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We investigate the relaxation dynamics of a single artificial atom interacting, via multiple coupling points,
with a continuum of bosonic modes (photons or phonons) in a one-dimensional waveguide. In the non-
Markovian regime, where the traveling time of a photon or phonon between the coupling points is sufficiently
large compared to the inverse of the bare relaxation rate of the atom, we find that a boson can be trapped
and form a stable bound state. As a key discovery, we further find that a persistently oscillating bound
state can appear inside the continuous spectrum of the waveguide if the number of coupling points is more
than two since such a setup enables multiple bound modes to coexist. This opens up prospects for storing
and manipulating quantum information in larger Hilbert spaces than available in previously known bound
states.

DOI: 10.1103/PhysRevResearch.2.043014

I. INTRODUCTION

The study of interaction between light and matter is one
of the core topics in modern physics [1]. In such studies, the
wavelength of the light is usually large compared to the size of
the (artificial) atoms constituting the matter [2–7]. Indeed, the
traditional framework of quantum optics is based on pointlike
atoms [8] and neglects the time it takes for light to pass
a single atom. Recently, following significant technological
advances for superconducting circuits [7,9–11], “giant” arti-
ficial atoms [12] (transmon qubits [13]) have been designed
to interact with surface acoustic waves (SAWs) via multiple
coupling points in a waveguide [14–16] (or resonator [17–23])
as sketched in Fig. 1 (left inset). Such a giant-atom structure
can also be realized in a more conventional circuit-quantum-
electrodynamics (circuit-QED) experiment by coupling a
single Xmon [24], a version of the transmon, to a meander-
ing coplanar waveguide (CPW) as sketched in Fig. 1 (right
inset) [25–27]. Since the distance between coupling points
can be (much) longer than the characteristic wavelength of the
bath, it is necessary to consider the phase difference between
these coupling points. Striking effects have been found as a
consequence of this, e.g., frequency-dependent relaxation rate
and Lamb shift of a giant atom [25–27], and decoherence-free
interaction between multiple giant atoms [26,28]. The giant-
atom scheme has recently been extended to higher dimensions
with cold atoms [29] and constitutes an exciting new paradigm
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in quantum optics [10,12,29], where much remains to
explore.

Spurred by the growing interest in quantum informa-
tion science, there have been many investigations of non-
Markovian open quantum systems, e.g., single atom(s) in
front of a mirror [30–34] or distant atoms coupled locally
to the same environment [35–43]. The physical origin of the
non-Markovianity is typically the coupling to a structured
bath causing information backflow from the environment
[44–46]. These systems can exhibit nonexponential relax-
ation [47,48] and bound states [34,49–60], which can be
harnessed for quantum simulations [61,62]. Here, we realize
non-Markovianity in a single giant atom by engineering the
time delays between coupling points to be comparable to the
relaxation time [63,64]. For such a non-Markovian giant atom
with two coupling points, it has been predicted [63], and
recently observed in experiment [16], that the spontaneous
decay is polynomial instead of exponential.

In this work, we investigate the relaxation dynamics of
a single giant atom interacting with a one-dimensional (1D)
bosonic bath (e.g., an open waveguide for phonons or pho-
tons) through multiple coupling points. Our main result is
that three or more coupling points enable the creation of
persistently oscillating bound states, a phenomenon which,
to the best of our knowledge, is unique to giant atoms. We
envision that this phenomenon could be used for storing and
manipulating quantum information in larger Hilbert spaces,
and that it could be viewed as a minimalistic implementation
of cavity QED with the atom forming its own cavity.

II. MODEL HAMILTONIAN

We consider a two-level atom interacting with an open
1D waveguide at N coupling points (Fig. 1 illustrates the
case N = 3). As illustrated by the two insets in Fig. 1, this
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FIG. 1. Sketch and experimental setups for giant atoms. An atom (blue) couples to a waveguide (brown) at multiple points x j , which are
spaced far apart. Left: a transmon qubit coupled to a SAW waveguide via multiple interdigital transducers. Right: an Xmon qubit coupled
capacitively to a meandering microwave CPW at multiple points.

system can be implemented in at least two different experi-
mental schemes: a transmon qubit with multiple interdigital
transducers (IDTs) coupled to SAWs through piezoelectric
effects [14–17] or an Xmon qubit [24–27] with multiple arms
capacitively coupled to a coplanar waveguide.

The transmon can be modeled as an anharmonic oscillator
[13]. Restricting to the lowest two transmon levels (ground
state |g〉 and excited state |e〉), the total Hamiltonian for the
system is (see Appendix A)

H = h̄�σ+σ− +
∫ +∞

−∞
dk h̄ωkâ†

k âk

+
N∑

m=1

∫ ∞

−∞
g0(eikxm âkσ+ + H.c.)

√
|k|dk, (1)

where � is the atomic transition frequency and we have
defined the atomic operators σ+ ≡ |e〉〈g| and σ− ≡ |g〉〈e|.
The parameters k, v, and ωk = |k|v are the wave vectors,
velocities, and frequencies of the bosonic fields (phonons
or photons) in the waveguide. The field operators âk sat-
isfy [âk, â†

k′ ] = δ(k − k′). The rotating-wave approximation
(RWA) has been applied in the interaction term. The cou-
pling strength g0 at each coupling point, located at xm (m =
1, 2, . . . , N ), is measured as an energy density over the
wave-vector k space (see Appendix A). We also assume the
coupling points are equidistant. Thus, the travel time for
bosons between two neighboring coupling points is a constant
τ = (xm+1 − xm)/v. In this work, we investigate phenomena
arising from non-Markovian dynamics due to τ being non-
negligible.

III. EQUATIONS OF MOTION AND THEIR SOLUTIONS

We study the process of spontaneous emission from the
giant atom into the waveguide. The atom begins in the excited
state |e〉 and the field in the waveguide is in the vacuum state
|vac〉. Since the total number of atomic and field excitations
is conserved in Eq. (1) due to the RWA, we study the single-
excitation subspace of the full system. The total system state
can thus be described by

|�(t )〉 = β(t )|e, vac〉 +
∫

dk αk (t )a†
k |g, vac〉, (2)

where the integral describes the state of a single boson prop-
agating in the waveguide. From the Schrödinger equation

ih̄∂/∂t |�(t )〉 = H |�(t )〉, we derive the equation of motion
(EOM) for the probability amplitude of the giant atom being
excited (see Appendix B):

d

dt
β(t ) = −i�β(t ) − 1

2
Nγ β(t )

− γ

N−1∑
l=1

(N − l )β(t − lτ )�(t − lτ ). (3)

Here, the relaxation rate at single coupling point γ ≡ 4πg2
0�

h̄2v2

can be approximated as a constant over the relevant frequency
range in the spirit of Weisskopf-Wigner theory. Note that the
EOM (3) also describes the linear (classical) problem where
a single harmonic mode, not an atom, interacts with the con-
tinuum of modes in an open waveguide. In the harmonic limit
of the transmon Hamiltonian, the dynamics of a coherent state
(classical motion) exactly follows the EOM (3) for β(t ) (see
Appendix C).

