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Abstract—In 5G communication, arrays are used for both
positioning and communication. As the arrays become larger, the
far-field assumption is increasingly being violated and curvature
of the wavefront should be taken into account. In this paper, we
use a single large linear array and relative phase measurements
to perform the localization and synchronization. We explicitly
contrast near-field and far-field uplink localization performance
in the presence of a clock bias from a Fisher information
perspective and show how a simple algorithm can provide a
coarse estimate of a user’s location and clock bias.

I. INTRODUCTION

Cellular localization has largely relied on measurements of
time-difference-of-arrival in either uplink or downlink. Such
measurements can cope with the clock bias of the user, but
require multiple base stations (BSs) [1]. With 5G, where large
arrays are used to provide improved spectral efficiency, angle
measurements have become possible [2], [3]. Estimating the
angle-of-arrival (AOA) at different BSs, the user’s location is
determined by a set of bearing lines, so that localization can be
performed without any stringent synchronization requirements
[4]. When both user and base station are equipped with large
arrays, the user’s position and orientation can be inferred
[5]. Extensive studies have been performed to assess the
fundamental performance of array-based positioning [6]–[8]
(through the Cramér-Rao bound (CRB)), as well as to develop
practical algorithms [5], [9]. All these works assume far-field
propagation (plane wave assumption), where the user is far
away from the BS. With communication systems beyond 5G
targeting novel technological enablers, such as large intelligent
surfaces and extreme aperture arrays [10], the far-field prop-
agation condition may be violated, requiring us to revisit the
models, performance characterization, and algorithm design.
Such activities have now started in communication [11], [12]
and radio localization [13] and are the main topic of this paper.

Near-field localization dates back around 30 years in the
context of source localization. The early work [14] studied the
impact of an imperfectly calibrated array on near-field source
localization and a calibration method was proposed, while [15]
estimated the direction-of-arrival (DOA) of multiple sources
using the MUSIC algorithm and a maximum likelihood (ML)
approach. The latter was shown to be superior in low SNR
conditions, though comes at a significant complexity cost.
In [16], an ESPRIT-based method was proposed and the
performance was theoretically determined. In [17], a multi-

source CRB was derived for stochastic sources, highlighting
the benefits of centro-symmetric arrays. An overlapping sub-
array approach was proposed in [18] for low complexity range
and bearing estimation. In [19], time-varying sources were
studied in the narrowband regime in terms of the CRB. Range
and bearing estimation were also treated in [20], based on
sparse recovery techniques. The localization of near- and far-
field sources was proposed in [21]. A simplified CRB for near-
field positioning was derived in [22], as well as an algorithm
that directly exploits the wavefront curvature for positioning.
In contrast to the above works in the narrowband regime, [23]
considered spatial wideband signals (where signals arrive at
different antenna elements with different resolvable delays)
and derived the CRB and an ML estimator. The extension
[24] relied on an expectation-maximization method, which is
computationally less demanding than ML. Positioning using
large intelligent surface was considered in [13], which showed
that the CRB reduces quadratically in the size of the array.
Most of these works rely on second-order statistics and are
thus data-intensive.

In this paper, in contrast to the above works, we con-
sider not only the position but also the clock bias of the
transmitter to be unknown. This leads us to investigate joint
localization and synchronization in near-field. Moreover, we
do not rely on second-order statistics and instead exploit the
communication signal directly. Our main contributions are:
(i) a Fisher information analysis of uplink near-field joint
localization and synchronization with a linear array; (ii) a
simple joint localization and synchronization method using
sub-array processing.

The remained of this paper is organized as follows: we
first provide a general system model in II, followed by a
Fisher information analysis of the conventional far-field case
in Section III. Then follows our main contribution in Section
IV: the Fisher information analysis of the near-field and spatial
wideband cases. Numerical results are reported in Section V,
followed by our conclusions.

