
Requirements engineering challenges and practices in large-scale
agile system development

Downloaded from: https://research.chalmers.se, 2021-08-31 12:13 UTC

Citation for the original published paper (version of record):
KASAULI, R., Knauss, E., Horkoff, J. et al (2021)
Requirements engineering challenges and practices in large-scale agile system development
Journal of Systems and Software, 172
http://dx.doi.org/10.1016/j.jss.2020.110851

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

The Journal of Systems & Software 172 (2021) 110851

c
W
2
r
2
i
s
2
i
q
p
u
u
d
m

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Requirements engineering challenges and practices in large-scale agile
system development
Rashidah Kasauli a,∗, Eric Knauss a, Jennifer Horkoff a, Grischa Liebel b,
Francisco Gomes de Oliveira Neto a

a Department of Computer Science and Engineering, Chalmers | University of Gothenburg, Gothenburg, Sweden
b School of Computer Science, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland

a r t i c l e i n f o

Article history:
Received 26 February 2020
Received in revised form 20 August 2020
Accepted 21 October 2020
Available online 29 October 2020

Keywords:
Requirements engineering
Large-scale agile
Systems engineering

a b s t r a c t

Context: Agile methods have become mainstream even in large-scale systems engineering companies
that need to accommodate different development cycles of hardware and software. For such com-
panies, requirements engineering is an essential activity that involves upfront and detailed analysis
which can be at odds with agile development methods.
Objective: This paper presents a multiple case study with seven large-scale systems companies,
reporting their challenges, together with best practices from industry. We also analyze literature
about two popular large-scale agile frameworks, SAFe R⃝ and LeSS, to derive potential solutions for
the challenges.
Methods: Our results are based on 20 qualitative interviews, five focus groups, and eight cross-
company workshops which we used to both collect and validate our results.
Results: We found 24 challenges which we grouped in six themes, then mapped to solutions from
SAFe R⃝, LeSS, and our companies, when available.
Conclusion: In this way, we contribute a comprehensive overview of RE challenges in relation to large-
scale agile system development, evaluate the degree to which they have been addressed, and outline
research gaps. We expect these results to be useful for practitioners who are responsible for designing
processes, methods, or tools for large scale agile development as well as guidance for researchers.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Despite wide criticism, agile approaches have significantly
ontributed to the way software is developed (Meyer, 2014).
hile initially focused on small teams (Meyer, 2014; Kahkonen,
004; Beck, 2000; Paasivaara and Lassenius, 2016), success sto-
ies have led to their application at large-scale (Dikert et al.,
016; Lagerberg et al., 2013; Salo and Abrahamsson, 2008) and
n system development (i.e., large, complex systems which mix
oftware and hardware) (Eklund et al., 2014; Berger and Eklund,
015; Lagerberg et al., 2013), an environment that is character-
zed by long lead times (Berger and Eklund, 2015) and stable, se-
uential engineering practices (Pernstål et al., 2012). These com-
lex, agile environments often involve many challenges which fall
nder the umbrella of Requirements Engineering (RE), including
nderstanding product value, communicating product purpose,
ealing with cross-cutting concerns (Kasauli et al., 2017b), and
anaging requirements (Savolainen et al., 2010). Because of these

∗ Corresponding author.
E-mail addresses: rashida@chalmers.se (R. Kasauli), eric.knauss@cse.gu.se

E. Knauss).
ttps://doi.org/10.1016/j.jss.2020.110851
164-1212/© 2020 The Authors. Published by Elsevier Inc. This is an open access art
and other challenges, companies struggle to implement efficient
RE in a large-scale agile context (Laanti et al., 2011; Wiklund et al.,
2013; Chow and Cao, 2008).