The time evolution of the bosonic field function
ϕ(x, t ) ≡ 1√

2π

∫ ∞
−∞ dk eikxαk (t ) in the waveguide is given by

(see Appendix B)

ϕ(x, t ) = −i

√
γ

2v

N∑
m=1

β

(
t − |x − xm|

v

)
�

(
t − |x − xm|

v

)
.

(4)
Here, �(•) is the Heaviside step function, which describes
time-delayed feedback among the coupling points. The field
intensity function p(x, t ) ≡ |ϕ(x, t )|2 describes the probabil-
ity density at position x and time t to find a single phonon or
photon for all possible wave vectors k.

The first term on the right-hand side of Eq. (3) describes the
coherent dynamics of the atom. The second and third terms
describe the relaxation processes due to Markovian and non-
Markovian dynamics, respectively. The solution of β(t ) can
be obtained by a Laplace transformation:

β(t ) =
∑

n

esnt

1 − γ τ
∑N−1

l=1 (N − l )le−snlτ
, (5)

where the complex frequency parameters sn are given by the
solutions to the equation

sn + i� + 1

2
Nγ + γ

N−1∑
l=1

(N − l )e−snlτ = 0. (6)
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FIG. 2. Bound states in the waveguide for a giant atom with N = 3. (a1) Field intensity at t → +∞ and (a2) field intensity time evolution,
for the dark state sn=1 with γ τ/2π = 0.018 and �τ/2π = 0.317. In (a1), the red filled curve is the numerical simulation and the black dashed
line is the analytical prediction from Eq. (10). (b1), (b2) Same, but for the dark state sn=4 with γ τ/2π = 0.073 and �τ/2π = 1.27.

For finite time delay τ > 0, the nonlinear Eq. (6) has multiple
solutions. In general, there is no simple closed form for these
solutions.

IV. DARK-STATE CONDITION

Usually, the complex frequency sn has a negative real
part, which represents the relaxation rate. In some particular
situations, sn can be purely imaginary. In that case, the corre-
sponding mode is a dark state, which does not decay despite
the dissipative environment. We seek the purely imaginary
solution sn ≡ −i�n with (see Appendix D)

�n = 2nπ

Nτ
, n ∈ Z. (7)

Plugging this into Eq. (6), we obtain the following condition
for the dark states:

�τ = 2nπ

N
− 1

2
Nγ τ cot

(nπ

N

)
, n ∈ Z. (8)

Note that for the RWA to hold, we require |�n − �|/� 
 1
or, equivalently, |Nγ

2�
cot ( nπ

N )| 
 1 and n ∈ Z+ according to
Eq. (8). In the Markov limit γ τ → 0, the dark-state condition
(8) is simplified into �τ = 2nπ/N and the dark frequency is
�n = � + 1

2 Nγ cot ( nπ
N ) [25]. In the non-Markovian regime

of sufficiently large γ τ , the additional nonlinear cotangent
term in Eq. (8) cannot be neglected. Due to this term, there
is an associated bound field state in the waveguide for a given
dark state of the atom.

V. STATIC BOUND STATES

Inserting the dark-state solution sn = −i 2nπ
Nτ

into Eq. (5),
we obtain the long-time dynamics of the atomic excitation
probability amplitude

β(t ) → A(n)e−i 2nπ
Nτ

t with A(n) = 2 sin2 (nπ/N )

2 sin2 (nπ/N ) + Nγ τ
.

(9)
From Eqs. (4) and (9), we calculate (see Appendix E) the
explicit expression for the field density in the long-time limit,
pn(x) ≡ p(x, t → ∞), for a given dark state sn:

pn(x) = 8γ

v

sin2 nπ
N sin2

(
nπ
N m′)(

2 sin2 nπ
N + Nγ τ

)2 sin2
[nπ

N
(m′ + 2λ − 1)

]
.

(10)
Here, we have relabeled the position coordinate by x = (m′ −
1 + λ)vτ with m′ = 1, 2, . . . , N and λ ∈ [0, 1). Equation (10)
is only valid for the position between the two outermost
coupling points, i.e., x ∈ [x1, xN ] with x1 = 0 and xN = (N −
1)vτ . Outside the giant atom, i.e., for x /∈ [x1, xN ], the field
intensity pn(x) is zero.

We calculate [65] the total field intensity I (n) of the bound
field state for a given dark state:

I (n) ≡
∫

pn(x)dx = 2Nγ τ sin2 nπ
N(

2 sin2 nπ
N + Nγ τ

)2

×
(

1 + N

4nπ
sin

2nπ

N

)
. (11)
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FIG. 3. Oscillating bound states for a giant atom with N = 3. (a) Time evolution of the atomic excitation probability |β(t )|2 with two
coexisting dark states sn=14 and sn=16, from the numerical simulation (red solid line) and the analytical result (black dashed line) of Eq. (14).
(b) Time evolution of the field intensity p(x, t ) in the waveguide with the same parameters as in (a). (c) Conditions for oscillating bound states
(solid dots) in the �τ -γ τ parameter plane. The gray color level of the dots in the RWA region indicates the oscillating amplitude of A(n1)A(n2).
The yellow lines show the conditions for nonoscillating bound states (as in Fig. 2) from Eq. (8) with fixed integers n ∈ Z+.

We see that, in the Markovian limit γ τ → 0, the total field
strength I (n) → 0. Thus, the bound state only exists in the
non-Markovian regime, where γ τ is sufficiently large. In the
special case of N = 2, the dark-state condition (8) can only
be fulfilled for odd integers n, and the residual field strength
is I (n) = γ τ/(1 + γ τ )2 � 1/4. In Fig. 2, we show how the
bound state is formed. We plot the long-time field intensity
distribution pn(x) [Figs. 2(a1) and 2(b1)] and the time evo-
lution of the field intensity function p(x, t ) [Figs. 2(a2) and
2(b2)] for two different dark states (n = 1 and 4) of a giant
atom with N = 3 coupling points.

VI. OSCILLATING BOUND STATES

The dark-state condition (8) is a nonlinear equation for
integer n and γ τ > 0. It is possible to find two integers n1

and n2 satisfying Eq. (8) simultaneously. This means that, in
the long-time limit after all the dissipative modes die out, the
dynamics of the atomic excitation probability amplitude β(t )
is a superposition of two dark states with different frequencies
�n1 and �n2 . As a result, the atomic excitation probability
|β(t )|2 oscillates persistently with frequency �n1 − �n2 de-
spite the dissipative environment. In Fig. 3(a), we show the
population dynamics for a three-leg giant atom (N = 3) with
two coexisting dark states: sn=14 and sn=16. The undamped
oscillation of |β(t )|2 indicates that the atom exchanges en-
ergy with the bosonic bath persistently. In Fig. 3(b), we plot
the corresponding time evolution of the field intensity in the
waveguide, showing an oscillating bound state in the long-
time limit [65].

