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A B S T R A C T

Forward collision warning (FCW) and autonomous emergency braking (AEB) systems are increasingly available
and prevent or mitigate collisions by alerting the driver or autonomously braking the vehicle. Threat-assessment
and decision-making algorithms for FCW and AEB aim to find the best compromise for safety by intervening at
the “right” time: neither too early, potentially upsetting the driver, nor too late, possibly missing opportunities to
avoid the collision.

Today, the extent to which activation times for FCW and AEB should depend on factors such as pedestrian
speed and lane width is unknown. To guide the design of FCW and AEB intervention time, we employed a
fractional factorial design, and determined how seven factors (crossing side, car speed, pedestrian speed,
crossing angle, pedestrian size, zebra-crossing presence, and lane width) affect the driver’s response process and
comfort zone when negotiating an intersection with a pedestrian. Ninety-four volunteers drove through an in-
tersection in a fixed-base driving simulator, which was based on open-source software (OpenDS). Several
parameters, including pedestrian time-to-arrival and driver response time, were calculated to describe the driver
response process and define driver comfort boundaries.

Linear mixed-effect models showed that driver responses depended mainly on pedestrian time-to-arrival and
visibility, whereas factors such as pedestrian size, zebra-crossing presence, and lane width did not significantly
influence the driver response process. Drivers released the accelerator pedal in 99.8 % of the trials and braked in
89 % of the trials. Forty-six percent of the drivers changed their negotiation strategy (proportion of pedal braking
to engine braking) to minimize driving effort over the course of the experiment. In fact, 51 % of the of the
inexperienced drivers changed their response strategy whereas only 40 % of the experienced drivers did;
nevertheless, all drivers behaved similarly, independent of driving experience. The flexible and customizable
driving environment provided by OpenDS may be a viable platform for behavioural experiments in driving
simulators.

Results from this study suggest that visibility and pedestrian time-to-arrival are the most important variables
for defining the earliest acceptable FCW and AEB activations. Fractional factorial design effectively compared
the influence of seven factors on driver behaviour within a single experiment; however, this design did not allow
in-depth data analysis. In the future, OpenDS might become a standard platform, enabling crowdsourcing and
favouring repeatability across studies in traffic safety. Finally, this study advises future design and evaluation
procedures (e.g. new car assessment programs) for FCW and AEB by highlighting which factors deserve further
investigation and which ones do not.

1. Introduction

Active safety systems are increasingly capable of supporting the
driver in critical situations, improving crash avoidance by warning the
driver or automatically braking or steering (Brannstrom et al., 2010).
However, such interventions need to be timed not to be a nuisance to

the driver (Källhammer et al., 2014; Lees and Lee, 2008). Intervention
time, the specific moment in which active safety warns the driver or
intervenes, is a crucial design variable. In fact, if set too early, it may
upset the driver and, if set too late, it may reduce the system mitigation
efficiency (Helmer, 2014; Lubbe, 2015; Sander and Lubbe, 2016). For
this reason, threat assessment (i.e., the evaluation of the potential
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danger in relation to the vehicle, the driver, and the environment)
should take several factors into account to optimise decision making
(i.e., when to issue a warning or take control of the vehicle through
automated interventions) (Brännström et al., 2014). Identifying which
factors may influence acceptance is critical to the development and
evaluation of active safety warnings and interventions (SAE, 2017;
Schram et al., 2013, 2015).

Since January 2016, Euro NCAP has been testing automated emer-
gency braking systems (AEB) with crossing pedestrians; more tests for
AEB and forward collision warning (FCW) systems for pedestrians and
cyclists were implemented in 2018. During the testing, if the inter-
vention times are too short, FCW and AEB may not show significant
safety benefits; if too long, then very large safety benefits would be
declared at the expense of unrealistic assumptions about driver accep-
tance. Therefore, it is important for Euro NCAP to set realistic thresh-
olds on intervention timing that are not only consistent and standard
but also representative of the factors that may influence system ac-
ceptance.

Driver acceptance depends more on the perceived usefulness of an
intervention than on its actual usefulness; in other words, a false
warning may still be a positive experience if the driver feels it has been
useful, whereas a true warning could still be a nuisance if a driver feels
that it was not useful (Källhammer et al., 2014). Driver discomfort
(Engstrom and Aust, 2011; Summala, 2007) could help draw the line
between what is perceived as a useful warning (or intervention) and
what is not by relating drivers’ responses to their comfort boundaries
(Ljung Aust and Engström, 2011). It has been suggested that warnings
and interventions outside the driver comfort zone (the subjectively
defined region in driver-vehicle-environment state space where the
driver experiences no discomfort (Lee, 2006; Vaa, 2014)) are in-
trinsically more acceptable; empirical evidence comes from different
studies such as the one from Puente-Guillen and Gohl (2019), who
showed that warnings outside the comfort zone are less accepted by
drivers. In fact, warnings and interventions outside the comfort zone
typically happen after a missed or delayed response by drivers, which
causes them to exceed their comfort zone boundary. By acting after the
usual driver response time (Green, 2000; Summala, 2000), an active
safety system may prove to the driver that it acted on a mismatch be-
tween the traffic situation and the usual driving performance, thus
potentially increasing acceptance (Ljung Aust and Dombrovskis, 2013).
However, for a system to tune its actions to driver comfort boundaries
and responses, it must be aware of the factors influencing the driver
response process (how the driver perceives, processes, and acts upon
information from the vehicle and the environment over time (Morando
et al., 2016)). Although some of these factors, such as speed or proxi-
mity to objects, may be obvious because they shape the field of safe
travel (Gibson and Crooks, 1938), other factors may be less so, because
they depend on human perception as opposed to vehicle dynamics and
kinematics. In conclusion, to increase acceptance, system warning and
intervention times must be designed to depend on the same factors that
influence driver comfort zone and, intrinsically, driver response.

