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ABSTRACT
Strong coupling between various kinds of material excitations and optical modes has recently shown potential to modify chemical reaction
rates in both excited and ground states. The ground-state modification in chemical reaction rates has usually been reported by coupling a
vibrational mode of an organic molecule to the vacuum field of an external optical cavity, such as a planar Fabry–Pérot microcavity made
of two metallic mirrors. However, using an external cavity to form polaritonic states might (i) limit the scope of possible applications of
such systems and (ii) might be unnecessary. Here, we highlight the possibility of using optical modes sustained by materials themselves to
self-couple to their own electronic or vibrational resonances. By tracing the roots of the corresponding dispersion relations in the complex
frequency plane, we show that electronic and vibrational polaritons are natural eigenstates of bulk and nanostructured resonant materials
that require no external cavity. Several concrete examples such as a slab of the excitonic material and a spherical water droplet in vacuum are
shown to reach the regime of such cavity-free self-strong coupling. The abundance of cavity-free polaritons in simple and natural structures
points at their relevance and potential practical importance for the emerging field of polaritonic chemistry, exciton transport, and modified
material properties.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0033352., s

I. INTRODUCTION

Strong coupling is a distinct regime of light–matter interac-
tions realized when resonant optical modes and material excitations
(electronic, vibrational, etc.) exchange energy faster than they lose
it to the environment. This fast energy exchange gives rise to new
quasiparticles: polaritons.1,2

Following the achievement of strong coupling, fundamental
questions have arisen, such as whether polaritonic states could
influence material and chemical properties.3,4 The possibility of
affecting chemical reactions in the excited state (i.e., photochem-
istry) seems to be quite well understood today. Several experimen-
tal studies show that strong coupling can affect photo-chemical
processes,5–7 and these results are essentially in agreement with

theoretical descriptions.8–14 Thermally activated ground-state chem-
ical reactions in the vibrational strong coupling (VSC) regime seem
to be more controversial. In this case, just a few experimental
reports exist,15–18 and there is far less conclusive agreement with
theory.19–26

An example of this controversy is given by common intuition,
by stating that ground-state chemical reactions are local, i.e., the
chemistry at position A does not depend on any far-away posi-
tion B. Nevertheless, recent experimental studies15–18 suggest that
such a local approximation to the chemistry might not always hold.
Contemporary empirical observations3,4,27 indicate that the chem-
istry can be affected by resonant, collective, and non-local vari-
ables. For example, the reaction probability at a specific position
depends on the far away presence (or absence) of metallic mirrors
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forming a Fabry–Pérot (FP) cavity. Specifically, it depends on the
set of resonant optical modes that the mirrors form. This set of res-
onant optical modes and its relevance to chemistry are especially
important, since they distinguish polaritonic chemistry from other
common non-local but non-resonant contributions, such as screen-
ing, electrostatic, and solvent polarity effects.28–30 Moreover, while
standard chemical theory states that the reaction rate depends on
the concentration of molecules, concentration-dependent collective
Rabi splitting influences the rate further by modifying the energy
levels. Although this train of thought is heavily debated in the com-
munity, mainly due to a lack of theoretical understanding of the
recent experimental observations, we believe that the potential of
this new research frontier is quite high. Of course, further experi-
ments and theoretical developments are needed to clarify this and
other subtle issues.

Without trying to resolve the discrepancy of the ground-state
chemistry in the VSC regime at this point, here, we are willing to
focus on another potentially relevant issue. The so far experimentally
reported observations of chemistry modifications under VSC exclu-
sively use FP cavities comprised of two metallic mirrors.15–18 Then,
a natural question is if the role of the mirrors in these experiments is
only to confine electromagnetic modes in order to form polaritons
or if it goes beyond that. It is thus highly important to discuss the
concept of “cavity” in the strong coupling regime and understand its
relevance to polaritonic chemistry.

Traditionally, one requires an external cavity to reach strong
coupling, such as a FP cavity, a plasmonic nanocavity, or a

photonic crystal cavity, schematically visualized in Fig. 1(a). Assum-
ing that the role of the cavity is solely to confine the optical
field, we argue that using external cavities may limit the scope
of potential applications, as such cavities are impractical.31 There
also exist a number of the so-called “open” cavities, which might
be more accessible and useful,1,2,6 but also require an external
object to provide the optical mode confinement. Here, we show
that to achieve strong coupling, the cavity does not need to be
external. Instead, electronic or vibrational excitations in bulk or
nanostructured materials can self-couple to an optical mode sus-
tained by its own geometry, as illustrated in Fig. 1(b). We con-
sider a generic medium with a Lorentz dielectric function, moti-
vated by the fact that optical properties of most materials can be
modeled as such.

It is well known that objects with a refractive index differ-
ent from their surrounding can sustain localized optical eigen-
modes.32 The characteristics of the modes depend on the geom-
etry and refractive indices of the involved objects and its
surroundings. If such an optical resonance is found in proximity
to the material resonance, these optical and material resonances
can hybridize and, provided that the oscillator strength of the tran-
sition is high, give rise to polaritons. The Rabi splitting of such
self-hybridized polaritons can approach (but cannot exceed) the
so-called bulk polariton splitting, which is a function of oscillator
strength only and does not depend on parameters of the cavity.
Such self-coupled or cavity-free polaritons have been realized in
many relevant systems, such as slabs of hexagonal boron nitride

FIG. 1. (a) Examples of architectures for
traditional polaritons based on a sepa-
rate cavity mode provided by a Fabry–
Pérot resonator, a plasmonic resonator,
or a photonic crystal cavity. (b) Exam-
ples of self-hybridized polaritons based
on slabs, long nanorods, and spheres
made of resonant (excitonic/Lorentzian)
materials.
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(hBN), transition metal dichalcogenides, perovskites, and plas-
monic nanoparticles.33–40 However, their relevance for the polari-
tonic chemistry and modified material properties has not risen in the
community.

Originally, the problem of material resonance from the quan-
tum optical light–matter coupling perspective has been solved by
Hopfield in his seminal work in 1958.41 Hopfield considered a three-
dimensional (3D) continuous semiconductor and modeled it using
a quantum coupled harmonic oscillator model but did not consider
materials shaped into a specific object(s), which can sustain a set of
discrete well-defined electromagnetic modes.

As we will show here, cavity-free polaritons are found in a
great variety of structures, ranging from bulk materials to spherical
microdroplets [Fig. 1(b)]. The sole existence and apparent abun-
dance of such cavity-free polaritons indicate their applicability in
polaritonic chemistry and, more generally, in any polariton-induced
modifications of material properties.30

II. REVISITING STANDARD CAVITY-EMITTER
POLARITONS

We start by revisiting the standard light–matter interaction
Hamiltonian in Hopfield’s formulation.41 This formulation is essen-
tially a coupled harmonic oscillator problem approached from the
quantum optical perspective. We note that this is not exactly the
same model as the famous Jaynes–Cummings or quantum Rabi
models, which deal with two-level quantum emitters (QEs) coupled
to a cavity mode. However, within the weak excitation regime, this
formulation is sufficiently appropriate even for QEs and even more
so within the scope of this study, since we utilize a macroscopic
Lorentz-resonant description of matter.