If n1 and n2 are the two simultaneous solutions of Eq. (8),
the parameters �τ and γ τ have to be

�τ = 2n1π

N
− 2(n1 − n2)π

N

cot
( n1π

N

)
cot

( n1π
N

) − cot
( n2π

N

) > 0,

γ τ = 4(n1 − n2)π

N2

1

cot
( n1π

N

) − cot
( n2π

N

) > 0.

(12)
Here, the physical conditions of �τ > 0 and γ τ > 0 need
to be satisfied, together with the RWA condition that
|Nγ

2�
cot ( n1(2)π

N )| 
 1 and n1(2) ∈ Z+. The long-time dynamics
of the giant atom is

β(t ) → A(n1)e−i�n1 t + A(n2)e−i�n2 t , (13)

which results in

|β(t )|2 = A2(n1) + A2(n2) + 2A(n1)A(n2) cos[(�n1 − �n2 )t].
(14)

The amplitude of the persistent oscillations is thus
A(n1)A(n2).

The total field intensity left in the waveguide for two coex-
isting dark states is I (n1, n2) ≡ ∫

p(x, t → ∞)dx, which can
be calculated from Eqs. (4) and (5) (see Appendix F):

I (n1, n2) = I (n1) + I (n2) − 4A(n1)A(n2)

× � cos [(�n1 − �n2 )t]

�n1 + �n2

. (15)

According to Eq. (2), the quantity |β(t )|2 + I (n1, n2) is the
total excitation probability of the atom and the field, which is
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conserved, since the oscillating bound state does not decay.
This gives an additional condition for the coexisting dark
states, i.e.,

�n1 + �n2

2
= �. (16)

Combining this with Eq. (8), we find that the so-
lutions are of the form n1 = pN + n and n2 = qN −
n with p, q ∈ Z+ and 1 � n < N . The conditions in
Eq. (12) then become �τ/2π = (p + q)/2 and γ τ/2π =
[(p − q)/N + 2n/N2] tan ( nπ

N ). By setting p � q and 1 � n <

N/2, Eq. (12) can be satisfied and we obtain the frequencies
of the two dark modes: � ± 1

2 Nγ cot ( nπ
N ).

In Fig. 3(c), we show the existence of oscillating bound
states (solid dots) in the �τ -γ τ parameter space for a giant
atom with N = 3. The condition in Eq. (12) implies that, if
n1 and n2 are solutions yielding coexisting dark states, the
integers n1 + N and n2 + N are also solutions of coexisting
dark states with γ τ unchanged but �τ increased by 2π . This
results in the 2π periodicity along the horizontal direction in
Fig. 3(c). The dots in the green region are beyond RWA, where
the dark-mode frequency |�n1(2) − �|/� > 0.1.

If the giant atom only has two coupling points (N = 2),
the nonlinear cotangent term in condition (8) is either zero or
infinity. Therefore, the oscillating bound states only exist for
more than two coupling points (N � 3).

VII. CONTINUUM LIMIT

We now discuss the limit of infinitely many coupling points
(N → ∞). In this case, the time it takes for the field to pass all
coupling points is Nτ → T . For capacitive coupling between
the atom and the waveguide, the interaction strength g at a
single point is proportional to the local capacitance c, i.e., g ∝
c [13,16] and the relaxation rate is γ ∝ g2 ∝ c2 [25,63]. As
a result, the parameter N2γ ∝ (Nc)2, where Nc is the total
capacitance, is a converged quantity N2γ → � describing the
total relaxation rate of the atom into the waveguide. In this
continuum limit, the dark-state condition (8) becomes

�T = 2nπ − �T

2nπ
, n ∈ Z. (17)

The solution is n = (4π )−1[�T ±
√

(�T )2 + 4�T ] ∈ Z, and
the corresponding dark-mode frequency is �n = � + �

2nπ
.

The field intensity pn(x) of the bound state can be calculated
from Eq. (10), yielding

pn(x) = 2n2π2/�T

(2n2π2/�T + 1)2

4

L
sin4

(nπ

L
x
)
, (18)

where L = xN − x1. The total field intensity is

I (n) = (3n2π2/�T )(2n2π2/�T + 1)−2 � 3/8.

However, since the RWA condition requires n > 0, and we
only have one solution fulfilling that condition, it is not ex-
pected that an oscillating bound state can be created in this
case.

As discussed below EOM (3), our predictions also apply
to the linear (classical) system of a single harmonic oscil-
lator coupled to an open waveguide. In Fig. 4(a), we show
a continuum metal contacting capacitively with an infinite

FIG. 4. Sketch for generating (a) a static bound state with a
continuum metal and (b) an oscillating bound state with a comblike
metal. The colors in the waveguides show the field intensity of the
bound states. In (b), the field intensity is taken at the fixed moment
indicated by the white dashed line on the plot of p(x, t ) in (c). LC
circuits are used to tune the plasmon frequency � in the metal. Pa-
rameters: (a) n = 1; (b) and (c) �τ = 2π , �T → 4π2 (i.e., n = 1).

SAW waveguide made of piezoelectric material. The metal
is attached to an LC circuit to tune the plasmon frequency
in the metal. If the dark-state condition (17) is satisfied, we
expect to observe a bound state in the waveguide. To generate
an oscillating bound state, we can design the contact part
of the metal as a comblike structure as shown in Fig. 4(b).
Note that the two integers n1 = N + n and n2 = N − n with
1 � n < N/2 always satisfy the dark-state condition (12). In
the limit of infinitely many coupling points N � n, i.e., for a
very extended comb, we have �τ = 2π and �T → (2nπ )2.
In this parameter setting, we can create two coexisting dark
modes with frequencies �± → � ± �

2πn . We show the field
intensity of bound states in the 1D waveguide for the dark
state n = 1 in Figs. 4(b) and 4(c).

VIII. DISCUSSION AND CONCLUSION

We have shown that a giant atom with N � 3 coupling
points to an open waveguide can harbor oscillating bound
states. To observe these states in experiment, the coherence
time of the (artificial) atom must exceed the oscillation period.
For a transmon or Xmon qubit, the coherence time can be on
the order of hundreds of microseconds [7,24,66–68], which
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is much longer than the oscillation period shown in Fig. 3(a)
since, typically, �/2π is several gigahertz.