II. SYSTEM MODEL

We consider a 2D scenario with a single-antenna user
equipment (UE) with unknown location x = [x, y]T (or [d, θ]T

in polar coordinates, with d = ‖x‖ and θ = arccos(x/‖x‖))
and a small BS (e.g., indoors in close proximity to the UE)



with an N + 1-element1 linear array with element spacing
∆, with locations xn = [n∆, 0]T, n ∈ {−N/2, . . . , N/2}.
The UE has an unknown clock bias B (expressed in meters)
and sends a known OFDM signal with transmit power Pt at
a high carrier frequency fc (28 GHz or higher) and a total
bandwidth W = (K + 1)∆f , where ∆f is the subcarrier
spacing and K + 1 is the number of subcarriers. For nota-
tional convenience, but without any loss of generality, we let
k ∈ {−K/2, . . . ,K/2}. We further introduce dn = ‖x− xn‖
(so d = d0) and δn = ‖x − xn‖ − B, which allows us to
express the uplink signal observed on antenna n, subcarrier k:

yn[k] = (1)

αns[k]e−j
2π
λ ξn[k] +

L∑
l=1

αn,ls[k]e−j
2π
λ ξn,l[k] + wn[k],

where wn[k] complex zero-mean Gaussian noise with variance
N0/2 per real dimension. Taking the phase at the center
antenna (N = 0) and center subcarrier k = 0 as reference,
i.e., ξ0[0] = 0, the phase at any antenna n and any subcarrier
k is given by

ξn[k] = (dn − d0) + k
δn

(K + 1)Tsfc
, (2)

in which Ts = 1/W . The first term is the dn − d0 is the
difference in path length with respect to the center antenna,
while the second term depends on the absolute delay δn, and
grows with the subcarrier index.

Example 1. The phase −2πξn[k]/λ is shown in Fig. 2, for
∆ = λ/2, where the left figure shows the evolution of the
phase with n for various distances d0 as a function of the
antenna index n and the right figure the evolution of the phase
as a function of the subcarrier index k, for different antenna
elements. We see from Fig. 2 (left) that when d0 is small, the
phase exhibits a nonlinear behavior as a function of n, while
Fig. 2 (right) illustrates that for small d0, different antenna
elements see different absolute delays δn (note that this effect
is only visible when we have a large bandwidth W ).

The complex channel gain at antenna n is αn = ρne
jψ

with ρn = λ/(2πdn) and ψ = −2πd0/λ. Similarly, αn,l is
the complex gain of non-line-of-sight (NLOS) path l, ξn,l[k]
is a phase increasing with k due to the delay of the NLOS
path l. We will make several assumptions, in order to facilitate
compact closed-form expressions: we assume that αn is not
used directly for localization (so it is treated as a separate
unknown) [5], [25]; |αn| � |αn,l|,∀l so that the line-of-sight
(LOS) path is dominant [11], [17], [19], [23] (the robustness
of the proposed method to multipath will be evaluated in
Section V-B); the transmitted signal spectrum is symmetric
(|s[k]| = |s[−k]|). Our goal is to determine x and B from
the observation Y ∈ C(N+1)×(K+1), though the proposed
methods can be combined with tracking as in [25] to account
for user mobility and clock drift [26].

1The analysis can easily be modified for an array with N elements, with
locations xn = [∆/2 + n∆, 0]T, for n = −N/2, . . . , N/2 − 1.
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Fig. 1. Scenario with a transmitting source and a receiver array. In near-
field, the phase across the antenna elements changes nonlinearly. In spatial
wide-band, the delay across the antenna elements changes noticeably.
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Fig. 2. Left: Plot of the signal phase −2πξn[k]/λ as a function of the
antenna index n for different distances d between transmitter and the phase
reference of the receiver. Right: Plot of the signal phase −2πξn[k]/λ as a
function of the subcarrier index k for different antenna indices, for d = 0.1 m.
Parameters: K = 257, N = 129, fc = 28 GHz, W = 1.4 GHz, ∆ = λ/2.

Terminology: We distinguish the following operating con-
ditions.
• Far-field vs near-field: When ‖x‖ > 2(N∆)2/λ, the far-

field regime with plane wave assumption holds. When
0.62

√
(N∆)3/λ < ‖x‖ < 2(N∆)2/λ, we operate in

the radiative near-field zone, where wavefront curvature
is non-negligible [21].

• Narrowband vs wideband: When W < c/(N∆), the
signals at the different antennas are not resolvable in the
delay domain and communication is narrowband. When
W > c/(N∆), we consider the signals to be spatially
wideband in the sense that they are resolvable in the delay
domain at different antennas [23].

