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ABSTRACT: The Aurora family of kinases is closely involved in
regulating cell division. Inhibition of Aurora A and B with small
molecules is currently being investigated in clinical trials for the
treatment of different cancers. It has also been evaluated as a
treatment option against different autoimmune diseases in
preclinical studies. Here, we present a cyclopenta[b]indole
derivative capable of inhibiting Aurora B selectively in kinase
assays. To evaluate the Aurora B inhibition capacity of the
compound, we used a kinase IC50 assay as well as a suppression
assay of proliferating primary cells. In addition, we examined if the
cells had gained a phenotype characteristic for Aurora B inhibition after treatment with the compound. We found that the compound
selectively inhibited Aurora B (IC50 = 1.4 μM) over Aurora A (IC50 > 30 μM). Moreover, the compound inhibited proliferating
PBMCs with an IC50 = 4.2 μM, and the cells displayed reduced phosphorylation of histone H3 as well as tetraploidy, consistent with
Aurora B inhibition.

■ INTRODUCTION

The Aurora family of kinases, consisting of Aurora A, B, and C,
is closely involved in cell division. These kinases participate in
all stages of mitosis and serve several different functions. While
structurally similar, the functions and their cellular localization
differ between the kinases. In short, during mitosis, Aurora A is
primarily present in the centrosomes, where it has a critical
function to ensure proper mitotic spindle assembly.1,2 For
instance, inhibition or knockout of Aurora A produces cells
with monopolar spindles.3,4 Aurora B is mainly localized at the
centromeres of the chromosomes, where one of its functions is
to assist with correct attachment of microtubules to the
kinetochores.5,6 Previous reports have revealed that Aurora B
inhibition leads to, among other cell effects, suppression of cell
proliferation and causes cell death.7−9 When Aurora B is
knocked out or inhibited in cells, it leads to reduced amounts
of phosphorylated histone H3 and polyploidy.7,8,10−12 Aurora
C is less studied than the other Aurora kinases. It is mostly
found in testis tissue and studies indicate that it is functionally
similar to Aurora B.13−15

Aurora A is heavily implicated in tumorigenesis. Amplifica-
tion and overexpression of the protein have been observed in a
wide variety of tumors.16−18 Whether Aurora B affects
tumorigenesis or not is at present unclear; higher levels of
the protein have, however, been found in several different
cancers.2,17,19,20 The association between cell division and
Aurora kinase function and their dysregulation in cancers have
propelled the development of Aurora inhibitors.21,22 Several
inhibitors have displayed promising results in preclinical cancer
models, with, for instance, low nanomolar antiproliferative
potency against cancer cell lines and high efficiency in in vivo

models. More than 10 Aurora inhibitors, either isoform-
selective or pan-Aurora inhibitors, have entered clinical trials
for different cancers, but none has so far been approved.
Recently, the role of Aurora A and B has also been highlighted
in a number of autoimmune diseases, e.g., rheumatoid
arthritis23 and autoimmune encephalomyelitis.24 Further
studies to find new small molecular lead structures that can
be optimized into selective and less toxic Aurora inhibitors are
thus warranted.
We have previously reported that a series of compounds

based on a cyclopenta[b]indole-2-one core appended with
arylidene substituents in the 3-position inhibit Aurora A and
Aurora B kinases in protein assays.25 Herein, we characterize
the Aurora-inhibiting properties of the most potent derivative
AE3−66 (Figure 1) from our previous screening and evaluate
its ability to induce a cellular phenotype associated with Aurora
inhibition in peripheral blood mononuclear cells (PBMCs).

■ RESULTS AND DISCUSSION
AE3−66 Inhibits Aurora B Selectively over Aurora A.