While naturalistic driving data may eventually provide an ex-
haustive explanation of the factors which influence comfort zones and
driver responses (Dozza, 2012; Engstrom and Aust, 2011), these data-
sets are currently confounded, complex, and limited in size; it would be
impossible to disentangle single factors and link them to the interven-
tion time of active safety systems in different driving situations, and in
crossing scenarios in particular. Further, the current market penetration
for AEB systems capable of preventing collisions with pedestrians is too
low to provide enough data for statistically sound results or to enable
retrospective studies (Ohlin et al., 2017). Driving-simulator and test-
track studies, because they are controlled and repeatable, are useful for
evaluating active safety interventions (Chrysler et al., 2015). For in-
stance, Lubbe and Davidsson (2015) used the Toyota high-fidelity si-
mulator to test the extent to which time-to-collision (TTC) at response
time was influenced by pedestrian speed when a driver negotiated a

road with a crossing pedestrian. The effect of car speed in a similar
scenario was also tested in a test-track experiment (Lubbe and Rosen,
2014). Both studies showed a significant influence of pedestrian speed,
and a non-significant influence of a limited range of car speeds, on
driver response (i.e., the actions taken by the driver to safely negotiate
the intersection, and their timing). However, car speed was hypothe-
sised to have an influence, albeit in a wider range of car speeds than
was tested. Both car speed and pedestrian speed should therefore be
taken into account in order to increase acceptance of FCW and AEB
interventions.

It is currently unknown to what extent factors other than pedestrian
and car speeds may influence driver response and comfort boundaries
when negotiating an intersection with a pedestrian. In particular, fac-
tors such as pedestrian conspicuity (Tanaka and Teraoka, 2014), pe-
destrian trajectory (Tanaka and Teraoka, 2014; Varhelyi, 1998), lane
width (Shawky et al., 2014), and zebra-crossing presence (Varhelyi,
1998) have been suggested to influence driver response. In addition,
Seiniger et al. (2014) suggest including factors such as crossing side and
overlap when testing AEB, and distinguishing between adult and child
pedestrians. Non-verbal communication between road users is also es-
sential for infrastructure negotiation (Björklund and Åberg, 2005;
Kitazaki and Myhre, 2015), although it is hard to sense for active safety
systems. Finally, factors related to the drivers themselves, such as
driving experience, may also influence driver response (Summala et al.,
1998). Testing the potential influence of so many factors on driver
comfort zone would, however, require many studies. Fractional fac-
torial design (FFD) (Box et al., 2005) is one of the advanced statistical
methods often used to minimise the number of tests while maximising
the number of factors tested (Massumi et al., 2002; Nejad et al., 2010;
Poorna and Kulkarni, 1995). This method has been used in the field of
traffic safety (Machado-León et al., 2016; Wing‐Gun and Ka‐Hung,
1999), particularly in driving simulator experiments (Belz et al., 1998;
de Ruyter, 2016), possibly because the design requires repeated ex-
posures to similar situations. Notably, these repetitions may favour
expectancy and adaptive behaviours (Engstrom and Aust, 2011).

This study employed an open-source driving simulator and an FFD
to determine the extent to which seven different factors (namely, car
speed, pedestrian speed, pedestrian size, crossing angle, crossing side,
zebra-crossing presence, and lane width) may affect the comfort zone of
drivers (and therefore acceptance to FCW and AEB) when negotiating
an intersection with a pedestrian. Empirical evidence that these factors
may influence driver behaviour came from a number of studies
(Seiniger et al., 2014; Shawky et al., 2014; Tanaka and Teraoka, 2014;
Varhelyi, 1998). From the literature on comfort zone and driver be-
haviour, this study hypothesised that drivers would react earlier when:
speeds are higher, because of higher urgency (Green, 2000; Wang et al.,
2016); the pedestrian is a child, or comes from the near side, or crosses
the road perpendicularly (because of the larger risk (Wilde, 1982)); a
zebra crossing is present; or the lane width is narrow (because of the
more stringent constraints on the field of safe travel and the traffic rules
that may have triggered a more precautionary and self-regulating be-
haviour; (Dozza et al., 2015; Norris, 1997)). This study also compared
the response process between participants who often drove a car and
participants who seldom drove to devise a model that can improve the
design and evaluation of active safety systems that take driving ex-
perience into account.

2. Methodology

2.1. Participant recruitment, selection, and demographics

Selection criteria for the participants included having a valid dri-
ver’s license and being between 22 and 60 years old. Before the ex-
periment, all participants signed a consent form and were informed
about their rights in accordance with the ethical application for this
study (Dn:146-16). Participants were naive to the driving simulator and
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were instructed to behave as they normally would in traffic, as if they
were driving back from work. Before the experiment, all participants
practiced in the driving simulator until they felt confident that they
could master its controls (steering wheel, gas pedal, and brake pedal).
During the practice, participants were asked to drive as close as possible
to a brick wall (and, eventually, to hit it). This test was intended to
confirm that the participants could estimate distances correctly in the
virtual environment. In fact, in driving simulators distances are notor-
iously hard to estimate, especially without any practice (Baumberger
et al., 2005).