• Beam squint: When W > fc/10, the wavelength of
the signal varies significantly over its bandwidth, leading
to beam squint. Generally, beam squint implies spatial
wideband operation, but not vice versa.

Throughout this paper, we assume that the bandwidth is
sufficiently small to ignore beam squint (i.e., W � fc).

III. STANDARD FAR-FIELD AND NARROWBAND
CONDITION

A. Model and Fisher Information Matrix

In far-field and narrowband condition, the standard model
reverts to [5], [15]

yn[k] = α0s[k]e−j
2π
λ ξn[k] + wn[k], (3)



where
ξn[k] = −n∆ cos θ − k(d−B)rf , (4)

with rf = ∆f/fc. This model is derived by taking a first-
order Taylor series expansion of dn − d0 around n∆/d0 = 0
[15] in combination with δn ≈ δ0 and αn ≈ α0. The Fisher
information matrix (FIM) of η = [ρ, ψ, d, θ,B]T is composed
of the sum of the FIM for each subcarrier and each antenna
JS(η) =

∑N/2
n=−N/2

∑K/2
k=−K/2 Jn[k] where [27]

Jn[k] = (5)
1

N0
|s[k]|2<

{
∇H

η(α0e
−j 2π

λ ξn[k])∇η(α0e
−j 2π

λ ξn[k])
}

in which the derivatives are given by

∇T
η(α0e

−j 2π
λ ξn[k]) = e−j

2π
λ ξn[k]


ejψ

jα0

−j 2π
λ α0

∂ξn[k]
∂d

−j 2π
λ α0

∂ξn[k]
∂θ

−j 2π
λ α0

∂ξn[k]
∂B

 , (6)

where ∂ξn[k]/∂d = −krf , ∂ξn[k]/∂θ = n∆ sin θ,
∂ξn[k]/∂B = krf . We find that, since <{j} = 0, J1,i6=1 = 0
(here Ji,i′ refers the entry in J(η) on row i, column i′).
Hence, we can ignore ρ when determining the FIM of η =
[ψ, d, θ, B]T. We introduce ei as an all-zero vector with a 1 on
index i, b = [0, 1, 0,−1]T, and γ = |α0|2(2π/λ)2/N0. Then

JS(η) = γJS
1 + γJS

2 + γJS
3, (7)

where

JS
1 =

(
λ

2π

)2

EK,0EN,0e1e
T
1 (8)

JS
2 = EK,2EN,0r

2
fbb

T (9)

JS
3 = EK,0EN,2∆2 sin2 θ e3e

T
3, (10)

in which EK,i =
∑K/2
k=−K/2 k

i|s[k]|2 and EN,i =∑N/2
n=−N/2 n

i. The directions in which we obtain information
are radially (along the line from the center of the BS array to
the UE) and tangentially (orthogonal to the line between BS
array center and UE). Transformation to the position domain
is achieved as follows. With x = d cos θ and y = d sin θ,
the FIM of J(x, B) is given by J(ψ,x, B) = TTJ(η)T with
Jacobian given by

T =


1 0 0 0
0 x/d y/d 0
0 −y/d2 x/d2 0
0 0 0 1

 . (11)

Since ψ does not depend on the other parameters,

J(x, B) = (12)

γEK,2EN,0r
2
fexe

T
x + γEK,0EN,2∆2y2 1

‖x‖4
ex,⊥e

T
x,⊥.

where ex = [x/d, y/d, 1]
T and ex,⊥ = [−y/d, x/d, 0]

T
.

Since ex is orthogonal to ex,⊥, this decomposition

shows that delay estimation provides radial information
with intensity γEK,2EN,0r

2
f and AOA estimation pro-

vides tangential information with location-dependent intensity
γEK,0EN,2∆2y2/‖x‖4. Hence, AOA information is only use-
ful for short distances. Moreover, the matrix J(x, B) is rank
2, so B and x are not jointly identifiable.