We have previously only measured the ability of AE3−66 to
inhibit Aurora A and B at a single concentration. Aurora A and
B inhibition was studied here over a range of compound
concentrations in a radiometric assay. The IC50 was above 30
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μM (data not shown) and 1.6 μM (Figure 2) for Aurora A and
Aurora B, respectively. Consequently, AE3−66 displays more

than 20-fold selectivity for Aurora B over A. To further assess
the selectivity of AE3−66, a kinase panel designed to cover all
areas of the human kinome was screened at 10 μM inhibitor
concentration. Of the 50 screened kinases, AE3−66 displayed
the highest inhibitory effect toward Aurora B, albeit also
targeting HIPK2 and PIM1 (Figure 3). The binding mode of
AE3−66 was studied using in silico docking to crystal structures
of human and frog (X. laevis) Aurora B. The lowest energy
binding modes place AE3−66 in the ATP cleft in similar
conformations in both cases (Figures S1 and S2). The
selectivity toward Aurora B prompted us to continue
investigating whether AE3−66 could induce a cellular
phenotype associated with Aurora B inhibition.

AE3−66 Suppresses Proliferating PBMCs. Due to
previous reports that demonstrated that Aurora B inhibition
leads to suppression of cell proliferation and causes cell
death,7−9 we wanted to study if this behavior is mirrored with
our compound. To investigate the effect of AE3−66 on
proliferating cells, polyclonally activated PBMCs were
cocultured with the inhibitor at seven different concentrations.
We chose to work with freshly isolated PBMCs because they
mimic the natural environment well with both pro-inflamma-
tory and anti-inflammatory mechanisms that can contribute to
the results.26−28 After 48 h, the cellular proliferation was
determined by measuring incorporation of 3H-thymidine.
Furthermore, the viability was measured with flow cytometry
using a fixable live/dead stain. The inhibitor suppressed
proliferation with an IC50 of 4.2 μM (Figure 4).

The cellular viability was not greatly affected over this
concentration range and even at 50 μM, only 50% of the cells
were found to be nonviable (Figure 5).
The Aurora B inhibitor GSK1070916 displayed IC50s in

several cancer cell lines in the same range as it inhibited Aurora
B in kinase assays.7,29 Similarly, the Aurora B inhibitor
AZD1152 displayed 3−10 times higher cellular IC50s
compared to IC50s measured in kinase inhibition assays

Figure 1. Chemical structure of Aurora inhibitor AE3−66.

Figure 2. Inhibition of Aurora B kinase by AE3−66 at 10 different
concentrations. The red line connects data points and the blue line
shows the curve fit.

Figure 3. Kinase selectivity profile of AE3−66 against a selection of 50 kinases representing the human kinome. AE3−66 was assayed at 10 μM
concentration.

Figure 4. Kinase inhibitor AE3−66 suppresses the proliferation of
PBMCs; 100.000 PBMCs stimulated by CD3/CD28 cross-linking (n
= 2) are suppressed by kinase inhibitor AE3−66. Cellular proliferation
was measured via the incorporation of 3H-thymidine. Cell
proliferation was quantified as counts per minutes (cpm). The red
line connects data points and the blue line shows the curve fit.
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when treating leukemia cells isolated from peripheral blood or
blood marrow.8 The cellular IC50 for stimulated PBMCs
treated with AE3−66 reported here, which was ∼three times
higher than the inhibition displayed in the kinase assay, is thus
in line with what has been reported previously.
AE3−66 Reduces Phosphorylated Histone H3 and

Induces Tetraploidy. Next, we investigated the phenotype
induced by AE3−66 more thoroughly. The cellular phenotype
resulting from impaired Aurora B function has previously been
studied using mutant Aurora B-transfected cells, small-
molecule inhibition, and RNAi.12 Exchanging the lysine
residue (Lys106) necessary for ATP binding to arginine
diminished the ability of Aurora B to phosphorylate histone
H3 at Ser10 in transfected cells.10,11 The transfected cells also

displayed polyploidy, indicating cell cycle progression without
cell division, which is a hallmark for antitumor and anti-
inflammatory activities. Identical phenotypic behavior has been
observed when treating cells with small-molecule Aurora B
inhibitors, i.e., reduced amounts of phosphorylated histone H3
and polyploidy.7,8