2.2. Data collection: OpenDS set up and experimental protocol

In this study, the participants were asked to drive in a driving si-
mulator and negotiate a virtual scene of an urban intersection with a
pedestrian. The simulated road environment was built using open
source software. The pedestrian models were created using the appli-
cation MakeHuman1 (Fig. 1). The models were manipulated and further
developed using Blender2 (3D-modelling software). Blender was also
used to create the environment, which included streets, buildings, and
trees, to make the urban intersection as realistic as possible. This
modelling effort is not trivial and more information can be found in
Jaber and Thalya 2020. The environment and pedestrian models were
then combined into complete driving tasks in MATLAB and exported to
OpenDS3 (version 3.5) to run the experiment. OpenDS is an open-source
driving simulator based on jMonkeyEngine (jME)4 . jME is a Java-based
game development tool. For the simulator experiment, different driving
conditions were loaded into the OpenDS driving simulator. Each
driving condition defined the simulation environment (including pe-
destrian appearance and behaviour) in which the participant drove.

OpenDS was used along with the basic set-up of Logitech G27
steering wheel and pedals. A Windows 7 Enterprise computer with an
Intel Core i7-3770 3.40 GHz processor, NVIDIA GeForce GT640 graphic
card and 16 GB RAM rendered the simulation, visualised with a Hitachi
CP X1 LCD projector (1024×768 resolution). A Python script auto-
matically loaded new driving tasks as the experiment progressed to
prevent human errors (manually loading the wrong driving task).

In each task, the participants accelerated a car from a standstill on a
straight road either up to 20 or 60 km/h (depending on the experi-
mental conditions, which were modelled on Euro NCAP scenarios), then
approached an intersection where a pedestrian crossed their path; the
intersection was 130m away from the starting point. A video from a
representative run is linked below5 . A speed limiter made sure the
driver never exceeded the set speed for each trial. Seven binary factors
were manipulated in this experiment (Table 1). These seven factors
were selected based on evidence from the literature (Seiniger et al.,
2014; Shawky et al., 2014; Tanaka and Teraoka, 2014; Varhelyi, 1998),
which indicated that they might have influenced driver response. Each
factor was assigned one of two values (low or high) according to their
expected effect on comfort boundaries suggested from the literature. In
other words, we hypothesised that when the factors were assigned the
higher values, participants would show smaller comfort zone bound-
aries. To test all seven factors within one hour, thus minimising spur-
ious effects from fatigue and boredom (J. D. Lee, 2017), we used an
FFD. This statistical tool has many applications, such as optimisation
problems in chemistry (Massumi et al., 2002; Nejad et al., 2010) and

medicine (Poorna and Kulkarni, 1995). FFD excludes repetitious com-
binations of factors, reducing the number of trials necessary to under-
stand the effects of factors with a fixed number of levels (Box et al.,
2005). The full fractional design in our study would have required 128
different combinations for seven factors; with FFD only 32 were
needed. An FFD 27−2 resolution IV (Box et al., 2005) was implemented
in this study to assess the influence of the seven factors. The drawback
of the FFD is that not all possible interactions among factors can be
statistically tested and, although FFD tests the individual effect of each
factor, some interactions may be confounded. We accepted this com-
promise because it greatly reduced the testing time. The order of the 32
tasks was randomised for each participant to control for order effect.

In addition, a fixed task—in which the car speed was 20 km/h, the
pedestrian was an adult with a speed of 1m/s who entered the inter-
section from the near side at a 90° angle at a zebra crossing, and the
road was three meters wide—was repeated four times during the ex-
periment to monitor the potential order effect (participants learning or
adapting to the environment). It is worth noting that crossing side ne-
cessarily changed the time at which the pedestrian was visible: the
pedestrian became visible four seconds prior to the potential collision
for the near-side condition and eight seconds for the far-side condition.
(The other factors had no effect on this time interval.) Four seconds of
visibility was enough time to ensure that the drivers did not need to
panic brake, and eight seconds were necessary for the pedestrians to
cover the extra distance to the collision point.

The experimental design also included three additional tasks similar
to those of previous studies (Lubbe and Davidsson, 2015; Lubbe and
Rosen, 2014) for comparison purposes. In the first, the car speed was
30 km/h, the pedestrian speed was 1m/s, and the pedestrian was an
adult crossing the car path orthogonally; there was no zebra-crossing
and the pedestrian came from the near side and crossed a 3-m road. The
second task was identical, except the pedestrian’s speed was 2m/s. In
the third task, the car speed was 50 km/h, the pedestrian speed was
1m/s and all other factors were the same as in the other two. Thus,
each participant performed 39 tasks during the experiment with a short
break of 5−10min after 19 tasks (see Fig. 2).

Participants were instructed to drive as they normally would while
travelling home from work. After the experiment, the participants filled
in a questionnaire about their simulator experience. This information
was used to compare the behaviour of experienced drivers with less
experienced drivers. Additionally, a negative response to the question,
“Did you react like you normally would in a real traffic situation?”, was
an exclusion criterion.

2.3. Data analysis: measures, response analysis, statistics

The positions of the car and the pedestrian, as well as the controls
(steering wheel and pedals), were recorded in each trial. Time stamps
for the start of gas pedal release and its full release were extracted from
the gas pedal position. The time stamp for brake onset was extracted
from the brake pedal position. These time stamps were used to describe
the participant response process. Comfort boundaries were quantified
with five metrics: TTC (SAE, 2015; option B; pg. 54), lateral and
longitudinal distances to the collision point (from the car position),
minimum TTC (mTT; SAE, 2015; option B pg. 56), and time-to-arrival
at intersection centreline (TTA). (TTA was defined as the time necessary
for the pedestrian to reach the centre of the intersection.) All metrics
have been used in previous studies (Lubbe and Davidsson, 2015; Lubbe
and Rosen, 2014) except mTTC. This basic metric for threat assessment
in longitudinal support systems was added as a general indicator of
criticality of each trial (Van der Horst, 1990). It is worth noticing that
mTTC can only have a single value for each trial. All other metrics, on
the other hand, are continuous time series, and the value to be included
in the analysis depends on the definition of response time. In fact, each
of these four metrics was calculated using the three different actions
representing different aspects of the response process: the start of gas

1 MakeHuman Open Source tool for making 3D characters. Available: http://
www.makehumancommunity.org/ (visited on 2020-02-20).