B. Localization Algorithm

We organize the observations yn[k] in a (N + 1)× (K+ 1)
matrix:

Y = α0 aN+1(cos θ)aH
K+1(δ0rf )S + W (13)

where S is a diagonal matrix containing the K + 1 pilot
symbols and aM+1(·) is a vector of length M + 1 with
entries [aM+1(β)]m = exp (j2πβm/(M + 1)) , for m =
−M/2, . . . ,M/2. Similar to [5], we exploit the sparse nature
of Y by applying a 2D-FFT

Z = FN+1YSH(SSH)−1FK+1 (14)

to the observation YSH(SSH)−1, where the impact of the pilot
symbols has been removed. This also allows multiple users
to be treated independently if there is no pilot contamination
[28]. Here, FM denotes the M×M discrete Fourier transform
matrix. Higher accuracy can be achieved by zero-padding Y
and applying larger FFT matrices. The peak of |Z| directly
provides us an estimate of cos θ and δ0rf , which can directly
be converted to the UE position in polar coordinates. As
indicated by the FIM, the parameters are not identifiable, so
we can only localize the user when the bias B is known. The
complexity of this method is of order O(NK logKN).

IV. NEAR-FIELD AND SPATIAL WIDEBAND CONDITIONS

A. Narrowband Near-field Model and FIM

When signals arriving at different antennas are not resolv-
able in delay, the model (1) applies with (2) specialized to

ξn[k] = dn + (krf − 1)d− krfB. (15)

We can now state the following result.

Theorem 1. In the case of narrowband near-field operation,
the FIM of the parameter η = [ψ, d, θ, B]T is

JN(η) = γ
A

(0)
0

EN,0
JS

1 + γ
A

(0)
0

EN,0
JS

2 + γ
A

(2)
2

EN,2
JS

3 + γJN
4 + γJN

5 ,

where A(j)
i =

∑
n (d/dn)

j+2
n−i and

JN
4 =

λ

2π
EK,0

[
0 jT

j 03×3

]

JN
5 = EK,0

 0 0T 0
0 C 0
0 0T 0


with j = [−∆

d cos θA
(1)
1 + A

(1)
0 − A

(0)
0 , A

(1)
1 ∆ sin θ, 0]T,

C1,1 = A
(0)
0 +A

(2)
0 − 2(∆

d cos θA
(2)
1 +A

(1)
0 − ∆

d cos θA
(1)
1 ) +

∆2

d2 A
(2)
2 cos2 θ, C1,2 = C2,1 = ∆ sin θA

(2)
1 − ∆ sin θA

(1)
1 ,

C2,2 = 0.



Proof. We readily find that ∂ξn[k]/∂d = (d−n∆ cos θ)/dn−
1 + krf , ∂ξn[k]/∂θ = dn∆ sin θ/dn, ∂ξn[k]/∂B = −krf .
Substituting these derivatives in (6) and then in (5), followed
by applying the Jacobian, we obtain the desired result.

We observe that the first 3 components are similar to those
in the standard case (7), up to a scaling. On the other hand, JN

4

and JN
5 are due to the near-field propagation. In particular, JN

4

couples the channel phase ψ with the UE distance d and the
AOA θ. The diagonal element C1,1 in JN

5 provides additional
information on the distance, which allows JN(η) to become
full rank. This information is due to the dependence of the
curvature on the UE location, but not on the bias.

B. Spatial Wideband Far-field Model and FIM

Under spatial wideband far-field communication, the model
(1) applies with (2) specialized to

ξn[k] = −n∆ cos θ + k(dn −B)rf . (16)

We can then state the following result.

Theorem 2. In the case of spatial wideband far-field opera-
tion, the FIM of the parameter η = [ψ, d, θ, B]T is

JW(η) = γ
A

(0)
0

EN,0
JS

1 + γJW
2 + γ

A
(2)
2

EN,2
JS

3 + γJW
4 ,

where

JW
2 = EK,2r

2
f


0 0 0 0

0 A
(2)
0 0 −A(1)

0

0 0 0 0

0 −A(1)
0 0 A

(0)
0



JW
4 = EK,2r

2
f

∆ cos θ

d


0 0 0 0

0 A
(2)
2

∆
d cos θ − 2A

(2)
1 0 A

(1)
1

0 0 0 0

0 A
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Proof. We readily find that ∂ξn[k]/∂d = krf (d −
n∆ cos θ)/dn, ∂ξn[k]/∂θ = n∆ sin θ, ∂ξn[k]/∂B = −krf .
Substituting these derivatives in (6) and then in (5), followed
by applying the Jacobian, we obtain the desired result.

