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Abstract—In this paper we propose a belief propagation (BP)
based simultaneous localization and mapping (SLAM) approach
suitable for millimeter wave (mm-Wave) networks. This approach
leverages angle of arrival (AoA) and angle of departure (AoD)
information with respect to multiple scatterers. Considering mea-
surements from multiple base stations (BSs) and scatterers, seen
as multiple sources, we solve out the data association problem
from a centralized BP perspective, while jointly estimating the
positions of both the mobile and scatterers. Simulations show that
the proposed approach outperforms conventional distributed BS-
wise BP methods in terms of estimation accuracy.

Index Terms—SLAM, loopy belief propagation, data associa-
tion

I. INTRODUCTION

With the increasing traffic congestion in the microwave

frequency band, the interest has been burgeoning towards

exploring the yet underused large bandwidths available in

the millimeter band spanning from 30GHz to 300GHz [1].

However, at such high frequency, the transmission suffers from

high path loss, further signal attenuation caused by environ-

mental factors (e.g., rain, fog) and even more importantly,

high susceptibility to blockages [2], [3]. In order to combat

such effects, millimeter wave (mm-Wave) systems utilize a

large number of antennas to concentrate the signal power in a

particular direction with beamforming [4].

The advantages of exploiting a large bandwidth and a large

number of antennas at both transmitter and receiver however

are pertinent not only to mm-Wave communications but also

to localization [5]. These features allow for high temporal and

angular resolution, enabling accurate delay and angle (angle

of departure (AoD) and angle of arrival (AoA)) estimation.

In addition, the mm-Wave propagation channel is sparse by

nature meaning that there are only few multipath components.

Consequently, in mm-Wave system, it is possible to estimate

the delays, AoAs and AoDs of the main multipath components

[6]. Thus, one can leverage the location-dependent information

conveyed by each component to aid the localization process

[7]. Beyond, knowing the positions of the scatterers generating

these multipath contributions, in addition to localizing the user,

offers a unique opportunity to map the physical environment.

With regards to tracking the location dependent variables

of both line-of-sight (LOS) and non line of sight (NLOS)

components, the authors in [8] and [9] present an estimator,

exploiting the mm-Wave channel sparsity, relying on simul-

taneous orthogonal matching pursuit (SOMP) and support

detection (SD) algorithms. Similarly, the authors in [10] and

[11] present an algorithm for simultaneous localization and

mapping (SLAM) based on the multiple location estimates

of the user and the scatterers at different time instances. In

[12], the authors present a message passing based solution

for estimating the position and orientation of the user and

position of the scattering point in both presence and absence

of LOS components. The authors show that even in the

absence of LOS path, the position of the scatterers can be

reliably estimated. Likewise, in [13], the authors provide a

belief propagation (BP) based approach to track features in

the environment in a dynamic vehicular scenario. The authors

in [14] propose a BP based algorithm to solve the data

association problem (associating measurements to the correct

source) and present a low complexity implementation of the

corresponding solver. Common to all methods that rely on

time-based measurements is the need for tight synchronization

[12], [15]. Localization using only angular information avoids

this bottleneck. Cooperative localization using only AoA in-

formation was proposed in [16]. Similarly, in [17], the authors

investigate indoor localization with only AoA measurements.

In this paper, we present a BP based SLAM approach in

order to jointly localize the user and the scatterers relying

only on angle measurements, without a-priori knowledge of

the positions of either the user or the scatterers. In the

process, we also solve the data association problem concerned

with the measurements and their corresponding sources1. The

processing is done in a centralized way without needing to

send the measurements to each base station (BS), in contrast

1The term ”source” can refer to either the user or the scatterers.



Fig. 1. Example system model with 3 BSs positioned at x1, x2 and x3 and
1 user positioned at s0 with orientation α along with two scatterers at s1

and s2 and the AoD and AoA of the LOS paths with respect to BS1.

to more conventional distributed BP approaches [13]. One

major motivation for adopting a centralized approach in the

very context lies in its lower communication overhead. The

distributed method indeed requires sharing of particle clouds

among the different BSs, while our method just requires

sharing of raw measurements and estimates.