2 Blender. Available: https://www.blender.org (visited on 2017-02-08)
3 OpenDS the flexible open source driving simulator. Available: http://www.

opends.eu (visited on 2017-02-08)
4 jMonkeyEngine, a cross-platform game engine for adventurous Java devel-

opers. Available: http://jmonkeyengine.org (visited on 2017-02-20).
5 https://youtu.be/G-0f5Q4iIt4 & https://youtu.be/aT3_vrpIF6E (factors are

indicated in the video descriptions).
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pedal release (gRT; SAE, 2015, 7.2.1), full gas pedal release (rRT; SAE,
2015, 7.2.4), and the start of braking (bRT; SAE, 2015, 7.2.2). For TTA,
it is particularly important to verify the extent to which drivers may
have based their response on the field of safe travel of the pedestrian
instead of on their own (Gibson and Crook, 1938), because this has
important implications for the design of active safety. It is worth noti-
cing that TTA is similar to TTC, as defined by the traffic conflict tech-
nique (Laureshyn et al., 2010) and used by Várhelyi (Varhelyi, 1998).
However, TTA does not take into account the vehicle’s width. A linear
regression model with mixed effects quantified (and statistically ver-
ified) the effects of the seven factors on the five metrics. The model fit
was verified by calculating the coefficient of determination (R2). Two-
tail paired t-tests (α=0.05) compared the results of Trials 2 and 39 to
assess behavioural adaptation (among the four fixed trials, we expected
the most change between Trials 2 and 39 because they were the farthest
apart in time). By behavioural adaptation we refer to the evidence that,
during an experiment and especially when the experimental protocol
entails the repetition of the same task, the participants may change
their behaviour over time because of motor learning or of the increasing
level of automation in the response processes (Engström et al., 2010;

Morando et al., 2020). Two-tail t-tests (α=0.05) compared the in-
dividual results of Trials 1, 3, and 4 to results from previous studies
(Lubbe and Davidsson, 2015)(Lubbe and Rosen, 2014). Effect size for t-
tests was computed according to Cohen (1998).

3. Results

Of the 103 volunteers who signed up for the study, 94 participated,
and 88 provided data for the analysis. (Two individuals were unable to
complete the experiment due to simulator sickness, and four were ex-

cluded because they stated that they had not behaved in the simulator
as they would in real traffic.) Trials in which the participants crashed
(10) or did not reach top speed (75) were excluded from data analysis.

The age range for the 88 participants retained in the study was
22–59 years old (M=33.8, SD=10.8). Of all participants,19.3 % were
females (age 25–51, M=32.5, and SD=9.1). Based on their driving
frequency, the participants were divided into two groups, experienced
drivers and inexperienced drivers. Experienced drivers drove three to
seven days per week (48 participants: age 25−59 year, M=37.8,
SD=11.5). Inexperienced drivers drove once or less than once per
week (40 participants: age 22−52 year, M=29.0, SD=7.6).

A total of 3171 trials were analysed to investigate the following: 1)
the driver response process, 2) behavioural adaptation, 3) the effect of
the seven factors on the response metrics, and 4) comparability with
results from previous studies.

3.1. Response process

During the experiment, the participants accelerated the vehicle,
reached top speed (either 20 or 60 km/h), and then started releasing the

Fig. 1. Schematic representation of the software used to create the driving simulator and run the experiment.

Table 1
Factors investigated.

Factors Low level High level

Crossing side Far side Near side
Car speed 20 km/h 60 km/h
Pedestrian speed 1m/s 2m/s
Crossing angle 90° 45°
Pedestrian size Adult (176 cm) Child (115.2 cm)
Zebra-crossing presence Yes No
Lane width 3 m 2.5 m

Fig. 2. Experimental protocol.

Fig. 3. Response process during the experiment. Response times are calculated from the moment the pedestrian becomes visible to 1) start of gas pedal release (gRT),
2) full gas pedal release (rRT), and 3) start of braking (bRT).
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gas pedal. Eventually, they fully released the gas pedal and started
slowing down (in most cases by braking), to negotiate the intersection
with the pedestrian (Fig. 3). Because it was possible for the drivers to
decrease speed by simply releasing the gas pedal, braking was not ne-
cessary to avoid a collision with the pedestrian and, in fact, the brake
pedal was used in only 89 % of the trials. Nevertheless, in all trials
considered for analysis, drivers reached the top speed and initiated the
response process by releasing the gas pedal. In 99.8 % of the trials the
drivers also reached full gas pedal release. Fig. 3 shows how the gRT,
rRT, and bRT were calculated from the point in time when the pedes-
trian was visible. Fig. 4 compares their distributions from the experi-
mental data. gRT, rRT, and bRT were shorter for experienced partici-
pants (by approximately 0.4, 0.2, and 0.05 s, respectively); these results
were statistically significant for gRT and rRT (p < 0.05 from t-test;
effect sizes were 0.19 and 0.14, respectively).