The full Hopfield Hamiltonian for a cavity mode oscillating at
a frequency ωc interacting at a rate g with a material transition at
a frequency ω0, written in the Coulomb gauge and including the
diamagnetic term, reads

Ĥ = h̵ω0b̂†b̂ + h̵ωcâ†â + h̵g(â† + â)(b̂† + b̂) +
h̵g2

ω0
(â† + â)2, (1)

where b̂ and â are the annihilation operators of the material tran-
sition and the cavity mode, respectively, and g is the coupling con-
stant.42 Two eigenvalues (resonant transitions) of this Hamiltonian
are given by

ω± =

√
ω2
c + 4g2ωc/ω0 + ω2

0 ±
√
(ω2

c + 4g2ωc/ω0 + ω2
0)2 − 4ω2

cω2
0√

2
.

(2)

With the material oscillators homogeneously occupying the
cavity mode volume V, the coupling strength g = μ

√
ρV/3Evacω0/ωc

(the factor 1/3 accounts for their isotropic orientation). Thus, the
coupling strength depends on the transition dipole moment of
the material transition, μ, and the volume density of these dipoles
(oscillators), ρ, as well as the vacuum electric field of the cav-
ity, Evac =

√
h̵ωc/2ε∞ε0V . When the coupling strength is large

enough (with respect to the losses, which are neglected in the above
description for simplicity), two polaritons with different energies

[Eq. (2)] are formed, which has been explained in great detail
before.2,43

The two main ingredients for achieving strong coupling are
(i) an optical cavity with a large quality factor (Q) and a small
mode volume (V) and (ii) an electronic (or vibrational) transition
with a high transition dipole moment.2 Following these suggestions,
there has been extensive research to obtain the best optical cavi-
ties, ranging from high-finesse FP cavities composed of distributed
Bragg reflector (DBR) mirrors to plasmonic nanocavities. Many of
these cavities are covered by Baranov et al.2 and some are depicted
in Fig. 1(a).

In the examples above, we see that a stand-alone cavity is
important for realizing the standard cavity-quantum electrodynam-
ics (QED) scenario. That is the case of a single-QE strongly cou-
pled to an external optical cavity. Such a scenario is challenging
to realize with the cavity-free approach because a single QE prob-
lem cannot be treated in terms of a macroscopic Lorentz dielec-
tric function even with the Hopfield Hamiltonian, as we do below,
but instead requires a true cavity-QED approach, which we do
not focus on here (these approaches are extensively covered in the
literature1,44).

III. SELF-HYBRIDIZED POLARITONS
An optical mode is a concept that is not limited to the opti-

cal resonators and cavities discussed above. An optical mode is a
solution of the source-free Maxwell equations in a given geom-
etry. Thus, a cavity can be made of any material, including the
material that makes up the relevant electronic or vibrational tran-
sitions themselves. These are precisely the scenarios we focus on in
Secs. III A–III D.

A. 3D case: Bulk polaritons
Let us start by revisiting bulk polaritons, that is, hybrid light–

matter states of an unbounded dielectric medium homogeneously
filled with resonant transitions. This situation has been described
by Hopfield in the celebrated 1958 paper41 (see also the work of
Mills and Burstein45). Instead of a localized eigenmode of a cavity,
the photonic modes in this scenario are represented by plane waves
propagating in the unbounded dielectric medium with permittivity
ε∞. Those waves have a continuous spectrum ω = kc/n, with k being
the vacuum wave vector, c being the speed of light, and n = √ε∞
being the refractive index of the medium.

In the classical electromagnetic formalism, an isotropic reso-
nant medium can be described by a Lorentzian permittivity,

ε(ω) = ε∞ + f
ω2
P

ω2
0 − ω2 − iγω , (3)

with ωP =
√
ρe2/3ε0m being the plasma frequency, where ρ is the

volume density of oscillators and 1/3 accounts for their isotropic ori-
entation, e and m are the electron charge and mass, respectively, ω0
and γ are the resonance frequency and linewidth, and f is the oscilla-
tor strength. The latter is expressed via the microscopic parameters
of the medium as f = 2mω0

e2̵h ∣μ∣
2, where μ is the transition dipole

moment of the material oscillator (see Sec. VI). For simplicity, in
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Eq. (3) and throughout this study (except for the case of hBN), we
deal with only one resonance with an isotropic random orientation
of transitions. Extensions of this simplified model can describe more
complicated cases, e.g., by including several Lorentz resonances and
anisotropy.

Bulk polaritons correspond to roots of the dispersion equation,

kc − ω
√
ε(ω) = 0. (4)

One can look for solutions of this equation either with complex
ω and real k or complex k and real ω. These two types are both
appropriate solutions of Maxwell’s equations but suited for different
purposes.46 We are interested in complex-ω solutions of the disper-
sion equation, since they better reflect the transient decay of hybrid
light–matter states of the coupled system.

Quantitative characteristics of the problem, such as the vac-
uum Rabi splitting and the magnitude of the polaritonic gap, can
be obtained from the Hamiltonian formulation, which neglects exci-
ton dissipation.41 Following the standard procedure of quantizing
the electromagnetic field in free space, let us consider a quan-
tization box of volume L3 with periodic boundary conditions.47

The vacuum electric field of a photon with frequency ωc reads
Evac =

√
h̵ωc/2ε∞ε0L3. Recalling the expression for the oscilla-

tor strength f and plasma frequency ωP of a Lorentz medium, we
express the resulting coupling strength as gC = (ωP/2)

√
fω0/ε∞ωc.

The vacuum Rabi splitting (with zero losses) is then obtained as
the difference between the two polariton energies [Eq. (2)] for the
zero-detuned photon (ωc = ω0),

ΩR =
√

2g2 + ω2
0 + 2g

√
g2 + ω2

0 −
√

2g2 + ω2
0 − 2g

√
g2 + ω2

0 = 2g0,

(5)

where g0 = (ωP/2)
√
f /ε∞ is the zero-detuning coupling strength.