Existing work looking at RE-related challenges arising from
agile methods, i.e. agile RE (e.g., Ramesh et al., 2010; Heikkilä
et al., 2017; Bjarnason et al., 2011), mostly focus on proposing
new approaches, practices, and artifacts (Heikkilä et al., 2015).
There is however a lack of empirical studies that investigate the
phenomenon of RE in relation to agile methods, particularly in the
domain of large-scale system development (Heikkilä et al., 2017;
Heikkilä et al., 2015; Inayat et al., 2015). This gap is a major obsta-
cle when transitioning to agile system development at scale, con-
sidering the extraordinary demands on long-term maintenance,
synchronization of different development cycles (e.g. between
hardware, mechanics, and software), and often safety concerns
of today’s systems. Therefore, in this work we report the RE-
related challenges of large-scale agile system development and
their solution candidates.

Through a multiple case study of seven large-scale system de-
velopment cases, based on five focus groups, eight cross-company
workshops and 20 semi-structured interviews, as well as a review
of state-of-the-art large-scale agile frameworks, this paper makes
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2020.110851
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110851&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rashida@chalmers.se
mailto:eric.knauss@cse.gu.se
https://doi.org/10.1016/j.jss.2020.110851
http://creativecommons.org/licenses/by/4.0/

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

t
a
d
f
k
i

l
a
w
p

p
T
b

e
d

t
w
a
a
c
t
S

2

v
p
d
p
b
e
a
d
i
r
s

2

s
2
s
n
s
r
a
a
f
e
m
a
n
t
c
a
t
t
J
p
l

hree contributions from an RE perspective. First, we present
report of industrial RE challenges related to applying agile
evelopment in large-scale systems. The identified challenges
all roughly into the areas of building and maintaining shared
nowledge, representing that knowledge, as well as integrating
t into the process and organization.

Second, the paper provides candidate solutions to the chal-
enges identified under each of the challenge areas. The solutions
re obtained from the use of established large-scale agile frame-
orks and additional solutions from best practices in industry
rovided by our industry partners.
Finally, we are also highlighting the need for systematic ap-

roaches to engineering requirements, even in an agile context.
hus, we hope that our work helps to establish RE practices that
etter support agility within large-scale system development.
This paper revises and extends our previous work (Kasauli

t al., 2017b) by two more six-month iterations with three ad-
itional companies.
This paper is organized as follows. In Section 2, we discuss

he background of large-scale agile development and the related
orks to our study. Section 3 presents the research questions
s well as the methodology we used including data collection,
nalysis and validity threats. We provide study context and case
ompany agile pervasiveness in Section 4. In Section 5, we report
he results to our research questions. We discuss our results in
ection 6, before concluding our article in Section 7.

. Related work

We refer to large-scale agile system development as the de-
elopment of a product consisting of software, hardware and
otentially mechatronic components that includes more than six
evelopment teams (Dikert et al., 2016) and is aligned with agile
rinciples (Meyer, 2014). To that effect, this section discusses the
ackground of RE and agile development in large-scale systems
ngineering companies. We start by giving the background of
gile development in large-scale systems engineering. We then
iscuss the background of RE and agile development while also
dentifying related works in that context. A summary of the
elated work with respect to our research then concludes the
ection.

.1. Large-scale Agile

Agile methods like Scrum and XP are being adopted in large-
cale system development companies (Salo and Abrahamsson,
008), even though they were originally intended for use on a
mall scale (Kahkonen, 2004; Beck, 2000; Paasivaara and Lasse-
ius, 2016). Existing work on this topic shows that companies
uccessfully adopt agile methods, but that several challenges
emain. In a survey with 13 organizations in 8 European countries
nd 35 individual projects on the adoption of XP and Scrum, Salo
nd Abrahamsson (Salo and Abrahamsson, 2008) report success-
ul adoption of these methods and appreciation among practition-
rs. Lindvall et al. (2004) study the potential of adopting agile
ethods with ABB, DaimlerChrysler, Motorola, and Nokia. The
uthors’ conclusion is that, overall, agile methods could suit the
eeds of large organizations, in particular for small and collocated
eams. However, integrating agile into the company environment
ould be challenging. Lagerberg et al. (2013) report based on
survey at Ericsson that applying agile on a large scale facili-

ated knowledge sharing and effective coordination. Additionally,
hrough a questionnaire based survey of 101 Norwegian projects,
ørgensen (2018) analyze agile methods’ use for large software
rojects and conclude that increased use of agile methods in

arge-scale projects reduces failure risk.