II. SYSTEM MODEL

Consider a 2 dimensional (2D) scenario with N BSs and

a single user as illustrated in Fig. 1. The positions of the

BSs are assumed to be known, located at x1,x2, · · · ,xN in

a common coordinate system. Likewise, the user is assumed

to be positioned at s0 with a known orientation2 α. In the

scenario, we also assume L scattering points (and hence L+1
total possible paths between a BS and the mobile user), each

with positions s1, s2, · · · , sL. Both the positions of the user

and the scatterers are unknown. Contrarily to [7] (where range

measurements are also considered), here we assume that each

BS i can measure the AoD and AoA pair of L̂i different paths3.

We also assume that L is known, there are no false alarms4,

i.e. L̂i ≤ L + 1, and the measurements can be in any order

with respect to the L+ 1 total paths.

Z(i) = [z
(i)
1 , · · · , z

(i)
l , · · · , z

(i)

L̂i

], (1)

where l ∈ {1, 2, · · · , L̂i} denotes the measurement index of i-

th BS corresponding to a set of estimates of AoD (θ̂) and

AoA (φ̂). We also assume that we have the measurement

covariance matrix (Σ
(i)
l ) corresponding to the measurements

of AoD and AoA between the i-th BS and the l-th scatterer.

2For simplicity, we consider that the orientation of the user is known.
The absolute heading can be extracted from some orientation estimators, for
instance, inertial measurement unit (IMU) and magnetometer in the mobile
phone [10].

3Note that it is not necessary that a BS has AoD and AoA measurements
corresponding to every path in the system. Hence, we use different notations
for the total number of paths (L) and the total number of paths measured by

the i-th BS (L̂i).
4This consideration excludes the possibility of any measurements not

associated with the user, N BSs and L scatterers. For the problem formulation
including the possibility of false alarm, see [14].

We consider that all the measurements z
(i)
l are independent.

Mathematically,

z
(i)
l = [θ̂

(i)
l , φ̂

(i)
l ] ∼ N

(

[θ
(i)
l , φ

(i)
l ]T ,Σ

(i)
l

)

. (2)

The measurements for all the N BSs can be grouped together

as Z = [Z(1), · · · ,Z(N)].
The main objective of this paper is to determine the po-

sitions of the user and that of all the scattering points from

angle measurements, and thus the main task is to calculate

the posterior distribution p(sk|Z), where k ∈ {0, 1, · · · , L}.

However, since the order of the measurements at each BS is

random, in the process of calculating the posterior distribution,

we also need to solve the data association problem, where we

associate each measurement with the corresponding path.

III. FACTOR GRAPH FORMULATION

A. Data Association Auxiliary Variables

For the purpose of data association, following a similar

approach to [13], we introduce the sets M = ⊗Ni=1{1, · · · , L̂i}
with its cardinality P =

∏N

i=1 L̂i, ak ∈ M and bm ∈
{0, 1, · · · , L}, ∀m ∈ M. Each element of the set M, referred

to in this paper as a measurement vector, is a vector of length

N containing all the possible permutations of measurement

indices; ak indicates which measurement vector corresponds

to the source k. Reciprocally, bm indicates which source

corresponds to a measurement vector. Both a and b can be

mapped one-to-one, meaning that the knowledge of either of

the variables is sufficient to know the other. Mathematically,

this relation is expressed as

ψ(ak, bm) =

{

0 ak = m, bm 6= k or ak 6= m, bm = k,

1 otherwise.

(3)

Contrary to [13], where the data association is performed in

a distributed way at each BS, we assume that the association

in our case is done in a centralized way and hence, unlike in

[13], the association variable a in our work is not scalar.

B. Factor Graph of Joint Distribution

Our objective is to find the marginal probability of sk while

also sorting out the data association problem. We have a

posterior distribution formulation as follows:

p(s0:L,a, b|Z) ∝ p(Z|s0:L,a, b)Ψ(a, b)

L
∏

k=0

p(sk), (4)

where, p(sk) is the prior distribution on the position of the

sources, a and b contain all the association variables ak and

bm, and ψ(a, b) can be formulated similarly to [13], [14] from

(3):

Ψ(a, b) =

L
∏

k=0

∏

m∈M

ψ(ak, bm). (5)

The measurement likelihood p(Z|s0:L,a, b) can be formulated

as:

p(Z|s0:L,a, b) =
N
∏

i=1

p(Z(i)|s0:L,a, b), (6a)



Fig. 2. Factor graph representation of the posterior distribution in equation
(4). In the graph, we have introduced short form notation fk to represent
p(sk), vk to represent v(ak, s0, sk) and mp, p = 1, · · · , P represents the
p-th element of the set M. The factor and variable nodes are represented
inside squares and circles respectively.