The upper edge of the polariton gap is obtained by calculating
the upper polariton energy in the limit k = 0 and is ω̃0 =

√
ω2

0 + 4g2
0 ,

where ω̃0 is the re-normalized resonance frequency. The lower edge
of the gap is found by calculating the lower polariton energy in the
limit k → ∞, and is exactly the uncoupled exciton energy ω0. This
results in the polaritonic gap

Δpol =
√
ω2

0 + 4g2
0 − ω0, (6)

which simplifies to Δpol ≈ 2g2
0/ω0 under the assumption of 4g2

0/ω2
0

≪ 1, which holds in the standard strong coupling regime. In the
formalism of dielectric permittivity, this bandgap can be interpreted
as the Reststrahlen band of the material: the domain of energies
wherein the real part of the permittivity becomes negative, thus
forbidding propagation of plane waves.41

The presence of losses in the dielectric formalism makes the
eigenfrequencies complex and changes their dispersion; the orig-
inal Hopfield model of bulk polaritons does not include any dis-
sipation channels. Subsequent works extended Hopfield’s model
to account for exciton decay by considering coupling between
them and a continuum bath of harmonic oscillators.48 Such a
model predicts that bulk polaritons appear if and only if the
condition

fω2
P > ε∞γ2/4 (7)

holds. It is easy to see that this condition is equivalent to
(ωP/2)

√
f /ε∞ = g0 > γ/4, which is the strong coupling cri-

terion in the standard Jaynes–Cummings model with a lossless
cavity mode.48,49 Thus, by knowing the parameters of the mate-
rial resonance in Eq. (3), it is possible to estimate the bulk cou-
pling strength at zero detuning g0 and compare it to γ/4 in order
to conclude whether or not this specific material supports bulk
polaritons.

Figures 2(a)–2(c) show the dispersion (k vs real part of ω) of
bulk polaritons [obtained as roots of Eq. (4)] of a medium described
by the permittivity in Eq. (3), with typical values for TDBC J-
aggregates (ω0 = 2.11 eV, γ = 0.1 eV, and ε∞ = 2.15)50 and varying
oscillator strengths. First, for fω2

P = 0.0045 eV2, corresponding to
a strongly diluted J-aggregate, we observe the mode attraction typ-
ical for the weak coupling regime [Fig. 2(a)]. In this regime, the
energies of the eigenmodes of the medium slightly deviate from
the bare values, but their dispersions cross near the zero detuning
region.

For a larger oscillator strength fω2
P = 0.445 eV2 (see the work

of Balasubrahmaniyam et al.),50 one can clearly see an anticrossing
between the two polaritonic modes, with the vacuum Rabi split-
ting around 455 meV. We calculate the vacuum Rabi splitting as
the energy separation along the real frequency axis between polari-
tonic modes obtained at a zero detuning between the electronic res-
onance of the material and the bare cavity mode (in turn, obtained
by setting f = 0). This choice corresponds to nearly 50%/50% exci-
ton/photon polariton wave-function amplitudes, and we use this
definition throughout the text. On the same plot, we also show dis-
persion of complex-k/real-ω solutions (in a red solid line) found
simply as k =

√
ε(ω)ω/c. The two solutions coincide away from the

resonance but differ in the vicinity of ω0. While the two branches
of complex-ω solutions are disconnected, the two branches of the
complex-k solutions are connected by the region of anomalous
dispersion.

For even larger oscillator strength, fω2
P = 3.116 eV2 (we note

here that this value is unrealistically large for J-aggregates and we
give it here only for the sake of theoretical argument; there may be
other material systems where such oscillator strengths are feasible),
the dispersion shows a larger vacuum Rabi splitting of about 1.2 eV
and also displays a polaritonic gap—a region of frequencies with no
propagating modes within it, shown in Fig. 2(c).41,44,51 The corre-
sponding complex-k solutions, at the same time, span over the whole
range of frequencies but become highly damped within the polari-
ton gap by acquiring a large imaginary part of the wave vector k (see
Fig. S1).

In addition to the anticrossing in the k–ω plane, it is instruc-
tive to inspect trajectories of the roots of the dispersion in Eq. (4)
in the complex-ω plane. Figures 2(d)–2(f) show trajectories of the
complex frequency roots for the three cases of weak, strong, and
ultrastrong coupling. In the weak coupling, fω2

P < ε∞(γ/2)2, the
“photonic” root of the equation crosses the exciton position and
acquires a small imaginary component in the zero detuning region,
while the “excitonic” root (the one originating at the complex exci-
ton frequency, marked with a yellow star in Fig. 2) moves along a
finite curve aroundω0 − iγ/2. However, in the strong and ultrastrong
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FIG. 2. Bulk polaritons. The upper panels show the dispersion of bulk J-aggregate polaritons considering the complex-k and real-ω solutions in a red solid line and the
complex-ω and real-k eigenmodes in circles for (a) weak coupling with fω2

P = 0.0045 eV2, (b) strong coupling with fω2
P = 0.445 eV2, and (c) ultrastrong coupling with

fω2
P = 3.116 eV2, which displays a polaritonic gap shaded in blue. The dashed lines denote the dispersion of the uncoupled exciton (yellow at 2.11 eV) and the light

dispersion in vacuum (gray). The lower panels show the trajectories of the complex frequency roots for the same values in the three regimes: (d) weak, (e) strong, and (f)
ultrastrong coupling. The location of the uncoupled exciton (ω0 − iγ/2) is marked as a yellow star. The Rabi splitting is marked by orange arrows. The color bar represents
the value of k in μm−1.

coupling regimes, the low-energy solution terminates exactly at the
exciton energy, while the upper solution originates on the other side
of the polaritonic gap [Figs. 2(e) and 2(f)].

In closing this part, we want to emphasize that bulk polaritonic
states and the whole anticrossing picture exist in an optically large
piece of a resonant material without any external cavity.

B. 2D case: Polaritons in Lorentz slabs
The examples given above clearly illustrate that a large

(compared to the resonance wavelength) unstructured excitonic
or phononic material already possesses polaritonic modes, pro-
vided that the oscillator strength of the material exceeds the
threshold value. Reducing the dimension of the system (by
breaking the translational invariance in one, two, or all three
dimensions) does not break this picture: the reduced system still
possesses optical modes (either complex-frequency resonant states
or real-frequency guided modes) that couple with the material
resonance.

Let us first reduce the bulk material in one dimension (along the
z-axis to be specific) and consider a slab with a Lorentzian permittiv-
ity ε(ω) in vacuum. The eigenmodes of this system can be quantified
by the (real) in-plane momentum kx, ky.52 In the absence of the

material resonance, the modes above the light line are FP resonances
with complex frequencies (not to be confused with real-frequency
leaky modes);53 and the modes below the light line are proper waveg-
uide modes with real frequencies.54 Upon inclusion of the mate-
rial resonance, it couples to modes both below and above the light
line.