In contrast to bound states arising from an impurity pro-
tected by an energy gap [51–58], the bound states we find
here appear inside the continuous energy spectrum. Therefore,
it is possible to manipulate (catch or release) propagating
photons/phonons in the waveguide by tuning the dark-mode
condition [Eq. (8)] [69]. Furthermore, since the oscillating
bound states are a result of coexisting bound modes, their
Hilbert space is larger than those of previously known bound
states, which should enable storage and manipulation of
more complex quantum states. Note that the total amount
of excitation stored in the (oscillating) bound state given
by Eqs. (11) and (15) depends on the integer n, which can
be changed by detuning the atomic transition frequency �.
Finally, the oscillating bound state, i.e., the dynamical ex-
change of excitations between the atom and the bosonic field,
essentially demonstrates the Rabi-oscillation phenomenon of
cavity QED (undamped, unlike in Ref. [64]). Typically, cav-
ity QED requires two mirrors (which could be atoms [70])
or a segmented waveguide serving as a cavity, but this
shows that a single giant atom with three coupling points
in the open waveguide is a minimalistic implementation of
cavity QED.
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APPENDIX A: HAMILTONIAN

The transmon is coupled capacitively to the waveguide.
The total Hamiltonian of the transmon coupled to a waveguide
is given by [13]

Htr = (2e)2

2C�

(n̂ − n̂s)2 − EJ cos ϕ̂

≡ 4ECn̂2 − EJ cos ϕ̂ − 8ECn̂n̂s + 4ECn̂2
s , (A1)

where n̂s is the offset charge of the transmon measured in
units of the Cooper pair charge 2e, EJ is the Josephson
energy, and EC = e2/2C� is the charging energy with C�

the total capacitance of the transmon. By defining the op-

erators b̂, b̂† via ϕ̂ =
√

η

2 (b̂ + b̂†), n̂ = −i
√

1
2η

(b̂ − b̂†) with

η ≡ √
8EC/EJ , the free transmon Hamiltonian is

Htr,free = 4ECn̂2 − EJ cos ϕ̂ ≈ h̄ω0
(
b̂†b̂ + 1

2

) − χ (b̂ + b̂†)4,

(A2)
where ω0 = √

8ECEJ/h̄ is known as the Josephson plasma
frequency and χ = EC/12 is the nonlinearity.

The electric potential field φ(x, t ) in the waveguide can be
described by [71]

φ̂(x, t ) = −i

√
h̄Z0v

4π

∫ ∞

−∞
dk

√
ωk (âke−i(ωkt−kx) − H.c.).

(A3)

Here, âk is the annihilation operator of the waveguide mode
with wave vector k, satisfying the commutation relations
[âk, â†

k′ ] = δ(k − k′), Z0 is the characteristic impedance of the
waveguide, and v is the velocity of SAWs or the speed of light
(microwaves) with the dispersion relation ωk = |k|v.

The coupling between the transmon and the waveguide is
described by the term Hint = −8ECn̂n̂s in Eq. (A1) with the
offset charge n̂s = (2e)−1 ∑N

m=1 Cgφ̂(xm, t ), where Cg and xm

are the effective capacitance and the position of each coupling
point, respectively. Therefore, the interaction Hamiltonian is

Hint = −8ECn̂n̂s

= −i8EC

√
1

2η
(b̂ − b̂†)

1

2e

N∑
m=1

Cgφ̂(xm, t )

= 4EC

e

√
1

2η

√
h̄Z0v

4π

×
N∑

m=1

Cg

∫ ∞

−∞
dk

√
ωk (âkeikxm − H.c.)(b̂† − b̂)

≈ 4EC

e

√
1

2η

√
h̄Z0v

4π

N∑
m=1

Cg

×
∫ ∞

−∞
dk

√
|k|v(b̂†âkeikxm + H.c.)

=
N∑

m=1

∫ ∞

−∞
g0(b̂†âkeikxm + H.c.)

√
|k|dk. (A4)

In the fourth line, we used the linear dispersion relation ωk =
v|k| and adopted the rotating-wave approximation (RWA) by
dropping counter-rotating terms like â†

k b̂† and âk b̂. In the fifth
line, we defined the coupling strength

g0 ≡ 4EC

e
v

√
1

2η

√
h̄Z0

4π
Cg. (A5)

Note that the coupling strength g0 is measured as an energy
density over the wave-vector k space since we are considering
continuous modes in the open waveguide.

Thus, the total Hamiltonian including the waveguide is

H = h̄ω0

(
b̂†b̂ + 1

2

)
− χ (b̂ + b̂†)4 +

∫ +∞

−∞
dk h̄ωkâ†

k âk

+
N∑

m=1

∫ ∞

−∞
g0(b̂†âkeikxm + H.c.)

√
|k|dk. (A6)

APPENDIX B: SINGLE-EXCITATION LIMIT

For the spontaneous emission process, the RWA guarantees
that there is only one excitation either in the atomic state or in
the waveguide. In this case, only the lowest two levels of the
transmon, i.e., the ground state |g〉 and the first excited state
|e〉, are involved in the dynamics. By defining the lowering
operator σ− ≡ |g〉〈e| and raising operator σ+ ≡ |e〉〈g|, we can
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write the Hamiltonian in the single-excitation subspace

H = h̄�σ+σ− +
∫ +∞

−∞
dk h̄ωkâ†

k âk

+
N∑

m=1

∫ ∞

−∞
g0(eikxm âkσ+ + H.c.)

√
|k|dk. (B1)

Here, the atomic transition frequency � = ω0 − 12χ =√
8ECEJ/h̄ − EC/h̄ is the level spacing of the two lowest

levels. The total system state can thus be described by

|�(t )〉 = β(t )|e, vac〉 +
∫

dk αk (t )â†
k |g, vac〉, (B2)

where the integral describes the state of a single boson prop-
agating in the waveguide. From the Schrödinger equation
ih̄∂/∂t |�(t )〉 = H |�(t )〉, we have

H |�(t )〉
= h̄�β(t )|e, vac〉 + h̄

∫
dk ωkαk (t )â†

k |g, vac〉

+β(t )
N∑

m=1

∫ ∞

−∞
g0

√
|k|e−ikxm â†

k |g, vac〉dk

+
N∑

m=1

∫ ∞

−∞
g0

√
|k|eikxmαk (t )|e, vac〉dk

= ih̄
d

dt
β(t )|e, vac〉 + ih̄

∫
dk

d

dt
αk (t )â†

k |g, vac〉. (B3)

Therefore, the dynamics for the giant atom is

d

dt
β(t ) = −i�β(t ) − i

g0

h̄

N∑
m=1

∫ ∞

−∞

√
|k|eikxmαk (t )dk (B4)

and for the propagating modes in the waveguide

d

dt
αk (t ) = −iωkαk (t ) − i

g0

h̄
β(t )

√
|k|

N∑
m=1

e−ikxm . (B5)

Integrating Eq. (B5), we have the formal solution

αk (t ) = e−iωkt

{
αk (0) − i

g0

h̄

√
|k|

N∑
m=1

e−ikxm

∫ t

0
β(t ′)eiωkt ′

dt ′
}

.