We observe that the radial information in JW
2 is now

scaled and that there is an additional term JW
4 that

provides distance information with positive information
EK,2r

2
fA

(2)
2 ∆2 cos2 θ/d2, which is important for large ∆/d.

The information is larger near the end-fire (θ ≈ 0), as this is
where the delay spread is maximized. Note that the amount
of information due to large bandwidth is generally less than
the amount of information due to near-field.

C. Localization and Synchronization Algorithm

From the Fisher information analysis, we find that for small
∆ (e.g., ∆ = λ/2) the amount of information increase due to
near-field is more pronounced than due to spatial wideband.
This is also confirmed by Fig. 2, where the nonlinear curvature
of the phase across antennas (left Figure) is more significant

than the difference in slope for different antennas (right
Figure). Based on this finding, we focus on the near-field case.

Algorithm 1 Sub-array Localization and Synchronization
1: procedure LOCALIZE-NEAR-FIELD(Y)
2: Determine Ñ ∈ N≥1:

Ñ ≤
√
d̄λ/(2∆2) and Ñ � c/(W∆)

3: Partition rows of Y into blocks of size Ñ
4: for ñ = 1 : bN + 1/Ñc do
5: Denote block ñ by Yñ

6: Estimate θñ and δñ from Yñ as in Section III-B
7: end for
8: Solve for x:

x̂ = arg min
x

bN+1/Ñc∑
ñ=1

(
θ̂ñ − arccos

(
x−x̃ñ
‖x−x̃ñ‖

))2

2σ2
θ,ñ

9: Solve for B:

B̂ = arg min
B

bN+1/Ñc∑
ñ=1

(
δ̂ñ − ‖x̂− x̃ñ‖ −B)

)2

2σ2
δ,ñ

10: return x̂, B̂
11: end procedure

The observation model in near-field is no longer of the
form (13) so that a 2D-FFT will lead to multiple peaks. A
pure maximum likelihood approach can be formulated, but
leads to many local optima. Instead, we propose to extend the
method from Section III-B with a simple sub-arrays approach
as in [11], [18], without aiming for an optimal solution. We
divide the array (equivalently, the rows of YSH(SSH)−1) into
non-overlapping sub-arrays with Ñ elements.2 The value of
Ñ should be chosen to satisfy the following conditions: (i)
far-field condition: Ñ ≤

√
d̄λ/(2∆2), so that the far-field as-

sumption is valid per sub-array (here, d̄ is an expected distance
to the UE); (ii) narrowband condition: Ñ � c/(W∆), so
that paths are unresolved in the delay domain per sub-array.
With these conditions (and ensuring that Ñ ≥ 1), the method
from Section III-B can be applied to each sub-array, providing
b(N + 1)/Ñc estimates

θ̂ñ = arccos

(
x− x̃ñ
‖x− x̃ñ‖

)
+ wθ,ñ, (17)

δ̂ñ = ‖x− x̃ñ‖ −B + wδ,ñ, (18)

where wθ,ñ and wδ,ñ are measurement errors with variances
σ2
θ,ñ and σ2

δ,ñ, due to the background noise and the finite
resolution of the FFTs. From these sub-array estimates, we can
recover the UE position by intersecting the bearing lines and
then the clock bias from the delay estimates. The complete
procedure can be found in Algorithm 1. The complexity of

2Sub-array ñ corresponding to the observations at antenna (ñ− 1)Ñ + 1
through ñÑ , with array center x̃ñ = x−N/2+[∆((ñ−1)Ñ+1+Ñ/2, 0]T.
Here indexing ñ starts at 1.



the method is of order O(NK log ÑK). Note that in the
narrowband far-field regime, Ñ = N + 1, so that the method
reverts to the one from Section III-B.