Figure 3(a) presents the eigenfrequency spectrum of TE-
polarized eigenmodes of a 200 nm thick J-aggregate slab with
fω2

P = 0.445 eV2 obtained as roots of the characteristic Eq. (13) (see
Sec. VI). Such a J-aggregate was also analyzed in Figs. 2(b) and 2(e)
corresponding to the bulk strong coupling case. It shows the real
part of eigenfrequencies vs the in-plane momentum kx on top of the
reflection spectrum calculated above the light line. Eigenfrequencies
of the slab are found numerically as poles of the reflection coeffi-
cient in the lower half plane of the complex frequency (see Sec. VI).
Remarkably, spectral positions of FP modes above the light line do
not always coincide with reflection dips, as shown in Fig. 3(a) for
polaritonic modes and in Fig. S3 for bare modes (f = 0) of a dielectric
slab. This behavior comes from non-resonant contributions of other
poles of the dielectric slab, particularly the fundamental waveguide
mode present at any kx.52 This mismatch should be always kept in
mind in the analysis of experimental or simulated spectra of coupled
exciton–polariton systems.
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FIG. 3. Polaritons in dielectric slabs. The upper panels show dispersion of the Fabry–Pérot (FP) and guided modes over the reflection spectra of TE polarized light of (a) a
200 nm thick J-aggregate slab with fω2

P = 0.445 eV2 and (b) with fω2
P = 3.116 eV2 and (c) a 1.75 μm thick slab of hBN with fω2

P = 0.064 eV2. The lower panels show the
trajectories, in the complex-ω plane, of the polaritons resulting from the first guided mode of the slab (TE1) hybridizing with the resonance in the same materials as above:
(d) J-aggregates with low f—squares, (e) J-aggregates with high f—diamonds, and (f) hBN—down-pointing triangles for hybridization with TE1 and circles for that with TE2.
The color bar represents kx . The Rabi splitting with TE1 is marked with a purple arrow. The uncoupled modes are shown in dashed and dotted lines.

The 200 nm thick slab with fω2
P = 0.445 eV2 does not show

any noticeable splitting above the light line [circles in Fig. 3(a)]:
the coupling strength is not sufficient to overcome the large radia-
tive decay of the FP mode. Below the light line, however, there
is a clear anti-crossing between the exciton and the TE1 waveg-
uide mode with a magnitude of Rabi splitting around 420 meV,
which is smaller than the 455 meV of bulk Rabi splitting previously
mentioned.

TE-polarized eigenmodes of a 200 nm thick J-aggregate slab
with a higher oscillator strength fω2

P = 3.16 eV2 demonstrate
anticrossing both below and above the light line [Fig. 3(b)]. This
J-aggregate was analyzed in Figs. 2(c) and 2(f) and corresponds to
the bulk ultrastrong coupling case. In this case, the magnitude of
the Rabi splitting (purple arrows in the rest of the panels) can-
not be obtained because the upper polariton has a cut-off given by
the light line and the corresponding guided eigenmode does not
exist.

Next, we demonstrate self-hybridized polaritons in another
practically relevant system: a slab of hexagonal boron nitride (hBN).
hBN exhibits two prominent vibrational modes at 169 meV and
95 meV, respectively.55 We focus on TE-polarized modes, which
couple only with the in-plane vibrations of hBN at 169 meV. The
in-plane permittivity component of hBN can be described by a sin-
gle Lorentz term with ε∞ = 4.45, fω2

P = 0.064 eV2, and γ = 1 meV,
which approximates the experimental data in the relevant spectral
range [Fig. S1(g)].55

Figure 3(c) shows eigenfrequencies of TE-polarized eigen-
modes of a 1.75 μm thick hBN slab. Clearly, there are anticross-
ings both below (circles and down-pointing triangles) and above
(squares and triangles) the light line, thanks to the large oscilla-
tor strength of hBN’s vibrational transition. For the same reason,
we also observe the lower polariton branch of the second FP mode
above the light line, shown in blue triangles, and lower polariton of
the TE2 waveguide mode below the light line (shown in orange cir-
cles). The Rabi splitting of the TE1 waveguide mode, which occurs
at about kx = 1.5 μm−1, reaches a value of ≈116 meV, which is
also below the bulk Rabi splitting, 2g0 ≈ 120 meV. Remarkably,
below the light line, polaritons formed by interaction of the fun-
damental modes TE1 and TE2 with the phonon show pronounced
anticrossing, even though the TE2 mode dispersion in a dielectric
slab without the exciton does not approach the exciton energy [see
Fig. 3(c)].

This behavior becomes more evident when we look at trajecto-
ries of the eigenmodes’ poles of the slab in the complex-ω plane. It
turns out, that even for a vanishingly small oscillator strength fω2

P,
there are countably many poles in an arbitrarily small vicinity of
the complex exciton frequency ω0 − iγ/2 [see Fig. S4(b)], where the
Lorentz permittivity ε(ω) has a simple pole [shown in Fig. S4(c)].56,57

Each of these poles represents an eigenmode of the Lorentzian slab:
either a radiative mode or a localized waveguide mode, depending
on the position of the pole frequency with respect to the complex
plane cut.
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The origin of this cluster of poles can be appreciated by
considering the Lorentzian permittivity ε at complex frequen-
cies [Fig. S4(c)]. One can clearly see that just below the com-
plex exciton frequency, ω0 − iγ/2, the permittivity takes arbi-
trarily large values, thus, in theory, allowing for the existence of
higher-order FP and waveguide modes that are otherwise inac-
cessible at real frequencies, where the permittivity is bounded by
∣ε(ω)∣ ≤ ε∞ + fω2

P/γω0.
Because these poles are located so close, they usually merge

into a single spectral feature in real-frequency spectral responses,
often attributed to “uncoupled molecules.”58,59 In fact, as the com-
plex frequency plane reveals, this feature stems from a whole
new multitude of eigenmodes located in the small vicinity of
the complex exciton energy (Fig. S4). Of course, only a finite
number of these eigenmodes are physical, since the permittivity
becomes highly non-local and loses its physical meaning as soon
as the wavelength inside the material λ/Re(

√
ε(ω)) at complex ω

approaches the microscopic length scale of the medium near the
pole.

Complex-plane trajectories also clearly reveal the Rabi splitting.
Above the light-line, trajectories of the eigenmodes are limited by
the low frequency cutoff on the one side and by the light line on
the other side and, for this reason, are difficult to interpret (Fig. S5).
Below the light line, however, only the upper polariton branches are
bounded by the light line on the low energy side [Fig. 3(d)] and the
resulting trajectories are very similar to those for bulk polaritons
[see Fig. 2(e)]. Qualitatively similar pictures of anticrossing in the
ω − kx space and in the complex-ω plane are found for TM-polarized
eigenmodes (Fig. S6).

Since the waveguide modes of a dielectric slab have virtu-
ally infinite lifetime in contrast to radiative FP modes, anticrossing
below the light line appears at a much smaller oscillator strength.