3.2. Behavioural adaptation

Paired t-test verified that gRT did not significantly change between
the first and the last repetition of the fixed trials (Trial 2 vs. Trial 39;
Fig. 2) for both experienced and inexperienced drivers. However, rRT
and bRT increased across the same trials (by 0.82 s and 0.90 s, re-
spectively); this result was statistically significant only for the experi-
enced group (p < 0.05; effect sizes were 0.43 and 0.89, respectively).
As for braking behaviour, 53 % of the participants showed the same
response strategy (Fig. 3) in both trials, 7 % of the participants braked
in Trial 39 but not Trial 2, and 40 % braked in Trial 2 but not Trial 39
(Fig. 2). Interestingly, a larger proportion of the inexperienced drivers
(60 %) kept the same strategy across the whole experiment compared to
the experienced drivers (49 %).

3.3. Factor analysis

Although experienced drivers reacted slightly earlier than in-
experienced drivers and showed a somewhat larger behavioural adap-
tation, the two groups were combined for the factor analysis after
verifying that individual groups’ responses were affected to a similar
extent by the same factors. Because of the large sample size, most of the
factors and interactions in the linear mixed-effect models were statis-
tically significant; to help the reader appreciate effect size, which be-
comes more important than statistical significance itself because of the
large dataset, Fig. 5 reports the percentage effect of each factor in re-
lation to the intercept of the linear model. All linear effect models
scored an R2 between 0.82 and 0.94 in the goodness-of-fit test. Results
from the models were similar for gRT and bRT. For simplicity, we will
now focus on the gRT and bRT results, because rRT results are similar to
gRT.

Fig. 5 shows the effect of the seven factors on the five metrics for
gRT and bRT. Crossing side was the predominant factor showing the
largest influence on all metrics, independent of the definition of re-
sponse time. Car speed had a significant effect (i.e., its effect in relation

to the intercept of the linear model was larger than 5 %) on all metrics
but TTA and lateral distance. Crossing angle had a significant effect on
TTC and lateral and longitudinal distances. Pedestrian speed had a
significant effect only on lateral position (Fig. 5). There was no sig-
nificant effect from the 2-factor interactions, except for sporadic ex-
ceptions where the effect was as high as 7.8 % of the intercept value
and crossing side was one of the interacting factors. Interestingly, TTA
was only affected by crossing side. Because crossing side had such a
large effect independent of metrics and response time definition, we
took a closer look at how the response process was affected by near- and
far-side crossing. Fig. 5 makes possible a comparison across all factors
on all metrics for both gRT and bRT, which was the main aim of this
paper. A drawback is that Fig. 5 does not include the models’ details,
such as the actual effect sizes and p. For completeness we report more
details from the model in Table 2.

Because the influence of crossing side was surprisingly evident in
Fig. 5, we performed some more analyses to better understand why this
factor had such a large effect compared to the others. Fig. 6 shows that
when the pedestrian crossed from the far side, the distribution of the
response time (gRT, rRT, and bRT) spread and shifted, exhibiting a
larger variability and mean value than when the pedestrian crossed
from the near side.

3.4. Results of comparison to previous studies

For direct comparison with Lubbe’s work (Lubbe and Davidsson,
2015; Lubbe and Rosen, 2014), the TTCs at the start of braking for
Trials 1, 3, and 4 are shown in Fig. 7 as cumulative distributions. The
results of the t-tests proved that, as car speed increased, TTC sig-
nificantly (p < 0.05) decreased (by 0.3 s on average; effect size was
0.53). However, pedestrian speed did not significantly influence TTC.

4. Discussion

4.1. Design of active safety systems

Using an open-source driving simulator and applying FFD, this
paper investigated the driver’s response process when negotiating an
intersection with a pedestrian. The point in time when the pedestrian
first became visible proved to be crucial for explaining how different
factors may influence the response process. Pedestrian speed also
proved to be important; in fact, TTA, the relation between pedestrian
distance to the car’s centre line and pedestrian speed, offered a general
description of how six of the seven factors could influence driver re-
sponses. Analysis of the seventh factor, i.e. whether the pedestrian
crossed from the near or far side, showed a relationship between re-
sponse variability and proximity to collision. In the latter condition, the
distribution of driver responses appeared to be lognormal. This finding
is consistent with previous literature showing that a lognormal dis-
tribution fits driver response time well (Dozza, 2012; Green, 2000;
Summala, 2000). Although the time difference between the two con-
ditions was only four seconds, the distribution of driver responses
changed substantially (Fig. 6); in the far-side condition the distribution
became more spread out and no longer resembled a lognormal dis-
tribution. Supporting this result, previous research has reported that the
later a pedestrian becomes visible, the smaller the variability in driver
response (Olson and Sivak, 1986), and that, as a situation becomes
more critical, response variance decreases (Engström et al., 2010). In
contrast, in the far-side condition, drivers had more time to negotiate
the intersection, so they could rely on a different strategy—speed
modulation with the gas pedal instead of braking—to safely negotiate
the intersection; hence, the response process became more complex,
including more frequent control and speed adjustments, possibly ex-
erted in a satisficing fashion (Summala, 2007). In any case, this study's
TTA results suggest that, when negotiating an intersection with a pe-
destrian, driver comfort boundaries might depend more on the

Fig. 4. Distribution of the response time at different points in the response
process. The pedestrian became visible at 0 s.
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pedestrians’ field of safe travel (Gibson and Crooks, 1938) than on the
drivers’.