2

In a systematic literature review on the adoption of agile
methods at scale, Dikert et al. (2016) identify 35 challenges,
e.g., coordination in a multi-team environment with hierarchi-
cal management and organizational boundaries. In a structured
literature review on challenges of large-scale agile, Uludag et al.
(2018) identify 79 stakeholder specific challenges e.g., coordinat-
ing multiple agile teams that work on the same product, which
was deemed specific to program managers. In a position paper
by Eklund et al. (2014), research challenges of scaling agile in
embedded organizations are presented. These challenges include,
e.g., coordination of work between agile teams or taking into
account existing ways of working for systems engineering. Simi-
larly, Berger and Eklund (2015) present, based on a survey with
46 participants, expected benefits and challenges of scaling agile
in mechatronic organizations, including efficiently structuring the
organization, understanding of agile along the value chain, and
adaptation to frequent releases.

In an attempt to address these challenges, several compa-
nies are adopting large-scale agile frameworks (Ebert and Paa-
sivaara, 2017) such as Scaled Agile Framework (SAFe R⃝) (Leff-
ingwell, 2010; Knaster and Leffingwell, 2017) and Large-Scale
Scrum (LeSS) (Larman and Vodde, 2016). These frameworks of-
fer a series of practices, principles, and methods for large-scale
agility, e.g., sprint-review bazaars, enabler user stories, guilds
and chapters. Given the attention that these large-scale agile
frameworks currently receive, we aim in this paper to discuss RE-
related challenges with the principles and practices suggested by
SAFe R⃝ and LeSS. We avoid giving a full summary of these complex
frameworks here, but refer to and briefly describe various specific
practices and principles which address our identified challenges.

2.2. RE and Agile

In the past, agile methods and requirements were often per-
ceived as conflicting, particularly if RE is seen narrowly as a set
of ‘‘the system shall...’’ statements, which agile’s de-emphasis on
documentation recommends to avoid. However, RE is a wide
field covering requirements of all formats, implicit or explicit,
including sharing and coordination of functionality, quality, or
value-related knowledge. Although there is less work on the
relationship between agile and RE, compared to work focusing
solely on agile, existing work has commented on synergies and
conflicts of traditional RE thinking with agile methods.

Based on a mapping study with 28 analyzed articles, Heikkilä
et al. (2015) find that there is no universal definition of ag-
ile RE. Furthermore, they report several problematic areas in
agile RE such as the use of customer representatives, prioritiza-
tion of requirements or growing technical debt. In a case study
by the same authors at Ericsson, the flow of requirements in
large-scale agile is studied (Heikkilä et al., 2017). Perceived ben-
efits include increased flexibility, increased planning efficiency,
and improved communication effectiveness. However, the au-
thors also report problems such as overcommitment, organizing
system-level work, and growing technical debt. Similarly, Bjarna-
son et al. (2011) investigate the use of agile RE in a case study
with nine practitioners at one large-scale company transitioning
to agile. The authors report that agile methods can address some
classical RE challenges, such as communication gaps, but cause
new challenges, such as ensuring sufficient competence in cross-
functional teams. In a case study with 16 US-based companies,
Ramesh et al. (2010) identify risks with the use of agile RE.
These are, e.g., the neglection of non-functional requirements or
customer inability. A systematic literature review on agile RE
practices and challenges reports eight challenges posed by the
use of agile RE (Inayat et al., 2015), such as customer availability
or minimal documentation. However, the authors also report 17

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

c
o
r

t
p
d
w
c
i
i
e
t
o
(
o

2

o
s
a
e
s
t
a
p
l
c
e
a

2
i
p
a
s
b
p
a
a
s
c
r

a
a
c

n
i

i

1
u
w
t
e
(
w
b
a
c
i
d

hallenges from traditional RE that are overcome by the use
f agile RE. The authors conclude that there is more empirical
esearch needed on the topic of agile RE.

