounded in the norm of the space Q. Since Q is

compactly embedded in B1, then there exists a sub-sequence of the sequence
{

ωγ(δk)

}
which converges in the

norm of the space B1.
To ensure (66) one can choose, for example

γ (δk) = Cδ
µ
k , µ ∈ (0, 2) , C = const. > 0, δ ∈ (0, 1). (67)

Other choices of γ which satisfy conditions (66) are also possible.
In [15,20] was proposed following iterative update of the regularization parameters γk which satisfy

conditions (66):
γk =

γ0

(k + 1)p , p ∈ (0, 1], (68)

where γ0 can be computed as in (67).

5.2. Morozov’s discrepancy principle

The principle determines the regularization parameter γ = γ(δ) in (56) such that

‖y(ωγ(δ))− t‖ = cmδ, (69)

where cm ≥ 1 is a constant. Relaxed version of a discrepancy principle is:

cm,1δ ≤ ‖y(ωγ(δ))− t‖ ≤ cm,2δ, (70)

for some constants 1 ≤ cm,1 ≤ cm,2. The main feature of the principle is that the computed weight function
ωγ(δ) can’t be more accurate than the residual ‖y(ωγ(δ))− t‖.

For the Tikhonov functional

Jγ (ω) =
1
2
‖y(ω)− t‖2

2 + γ‖ω‖2
2 = ϕ(ω) + γψ(ω), (71)

the value function F(γ) : R+ → R is defined accordingly to [23] as

F(γ) = inf
ω

Jγ(ω). (72)

If there exists F′γ(γ) at γ > 0 then from (71) and (72) follows that

F(γ) = inf
ω

Jγ (ω) = ϕ′(ω)︸ ︷︷ ︸
ϕ̄(γ)

+γ ψ′(ω)︸ ︷︷ ︸
ψ̄(γ)

. (73)

Since F′γ(γ) = ψ′(ω) = ψ̄(γ) then from (73) follows

ψ̄(γ) = F′γ(γ), ϕ̄(γ) = F(γ)− γF′γ(γ). (74)

The main idea of the principle is to compute discrepancy ϕ̄(γ) using the value function F(γ) and then
approximate F(γ) via model functions. If ψ̄(γ) ∈ C(γ) then the discrepancy equation (69) can be rewritten as

ϕ̄(γ) = F(γ)− γF′γ(γ) =
δ2

2
. (75)

The goal is to solve (75) for γ. Main methods for solution of (75) are the model function approach and a
quasi-Newton method presented in details in [17].

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 45

5.3. Balancing principle

The balancing principle (or Lepskii, see [26,27]) finds γ > 0 such that following expression is fulfilled

ϕ̄(γ) = Cγψ̄(γ), (76)

where C = a0/a1 is determined by the statistical a priori knowledge from shape parameters in Gamma
distributions [17]. When γ = 1 the method is called zero crossing method, see details in [28]. In [17] for
computing γ is proposed the fixed point algorithm 4. Convergence of this algorithm is also analyzed in [17].

Algorithm 4 Fixed point algorithm

• Step 1. Start with the initial approximations γ0 and compute the sequence of γk in the following steps.
• Step 2. Compute the value function F(γk) = infω Jγk (ω) for (71) and get ωγk .
• Step 3. Update the reg. parameter γ := γk+1 as

γk+1 =
ϕ(ωγk)

ψ(ωγk)

• Step 4. For the tolerance 0 < θ < 1 chosen by the user, stop computing reg.parameters γk if computed γk
are stabilized, or |γk − γk−1| ≤ θ. Otherwise, set k := k + 1 and go to Step 2.

Figure 5. Perceptron learning (red line) and WINNOW (blue line) algorithms for separation of two classes.

6. Numerical results

In this section are presented several examples which show performance and effectiveness of least squares,
perceptron and WINNOW algorithms for classification. We note that all classification algorithms considered
here doesn’t include regularization.

6.1. Test 1

In this test the goal is to compute decision boundaries for two linearly separated classes using least
squares classification. Points in these classes are generated randomly by the linear function y = 1.2− 0.5x
on different input intervals for x. Then the random noise δ is added to the data y(x) as

yδ(x) = y(x)(1 + δα), (77)

where α ∈ (1, 1) is randomly distributed number and δ ∈ [0, 1] is the noise level. Then obtained points are
classified such that the target function for classification is defined as

ti =

{
1, yδ(x)− 1.2 + 0.5x > 0,
0, otherwise.