For an electrically thin film, we can establish an approximate
analytical criterion of strong coupling for waveguide modes. Assum-
ing an electrically thin dielectric film without the Lorentzian tran-
sition (k0L

√
ε∞ ≪ 1, where L is the thickness of the film), the

dispersion of the TE1 waveguide mode is approximately

kx ≈ k0(1 + δk), δk = (k0L)2(ε∞ − 1)/8, (8)

with δk being a small parameter for a thin film (see Sec. VI). The
vacuum field of the bare TE waveguide mode at the center of the
dielectric slab can be estimated as Evac =

√
h̵ωc/2ε0a2W, where

W = 1/I(kz,1) ≈ 1
k0
√

2δk
is the waveguide mode’s effective width.

Multiplying the vacuum field by the square root of the number
of oscillators

√
ρa2L in the volume a2L and the dipole moment

μ, we find the coupling strength (at zero detuning, ωc = ω0 and
k0 = ω0/c),

g = ωP

2
(k0L)

√
f
√
ε∞ − 1

2
. (9)

Comparing the above g to γ/4, we find the threshold oscillator
strength required for anticrossing below the light line in a dielectric
film,

fω2
P >

γ2

2(k0L)2
√
ε∞ − 1

. (10)

This condition may help estimate the minimal thickness L of an exci-
tonic film required for the emergence of polaritonic modes below the
light line for a given oscillator strength.

FIG. 4. Polaritons in infinite circular cylinders. (a) Dispersion of the polaritons given with the TM radiating modes of the CsPbCl3 cylinder, with a radius of 250 nm, above (first
mode in circles and second mode in diamonds) and waveguide modes below the light line (first mode in squares and second in down-pointing triangles). Trajectories of the
hybrid modes with (b) radiating and (c) waveguide modes in the complex-ω plane. The color bar shows the value of kx and the colored arrows show the Rabi splitting above
(orange) and below (purple) the light line. The uncoupled optical modes are shown by dashed lines.
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C. 1D case: Polaritons in long circular cylinders
By reducing the system in one more dimension (say, along

the y-axis), we arrive at one possessing translational invariance
only in a single direction (along the x-axis). Thanks to this sym-
metry, eigenmodes of the one-dimensional system are character-
ized by a real-valued momentum kx. Similar to the 2D case, eigen-
modes with kx > ω/c are guided modes with real frequencies;
eigenmodes with kx < ω/c are radiating resonances with complex
frequencies.

For simplicity, let us focus on 1D systems with a circular cross
section. The states with kx = 0 (normal-incidence resonances of the
cylinder) are classified by their polarization state (TE or TM) and
the azimuthal number m.60 Eigenmodes with kx ≠ 0 split into TE
and TM-polarized solutions only for m = 0 (the monopole har-
monic).61 For m > 0, TE and TM polarizations couple, giving rise
to hybrid modes named EHnm and HEnm. The HE11 mode (the
dipole mode) is the only mode of a circular cylindrical dielectric
waveguide not having a cutoff61 [see down-pointing traingles in
Figs. S7(a) and S7(c)].

As a practical example, we demonstrate self-hybridized polari-
tons in infinite circular cylinders of a perovskite CsPbCl3. This
material is described by a Lorentz permittivity with ε∞ = 3.7,
ω0 = 3 eV, γ = 87 meV, and fω2

P = 0.54 eV2 that approximates the

experimental data37 [see Fig. S1(a)]. Polaritons and polaritonic emis-
sion in long whiskers made of perovskites of various families have
been demonstrated in a number of works.36,62

Figure 4 presents the eigenfrequency spectrum of TM-polarized
monopole (m = 0) eigenmodes [obtained as roots of the char-
acteristic Eq. (16); see Sec. VI] for the CsPbCl3 infinitely long
circular cylinder with a radius of 250 nm. The resulting spec-
trum clearly shows anticrossing above the light line (involving the
second order radiating mode) and below the light line (involv-
ing the TM0,1 waveguide mode). The anticrossing below the light
line features a Rabi splitting of about 312 meV, which com-
pares to bulk Rabi splitting of CsPbCl3 of 382 meV. Complex-
ω trajectories of eigenfrequencies exhibit a familiar behavior
with upward frequency pulling to the real axis above the light
line and downward pulling below the light line [Figs. 4(b) and
4(c)]. Qualitatively similar eigenfrequencies are obtained for TE-
polarized monopole modes (Fig. S8) and for the dipole TEM modes
(Fig. S7).

D. 0D case: Polaritons in spheres
Finally, if we reduce the system in one more dimension, we

end up with a compact scatterer supporting a discreet spectrum

FIG. 5. Polaritons in water spheres. The upper left panels show eigenfrequency dependence on the radius of a water sphere for (a) TE1,1 and (c) TM1,2 modes. The lower left
panels show the trajectories of the complex −ω roots for the same modes (b) TE1,1 and (d) TM1,2 by varying the radius (shown in the colormap). The poles at zero detuning
are noted in the trajectories as the vertices of the orange rectangle joined by the dashed line. The Rabi splitting is the width of such a rectangle in Re(ω). The right panels
show the extinction efficiency, Qext , for water droplets of radius (e) r = 1 μm, which is too small to show strong coupling, and (f) r = 2.5 μm, which is large enough to show the
splitting in Qext . Both plots are included in (g) where a range of sizes is covered.
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of localized eigenmodes.63,64 Because of the lack of translational
invariance in any direction, all eigenmodes of the scatterer are
complex-frequency radiating solutions.65

To keep the analysis simple, we consider the most symmet-
ric compact scatterer: a sphere whose eigenmodes are the well-
known Mie resonances.66 These resonances split into TE- and TM-
polarized modes, which are further classified by the angular index
l and the radial number N. l = 1 modes are usually referred to as
the dipole ones, l = 2 is referred to as the quadrupole ones, and so
on. A detailed description of whispering gallery exciton–polaritons
in GaAs spheres has been presented by Platts et al.33 Because of the
lack of translational invariance, the anticrossing in spheres cannot be
seen by scanning the eigenmode’s momentum k. Instead, one usu-
ally varies the radius of the sphere, which causes the eigenmodes to
move in the ω-space.

As a practically interesting example of self-hybridized polari-
tons in spheres, we consider liquid water droplets. Liquid water
has a strong vibrational resonance around 420 meV with the oscil-
lator strength of fω2

P = 0.035 eV2.67 Therefore, one may natu-
rally expect formation of vibrational polaritons in Mie resonant
micrometer-sized water droplets. We describe water by a Lorentz
permittivity with ε∞ = 1.75, ω0 = 0.42 eV, γ = 0.048 eV, and
fω2

P = 0.035 eV2 that approximates the experimental data [see
Fig. S1(d)].67

Figure 5(a) shows eigenfrequencies of TE1,1 (magnetic dipole)
eigenmodes of a water sphere as a function of its radius r. The tra-
jectory of the TE1,1 eigenmode (the first index indicates the angular
number of the mode l and the second index stands for the radial
number of the mode N) shows a clear anticrossing with a magni-
tude of about 30 meV for a sphere with r ≈ 1.1 μm [Fig. 5(c)]. This
value is significantly lower than the corresponding bulk Rabi split-
ting for water ωP

√
f /ε∞ ≈ 100 meV due to high radiative loss of

the TE1,1 mode. The small value of the Rabi splitting in this case
is also manifested in the shape of the dispersion curves, similar
to the exceptional point (EP) regime with the square root depen-
dence of eigenenergies on the perturbation parameter (such as the
radius).68

We find that 1.1 μm is the smallest radius for which polari-
tonic modes appear in water spheres. Although the TM1,1 (electric
dipole) eigenmode of smaller r ≈ 600 nm spheres with ε∞ = 1.75
matches the vibrational resonance position, it has a much lower
Q-factor, which prevents strong coupling in spheres of this size
(Fig. S9).