Other studies have addressed the use of traditional RE prac-
ices and agile RE. Paetsch (Paetsch et al., 2003) provide a com-
arison between traditional RE approaches and agile software
evelopment while identifying possible ways in which agile soft-
are development can benefit from RE methods. The authors
onclude that agile methods and RE are pursuing similar goals
n key areas like stakeholder involvement. The major difference
s the emphasis on the amount of documentation needed in an
ffective project. Meyer, in contrast, regards the relationship be-
ween RE and agile more critical, describing the discouragement
f upfront analysis and the focus on scenario based artifacts
i.e. user stories) as harmful (Meyer, 2014), however not based
n empirical data.

.3. Summary of related work

In summary, there is substantial existing work on the adoption
f large-scale agile in system development, including empirical
tudies. However, existing work either focuses on identifying
nd evaluating agile RE practices (Heikkilä et al., 2015; Inayat
t al., 2015), or at presenting the current state of practice at
ingle companies (Heikkilä et al., 2017) and without explicitly
argeting system development (Bjarnason et al., 2011). Hence,
dditional empirical work is needed to understand the com-
lex phenomenon of agile methods and RE in the domain of
arge-scale system development. Our study contributes with a
ross-case analysis of large-scale agile development. The study
xtends our preliminary work presented in Kasauli et al. (2017b)
s follows:

• We refined and expanded the catalog of challenges by talk-
ing to the initial four companies plus additional three com-
panies with comparable context.

• We used the expanded catalog to run a workshop on RE
practices in large-scale agile system development where
companies described their ways of working, relating to
the challenges. This activity contributed new potential best
practices.

• We analyzed documentation of SAFe R⃝ and LeSS to under-
stand to what extent we can rely on these scaled frame-
works for addressing our challenges. The analysis together
with feedback from the workshop provided potential solu-
tions to our identified challenges.

3. Research methodology

We have conducted our multiple-case study (Runeson et al.,
012) in two rounds with several points of elicitation and val-
dation in each round. Overall, the elicitation took place over a
eriod of two years, with data analysis and writing continuing for
nother year. In Round 1, we investigated four companies with a
eries of focus groups and interviews, the results of which have
een summarized in Kasauli et al. (2017b). In Round 2, new to this
aper, we continue to investigate the four original companies,
nd a further three companies, running a series of cross-company
nd individual company workshops — gathering challenges and
olutions and presenting and validating our findings with the case
ompanies. The final results provide insights regarding our two
esearch questions:

RQ1: Which requirements-related challenges exist in large-scale
gile system development? Given the scope of agile development
t the different case companies, we categorize and describe the
hallenges provided by our case companies.
3

RQ2: Which approaches have been proposed in popular litera-
ture and which approaches are used by practitioners to address
the challenges identified in RQ1? Using the results from RQ1 as
a benchmark, we aim to provide a set of solutions from pro-
posals presented by practitioners as well as those offered by
well-known large-scale agile frameworks, particularly LeSS (Lar-
man and Vodde, 2016) and SAFe R⃝ (Knaster and Leffingwell,
2017).

3.1. Case companies

Our study includes one telecommunications company (re-
ferred to as Telecom in this paper), two automotive compa-
ies (Automotive 1 and 2), one company developing software-
ntensive embedded systems (Technology 1), another technol-
ogy and engineering company (Technology 2), one manufacturing
company (Manufacturing) and one processing company (Process-
ng). Both Manufacturing and Processing have significant software
components. All seven cases represent large, international com-
panies developing products and systems that include a significant
amount of software, hardware, and typically mechanical compo-
nents. All case companies have experience with agile software
teams and have the goal to further speed up the development
of their software-intense systems. We elaborate on the specific
cases in Section 4.

3.2. Sampling and data collection

In order to answer our research questions, we collected data
both from our company cases and from the literature concerning
scaled agile frameworks. Generally, we relied on semi-structured
interviews (one or more interviewers interact with one or more
interviewees based on an interview guide), workshops (a group
meets to jointly work on creating a defined result), and focus
groups (for a given scope, representative stakeholders are invited
to discuss current challenges and future opportunities). In order
to coordinate the multiple-case study, we relied on special cross-
company workshops (XComp WS) for scoping of work, validation
of results, and planning of next steps across participating compa-
nies. The elicitation and validation for this study was conducted
in two rounds as elaborated in Sections 3.2.1 and 3.2.2.