(78)

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 46

Figures 1 present classification performed via least squares minimization minω ‖Aω − y‖2
2 for the linear

model function (23) with target values t given by (78) and elements of the design matrix A given by (25). Using
these figures we observe that the least squares can be used successfully for classification when it is known that
classes are linearly separated.

6.2. Test 2

Here we present examples of performance of the perceptron learning algorithm for classification of
two linearly separated classes. Data for analysis in these examples are generated similarly as in the Test 1.
Figures 3 present classification of two classes in the perceptron algorithm with three weights. Figures 4 show
classification of two classes using the second order polynomial function (46) in the perceptron algorithm with
six weights. We note that the red and blue lines presented in Figures 4 are classification boundaries computed
via (51). Figures 5 present comparison of linear perceptron and WINNOW algorithms for separation of two
classes. Again, all these figures show that perceptron and WINNOW algorithms can be successfully used for
separation of linearly separated classes.

Figure 6. Classification of the computed solution for Poisson’s equation (see example 8.1.3 of [20]) on different
meshes using perceptron learning algorithm.

6.3. Test 3

This test shows performance of using the second order polynomial function (46) in the perceptron
algorithm for classification of the segmented solution. The classification problem in this example is formulated
as follows:

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 47

• Given the computed solution of the Poisson’s equation4u = f with homogeneous boundary conditions
u = 0 on the unit square, classify the discrete solution uh into two classes such that the target function
for classification is defined as (see middle figures of Figure 6):

ti =

{
1, uhi > 4 (yellow points),
0, otherwise (blue points).

(79)

• Use the second order polynomial function (46) in the perceptron algorithm to compute decision
boundaries.

Details about setup and numerical method to compute solution of Poisson’s equation are presented in
the example 8.1.3 of [20]. Figure 6 presents classification of the computed solution for Poisson’s equation on
different meshes using second order polynomial in classification algorithm. The computed solution uh of the
Poisson’s equation on different meshes is presented on the left figures of Figure 6. The middle figures show
segmentation of the obtained solution satisfying (79). The right figures of Figure 6 show results of applying the
second order polynomial function (46) in the perceptron algorithm for classification of the computed solution
uh with target function (79). We observe that in this particular example computed decision lines correctly
separate two classes even if these classes are not linearly separable.

6.4. Test 4

In this test we show performance of linear least squares together with linear and quadratic perceptron
algorithms for classification of experimental data sets: database of grey seals [13] and Iris data set [12]. Matlab
code to run these simulations is available for download from the link provided in [13].

Figure 7-a) shows classification of seal length and seal weight depending on the year. Figure 7-b) shows
classification of seal length and seal thickness depending on the seal weight. We observe that classes on
Figure 7-a) are not linearly separable and the best algorithm which separates both classes well, is the least
squares. In this example, the linear and quadratic perceptron have not classified data correctly and actually,
these algorithms have not converged and stopped when the maximal number of iterations (108) was reached.
As soon as classes become linearly separated, all algorithms show good performance and computes almost the
same separation lines, see Figure 7-b).

The same conclusion is obtained from separation of Iris data set [12]. Figures 8 show decision lines
computed by least squares, linear and quadratic perceptron algorithms. Since all classes of Iris data set are
linearly separable, all classification algorithms separate data correctly.

a) b)

Figure 7. Least squares (LS) and Perceptron learning algorithm for separation of two classes using Grey Seal
database [13].

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 48

Figure 8. Least squares (LS) and Perceptron learning algorithm in classification of Iris dataset [12].

7. Conclusion

We have presented regularized and non-regularized perceptron learning and least squares algorithms for
classification problems as well as discussed main a-priori and a-posteriori Tikhonov’s regularization rules for
choosing the regularization parameter. The Fréchet derivatives for least squares and perceptron algorithms
are also rigorously derived.

The future work can be related to computation of miss-classification rates which can be done similarly
with works [2,29], as well as to study of classification problem using regularized linear regression, perceptron
learning and WINNOW algorithms. Other classification algorithms such that regularized SVM and kernel
methods can be also analyzed. Testing of all algorithms on different benchmarks as well as extension to
multiclass case should be also investigated.

Acknowledgments: The research is supported by the Swedish Research Council grant VR 2018-03661.

Conflicts of Interest: "The author declares no conflict of interest."

Bibliography

[1] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
[2] Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining (adaptive computation and machine learning). MIT

Press.
[3] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques.

Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3-24.
[4] Kubat, M. (2017). An introduction to machine learning. Springer International Publishing AG.
[5] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[6] Tsai, J. T., Chou, J. H., & Liu, T. K. (2006). Tuning the structure and parameters of a neural network by using hybrid

Taguchi-genetic algorithm. IEEE Transactions on Neural Networks, 17(1), 69-80.
[7] Lin, S. W., Ying, K. C., Chen, S. C., & Lee, Z. J. (2008). Particle swarm optimization for parameter determination and

feature selection of support vector machines. Expert Systems with Applications, 35(4), 1817-1824.
[8] Meissner, M., Schmuker, M., & Schneider, G. (2006). Optimized Particle Swarm Optimization (OPSO) and its

application to artificial neural network training. BMC Bioinformatics, 7(1), 125.
[9] Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.). (2010). Experimental methods for the analysis of

optimization algorithms (pp. 311-336). Berlin: Springer.

Open J. Discret. Appl. Math. 2020, 3(2), 30-49 49

[10] Bergstra, J., Yamins, D., & Cox, D. D. (2013, June). Hyperopt: A python library for optimizing the hyperparameters of
machine learning algorithms. In Proceedings of the 12th Python in science conference (Vol. 13, p. 20). Citeseer.

[11] Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. In
Advances in neural information processing systems (pp. 2951-2959).

[12] Iris flower data set. Retrieved from https://en.wikipedia.org/wiki/Iris_flower_data_set
[13] Classification of grey seals: Matlab code and database. Retrieved from http://www.waves24.com/download
[14] Persson, C. (2016). Iteratively regularized finite element method for conductivity reconstruction in a waveguide (Master’s

thesis). Chalmers University of Technology.
[15] Bakushinsky, A. B., & Kokurin, M. Y. (2005). Iterative methods for approximate solution of inverse problems (Vol. 577).

Springer Science & Business Media.
[16] Beilina, L., & Klibanov, M. V. (2012). Approximate global convergence and adaptivity for coefficient inverse problems. Springer

Science & Business Media.
[17] Ito, K., & Jin, B. (2015). Inverse problems: Tikhonov theory and algorithms. Series on Applied Mathematics, World

Scientific.
[18] Kaltenbacher, B., Neubauer, A., & Scherzer, O. (2008). Iterative regularization methods for nonlinear ill-posed problems (Vol.

6). Walter de Gruyter.
[19] Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., & Yagola, A. G. (2013). Numerical methods for the solution of ill-posed

problems (Vol. 328). Springer Science & Business Media.
[20] Beilina, L., Karchevskii, E., & Karchevskii, M. (2017). Numerical linear algebra: Theory and applications. Springer.
[21] Beilina, L., Thành, N. T., Klibanov, M. V., & Malmberg, J. B. (2014). Reconstruction of shapes and refractive indices

from backscattering experimental data using the adaptivity. Inverse Problems, 30(10), 105007.
[22] Zhang, T. (2001). Regularized winnow methods. In Advances in Neural Information Processing Systems (pp. 703-709).
[23] Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. New York, 1-30.
[24] Klibanov, M. V., Bakushinsky, A. B., & Beilina, L. (2011). Why a minimizer of the Tikhonov functional is closer to the

exact solution than the first guess. Journal of Inverse and Ill-Posed Problems, 19(1), 83-105.
[25] Morozov, V. A. (1966). On the solution of functional equations by the method of regularization. In Doklady Akademii

Nauk (Vol. 167, No. 3, pp. 510-512). Russian Academy of Sciences.
[26] Lazarov, R. D., Lu, S., & Pereverzev, S. V. (2007). On the balancing principle for some problems of numerical analysis.

Numerische Mathematik, 106(4), 659-689.
[27] Mathé, P. (2006). The Lepskii principle revisited. Inverse problems, 22(3), L11-L15.
[28] Johnston, P. R., & Gulrajani, R. M. (1997). A new method for regularization parameter determination in the inverse

problem of electrocardiography. IEEE Transactions on Biomedical Engineering, 44(1), 19-39.
[29] Thomas, P. (2015, November). Perceptron learning for classification problems: Impact of cost-sensitivity and outliers

robustness. In 2015 7th International Joint Conference on Computational Intelligence (IJCCI) (Vol. 3, pp. 106-113). IEEE.

c© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

https://en.wikipedia.org/wiki/Iris_flower_data_set
http://www.waves24.com/download
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Classification problem
	Least squares for classification
	Non-regularized least squares problem
	Regularized linear regression
	Polynomial fitting to data in two-class model

	Machine learning linear and polynomial classifiers
	Perceptron learning for classification
	Polynomial of the second order
	WINNOW learning algorithm

	Methods of Tikhonov's regularization for classification problems
	The Tikhonov's regularization
	Morozov's discrepancy principle
	Balancing principle

	Numerical results
	Test 1
	Test 2
	Test 3
	Test 4

	Conclusion