Nevertheless, the TM1,2 mode of r ≈ 1.7 μm spheres does
demonstrate a clear anticrossing with the water vibration [Figs. 5(b)
and 5(d)], producing a Rabi splitting of about 70 meV, which
approaches the bulk splitting of 100 meV. Complex-ω trajecto-
ries in both cases reveal the characteristic eigenfrequency pulling
to the real axis [Figs. 5(c) and 5(d)] originating from large
radiative losses of the bare optical mode compared to the exci-
ton linewidth. With the increase in radius of the sphere, new
eigenmodes corresponding to higher orbital and radial numbers
(also having a higher Q-factor) will match the vibrational reso-
nance position and show additional anticrossings and polaritonic
modes.

We further investigate how the attainable Rabi splitting in
water spheres depends on the eigenmode polarization and the orbital
number. Figure 6(a) shows the Rabi splitting for TE and TM eigen-
modes as a function of the orbital number l. One can see that the
Rabi splitting of TE modes systematically exceeds that of TM modes
for all orbital numbers, but both gradually approach the bulk water
splitting, 2g0, which for water is ∼100 meV (see Table S1).

We also illustrate how polaritonic modes of micrometer-sized
water spheres manifest themselves in extinction spectra at real

FIG. 6. Limit of Rabi splitting. Normalized Rabi splitting for all the materials as a function of the optical mode for all the geometries discussed above: (a) spheres, (b) infinite
cylinders, and (c) slabs. The guided modes are shaded in green, and the radiating modes are shaded in blue. The dimensions of the structures and the values of 2g0 are
found in Sec. V of the supplementary material.
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frequencies. For droplets of 1 μm radius, no splitting is observed in
extinction, as shown in Fig. 5(e). On the other hand, Fig. 5(f) shows
observable splitting for a 2.5 μm radius droplet. The false color plot
in Fig. 5(g) clearly demonstrates an avoided crossing in the extinc-
tion efficiency of a sphere as function of its radius r, Qext = σext/πr2

(see Sec. VI), which is the quantity most easily accessible with opti-
cal techniques from a macroscopic ensemble of microspheres. An
important note to make is that the anticrossing in extinction spec-
tra, being the sum of all the eigenmodes, significantly overestimates
the splitting. Absorption and scattering efficiencies, whose sum con-
stitutes extinction, calculated in a wider range of water droplet
parameters, are shown in Fig. S9.

Coincidentally, micrometer-sized droplets of liquid water that
support vibrational self-polaritons are quite ubiquitous in nature.
For example, a common size of water droplets in fogs, mists, clouds,
or steams falls exactly into the range of 1 μm–10 μm that is needed
for the formation of vibrational Mie self-polaritons. Due to sur-
face tension, these droplets adopt a spherical geometry, thus form-
ing an ideal natural platform for the observation of vibrational
self-polaritons in strong and even ultrastrong coupling regimes.
Note that the bulk polariton splitting of liquid water falls into the
vibrational ultrastrong coupling regime, since gH2O

0 ≈ 0.05 eV and
gH2O

0 /ωH2O
0 = ηH2O

0 ≈ 0.12 > 0.1, which satisfies the ultrastrong
coupling criterion.26

IV. DISCUSSION

A. Critical size for the cavity-free polariton formation
In this section, we turn our attention to the apparent fact that

nanostructures supporting cavity-free polaritons have a certain crit-
ical size below which no polaritonic behavior is observed. For exam-
ple, water spheres below ≈1 μm in radius will not support polaritons.
Such size-limiting behavior is, of course, not universal to water and
should be observed in all Lorentz materials [e.g., rmin ≈ 98 nm for
perovskite and ≈180 nm for J-aggregates in Fig. 6(a)]. Neither is
it exclusive to the spherical geometry. For dielectric slabs, where
the fundamental waveguide modes do not have a cutoff, the phys-
ical reason for the critical size is the delocalization of the electric
field of the mode and a resulting weak coupling strength. For cir-
cular cylinders (also their monopole modes) and spheres, the size
bound stems from the fact that the fundamental eigenmodes of
electrically small systems are far blue-detuned with respect to the
material transition resonance, the case in which efficient hybridiza-
tion is not possible. Finally, we would like to mention that in
the opposite case of exceedingly large 0D–2D objects, the result is
trivial and reduces to the bulk case, which has no critical upper
limit.

From the material-science perspective, the existence of the crit-
ical size suggests that the polaritonic behavior and hence modified
material properties are supported only within a certain size range,
given by the material resonant properties, its surrounding(s), and its
shape.

It is also worth noting that, from the computational point
of view, the particles of about the critical size, although they
are on the order of several tens to several hundreds of nanome-
ters, contain a large number of oscillators (atoms or molecules).

Thus, it is challenging to self-consistently capture these col-
lective cavity-free polaritons using atomistic methods, such as
density functional theory,23,69 due to their high computational
cost.

B. The limit of Rabi splitting

The diversity of realizations of strong coupling, both using
cavities (Fig. 1) and in the cavity-free format (Figs. 2–5), raises a
question about the limit of g and ΩR that one can observe using
Lorentz materials. A particularly important question is whether it
is the material or the cavity that plays the decisive role in this
limit.

To shed light on this issue, we compare the bulk polariton
coupling strength to the other realizations for the specific Lorentz
material considered above (Fig. 6). From the presented data, it
appears that the lossless bulk polariton splitting, 2g0 = ωP

√
f /ε∞

(see Table S1 for the values for each material), indeed estab-
lishes an ultimate limit on vacuum Rabi splitting achievable with
a given Lorentz material with any cavity mode. Indeed, a cav-
ity of mode volume V supporting a localized eigenmode can host
only as many as N = Vρ transitions. Assuming that they all cou-
ple to the mode with an identical coupling strength, which is cer-
tainly an overestimation, the resulting Rabi splitting is seen to
be bound from top by the bulk polariton coupling. The lossless
bulk polariton splitting is, in turn, limited from above by setting
f = ε∞ = 1, which gives Ωmax

R = 2gmax
0 = ωP. Thus, the maxi-

mum bulk polariton splitting is principally limited from above by
the volume density of oscillators—ρ (also a combination of natural
constants).