To investigate whether AE3−66 could induce the character-
istic phenotype associated with Aurora B inhibition explained
above, flow cytometry was used to measure the extent of
phosphorylation of histone H3 (Ser10) and cellular DNA
content. The expression of phosphorylated histone H3 was
measured relative to “Fluorescence Minus One”-controls,
which monitor background staining. Any fluorescence from
the inhibitor can as such perturb the output. To exclude such

Figure 5. Percentage of dead cells after treatment with kinase inhibitors at the different concentrations. Staining with fixable viability dye after
treatment with AE3−66. Representative histograms of PBMCs expressing the viability dye. From left to right: PBMC + DMSO, PBMC + 10 μM
AE3−66, PBMC + 30 μM AE3−66, and PBMC + 50 μM AE3−66.

Figure 6. (A) Representative histograms of PBMCs expressing phosphorylated histone H3. From left to right: PBMC + DMSO, PBMC + 10 μM
AE3−66, PBMC + 30 μM AE3−66, and PBMC + 50 μM AE3−66. (B) Representative histograms of PBMCs expressing the DNA stain DAPI.
From left to right: PBMC + DMSO, PBMC + 10 μM AE3−66, PBMC + 30 μM AE3−66, and PBMC + 50 μM AE3−66. Bars indicate the
percentage of cells expressing 2 N DNA and >2 N DNA.
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assay interference and ascertain a specific fluorescence signal,
we performed spectrometric measurements of AE3−66. AE3−
66 displayed absorbance up to 520 nm and a weak fluorescence
up to 750 nm (data not shown). Consequently, an Alexa Fluor
647-conjugated antibody, which can be excited using the 633
nm laser, was chosen to study phosphorylation of histone H3.
The DNA content was measured using the DNA dye DAPI.
Fluorescence output from DAPI produces populations of cells
having 2 N, 4 N, and 8 N DNA.
PBMCs treated with the inhibitor for 48 h displayed a

decrease in the phosphorylation of the Aurora B target histone
H3 (Figure 6A) in a dose-dependent manner. Also, the
number of cells showing polyploidy increased in a dose-
dependent manner when treated with the inhibitor (Figure
6B). The most profound effect was obtained at the highest
inhibitor concentration (50 μM), where 35% of the cells
displayed polyploidy. The observed phenotypic behavior
agrees with previous studies utilizing other Aurora B inhibitors
or Aurora B knockouts, clearly supporting the hypothesis that
AE3−66 actively inhibits Aurora B in cells.
Interestingly, the structurally related natural product

Nostodione A has, in a previous study, displayed antimitotic
properties against sea urchin eggs.30 The compound prevented
mitosis and proper mitotic spindle alignment and induced
polyploidy, all phenotypic behaviors of Aurora B inhibition.
The Aurora proteins are highly conserved throughout
eukaryotes, albeit nonvertebrates such as sea urchins and
starfishes only have one Aurora kinase.31,32 However, the
starfish Aurora kinase can replace the function of Aurora B in
HeLa cells, indicating the close relationship between the two
proteins.31 We have, in a previous study, shown that
Nostodione A does inhibit Aurora kinases, albeit weaker
than AE3−66 investigated here.25 Similar to what we observe
with AE3−66, it is likely that the observed phenotype of
Nostodione A-treated sea urchins is due to Aurora inhibition.

■ CONCLUSIONS

Taken together, we conclude that AE3−66 can inhibit Aurora
B not only in protein assays but also in a cellular context.
PBMCs treated with AE3−66 display a characteristic
phenotype of Aurora B inhibition and the antiproliferative
effect is also in the expected range when compared to the in
vitro inhibition of Aurora B. Furthermore, the compound does
not display excessive toxicity. These observations indicate that
there are no severe off-target effects that compromise the cells.
From this initial study, we cannot, however, definitely rule out
that the compound interferes with other cellular functions
besides Aurora B inhibition. To transform this molecular
structure into a more potent compound, further lead structure
optimization is needed.