∝
L
∏

k=0

N
∏

i=1

p
(

z
i
[ak]i

|s0, sk
)

, (6b)

∝
L
∏

k=0

v(ak, s0, sk). (6c)

where, the expression v(ak, s0, sk) =
∏N

i=1 p
(

z
i
[ak]i

|s0, sk
)

represents the joint AoD-AoA distribution considering all the

BSs and p
(

z
i
[ak]i

|s0, sk
)

is Gaussian distributed, as per (2):

p(zi[ak]i
|s0, sk) ∝ exp

(

− ‖[θ̂
(i)
[ak]i

, φ̂
(i)
[ak]i

]− h(s0, sk)‖Σ(i)

[ak]i

)

,

(7)

where ||x||A = x
T
Ax and h(s0, sk) is a nonlinear function

transforming the location of the user s0 in the case of direct

path and both the user s0 and the scatterer sl in the case of

non-direct path to the corresponding AoD and AoA variables.

Note that from equation (6b), one does not have the

dependence on b, as the equation (6a) is conditioned on

the knowledge of both a and b and since a and b are

injective-only, knowing one is enough to recover the other.

The corresponding factor graph of the posterior distribution is

given in Fig. 2.

IV. MESSAGE PASSING VIA BP

A. BP for Marginalization

We find the marginal p(sk|Z) using the BP message passing

algorithm on the factor graph [18], starting from the root

nodes p(sk) to the leaf node5. BP proceeds by passing

messages between variables and factors defined by µv→f (v)
and µf→v(v), respectively, where v is a variable and f is a

factor. The marginal p(sk|Z) can then be found as

p(sk|Z) ∝ µsk→f (sk)× µf→sk
(sk), (8)

for any connected factor f .

5Note that the factor graph in Fig. 2 consists of loops in between the
variables a and b. In such loopy cases, BP can still be used by passing the
messages until the latter converge. Even though such convergence can not
be guaranteed, it has been shown that this kind of method often arrives at a
reasonable estimate [19].

B. Message Passing Schedule

We now show the message passing steps from the root nodes

fk through the nodes back to the leaf node fk. The root node

fk or p(sk) contains the a-priori distribution of the position

of sk. In the following, we consider the indices 1 ≤ k′ ≤ L

and 0 ≤ k ≤ L.

1© In the first step, we pass the a-priori distributions to the

corresponding position variables.

µfk→sk
(sk) = fk(sk). (9)

2© In the second step, we have no message from µvk→s0
yet,

so we initialize µvk→s0
= 1, ∀k. Hence, the messages

from sk to vk can be written as:

µs0→vk(s0) = f0(s0)
L
∏

k′ 6=k

µvk′→s0(s0) = f0(s0),

(10a)

µsk′→vk′
(sk′) = fk′(sk′). (10b)

3© Next, we compute the outgoing messages from the factor

node vk to the variable node ak.

µv0→a0
(a0) =

∫

v(a0, s0)µs0→v0(s0) ds0 (11a)

µvk′→ak′
(ak′) =

∫∫

v(ak′ , s0, sk′)µsk′→vk′
dsk′ ds0.

(11b)

From equation (6c), we can see that vk is already for-

mulated as the product of distributions over all the BSs.

Hence, in this step, the messages can be passed in a

centralized way, unlike in [13] where the factor graph

is formulated in such a way that the messages need to be

passed through each BS separately.

4© Then, we move the message forward to the data asso-

ciation loop. For notational simplicity, we represent the

factor node ψ(ak, bm) by ψk,m. We start by initializing

the messages µ
(0)
ψk,m→ak

(ak) = 1. We can then execute

multiple iterations. The message in the p-th iteration can

be written as [14]:

µ
(p)
ak→ψk,m

(ak) = µvk→ak
(ak)

∏

m′ 6=m

µ
(p−1)
ψ

m
′,k→ak

(ak),

(12a)

µ
(p)
ψk,m→bm

(bm) =
∑

ak

ψk,mµ
(p)
ak→ψk,m

(ak), (12b)

µ
(p)
bm→ψk,m

(bm) =
∏

k′ 6=k

µ
(p)
ψk′,m→bm

(bm), (12c)

µ
(p)
ψk,m→ak

(ak) =
∑

bm

ψk,mµ
(p)
bm→ψk,m

(bm). (12d)