(B6)
Inserting Eq. (B6) into Eq. (B4), we obtain

d

dt
β(t ) = −i�β(t ) −

(g0

h̄

)2 N∑
m,m′=1

∫ t

0
β(t ′)dt ′

∫ ∞

−∞
|k|eik(xm−xm′ )+iωk (t ′−t )dk − i

g0

h̄

N∑
m=1

∫ ∞

−∞

√
|k|ei(kxm−ωkt )αk (0)dk

= −i�β(t ) −
( g0

h̄v

)2 N∑
m,m′=1

∫ t

0
β(t ′)dt ′

∫ ∞

0
ωk

[
eiωk (xm−xm′ )/v+iωk (t ′−t ) + eiωk (xm′−xm )/v+iωk (t ′−t )

]
dωk

−i
g0

h̄v

N∑
m=1

∫ ∞

−∞

√
ωkei(kxm−ωkt )αk (0)dk. (B7)

In order to simplify Eq. (B7), we adopt the well-known Weisskopf-Wigner approximation [72]. In the emission spectrum, the
intensity of the emitted radiation is concentrated in the range around the atomic transition frequency �. Therefore, the quantity
ωk varies little in this frequency range, and we define the relaxation rate at single coupling point by

γ ≡ 4πg2
0�

h̄2v2
≈ constant. (B8)

We can replace the lower limit in the ωk integration by −∞ in Eq. (B7). The integral
∫ +∞
−∞ dωkeiωkt = 2πδ(t ) yields

d

dt
β(t ) ≈ −i�β(t ) − γ

2

N∑
m,m′=1

∫ t

0
β(t ′)dt ′[δ(t ′ − t + τmm′ ) + δ(t ′ − t − τmm′ )] − i

√
γ v

4π

N∑
m=1

∫ ∞

−∞
ei(kxm−ωkt )αk (0)dk

= −i�β(t ) − γ

2

N∑
m,m′=1

β(t − |τmm′ |)�(t − |τmm′ |) − i

√
γ v

4π

N∑
m=1

∫ ∞

−∞
ei(kxm−ωkt )αk (0)dk, (B9)

where we have defined the delay time τmm′ ≡ (xm − xm′ )/v between two coupling points and �(x) is the Heaviside step function
[�(x) = 0 for x < 0 and �(x) = 1 for x > 0]. We make the Markovian approximation at each single coupling point but retain
the time delay (non-Markovian dynamics) between different coupling points.
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Since each αk (t ) represents the time-dependent probability amplitude of a plane wave eikx, the total time-dependent field
function in the waveguide is given by

ϕ(x, t ) ≡ 1√
2π

∫ ∞

−∞
dk eikxαk (t ). (B10)

From Eq. (B6), we have

ϕ(x, t ) = 1√
2π

∫ ∞

−∞
dk ei(kx−ωkt )αk (0) − i

1√
2π

√
γ v

4π

N∑
m=1

∫ t

0
β(t ′)dt ′

∫ ∞

−∞
dk eik(x−xm )+iωk (t ′−t )

≈ 1√
2π

∫ ∞

−∞
dk ei(kx−ωkt )αk (0) − i

√
γ

2v

N∑
m=1

β

(
t − |x − xm|

v

)
�

(
t − |x − xm|

v

)
. (B11)

In the last step, we used the Weisskopf-Wigner approximation again like we did in Eq. (B9).
In order to solve Eq. (B9), we use Laplace transformation Eβ (s) ≡ ∫ ∞

0 dt β(t )e−st and obtain

sEβ (s) − β(0) = −i�Eβ (s) − γ

2

N∑
m,m′=1

e−|τmm′ |sEβ (s) − i

√
γ v

4π

N∑
m=1

∫ ∞

−∞

eikxmαk (0)

s + iωk
dk. (B12)

Therefore, we have

Eβ (s) = β(0)

s + i� + γ

2

∑N
m,m′=1 e−|τmm′ |s − i

√
γ v

4π

N∑
m=1

∫ ∞

−∞

eikxmαk (0)

(s + i� + γ

2

∑N
m,m′=1 e−|τmm′ |s)(s + iωk )

dk.

(B13)

The time evolution of β(t ) can be obtained by the inverse Laplace transformation

β(t ) =
∑

espolet Res(Eβ (s), spole) =
∑

espolet lim
s→spole

Eβ (s)(s − spole ) =
∑

espolet lim
ε→0

Eβ (spole + ε)ε, (B14)

where Res(Eβ (s), spole) is the residue of Eβ (s) at the pole spole. The poles of Eβ (s) are spole = −iωk and also given by the roots
of the following equation:

sn + i� + γ

2

N∑
m,m′=1

e−|τmm′ |sn = 0. (B15)

The explicit form of β(t ) is thus

β(t ) =
∑

n

β(0)esnt

1 − γ

2

∑N
m,m′=1 |τmm′ |e−|τmm′ |sn

− i

√
γ v

4π

N∑
m=1

∫ ∞

−∞

αk (0)eikxm−iωkt

i(� − ωk ) + γ

2

∑N
m,m′=1 eiωk |τmm′ | dk

− i

√
γ v

4π

∑
n

N∑
m=1

∫ ∞

−∞

αk (0)eikxm+snt

(1 − γ

2

∑N
m,m′=1 |τmm′ |e−|τmm′ |sn )(sn + iωk )

dk. (B16)

If the pole from Eq. (B15) is a purely imaginary number, i.e.,
sn = −iωk , the k-component contribution in the integration of
Eq. (B16) is zero.

In our experimental scheme proposed in the main text, the
coupling points are equidistant with time delay τ between
neighboring points. Therefore, all the possible time delays can
be written on the form |τmm′ | = lτ with l = 0, 1, . . . , N − 1.
The combination number of time delays is N for l = 0 and
2(N − l ) for l �= 0. Therefore, the condition (B15) to deter-
mine the poles becomes

sn + i� + 1

2
Nγ + γ

N−1∑
l=1

(N − l )e−snlτ = 0, (B17)

which is Eq. (6) in the main text. In this case, the EOM (B9)
for β(t ) becomes

d

dt
β(t ) = −i�β(t ) − 1

2
Nγ β(t ) − γ

N−1∑
l=1

β(t − lτ )�(t − lτ )

−i

√
γ v

4π

N∑
m=1

∫ ∞

−∞
ei(kxm−ωkt )αk (0)dk, (B18)

which is Eq. (3) in the main text. For the spontaneous emis-
sion αk (0) = 0 and β(0) = 1, the solution (B16) by Laplace
transformation is

β(t ) =
∑

n

esnt

1 − γ τ
∑N−1

l=1 (N − l )e−snlτ
, (B19)

which is Eq. (5) in the main text.
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APPENDIX C: HARMONIC LIMIT

In the harmonic limit, where the nonlinearity vanishes
χ → 0, the total Hamiltonian (A6) becomes

H = h̄�b̂†b̂ +
∫ +∞

−∞
dk h̄ωkâ†

k âk

+
N∑

m=1

∫ ∞

−∞
g0(eikxm âk b̂† + H.c.)