3.2.1. Round one elicitation and validation
Fig. 1 gives an overview of our research design for the first

round of elicitation and validation, as presented in Kasauli et al.
(2017b), and Table 1 presents a summary of the individual elici-
tation events.

Starting from a common case study design and common re-
search questions, we conducted a cross-company scoping work-
shop (XComp 1 Scoping WS) to secure commitment from par-
ticipating companies, align the goals of the study and finalize
the research design. We then scheduled individual scoping work-
shops (Scoping WS) with each company, except for Technology

which, despite genuine interest in the study, could not free
p resources for this study at that time. During these scoping
orkshops, we selected with the help of our company contacts
he most appropriate case in terms of availability and available
xperience on the topic, e.g., a specific product or component
partially) developed with the use of agile methods. These cases
ere selected to accommodate two aspects: variation to allow
etter generalization of results and convenience, since there was
n interest to investigate the research questions in each particular
ase. This allowed us to cover a variety of perspectives dur-
ng data collection, i.e., system overview, customer experience,
evelopment, integration, and testing.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851
Table 1
Data sources first round (reported in Kasauli et al., 2017b).
Type Company Role(s) Label

Focus group Telecom 2xTest Architect, System Manager FG-1
Focus group Automotive 1 Process Manager, Specialist Platform Software FG-2
Focus group Telecom 2xTest Architect, System Manager FG-3
Focus group Automotive 2 System Responsible, 2x Function Owner,

System Quality Engineer
FG-4

Focus group Technology 1 RE Change Agent, Chief Engineer FG-5

WS Automotive 1 Verification Manager, Specialist Platform
Software

XComp 1

Telecom Test Architect, System Manager
WS Automotive 1 Verification Manager, Specialist Platform

Software
XComp 2

Telecom Test Architect, System Manager
Automotive 2 Test Architect, System Manager
Technology 1 Chief Engineer Software

Int Telecom Test Architect (TA), System Manager (SysM)
x2, Developer (T-Dev), Scrum Master (ScrM),
Area Product Owner (APO), Operational
Product Owner (OPO),

T-*

Int Automotive 1 Safety Technology Specialist (TS), A1-TS

Int Automotive 2 Component Design Engineer (CDE),System
Design Engineer (SDE), Function Owner x2
(FO), Software Developer x2 (SD), Product
Owner (PO), Scrum Master (SM), System Tester
(ST), Functional Tester (FT), Software Quality
Expert (SQE)

A2-*

Int Technology 1 Requirements responsible Tec-SRR
Table 2
Data sources second round.
Type Company Role(s) Label

WS All companies invited Many roles, see below XComp PV
WS Telecom Verification Manager, System Architect TelWS

WS Technology 1 Project Manager, Chief Engineer, Requirements
Manager, Technical Integrator (2x), Product
Manager

TechWS

WS Automotive 2 Project Manager (Process/Methods/Tools) 3x
(OD, SW-Dev, Sys-Dev), Technical Expert

Auto1WS

WS Manufacturing Project Manager x2, Chief Engineer, Electronic
Developer, Technical Integrator x2

ManWS

WS Processing System Engineer x3, Technology Specialist x2,
Project Manager, Requirement Manager

ProcWS

WS Telecom, Technology 1, Technology 2,
Automotive 1, Automotive 2,
Processing

Toolchain and Processes, Requirements Expert,
Process/Method/Tools(SysEng) x4,
Process/Methods/Tools (SW) SW Reqt Eng. x3,
Architect x2, System Manager

XComp 3

WS Telecom, Technology 1, Technology 2,
Automotive 2

System Engineer x2, Agile Team Lead, Product
Owner x2, Agile Expert x2, Requirements
Engineer x3

XComp 4
Fig. 1. Overview of multiple case study research design — Round 1.
 a

4

Upon selecting the appropriate case, we started data collection
through the use of interviews and focus groups. Our generic data
collection instrument for Round 1 of our study can be found
online.1 Data collection was adjusted according to each individual
case based on resource availability and commitment. For instance,
the Telecom case relates to a large product development by many
Scrum teams and we relied on a focus group followed by in-
terviews (denoted Int in the figure) with a variety of roles (see
Table 1). In contrast, the Automotive 1 case relates to one Scrum
team and we chose a focus group with the entire team, comple-
mented with an interview of a safety expert. Interviews lasted
approximately one hour and followed a similar interview instru-
ment for all companies with domain specific adjustments for each
company. For focus groups and cross-company workshops we
scheduled three hours.