5© After the data association loop, we have the message from

ak to vk as:

µak→vk(ak) =
∏

m

µψk,m→ak
(ak). (13)



The next step is to calculate the messages µvk→sk
(sk)

and µvk′→s0
(s0). We omit argument for space reasons:

µv0→s0
(s0) =

∑

a0

v(a0, s0)µa0→v0(a0), (14a)

µvk′→s0
(s0) =

∫

∑

ak′

vk′µak′→vk′
µsk′→vk′

dsk′ , (14b)

µvk′→sk′
(sk′) =

∫

∑

ak

vk′µak′→vk′
µs0→vkds0, (14c)

where, µs0→vk(s0) =
∫
∑

a0
v(a0, s0)µa0→v0(a0)dsk′ .

6© Finally, the posterior beliefs can be computed as:

p(s0|Z) ∝ µf0→s0
(s0)

∏

k

µvk→s0
(s0) (15a)

p(sk′ |Z) ∝ µfk′→sk′
(sk′)µvk′→sk′

(sk′). (15b)

C. Particle Implementation

As the integrals in the previous section cannot be solved

in closed form, we approximate them using Monte Carlo

integration. Thereby we represent the messages as lists of

weighted particles. We have to consider that the number of

particles are enough to provide an accurate representation of

the probability distributions and the weights are normalized

such that their sum is 1. To compute the products in (15a)–

(15b), we evaluate all messages only in the particles generated

from the priors.

D. Centralized vs Distributed Approach

For benchmark purposes, we compare our proposed method

against a distributed BS based SLAM method equivalent to

that in [13]6. For the distributed method, we introduce the

set Mi = {1, 2, · · · , L̂i}, ∀i for each i-th BS. We define

ak,i , mi ∈ Mi indicating which measurement mi corre-

sponds to the source k at the i-th BS. Similarly, we define

bmi,i , k ∈ {0, 1, · · · , L} defining which source corresponds

to the measurement mi at the i-th BS. Note that contrarily

to ak, bm and m in our proposed centralized methods, in

this distributed method, ak,i, bmi,i and mi are all scalars and

the relation between ai and bi, the vector of data association

variables, is in fact bijective. We further define

Ψ(a, b) =

N
∏

i=1

L̂i
∏

k=0

∏

mi∈Mi

ψ(ak,i, bmi,i). (16)

where,

ψ(al,i, bmi,i) =
{

0 ak,i = mi, bmi,i 6= k or ak,i 6= mi, bmi,i = k

1 otherwise.
(17)

Hence, following a formulation similar to the posterior

distribution as (4), we can build a factor graph as illustrated

in Fig. 3. We can compute the beliefs and accordingly the

marginal similarly to the the previous section.

6In the literature, it is common to consider such distributed methods
especially for the data association problem [14], [20]

Fig. 3. Factor graph with distributed BP for performance comparison.
For notational convenience, vk,i represents v(ak,i, s0, sk) and ψk1,k2

=
ψ(ak1,i, bk2,i) ∀i.

V. NUMERICAL RESULTS

In this section, we describe the simulation setup and param-

eters and then show the simulation of our proposed method. To

benchmark our result, we then compare with a model inspired

by the distributed BP approach in [13].

A. System parameters and simulation setup

We consider a scenario with N = 3 BSs, L = 2 scatterers

and a user where all the BSs can measure all three paths (i.e.

L̂i = 3, ∀i). We consider the locations of BSs are known with

x1 = [0, 0], x2 = [0, 100], x3 = [100, 100], whereas the user

and the scatters are uniformly distributed within an area of

100 m × 100 m area.

We assume that the measurement covariance matrix is a

diagonal matrix with the variance of estimating AoD σ2
θ

equal to the variance of estimating the AoA σ2
φ for all the

measurements. Similarly, while simulating the BP algorithm,

we consider Ns0 = Nsk′
= 2500 particles (50 per dimension)

to represent the distributions of the user and the scatterers.

In our simulations, we assume no prior knowledge of the

positions of either the user or the scatterers and hence, we

consider they are uniformly distributed within the deployment

area. Hence, to replicate p(s0) as particles, we can draw Ns0
sample points of s0 from the specified domain and assign the

corresponding probability as weights, in this case a constant

(and accordingly for p(sk′)).