√
|k|dk. (C1)

The Heisenberg EOM for the transmon operator b̂(t ) is
d

dt
b̂(t ) = 1

ih̄
[b̂(t ), H (t )]

= −i�b̂(t ) − i
g0

h̄

N∑
m=1

∫ ∞

−∞

√
|k|eikxm âkdk. (C2)

The Heisenberg EOM for the field operator âk (t ) is
d

dt
âk (t ) = 1

ih̄
[âk (t ), H (t )]

= −iωkâk (t ) − i
g0

h̄
b̂(t )

√
|k|

∑
m

e−ikxm . (C3)

Equations (C2) and (C3) have the exact same form as
Eqs. (B4) and (B5) if we replace β(t ) and αk (t ) by oper-
ators b̂(t ) and â†

k , respectively. Note that the Hamiltonian
(C1) describes the linear problem where a single harmonic
mode interacts with the continuum of harmonic modes in
an open waveguide. If we prepare all the harmonic modes
in coherent states initially, they will stay in coherent states
with coherent values β(t ) = 〈b̂(t )〉 and αk (t ) = 〈âk (t )〉 de-
scribed by Eqs. (B4) and (B5). Therefore, the EOM (B9)
for the atomic probability amplitude β(t ) and the EOM
(B11) for the single-excitation probability amplitude den-
sity ϕ(x, t ) also describe the classical dynamics for the
complex amplitude of a harmonic mode and the harmonic
field function [i.e., |ϕ(x, t )|2 is the field intensity] in the
waveguide.

APPENDIX D: SEARCHING FOR DARK MODES

To obtain the explicit solutions for β(t ), the central
problem is to solve Eq. (B17), i.e., find the roots of the tran-
scendental equation

s + i� − 1

2
Nγ + γ

N−1∑
l=0

(N − l )e−slτ = 0. (D1)

It can be proved that

G ≡
N−1∑
l=0

e−slτ = 1 − e−Nsτ

1 − e−sτ
(D2)

and
N−1∑
l=0

ne−slτ = − ∂G

τ∂s
= e−sτ − Ne−Nsτ + (N − 1)e−(N+1)sτ

(1 − e−sτ )2
.

(D3)
Thus, we have

N−1∑
l=0

(N − n)e−slτ

= N
1 − e−Nsτ

1 − e−sτ
− e−sτ − Ne−Nsτ + (N − 1)e−(N+1)sτ

(1 − e−sτ )2

= N − (N + 1)e−sτ + e−(N+1)sτ

(1 − e−sτ )2
. (D4)

Equation (D1) is simplified into

s + i� − 1

2
Nγ + γ

N − (N + 1)e−sτ + e−(N+1)sτ

(1 − e−sτ )2
= 0

(D5)
or, multiplied by τ (1 − e−sτ )2,[

sτ + i�τ − 1
2 Nγ τ

]
(1 − e−sτ )2

+γ τ [N − (N + 1)e−sτ + e−(N+1)sτ ] = 0. (D6)

The solution is determined by the dimensionless parameters
�τ , γ τ , and N . Although e−sτ = 1 satisfies Eq. (D6), it is
not the solution of Eq. (D1) since e−sτ = 1 gives sτ = −i2nπ

with integers n and Eq. (D1) then becomes i(�τ − 2nπ ) +
1
2 N2γ τ = 0, which cannot be satisfied for real � and finite
γ τ > 0.

We are interested in searching for the dark states corre-
sponding to a purely imaginary solution s. First, let us check
if s = −i� can be the dark mode. In this case, we have from
Eq. (D6)

2ei�τ [(ei�τ )N − 1] − N[(ei�τ )2 − 1] = 0. (D7)

For even integers N , we have the solution ei�τ = −1, indicat-
ing that, for even N and �τ = (2n + 1)π , s = −i� is indeed
a dark mode.

To find more dark states, we assume s = −i�n with a real
�n satisfying Eq. (D6). We then have the equation

2ei�nτ [(ei�nτ )N − 1] − N[(ei�nτ )2 − 1]

= i
2(�nτ − �τ )

γ τ
(1 − ei�nτ )2. (D8)

To simplify Eq. (D8) for finding dark states, we make the
ansatz that

(ei�nτ )N = 1 ⇒ �n = 2nπ

Nτ
, n ∈ Z. (D9)

Thus, we can cancel the first term on the left-hand side of
Eq. (D8) and obtain a simplified equation

−N[(ei�nτ )2 − 1] = i
2(�nτ − �τ )

γ τ
(1 − ei�nτ )2

⇒ 1 + ei�nτ

1 − ei�nτ
= i

2(�nτ − �τ )

Nγ τ
. (D10)

Using the identity (1 + ei�nτ )/(1 − ei�nτ ) = i cot(�nτ/2),
we have the resonant condition for dark state from the above
equation:

�τ = �nτ − 1

2
Nγ τ cot

(�nτ

2

)

= 2nπ

N
− 1

2
Nγ τ cot

(nπ

N

)
, n ∈ Z. (D11)

We label the dark mode by sn = −i�n with �n = 2nπ
Nτ

, n ∈
Z. The above Eq. (D11) is the Eq. (8) in the main text.
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APPENDIX E: FIELD INTENSITY DISTRIBUTION FOR A SINGLE BOUND STATE

In this Appendix, we derive Eqs. (10) and (11) in the main text. For a given dark mode sn = −i 2nπ
Nτ

, the corresponding
field intensity can also be calculated from Eqs. (4) and (9) in the main text. By parametrizing the position coordinate as x =
(m′ − 1)vτ + λvτ with m′ = 1, 2, . . . , N and λ ∈ [0, 1), we have pn(x) = p(x, t → +∞) and

p(x, t → +∞) = γ

2v

∣∣∣∣∣
∑

m

β(t − |x − xm|/v)�(t − |x − xm|/v)

∣∣∣∣∣
2

= γ

2v

(
1

1 + 1
2

Nγ τ

sin2(nπ/N )

)2∣∣∣∣∣
∑

m

exp

[
i
2nπ

Nτ

|x − xm|
v

]∣∣∣∣∣
2

= γ

2v

(
1

1 + 1
2

Nγ τ

sin2(nπ/N )

)2
1

4

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2[

1 − cos

(
2nπ

N
m′

)][
1 − cos

{
2nπ

N

[
m′ + 2

(
λ − 1

2

)]}]