This study did not replicate the results from Lubbe et al. (Lubbe and
Davidsson, 2015; Lubbe and Rosen, 2014), namely that there was no
significant effect of car speed (Lubbe and Rosen, 2014) and there was a
small but significant effect of pedestrian speed (Lubbe and Davidsson,
2015) on TTC. Nevertheless, our study does not disprove the hypothesis
that pedestrian speed and car speed are important factors for the design
of FCW and AEB. Response time has been calculated in several ways
across studies (Green, 2000); studies testing warnings (Engström et al.,

2010; Lubbe, 2017) typically calculated it as the time from the warning
to the start of braking. However, when warnings are not available,
other starting cues, such as a precipitating event, have been used
(Dozza, 2012). When braking was not part of the reaction, other re-
sponses, such as hovering over the brake pedal, have been adopted
(Morando et al., 2016). In practice, the driver actions making up the
response process vary depending on the context, constraining the de-
finition of response time to the timing of context-specific actions
(Markkula et al., 2016). This study calculated the response time at three
different steps of the response process and compared the results to find

Fig. 5. Main factor effects from mixed effect models presented as percentage of the intercepts. Intercepts are also reported for start of gas pedal raelease and start of
braking.

Table 2
Linear mixed-effect models coefficients. Estimates for time-to-collision (TTC), longitudinal distance, lateral distance and time-to-arrival (TTA) are reported as well as
standard error (SE) and p-values (* indicates p < 0.01 and ** p < 0.001).

TTC gas release TTC start braking min TTC Long dist. gas release Long dist. start braking

Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Intercept 4.90 0.106 ** 3.64 0.083 ** 3.01 0.078 ** 52.00 1.140 ** 32.10 0.764 **
Crossing side −0.98 0.026 ** −0.81 0.019 ** −0.56 0.017 ** −9.44 0.285 ** −4.81 0.170 **
Car speed −0.28 0.026 ** −0.61 0.019 ** −0.35 0.017 ** 23.60 0.287 ** 14.00 0.171 **
Pedestrian speed 0.00 0.026 0.98 0.01 0.018 0.499 − 0.08 0.017 ** −0.85 0.285 * −0.32 0.169 0.06
Crossing angle −0.31 0.026 ** −0.25 0.018 ** −0.12 0.017 ** −2.78 0.285 ** −1.96 0.167 **
Pedestrian size 0.12 0.026 ** 0.13 0.018 ** 0.15 0.017 ** 1.30 0.285 ** 1.21 0.167 **
Crossing presence −0.04 0.026 0.14 −0.05 0.018 ** −0.02 0.017 0.23 −1.16 0.285 ** −0.72 0.167 **
Lane width 0.14 0.026 ** 0.13 0.018 ** 0.05 0.017 ** 1.62 0.285 ** 1.24 0.169 **

TTA at gas release TTA at braking Lat. dist. at gas release Lat. dist. at stat braking

Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Intercept 4.68 0.101 ** 2.79 0.068 ** 5.86 0.121 ** 3.53 0.085 **
Crossing side −0.78 0.025 ** −0.34 0.015 ** −1.02 0.029 ** −0.41 0.021 **
Car speed −0.09 0.025 ** −0.04 0.015 * −0.19 0.029 ** −0.08 0.021 **
Pedestrian speed −0.25 0.025 ** −0.09 0.015 ** 1.67 0.029 ** 1.08 0.021 **
Crossing angle −0.11 0.025 ** −0.02 0.014 0.10 0.90 0.029 ** 0.58 0.020 **
Pedestrian size 0.12 0.025 ** 0.08 0.014 ** 0.18 0.029 ** 0.12 0.020 **
Crossing presence −0.07 0.025 * −0.03 0.015 0.02 −0.14 0.029 ** −0.04 0.020 0.03
Lane width 0.12 0.025 ** 0.11 0.015 ** 0.22 0.029 ** 0.17 0.021 **
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that, although times can differ greatly (from a median 2.3 s for gRT to
0.9 s for bRT) across the steps of the response process, their relation to
the seven factors under analysis was similar. This similarity shows that
different steps of the same response process may be highly correlated,
possibly as a consequence of driver expectancy due to trial repetition. In
fact, in 7 % of the trials, participants reacted early, before the pedes-
trian was visible (Fig. 4), clearly showing that task repetition created
expectancy. Further, most early responses occurred in near-side entry
trials (Fig. 6). Nevertheless, when we ran the factorial analysis without
the trials with anticipated responses, we found the same pattern of
influence of the seven factors on the five metrics, confirming that
adaptation alone cannot explain our results. Finally, late responses are
often more informative than early responses for the design and eva-
luation of interventions (Lubbe and Rosen, 2014).

A standard way to quantify driver comfort boundaries is still lacking
in traffic safety research; in an effort to define the safety zone and find a
surrogate for “distance from crash” (Summala, 2007), metrics such as
TTC (Lee, 1976; Lubbe and Rosen, 2014; Van der Horst, 1990), mTTC,
and time-to-lane-crossing (Godthelp et al., 1984; Mulder et al., 2008)
have been used. In this study, we compared more traditional metrics,
TTC and mTTC, with heuristics (longitudinal and lateral distances) and
a metric—TTA—that took the pedestrian’s field of safe travel into ac-
count (because it measured the time-to-arrival at the intersection from
the pedestrian’s point of view). We found very little difference in the
results between TTC, mTTC, and longitudinal distance. Further, simple
geometry alone may explain the slightly different effects on lateral
distance. Thus, although standardised comfort boundaries would im-
prove inter-study repeatability and comparison, the choice of the spe-
cific metric to quantify longitudinal comfort boundaries does not seem
that crucial, at least in the context investigated in this experiment. In-
terestingly, the metric based on pedestrian safety (TTA) was the one
which described the driver responses in the simplest way, suggesting

that, when negotiating an intersection with a pedestrian, drivers may
project their own comfort boundaries on the pedestrians, prioritizing
the pedestrian’s field of safe travel over their own. This study shows
that it is important for longitudinal interventions such as FCW and AEB
to keep pedestrian behaviour into account to improve acceptance. Both
FCW and AEB traditionally rely on TTC and required deceleration for
their threat-assessment and decision-making algorithms (Brannstrom
et al., 2010; Montgomery et al., 2014), possibly because the systems
were initially developed to avoid rear-end collisions. As these systems
address new scenarios including pedestrians and incorporating lateral
conflicts, adapting the algorithms to model how other road users in-
teract with drivers becomes increasingly important. In conclusion, in-
cluding models for driver and pedestrian comfort zones in threat-as-
sessment algorithms may improve the acceptance of FCW and AEB
intervention times.