B. Numerical results and discussion

In Figs. 4 and 5, we plot the marginal distributions of the

user and the scatterers with blue and orange scatter points, as

formulated in equations (15a) and (15b) respectively. Since,

as said earlier, we are dealing with particles rather than the

continuous distribution, the size of blue and orange circles

represents the weights associated with the corresponding par-

ticles. We also plot the true positions of the BSs, the scatterers

and the user for comparison. Between the two figures, we can

clearly see that the particle clouds in our proposed method can

separate the two scatterers and the user unlike the distributed



Fig. 4. Marginal distribution with σ2

θ
= σ2

φ
= 1 deg2 with the proposed

method. The diamonds, squares and circle represent the true positions of the
3 BSs, 2 scatterers and the user respectively.

Fig. 5. Marginal distribution with σ2

θ
= σ2

φ
= 1 deg2 with the distributed

method [13]. The diamonds, squares and circle represent the true positions of
the 3 BSs, 2 scatterers and the user respectively.

BP. The reason is that in our method, as we can deduce from

equation (6b), only the particles with non zero probabilities

according to equation (2) with respect to all the BSs are passed

on from the factor v to the variable a in the factor graph.

Hence, in this step, before the data association loop, we do

some sort of initial filtering with respect to all the BS. On the

contrary, in the distributed method, the filtering is done with

respect to only one single BS before the data association loop,

and then further filtering is done later during the collection

while passing the message from vk to sk. Filtering before

the loop reduces the propagation of any error during the data

association loop.

Following this discussion, in Fig. 6, we plot the empirical

cumulative distribution function (CDF) of the root mean

squared error (RMSE) between the true and estimated posi-

Fig. 6. CDF plot comparison of the RMSE error between the proposed
centralized and the distributed BP based methods with 1 deg2 variance.

tions of the user and scatterers. We calculate the RMSE by

taking the distance between the true and the mean particle

position. As we can see, the proposed centralized method

performs better than the distributed method especially when

it comes to estimating the position of the scatterer due to the

limited error propagation in the data association phase.

Comparing the communication overhead between the two

approaches, the main difference lies in the fact that in the

distributed method, the message between the variable node

sk and the factor node vk,i involves exchanging clouds of

particles representing the distribution of all the scatterers to

and from all the BSs. The overhead cost of such message

communication is very high. In contrast, in the proposed

centralized method, the only message exchange from the

different BSs include the raw AoD and AoA measurement

pairs to the centralized unit which is much smaller than the

previous.

Regarding the complexity analysis between the two ap-

proaches, in the distributed method, we pass O
(

NL2
)

mes-

sages, while in the proposed centralized approach O
(

LN+1
)

messages. Hence, the centralized approach has better perfor-

mance and low communication overhead, but at a higher com-

plexity cost. The distributed method exhibits less complexity,

but requires exchange of particle clouds among BSs.

VI. CONCLUSIONS

In this paper, we proposed a BP based method to solve

the problem of mm-Wave SLAM by using only angular

measurements in a system with multiple BSs and scatterers

and a user node. To reach this objective, we firstly formulated

the corresponding posterior distribution and then the factor

graph including the problem of data association. By running

the message passing algorithm in the graph, numerical results

demonstrated that even without any a-priori distribution on

the positions of the user and the scatterers, one can achieve

relatively high accuracy. In comparison with methods from

the literature where the data association problem is solved



in a distributed manner separately at different BSs, we show

that our centralized data association approach provides a better

estimation accuracy, mostly in terms of scatterers position-

ing. As a future work, we would like to consider a model

including uncertainty in the user orientation and false alarms,

which would provide an even more realistic assessment of the

problem.

ACKNOWLEDGMENT

This work was supported, in part, by the European H2020

project SECREDAS, which is funded through the specific

ECSEL Joint Undertaking research and innovation program

(GA No. 783119), and by the Swedish Research Council under

grant No. 2018-03701.

REFERENCES

[1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, 2013.

[2] F. Al-Ogaili and R. M. Shubair, “Millimeter-wave mobile communica-
tions for 5G: Challenges and opportunities,” in 2016 IEEE International

Symposium on Antennas and Propagation (APSURSI), Jun 2016, pp.
1003–1004.

[3] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of
millimeter wave communications (mmwave) for 5G: opportunities and
challenges,” Wireless Networks, vol. 21, no. 8, pp. 2657–2676, Nov.
2015. [Online]. Available: https://doi.org/10.1007/s11276-015-0942-z

[4] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan,
“MIMO for millimeter-wave wireless communications: beamforming,
spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52,
no. 12, pp. 110–121, Dec 2014.