■ EXPERIMENTAL SECTION

Preparation of the Aurora B Inhibitor. AE3−66 was
synthesized as described previously.25

Kinase Inhibition. Kinase IC50 inhibition assays and kinase
screening were performed by the MRC PPU International
Centre for Kinase Profiling (http://www.kinase-screen.mrc.ac.
uk/). A radioactive filter binding assay was used to evaluate the
inhibition of Aurora A and Aurora B at 10 different
concentrations in duplicate.33,34 For curve fitting, nonlinear
regression was used to calculate IC50 with a variable slope

using GraphPad Prism 7.0 software (GraphPad, San Diego,
CA).

In Silico Docking. Crystal structures of human (PDB ID:
4AF3) and X. laevis (PDB ID: 4C2V) Aurora B were used for
docking studies.35,36 INCENP and ligands were removed in
Chimera v.1.14.37 Further editing was performed in AutoDock
Tools v.1.5.6, which included removing water and adding polar
hydrogens.38 The AE3−66 structure was optimized in
Avogadro v.1.2.0 using the MMFF94 force field and a steepest
descent optimization algorithm with a convergence criterion of
10 × 10−7.39 AutoDock Vina v.1.1.2 was used to dock AE3−66
to the edited crystal structures.40 The input for human Aurora
B was comprised of center_x = 10, center_y = −25, center_z =
−2, size_x = 30, size_y = 30, size_z = 30, and exhaustiveness =
30. The input for X. laevis Aurora B was comprised of center_x
= 35, center_y = 25, center_z = 60, size_x = 30, size_y = 30,
size_z = 26, and exhaustiveness = 20.

Suppression Assay of CD3/CD28-Stimulated PBMCs.
Peripheral blood mononuclear cells (PBMCs) were isolated
from EDTA-anticoagulated blood withdrawn from two healthy
subjects. PBMCs (105 cells) were added to anti-CD3 mAb-
coated (clone OKT3, 1 μg/mL, eBioscience, San Diego, CA)
96-well microplate plates (TPP, Trasadingen, Switzerland),
followed by anti-CD28 mAb (clone CD28.2, 2 μg/mL,
eBioscience, San Diego, CA). The activated PBMCs were
treated with seven different concentrations (100 nM, 500 nM,
1 μM, 5 μM, 10 μM, 30 μM, and 50 μM) of the Aurora B
inhibitor or vehicle (DMSO 0.05%). The cell cultures were
incubated for 48 h at 37 °C. To evaluate cellular proliferation,
3H-thymidine (1 μCi/well) was added on the second day of
culture. After 6 h, the cells were harvested onto glass fiber
filters. Incorporated 3H-thymidine was measured using a β-
counter and quantified as counts per minute (cpm). For curve
fitting, nonlinear regression was used to calculate IC50 with a
variable slope using GraphPad Prism 7.0 software (GraphPad,
San Diego, CA).

Staining of PBMCs for Flow Cytometry Analysis. Cells
from 48 h cultures were fixed and permeabilized using the BD
cytofix and cytoperm kit (Becton Dickinson, San Jose, CA)
and incubated with Fixable Viability Dye eFluor 780
(eBioscience), DAPI (140 nM, BD Bioscience), and
phosphorylated histone H3 conjugated to Alexa Fluor 647
(clone 11D8, Biolegend, San Diego, CA) for flow cytometry
analysis. One thousand events were collected in a FACSCanto
II Flow Cytometer (BD Biosciences) and analyzed with Flow
Jo (Tree Star Inc., Ashland, OR).

Safety Comment. No unexpected or unusually high safety
hazards were encountered.
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