4.2. Evaluation of active safety systems within Euro NCAP

This study computed a model able to predict TTC at brake onset
depending on seven factors. The TTC from this model makes predictions
within the driver comfort zone, and therefore when a system warning or
intervention may be acceptable (M Ljung Aust and Dombrovskis, 2013).
Predictions from this model can be used for specific scenarios, in order
to inform the design and evaluation of AEB and FCW—and, specifically,
the design of Euro NCAP’s test scenarios. Euro NCAP currently assesses
AEB performance in four types of pedestrian crossings. Fig. 8 shows our
predicted earliest acceptable intervention time, expressed as TTC at
brake onset. For comparison, two previously suggested brake onsets are
also included in Fig. 8: the first one (Seiniger et al., 2014) is based on
pedestrian proximity, indicating the point in time after which a pe-
destrian is not able to come to a complete stop before getting within one
meter of the driving corridor. The second one (Lubbe and Kullgren,
2015) is based on driver comfort boundaries modelled as a function of
pedestrian speed only. Fig. 8 shows that, while our brake onset times at
60 km/h are in line with (Lubbe and Kullgren, 2015), they exceed the
limits proposed by (Seiniger et al., 2014), indicating that additional
time is available for FCW and AEB activations when considering driver
comfort boundaries rather than pedestrian kinematics.

Our brake onsets also argue for substantially earlier activations for
low car speeds and far-side crossings (tested in CPFA-50; see Fig. 8).
The first finding is of limited relevance, as it does not take a long time to
come to a full stop at low speed, but the latter suggests that far-side
crossing should be the prioritized test scenario and that asymmetric

Fig. 6. Distribution of the response time at different points in the response
process for near-side (top) and far-side crossing (bottom). The pedestrian be-
came visible at 0 s.

Fig. 7. Cumulative distributions of time-to-collision for comparison to previous
studies.

Fig. 8. Comparison of time-to-collision (TTC) at brake onset across four Euro
NCAP scenarios. CPNC-50: an (obstructed) child pedestrian entering the road
from the nearside at 5 km/h colliding with 50 % vehicle width overlap; CPFA-
50: an adult pedestrian entering from the far side at 8 km/h with 50 % overlap,
CPNA-25: an adult pedestrian entering the road from the nearside at 5 km/h
with 25 % overlap; and CPNA-75: an adult pedestrian entering the road from
the nearside at 5 km/h with 75 % overlap.
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intervention times (for far- and near-side)—a concept not implemented
in AEB and FCW so far—could increase acceptance and thus may be
further investigated. Our brake onsets (Fig. 8) also indicate that there is
sufficient time for a driver to react to a warning. Hence, for all Euro
NCAP crossing scenarios, assessment of FCW in addition to AEB be-
comes relevant and should be considered in future protocols.

4.3. Experimental methodology

The ecological validity of driving simulator studies has been widely
discussed, including the importance of deceleration cues that are absent
in stationary simulators such as the one used in this study (Engstrom
and Aust, 2011; Mullen et al., 2011; Summala, 2007). In addition,
perception of speed and distances may be different in a simulator than
in real-world driving and this limitation may constrain the applicability
of our results to Euro NCAP scenarios. Nevertheless, A recent study
from Boda et al. (2018) compared results from the same experimental
protocol performed on a test-track and in a stationary simulator:
braking response time was not influenced by the test environment (but
braking profiles were). Because the experimental protocol and the
driving simulator presented in this paper are very similar to the ones in
the study by Boda et al., we believe that the lack of deceleration cues
probably did not influence braking initiation. Nevertheless, the moment
when drivers started to release the gas pedal may have been anticipated
because of the lack of deceleration cues (Boda et al., 2018) and because
the Logitech G27 pedals are spaced differently and provide different
feedback than the pedals of a real car. Simulator experiments are often
criticized because of the reduced risk perception in simulators com-
pared to the real world; we acknowledge that this may be yet another
limitation of this study. However, because the driving experience was
very low-risk (we did not expose drivers to critical situations and we
closely controlled their speed) the effect of reduced risk perception on
our results may have been limited.

This study is also conditioned by a repetition issue: in the real
world, drivers would seldom negotiate 39 intersections in a row with a
pedestrian. In addition, despite our best effort to realistically animate
the pedestrian, it was still clear to the drivers that the pedestrian was a
virtual animation. Nevertheless, because the negotiations are not cri-
tical and do not necessarily require highly optimised control, the po-
tential for our results to be applicable in the real world is high (Boer,
1999; Summala, 2007). Further, task repetition in a simulator en-
vironment is a common procedure (Cummings et al., 2007; Lee et al.,
2002; Ljung et al., 2007; Scott and Gray, 2008) and encourages drivers
to act within their comfort boundaries (Engstrom and Aust, 2011;
Räsänen and Summala, 1998). Finally, although our longitudinal ana-
lysis showed some adaptive behaviour over time, these changes were
not sufficient to significantly change gRT.