1 http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/KGLKK_re_
gile.pdf.

http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/KGLKK_re_agile.pdf
http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/KGLKK_re_agile.pdf

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

3

w
w
o
m
c
i
o
T
u
c
y
c

P
v
c
w
T
n
c
t
a
d
h
f
P
s
t

s
l
a
l
m
2
a
t
d
o

X
s
w
i

S

Fig. 2. Overview of multiple case study research design — Round 2.

.2.2. Round two elicitation and validation
In the second round of data collection, summarized in Fig. 2,

ith elicitation events listed in Table 2, we relied mainly on
orkshops to expand and validate our data. We did Round 2
ver a period of one and a half years divided into three six-
onth cycles (each column in Fig. 2). This round includes regular
ross-company workshops, labeled XComp PV (Planning and Val-
dation), that served as checkpoints to validate our findings with
ur industry partners and plan together the upcoming cycles.
hese XComp PV workshops gave us an opportunity to contin-
ally present our findings, receiving feedback. Round 1 (Fig. 1)
overs six months and Round 2 (Fig. 2) covers one and a half
ears, making a total of two years composed of four 6-month
ycles for the entire investigation.
We started Round 2 with a cross-company workshop (XComp

V) at which we presented and received feedback on our pre-
ious findings, making plans for further investigation with each
ompany. We then conducted a number of individual workshops
ith each company, following a standard workshop instrument.2
he general purpose of the instrument was to both orient the
ew companies to the project and to go through the RE-related
hallenges found in the previous round of the study. In order
o make the workshops more concrete, we elicited RE-related
rtifacts (e.g., product backlogs, feature descriptions), and un-
erstood how each artifact would relate to the challenges we
ad discovered. Using this instrument as a guide, we conducted
ive company workshops (TelWS, TechWS, Auto1WS, ManWS,
rocWS) confirming, expanding and collecting challenges and
olutions. Each workshop lasted three hours and was hosted by
he case company.

At this stage, with a tentative list of challenges and potential
olutions from industry, we sought for solutions from available
iterature. In order to extract potential solutions provided in liter-
ture for large-scale agile development, we selected two popular
arge-scale agile frameworks to include in our analysis: LeSS (Lar-
an and Vodde, 2016) and SAFe R⃝ (Knaster and Leffingwell,
017). Two authors read both sources and independently created
matrix relating challenges found with our companies to po-

ential solutions suggested by either source. Our matrices were
iscussed and merged, and the results are presented as part of
ur findings, addressing RQ2.
We then conducted two, full day cross-company workshops,

Comp 3 and XComp 4, with a focus on finding and developing
olutions and strategies to our discovered challenges. At these
orkshops, we presented an overview of current findings, includ-

ng updated challenges, collected solutions from the companies,

2 http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/SWC27-
print12-Interview-Instrument.pdf.
 h

5

and the challenge-solution matrix obtained from the analysis of
scaled agile frameworks, then discussed companies’ RE practices
via individual presentations and a world cafe3 focusing on se-
lected issues. Depending on availability, not all case companies
could send representatives to each workshop, but each workshop
had at least four companies represented (see Fig. 2).

3.3. Data verification

Not all researchers participated in all interviews, workshops
and focus groups. In Round 1 we had one dedicated researcher
present in all data collection events. In Round 2, we had at
least two out of three principle investigators present in all work-
shops, after calibrating our efforts via our research instrument.
We recorded interviews and focus groups where possible and had
at least two researchers take notes otherwise. Collected data was
verified at multiple points with case company representatives
through follow-up workshops.