It is also instructive to consider the maximum ratio between
the coupling strength and the resonance frequency ηmax = gmax

0 /ω0
= ωP/2ω0. This ratio plays an important role when the coupling
strength approaches the transition frequency. Specifically, when
η > 0.1, one usually distinguishes the ultrastrong coupling (USC)
regime, while when η > 1, one distinguishes the deep strong cou-
pling (DSC) regime. Taking in mind the principal limits of the cou-
pling strength, the parameter η is seen to be intrinsically related
to the ratio of plasma and resonant frequencies in Lorentz mate-
rials. This ratio can be both below one and significantly above
one (in principle, unbound) depending on the material. However,
one should keep in mind that in the limit of DSC, the light and
matter components of the polaritonic states actually decouple, pre-
senting nearly uncoupled optical mode and material excitation as
the eigenstates of the system.70 This decoupling can be seen as
the result of the screening by the diamagnetic term. In order to
maintain equal cavity/matter fractions, one would have to tune the
matter transition in resonance with the renormalized cavity mode.
The same decoupling occurs in the dipole gauge, where the mat-
ter resonance experiences a de-polarization shift due to dipole–
dipole interaction of the electronic subsystem.71 In fact, consid-
ering the ratio between the coupling constant and the renormal-
ized resonance frequency η = g0/ω̃0 = g0/

√
ω2

0 + 4g2
0 , one can

see that the latter is principally bound by η ≤ 1/2.72 This hard
limit indicates impossibility of reaching DSC with Lorentz media
(if normalization is performed with respect to the renormalized
frequency).
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Since the Rabi splitting is limited from above by the bulk polari-
ton coupling strength, having a separate cavity at best allows confin-
ing polaritons in space but does not increase the coupling strength
due to the above limitation. As we showed above, the optical mode
confinement can be attained without a separate cavity in the first
place, with the exciton (or phonon) material itself playing the role of
a confining resonator.

The bulk polariton splitting limit may serve as practical guid-
ance for the selection of the material platform in strong cou-
pling experiments. This limit is the function of the material only
and does not depend on the nature of the cavity. For any prac-
tical realization of strong coupling, the observed Rabi splitting
can only approach that of the bulk, 2g0 = ωP

√
f /ε∞, an esti-

mation of which is straightforward (requires no complicated sim-
ulation). Thus, a material with a high enough oscillator strength
will naturally support polaritonic eigenstates in all studied 0D–3D
regimes.

V. CONCLUSION
In summary, we have shown that polaritonic states are nat-

ural and ubiquitous to bulk materials and nanostructures that
can be described by a generic Lorentz resonance(s). Such polari-
tons are universally encountered in systems that do not involve
any stand-alone cavities or metallic mirrors. In these cavity-free
systems, boundaries of the Lorentz medium play the role of
the mirrors that allow formation of well-defined optical modes,
which, in turn, couple to the resonant transition. We demon-
strated such cavity-free polaritonic states in 3D-bulk materi-
als, 2D-slabs, 1D-cylinders, and 0D-spheres. Concrete examples
of real material systems including spherical water droplets, per-
ovskite nanocylinders, and slabs of J-aggregates and hBN were
provided.

These findings might have important implications for the
recently observed modification of material and chemical properties
seen in electronic and vibrational strongly coupled systems. In par-
ticular, from the classical electromagnetism point of view, as well as
the Hopfield Hamiltonian treatment, the cavity-free polaritons are
no different from the more standard microcavity polaritons con-
taining dense molecular layers. Thus, all observations relevant to
the cavity polaritons could just also be applicable to the cavity-free
polaritons presented here, provided that it is indeed the polaritonic
nature of those modes that is responsible for chemistry and mate-
rial science modifications (other reasons such as the usage of highly
polarizable metallic mirrors as was done in nearly all experimental
studies so far might also play a role31). However, in the cavity-free
case, the exact polaritonic eigenmode picture depends on the size
and shape of the resonant material and its environment. Thus, if
we accept the hypothesis that polaritonic states themselves (not the
presence of metallic mirrors) are able to modify material and chemi-
cal properties, then these material and chemical properties should be
dependent on the size and shape of this material, in agreement with
the cavity-free polaritonic eigenmode picture. Clearly, such a cavity-
free approach to modified material properties is beneficial from
the practical point of view, as many of these structures exist natu-
rally and is thus trivial to fabricate. A common concrete example
considered here are the water droplets (encountered in fogs, mists,

and clouds), which have a sharp cutoff below the radius of about
1 μm. Smaller water droplets will not support vibrational Mie self-
polaritons and thus may experience different chemical properties
in comparison to bigger droplets that support vibrational Mie self-
polaritons and to bulk water that supports bulk vibrational polari-
tons. Similar consequences may apply to J-aggregates, hBN, etc., as
well as to any Lorentz material with a high enough oscillator strength
of the relevant (electronic or vibrational) transition. This reason-
ing applies also to polariton-assisted modification of other material-
related properties. We look forward to experimental tests of these
predictions.

VI. METHODS
A. Permittivity of bulk medium

The permittivity of a resonant medium containing electronic
or vibrational transitions can be obtained by calculating the electric
dipole polarizability of a single such transition and combining it with
the volume density of homogeneously distributed transitions ρ in the
medium.

The dipolar polarizability of a two-level system with the
transition dipole moment μ in a weak external field can be
written as

α̂TLS = f̂
e2/ε0m

ω2
0 − ω2 − iγω , f̂ = 2

mω0

e2h̵
μ⊗ μ, (11)

where f̂ is the transition’s oscillator strength, m is the electron mass,
e is the electron charge, and ⊗ is the outer product73 (note ε0 in the
expression for polarizability, as required in SI units). Combining this
with the volume density of the two-level systems ρ and assuming
random orientation of transition dipole moments, one easily obtains
the expression for the polarization density and permittivity of the
medium,

ε = ε∞ + f
ω2
P

ω2
0 − ω2 − iγω , (12)

where ε∞ is the non-resonant background permittivity,
ω2
P = ρe2/(3ε0m) is the plasma frequency, and the factor 1/3

accounts for random isotropic orientation of dipoles in the medium.