The participants were naive to the driving simulator; however, we
do not think their inexperience in the driving environment significantly
affected the results because 1) the participants practiced in the virtual
environment until they felt confident they could master the vehicle and
2) we verified that the participants were able to longitudinally control
the vehicle and accurately estimate distances before collecting data.
Nevertheless, we do not know to what extent our results apply to the
real world, where expectancy may be lower—but still present in some
situations. For instance, a zebra-crossing at a school on a commuting
route may, over the years, create an expectancy similar to the experi-
mental protocol in this study. Repeating this experiment in a field en-
vironment and comparing our results to those using naturalistic data
may help us understand the current discrepancy between this study and
Lubbe et al.’s previous studies (Lubbe and Davidsson, 2015; Lubbe and
Rosen, 2014) as well as clarifying under which circumstances (and the
extent to which) the results from driving simulators may be ecologically
valid for specific research questions and experimental protocols.

Thanks to the FFD, this study compared several factors in one ex-
periment revealing the importance of pedestrian TTA for calculating

driver response. More traditional experiments, addressing one or two
factors at a time, would have missed the general conclusion about TTA
and instead directed the reader’s attention to statistically significant
(but tiny) effects of the factors on different metrics of the response
process. Thus, a clear benefit of the FFD, or other screening designs
(Box et al., 2005; Diamond, 2001), is providing a bird’s-eye view
comparing multiple factors at once (Belz et al., 1998; de Ruyter, 2016;
Machado-León et al., 2016; Wing‐Gun and Ka‐Hung, 1999). We chose
FFD as it is a common design, and it providedvaluable insights for our
study, possibly because of the high resolution we chose (IV). On a less
positive side, FFD did not allow us to appreciate potential interactions
across factors. For instance, we could not (legitimately) divide the da-
taset into far-side and near-side trials once we understood the large
effect that crossing side had on the data, although doing so would have
deepened our analysis. In conclusion, FFD appears to be a useful tool for
exploratory pilot work and, when combined with OpenDS, provides a
promising platform for the rapid prototyping of experimental protocols.
The more promising protocols could then be incorporated into the de-
sign of more expensive test track experiments to optimise testing re-
sources.

It is possible to overlook driving experience in driving simulator
studies, because there is no legal requirement to own a driver’s license
for participating. In addition, because they are more available, students
often participate in simulator experiments despite being less experi-
enced than average drivers (Saffarian et al., 2015). This study compared
participants based on their driving experience, to determine whether
the extra effort of recruiting experienced drivers is worthwhile. Our
results suggest that, indeed, experienced drivers may respond earlier to
threats and adapt their behaviour more than inexperienced ones;
nevertheless, all participants reacted similarly and were influenced si-
milarly by the factors under investigation, independent of driving ex-
perience. In conclusion, although response times in absolute numbers
may be influenced by driving experience, the necessity of including
only experienced drivers in a simulator study depends on the actual
research questions. It is also worth noting that age is a possible con-
founder in this analysis, because more experienced drivers also tend to
be older and students are less likely to own a car or commute to work.
Future studies may also address the extent to which personal traits such
as sensation seeking may influence the results from our experimental
protocol.

This study explored the potential of open-source software (OpenDS)
for traffic safety research. Although this study is not the first using
OpenDS (Bouhoute et al., 2015; Golestan et al., 2014; Isnainiyah et al.,
2014), it is the first to demonstrate the flexibility of this driving en-
vironment by including human models. The flexibility and the potential
to share models across studies on a common open-source platform offer
a unique opportunity for traffic safety research to leverage crowd-
sourcing and coordinate studies. Unfortunately, today’s driving simu-
lators and their virtual environments are often created ad-hoc and differ
greatly across studies, limiting the validity of result comparisons even
when experimental protocols and research questions are similar.
Sharing environments, human models, and experimental protocols
using open-source code may prove to be an efficient, economical, and
effective way to harmonise simulator studies and improve their re-
peatability and comparability (Collaboration, 2015).

5. Conclusions

This study shows that, when drivers negotiate an intersection with a
pedestrian in a highly repetitive driving scenario, their response process
greatly depends on the relation between the time the pedestrian be-
comes visible and the pedestrian’s speed, suggesting that the drivers’
response might depend more on the pedestrian’s field of safe travel than
on their own. Thus, by modelling how a driver controls the vehicle in
relation to the first point in time a pedestrian becomes visible, a threat-
assessment algorithm may be able to take driver comfort boundaries
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into account, improving the acceptance of its warning and intervention
time. Unfortunately, because of the nature of this experiment, it is not
possible to generalise this finding to situations with low expectancy or
with an active interaction between the driver and the pedestrian.

In relation to the Euro NCAP pedestrian AEB 2018 test scenarios6,
we found driver comfort boundaries to be reached substantially earlier
than the latest point in time when an automated brake intervention
would need to act to avoid the collision. Consequently, FCW may also
provide safety benefit in these scenarios and may be introduced in fu-
ture NCAP protocols.

Driving experience influenced how drivers behaved in this study,
including their behavioural adaptation; however, whether an experi-
enced driver behaves more realistically than an inexperienced driver in
a driving simulator is still an open question. Nevertheless, the seven
factors under investigation influenced the response process of both
experienced and inexperienced drivers similarly.

This study employed FFD in a driving simulator experiment, con-
firming the design’s strength for exploratory analyses and its weakness
for deeper analyses. When combined with OpenDS, FFD provides a
simple, flexible, and economical framework for exploring and piloting
different experimental protocols. This framework may help plan more
effective studies on test tracks or in larger driving simulators by iden-
tifying promising protocols, both of which are more expensive and
time-consuming than experiments in fixed-base simulators such as ours.

OpenDS showed as a promising environment for traffic safety re-
search and a potential platform for sharing models and experimental
protocols across studies, leveraging crowdsourcing and boosting re-
peatability across driving simulator experiments.
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