V. NUMERICAL RESULTS

We consider a nominal scenario at a carrier fc of 28 GHz
(λ ≈ 1.07 cm), a bandwidth W of 100 MHz, c = 0.3 m/ns,
N0 = 4.0049 × 10−9 mW/GHz, a transmit power Pt of 1
mW (with E{|s[k]|2} = Pt/W ) and K + 1 = 257 subcarriers
with QPSK pilots. The UE has bias B = 20 m. The array has
N +1 = 129 elements spaced at λ/2, corresponding to a total
size of 69.11 cm and a far-field distance of 89 m.3

A. Fisher Information

We will evaluate the position error bound (PEB4) for several
models: the general (correct) model (1), and three approximate
models: the standard model (3), the narrowband near-field
model (15), and the spatial wideband far-field model (16),
for known and unknown clock bias B. In Fig. 3 we show
the PEB as as a function of the distance d. As expected, the
far-field model is correct for distances larger than about 8 m,
while for shorter distances the near-field models provide lower
PEB. Moreover, at short distances, the PEB of the general
model does not depend on whether we know B, while for large
distances, the PEB quickly increases when B is unknown. The
results clearly show that joint synchronization and positioning
in near-field can give good performance.

In Fig. 4, we show the PEB as a function of the inter-antenna
spacing. In this case, the PEB under the standard model does
not depend on ∆, as it is mainly limited by the estimation of
the distance. The general model leads to lower PEB for large
antenna spacing, and larger PEB for small antenna spacing
(for the case of unknown B). Note that for very large ∆,
the PEB of the general model increases due to the path loss
(antenna elements will be further away, reducing |αn|). For
both figures, we see that the main benefit for small d or
large ∆ comes from the near-field information, not the spatial
wideband information.

B. Algorithm

We now evaluate the performance of the method described
in Section IV-C, whereby the AOAs are computed using a
2DFFT with 10N points in the spatial domain and K + 1
points in the frequency domain. We vary d with random
θ ∼ U(π/4, 3π/4) and place a scatterer with radar cross
section of 10 m2 uniformly in the plane (this corresponds
to a large scattering object). This enables us to evaluate the
robustness to multipath. For comparison purposes, the method
from Section III-B is also evaluated, assuming known bias.
From Fig. 5, we observe low position RMSE for distances
below 3 m. The non-LOS (NLOS) path increases the RMSE
compared to the LOS-only case, as it causes large outliers.
Note that multipath appears as a second peak in the 2D-FFT

3Source code is available at https://tinyurl.com/y3jybhdp.
4The PEB is defined from the 4 × 4 FIM J(ψ,x, B) as√
trace[J−1(ψ,x, B)]2:3,2:3 and is expressed in m.
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Fig. 3. PEB as a function of UE distance for known and unknown clock bias
B, with ∆ = λ/2.
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Fig. 4. PEB as a function of inter-antenna spacing for known and unknown
clock bias B, with x = [1 m, 8 m]T. The legend is the same as in Fig. 3.

and can thus be recovered and separated from the LOS path.
However, which path corresponds to LOS is often harder to
determine due to the poor delay resolution (the resolution
at W = 100 MHz is only 3 m). Beyond 15 m distance,
Ñ → 1, so that the problem is no longer identifiable. The
localization performance is worse than the PEB from Fig. 3,
as the method has not been optimized for accuracy. Moreover,
the bias estimate has orders of magnitude larger error, as it is
based on low-quality range estimates. This error can be further
reduced by using larger FFTs along the frequency dimension.
The far-field method from Section III-B with known bias is
limited by the bandwidth and thus leads to worse performance
for all d.

VI. CONCLUSIONS

When large arrays are used for positioning, near-field prop-
agation must be taken into account. This presents challenges
and opportunities for the development of localization systems
beyond 5G. We have performed a Fisher information analysis
and proposed a simple joint localization and synchronization
method for this regime. Our results show that near-field
propagation can be exploited in uplink and that the Fisher
information provided from wavefront curvature is more pro-
nounced than from spatial wideband. Immediate suggestions
for future research are the inclusion of hybrid combining at
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Fig. 5. Joint localization and synchronization performance using sub-array
processing vs standard processing with LOS only and with multipath (LOS
+ NLOS). Bounds are not included, as they are loose since the algorithm is
developed for proof-of-concept, not for ultimate accuracy.

the BS, as in [11], the study of downlink localization with a
single receive antenna [29], as well as the inclusion of a more
realistic propagation model [30], accounting for coupling [31]
and electromagnetic theory, as well as jointly localizing and
synchronizing multiple mobile users [25].
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