= γ

2v sin2(nπ/N )

(
1

1 + 1
2

Nγ τ

sin2(nπ/N )

)2[
1 − cos

(
2nπ

N
m′

)][
1 − cos

{
2nπ

N

[
m′ + 2

(
λ − 1

2

)]}]

= 2γ

v

sin2 nπ
N(

2 sin2 nπ
N + Nγ τ

)2

[
1 − cos

(
2nπ

N
m′

)][
1 − cos

(
2kπ

N
[m′ + 2λ − 1]

)]

= 8γ

v

sin2 nπ
N(

2 sin2 nπ
N + Nγ τ

)2 sin2
(nπ

N
m′

)
sin2

[kπ

N
(m′ + 2λ − 1)

]
. (E1)

This distribution is valid for x between x1 and xN in the waveguide. We see that at the two ends of the giant atom, x1 = 0 (i.e.,
m′ = 1 and λ = 0) and xN = (N − 1)vτ (i.e., m′ = N and λ = 0), the intensity vanishes. When the position x is outside the
interval [x1, xm], since the sign of (x − xm) is fixed, the summation in the second line gives zero. This is reasonable since the
excitations outside the outermost coupling points will propagate away in the waveguide and never come back. The total field
intensity left in the waveguide for the given dark state sn = −i 2nπ

Nτ
can be calculated, in the long-time limit, by plugging β(t )

into the above equation, yielding

I (n) =
∫ xN

x1

pn(x) dx

= γ

2

(
1

1 + 1
2

Nγ τ

sin2(nπ/N )

)2 ∫ T

0

∣∣∣∣∣
∑

m

exp

(
i
2nπ

Nτ
|t ′ − τm|

)∣∣∣∣∣
2

dt ′. (E2)

Here, we have expressed the coordinates in terms of times, i.e., t ′ ≡ x/v and τm = (m − 1)τ with m = 1, 2, . . . , N . The
parameter T ≡ (N − 1)τ is the total traveling time from x1 to xN . By parametrizing t ′ = (m′ − 1)τ + aτ with a ∈ [0, 1), we
have∫ T

0

∣∣∣∣∣
∑

m

ei 2nπ
Nτ

|t ′−τm|
∣∣∣∣∣
2

dt ′ = τ

N∑
m′=1

∫ 1

0

∣∣∣∣∣
m′∑

m=1

ei 2nπ
Nτ

[(m′−m)τ+aτ ] +
N∑

m=m′+1

ei 2nπ
Nτ

[(m−m′ )τ−aτ ]

∣∣∣∣∣
2

da

= τ

N∑
m′=1

∫ 1

0

∣∣∣∣ei 2nπ
N (m′+a−1) − e−i 2nπ

N ei 2nπ
N a

1 − e−i 2nπ
N

+ ei 2nπ
N (1−a) − ei 2nπ

N ei 2nπ
N (N−m′−a)

1 − ei 2nπ
N

∣∣∣∣
2

da

= τ

N∑
m′=1

∫ 1

0

∣∣∣∣ei 2nπ
N (m′+a−1) − ei 2nπ

N (a−1)

1 − e−i 2nπ
N

− e−i 2nπ
N a − ei 2nπ

N (N−m′−a)

1 − e−i 2nπ
N

∣∣∣∣
2

da

= τ

∣∣∣∣ 1

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∫ 1

0

∣∣ei 2nπ
N (a−1)

(
ei 2nπ

N m′ − 1
) + e−i 2nπ

N a
(
e−i 2nπ

N m′ − 1
)∣∣2

da

= τ

∣∣∣∣ 1

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∫ 1/2

−1/2

∣∣ei 2nπ
N (a−1/2)

(
ei 2nπ

N m′ − 1
) + e−i 2nπ

N (a+1/2)
(
e−i 2nπ

N m′ − 1
)∣∣2

da

= τ

∣∣∣∣ 1

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∫ 1/2

−1/2

∣∣ei 2nπ
N a

(
ei 2nπ

N m′ − 1
) + e−i 2nπ

N a
(
e−i 2nπ

N m′ − 1
)∣∣2

da
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= τ

∣∣∣∣ 2

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∫ 1/2

−1/2

∣∣∣∣cos

(
2nπ

N
[m′ + a]

)
− cos

(
2nπ

N
a

)∣∣∣∣
2

da

= τ

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∣∣∣∣sin

(
nπ

N
m′

)∣∣∣∣
2 ∫ 1/2

−1/2

∣∣∣∣sin

(
nπ

N
[m′ + 2a]

)∣∣∣∣
2

da

= τ
1

2

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

∣∣∣sin
(nπ

N
m′

)∣∣∣2
∫ 1/2

−1/2

[
1 − cos

(2nπ

N
[m′ + 2a]

)]
da

= τ
1

2

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

sin2

(
nπ

N
m′

)[
1 − N

4nπ

(
sin

[2nπ

N
(m′ + 1)

]
− sin

[2nπ

N
(m′ − 1)

])]

= τ
1

4

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

[
1 − cos

(
2nπ

N
m′

)][
1 − N

2nπ
cos

(
2nπ

N
m′

)
sin

(
2nπ

N

)]
. (E3)

Using the identity
∑N

m′=1 cos ( 2nπ
N m′) = 0, we obtain

∫ T

0

∣∣∣∣∣
∑

m

ei 2nπ
Nτ

|t ′−τm|
∣∣∣∣∣
2

dt ′ = τ
1

4

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

[
1 − cos

(
2nπ

N
m′

)][
1 − N

2nπ
cos

(
2nπ

N
m′

)
sin

(
2nπ

N

)]

= τ
1

4

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

[
1 + N

2nπ
cos2

(
2nπ

N
m′

)
sin

(
2nπ

N

)]

= τ
1

4

∣∣∣∣ 4

1 − e−i 2nπ
N

∣∣∣∣
2 N∑

m′=1

[
1 + N

4nπ
sin

(
2nπ

N

)
+ N

4nπ
sin

(
2nπ

N

)
cos

(
4nπ

N
m′

)]

= τ

∣∣∣∣ 1

1 − e−i 2nπ
N

∣∣∣∣
2

4N

[
1 + N

4nπ
sin

(
2nπ

N

)]
= Nτ

sin2
(

nπ
N

)[
1 + N

4nπ
sin

(
2nπ

N

)]

= 2Nτ
1 + N

4nπ
sin

(
2nπ
N

)
1 − cos

(
2nπ
N

) . (E4)

Plugging the above result into Eq. (E2), we find the total field strength left in the waveguide:

I (n) = 2Nγ τ sin2
(

nπ
N

)
[
2 sin2

(
nπ
N + Nγ τ

)]2

[
1 + N

4nπ
sin

(
2nπ

N

)]
. (E5)