[5] S. Bartoletti, A. Conti, D. Dardari, and A. Giorgetti, “5G
localization and context-awareness,” https://www.5gitaly.eu/wp-
content/uploads/2019/01/5G-Italy-White-eBook-5G-Localization.pdf.

[6] Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, and
H. Wymeersch, “Error bounds for uplink and downlink 3D localiza-
tion in 5G millimeter wave systems,” IEEE Transactions on Wireless

Communications, vol. 17, no. 8, pp. 4939–4954, Aug 2018.

[7] R. Mendrzik, H. Wymeersch, G. Bauch, and Z. Abu-Shaban, “Harness-
ing NLOS components for position and orientation estimation in 5G
millimeter wave mimo,” IEEE Transactions on Wireless Communica-

tions, vol. 18, no. 1, pp. 93–107, Jan 2019.

[8] A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and
H. Wymeersch, “Position and orientation estimation through millimeter-
wave MIMO in 5G systems,” IEEE Transactions on Wireless Commu-

nications, vol. 17, no. 3, pp. 1822–1835, Mar 2018.

[9] A. Shahmansoori, B. Uguen, G. Destino, G. Seco-Granados, and
H. Wymeersch, “Tracking position and orientation through millimeter
wave lens MIMO in 5G systems,” CoRR, vol. abs/1809.06343, 2018.
[Online]. Available: http://arxiv.org/abs/1809.06343

[10] M. Ulmschneider, R. Raulefs, C. Gentner, and M. Walter, “Multipath
assisted positioning in vehicular applications,” in 2016 13th Workshop

on Positioning, Navigation and Communications (WPNC), Oct 2016, pp.
1–6.

[11] C. Gentner, R. Pohlmann, M. Ulmschneider, T. Jost, and S. Zhang,
“Positioning using terrestrial multipath signals and inertial sensors,”
Mobile Information Systems, vol. 2017, 2017.

[12] R. Mendrzik, H. Wymeersch, and G. Bauch, “Joint localization and
mapping through millimeter wave MIMO in 5G systems,” in 2018 IEEE

Global Communications Conference (GLOBECOM), Dec 2018, pp. 1–6.

[13] M. Frohle, C. Lindberg, and H. Wymeersch, “Cooperative localization
of vehicles without inter-vehicle measurements,” in 2018 IEEE Wireless

Communications and Networking Conference (WCNC), April 2018, pp.
1–6.

[14] J. L. Williams and R. A. Lau, “Convergence of loopy belief propagation
for data association,” in 2010 Sixth International Conference on Intelli-

gent Sensors, Sensor Networks and Information Processing, Dec 2010,
pp. 175–180.

[15] M. Koivisto, M. Costa, J. Werner, K. Heiska, J. Talvitie, K. Leppänen,
V. Koivunen, and M. Valkama, “Joint device positioning and clock
synchronization in 5g ultra-dense networks,” IEEE Transactions on

Wireless Communications, vol. 16, no. 5, pp. 2866–2881, May 2017.
[16] Y. Wu, B. Peng, H. Wymeersch, G. Seco-Granados, A. Kakkavas,

M. H. C. Garcia, and R. A. Stirling-Gallacher, “Cooperative localization
with angular measurements and posterior linearization,” arXiv preprint

arXiv:1907.04700, 2019.
[17] S. Wielandt and L. Strycker, “Indoor multipath assisted angle of arrival

localization,” Sensors, vol. 17, no. 11, p. 2522, 2017.
[18] F. R. Kschischang, B. J. Frey, H.-A. Loeliger et al., “Factor graphs and

the sum-product algorithm,” IEEE Transactions on information theory,
vol. 47, no. 2, pp. 498–519, 2001.

[19] A. Ihler, J. III, and A. Willsky, “Loopy belief propagation: Convergence
and effects of message errors.” Journal of Machine Learning Research,
vol. 6, pp. 905–936, 05 2005.

[20] F. Meyer, T. Kropfreiter, J. L. Williams, R. Lau, F. Hlawatsch, P. Braca,
and M. Z. Win, “Message passing algorithms for scalable multitarget
tracking,” Proceedings of the IEEE, vol. 106, no. 2, pp. 221–259, Feb
2018.