B. Eigenfrequencies of a slab
Eigenfrequencies of a planar slab of thickness L are found

as poles of the reflection coefficient in the complex frequency
plane. The reflection coefficient of a TE or TM polarized plane
wave with the wavenumber k0 = ω/c and in-plane momentum kx
reads

RTE,TM =
rTE,TM(1 − e2ikz,2L)
1 − r2

TE, TMe2ikz,3L
, (13)

where

rTE =
kz,1 − kz,2

kz,1 + kz,2
, rTM =

kz,1 − kz,2/ε(ω)
kz,1 + kz,2/ε(ω)

, (14)
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with kz,1 =
√
k2

0 − k2
x and kz,2 =

√
ε(ω)k2

0 − k2
x being the

z-components of the wave vector in vacuum and dielectric,
respectively.

kz ,1 has a branching point at kx = k0, and a cut needs to be
made. The field of the eigenmode outside the slab is described by
the phase factor e±ikz,1z , where the plus and minus sign is applied
in the regions z > L/2 and z < − L/2 correspondingly. The radi-
ating modes above the light line should have R(kz,1) > 0, while
proper waveguide modes have I(kz,1) > 0. Therefore, we make the
branch cut along the negative imaginary axis through ω = −i∞ and
choose the Riemann sheet of the square root function such that
R(kz,1) > 0 above the light line and I(kz,1) > 0 below the light
line. This choice ensures that we find radiating eigenmodes and
proper (localized) waveguide modes. Choosing another Riemann
sheet of the square root in the definition of kz ,1 results in dispersion
of improper (diverging) modes below the light line. The choice of
sheet for kz ,2 is not important because the slab contains both waves
with ±kz ,2.

C. Dispersion of the TE1 waveguide mode in a thin
dielectric film

Dispersion of TE waveguide modes in a dielectric film is given
by the roots of the characteristic equation 1 − r2

TEe
2ikz,2L = 0.

This is a transcendental equation and, in a general case, can-
not be solved analytically. However, in the case of an electrically
thin film (k0L

√
ε∞ ≪ 1), the equation can be linearized and

an approximate solution of the fundamental TE1 mode can be
found.

For an electrically thin film, dispersion of the TE1 mode is sand-
wiched between the light line of the environment (k0 = ω/c) and that
of the slab (k = √ε∞ω/c) and follows very close to the environment
light line; therefore, we can write the propagation constant of the
guided mode as kx = k0 + δk, where δk≪ k0. The z components of
the wave vectors in the environment and in the slab can be expanded
as follows:

kz,1 =
√

k2
0 − k2

x ≈ i
√

2k0δk,

kz,2 =
√
εk2

0 − k2
x ≈ k0

√
ε − 1(1 − δk

(ε − 1)k0
).

Note that kz ,1 scales as O(
√
δk), whereas the leading correction to

kz ,2 scales as O(δk). The exponential phase factor can be expanded
in a Taylor series e2ikz,2L ≈ 1 + 2ikz,2L. Plugging these expansions into
the characteristic equation, we obtain

(kz,1 − kz,2

kz,1 + kz,2
)

2

(1 + 2ikz,2L) − 1 = 0,

i(k2
z,1 − 2kz,1kz,2 + k2

z,2)L = 2kz,1.

Keeping only the leading power O(
√
δk) of the kx expansion and the

constant term O(1) in this equation, we find δk = k3
0L

2(ε− 1)/8, and
the approximate dispersion relation of the TE1, correspondingly, can
be written as

kx ≈ k0 + k3
0L

2 ε − 1
8

. (15)

D. Eigenfrequencies of a cylinder
TE (TM) modes of an infinitely long cylinder are defined as

those having their electric (magnetic) field strictly perpendicular to
the cylinder axis. Eigenfrequencies of TE01 and TM01 (monopole
transverse electric and transverse magnetic, respectively) waveguide
modes of an infinitely long circular cylinder of radius a are found as
roots of the following characteristic equations:60,61

ε
kρ,2

J′1(kρ,2a)
J1(kρ,2a)

− 1
kρ,1

H′1(kρ,1a)
H1(kρ,1a)

= 0, (TM) (16)

1
kρ,2

J′1(kρ,2a)
J1(kρ,2a)

− 1
kρ,1

H′1(kρ,1a)
H1(kρ,1a)

= 0, (TE) (17)

where J1(z) and H1(z) = H(1)1 (z) are Bessel and Hankel func-
tions of the first kind, respectively, and kρ,1 =

√
k2

0 − k2
x and

kρ,2 =
√
ε(ω)k2

0 − k2
x are the radial wavenumber of the eigenmode

in vacuum and dielectric, respectively.
The definition of kρ ,1 requires a branch cut at kρ ,1 = k0. Radial

dependence of the eigenmode field outside the waveguide is given
by the factor H1(kρ ,1ρ). Therefore, making the branch cut going
along the negative imaginary axis through ω = −i∞ and choosing
the Riemann sheet yielding Re(kρ ,1) > 0 above the light-line results
in the spectrum of radiating eigenmodes and localized waveguide
modes.60

Eigenfrequencies of the HE11 (dipole) mode are found as roots
of the following characteristic equation:61

[ 1
kρ,2

J′1(kρ,2a)
J1(kρ,2a)

− 1
kρ,1

H′1(kρ,1a)
H1(kρ,1a)

][ 1
kρ,2

J′1(kρ,2a)
J1(kρ,2a)

− 1
kρ,1

H′1(kρ,1a)
H1(kρ,1a)

] =
⎡⎢⎢⎢⎣
kx
k0

(ε − 1)k2
0

a2k2
ρ,1k

2
ρ,2

⎤⎥⎥⎥⎦

2

. (HE11). (18)

E. Eigenfrequencies of a sphere
TE (TM) modes of a sphere are defined as those having their

electric (magnetic) field strictly perpendicular to the radial direc-
tion. Eigenfrequencies of TE and TM polarized modes with orbital
number l are found as roots of the corresponding characteristic
equations,

ψl(nx)ξ′l (x) − nξl(x)ψ′l (nx) = 0, (TE) (19)

nψl(nx)ξ′l (x) − ξl(x)ψ′l (nx) = 0. (TM). (20)

Scattering coefficients an and bn of the sphere of a sphere of
radius a and permittivity ε = n2 in vacuum in the basis of TE and
TM polarized spherical harmonics are given by the classical Mie
solution,66

an =
nψl(nx)ψ′l (x) − ψl(x)ψ′l (nx)
nψl(nx)ξ′l (x) − ξl(x)ψ′l (nx)

, (21)
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bn =
ψl(nx)ψ′l (x) − nψl(x)ψ′l (nx)
ψl(nx)ξ′l (x) − nξl(x)ψ′l (nx)

, (22)

where x = k0a, ψl(x) = xjl(x), and ξl(x) = xh(1)l (x) are Ricatti–Bessel
functions and jl(x) and h(1)l (x) are spherical Bessel and Hankel
functions of the first kind, respectively.

The extinction and scattering efficiencies of the sphere are given
by the sum over all harmonics,66

Qext =
2
x2

∞

∑
n=1
(2n + 1)R(an + bn), (23)

Qsca =
2
x2

∞

∑
n=1
(2n + 1)(∣an∣2 + ∣bn∣2). (24)

SUPPLEMENTARY MATERIAL

See the supplementary material for the additional mode anal-
ysis, permittivities of the materials, and scattering and absorption
spectra of water droplets calculated in a wider size range.
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