APPENDIX F: TOTAL FIELD INTENSITY OF AN OSCILLATING BOUND STATE

The total field intensity of an oscillating bound state with two coexisting dark states sn1 and sn2 is

I (n1, n2) = γ

2

∫ T

0

∣∣∣∣∣
∑

m

A(n1)e−i 2n1π

Nτ
(t−|t ′−τm|) + A(n2)e−i 2n2π

Nτ
(t−|t ′−τm|)

∣∣∣∣∣
2

dt ′

= γ τ

2

N∑
m′=1

∫ 1

0

∣∣∣∣∣A(n1)e−i 2n1π

Nτ
t

(
m′∑

m=1

ei 2n1π

Nτ
[(m′−m)τ+aτ ] +

N∑
m=m′+1

ei 2n1π

Nτ
[(m−m′ )τ−aτ ]

)

+ A(n2)e−i 2n2π

Nτ
t

(
m′∑

m=1

ei 2n2π

Nτ
[(m′−m)τ+aτ ] +

N∑
m=m′+1

ei 2n2π

Nτ
[(m−m′ )τ−aτ ]

)∣∣∣∣∣
2

da

= γ τ

2

N∑
m′=1

∫ 1

0

∣∣∣∣∣A(n1)e−i 2n1π

Nτ
t

(
ei 2n1π

N (m′+a−1) − ei 2n1π

N (a−1)

1 − e−i 2n1π

N

− e−i 2n1π

N a − ei 2n1π

N (N−m′−a)

1 − e−i 2n1π

N

)

+ A(n2)e−i 2n2π

Nτ
t

(
ei 2n2π

N (m′+a−1) − ei 2n2π

N (a−1)

1 − e−i 2n2π

N

− e−i 2n2π

N a − ei 2n2π

N (N−m′−a)

1 − e−i 2n2π

N

)∣∣∣∣∣
2

da
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= γ τ

2

N∑
m′=1

∫ 1

0

∣∣∣∣∣A(n1)e−i 2n1π

Nτ
t

1 − e−i 2n1π

N

[
ei 2n1π

N (a−1)
(
ei 2n1π

N m′ − 1
) + e−i 2n1π

N a
(
e−i 2n1π

N m′ − 1
)]

+ A(n2)e−i 2n2π

Nτ
t

1 − e−i 2n2π

N

[
ei 2n2π

N (a−1)(ei 2n2π

N m′ − 1
) + e−i 2n2π

N a
(
e−i 2n2π

N m′ − 1
)]∣∣∣∣∣

2

da

= γ τ

2

N∑
m′=1

∫ 1/2

−1/2

∣∣∣∣∣A(n1)e−i 2n1π

Nτ (t+ τ
2 )

1 − e−i 2n1π

N

[
ei 2n1π

N a
(
ei 2n1π

N m′ − 1
) + e−i 2n1π

N a
(
e−i 2n1π

N m′ − 1
)]

+ A(n2)e−i 2n2π

Nτ (t+ τ
2 )

1 − e−i 2n2π

N

[
ei 2n2π

N a
(
ei 2n2π

N m′ − 1
) + e−i 2n2π

N a
(
e−i 2n2π

N m′ − 1
)]∣∣∣∣∣

2

da

= γ τ

2

N∑
m′=1

∫ 1/2

−1/2

∣∣∣∣∣2A(n1)e−i 2n1π

Nτ (t+ τ
2 )

1 − e−i 2n1π

N

[
cos

(2n1π

N
[m′ + a]

)
− cos

(2n1π

N
a
)]

+ 2A(n2)e−i 2n2π

Nτ (t+ τ
2 )

1 − e−i 2n2π

N

[
cos

(2n2π

N
[m′ + a]

)
− cos

(2n2π

N
a
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2

da

= γ τ

2
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m′=1
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N
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sin
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N
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N
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e−i 2(n1−n2 )π
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1 − e−i 2n1π

N

)(
1 − ei 2n2π

N
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(n1π

N
m′

)
sin

(n2π

N
m′
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(n1π

N
[m′ + 2a]

)
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(n2π

N
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= I (n1) + I (n2) + γ τ
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N
m′
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N
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N
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)
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(
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N
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= I (n1) + I (n2) + 2γ τ
A(n1)A(n2)
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( n1π

N

)
sin
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N
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(
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Nτ
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)
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(n1π
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m′
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) ∫ 1/2
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(
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)
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N
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)
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sin

(
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)
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(
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N
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)
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× 1

2
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×
[

N

(n1 − n2)π
sin

(
[n1 − n2]π

N

)
cos

(
[n1 − n2]π

N
m′

)
− N

(n1 + n2)π
sin

(
[n1 + n2]π

N

)
cos

(
[n1 + n2]π

N
m′

)]

= I (n1) + I (n2) + 2Nγ τ
A(n1)A(n2)

4 sin
( n1π

N

)
sin

( n2π
N

)[
N

(n1 − n2)π
sin

(
[n1 − n2]π

N

)
+ N

(n1 + n2)π
sin

(
[n1 + n2]π

N

)]

× cos

(
2[n1 − n2]π

Nτ
t

)
. (F1)

Here, I (n) is defined by Eq. (E5). Using the condition in Eq. (12) in the main text, we finally obtain

I (n1, n2) = I (n1) + I (n2) − 2A(n1)A(n2)

[
1 + (n1 − n2) sin

( n1+n2
N π

)
(n1 + n2) sin

( n1−n2
N π

)]
cos

(
2[n1 − n2]π

Nτ
t

)
. (F2)

For the two dark modes �n1 = 2n1π/(Nτ ) and �n2 = 2n2π/(Nτ ), we have

�n1 + �n2 = 2(n1 + n2)π

Nτ

= �
2(n1 + n2)π

2n1π − 2(n1 − n2)π
cot ( n1π

N )
cot ( n1π

N )−cot ( n2π

N )

= �
2(n1 + n2)π

2n1π + 2(n1 − n2)π
cos ( n1π

N ) sin ( n2π

N )
sin ( [n1−n2]π

N )

= �
2(n1 + n2)π

2n1π + (n1 − n2)π
sin ( [n1+n2]π

N )−sin ( [n1−n2]π
N )

sin ( [n1−n2]π
N )

= �
2(n1 + n2)π

(n1 + n1)π + (n1 − n2)π
sin ( [n1+n2]π

N )
sin ( [n1−n2]π

N )

= 2�

1 + (n1−n2 ) sin ( n1+n2
N π )

(n1+n2 ) sin ( n1−n2
N π )

. (F3)

In the second step, we again used the condition in Eq. (12) in the main text. The final result is

I (n1, n2) = I (n1) + I (n2) − 4A(n1)A(n2)
�

�n1 + �n2

cos ([�n1 − �n2 ]t ), (F4)

which is exactly Eq. (15) in the main text.
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