3.4. Data analysis

For data analysis, we relied on a thematic coding approach
(Gibbs, 2008). For each case in Round 1, at least two researchers
familiarized themselves with the data and highlighted notewor-
thy statements and assigned a label or code to each. Based on a
card sorting approach, the authors of Kasauli et al. (2017b) dis-
cussed and iteratively combined codes into 30 candidate themes,
from which we derived four high-level clusters containing 3–5
themes each. In our expanded data collection, we processed the
material collected from company workshops in the same manner,
i.e., with two researchers sorting and updating findings to create
the updated list of issues and solutions presented in Section 5.
In order to validate the clusters in each round, we discussed
the outcome of our analysis in a reporting workshop (XComp 2
Validation WS for Round 1 and XComp PV for Round 2) with all
participating companies.

As an example of our coding process, in Round 1, interview
A2-PO said the following, ‘‘I don’t think traceability is not re-
quired or something like that. It’s just that my focus hasn’t been
on documenting the function’’. These and other quotes led to
the creation of code (challenge) ‘C3.c Creating and Maintaining
Traces’. In Round 2, as part of our discussions with Manufac-
turing , we made the note ‘‘Reusable modules = requirements
and solutions’’, providing a potential solution for our earlier C3.c
challenge. These and other items are described in Section 5.3.3.
As a third example, our notes from the ProcWS included the
following statement: ‘‘Product focus means little reuse of require-
ments. How to reuse existing requirements in a new product?
Beyond copy and paste..’’.. This and other supporting quotes and
notes caused us to create a new code (challenge), compared to
the Round 1 results in Kasauli et al. (2017b), ‘C2.c Avoid Re-
specifying, Encourage Re-use’, and is integrated with the other
explanatory text in Section 5.2.3.

Overall, comparing Round 1 to Round 2, we re-worded and
re-organized several challenges, as well as adding many new cat-
egories and sub-categories. Of the six challenge categories with
24 sub-challenges presented in this work, two of the challenges
categories and roughly 11 of the sub-categories appeared already
in the Round 1 results (details can be found in Kasauli et al.
(2017b)). As such, roughly half of the challenges arose in Round 2,
and are new to this work. Overall, due to the extensive changes,
categories and challenges from Round 1 appear in a more elab-
orate context and are adjusted accordingly, which makes a clear
mapping between Round 1 and Round 2 results difficult.

3 The world cafe method allows to effectively host large group discussions
ttp://www.theworldcafe.com/key-concepts-resources/world-cafe-method/.

http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/SWC27-Sprint12-Interview-Instrument.pdf
http://www.cse.chalmers.se/~knauss/2020-AgileREChallenges/SWC27-Sprint12-Interview-Instrument.pdf
http://www.theworldcafe.com/key-concepts-resources/world-cafe-method/

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

y
w
(
s
s
a
l
m
S
t
i
u

3

g
c
c
b
t
p
a
n
p
f
s
e

o
V
f
a
c

o
t
l
r
W
w
t
f
h
e
a
s
w

p
r
k
w
c
e
f
l
f
t
l
c
m
m
a
m

g
p
c
u
c
s
l

w
c
s
t
a
w
t
l

o
h
c
l
c
s

4

g
l
o
p
s
i
b
c

e
h
c
a
b

t
c
w
a
v
m
f
t
p
v
p

T
o
a

Once the challenges were established, we repeated the anal-
sis process going through material collected from company
orkshops and the LeSS (Larman and Vodde, 2016) and SAFe R⃝

Knaster and Leffingwell, 2017) sources, looking for potential
olutions which mapped to our identified challenges. Two re-
earchers did this mapping individually. The results were merged
nd differences discussed. Section 5 presents both the chal-
enges, updated from Kasauli et al. (2017b), along with potential
apped solutions, extracted from the company interactions and
AFe R⃝ and LeSS materials. This list of potential solutions, mapped
o challenges, was also presented back to company participants
n a cross-company workshop, collecting feedback and making
pdates to the findings.

.5. Threats to validity

By design, the external validity of case studies is low. Hence,
eneralization of our findings might not be possible to different
ompanies or domains. In particular, we cannot reason about
hallenges for small-scale or pure software development. We
elieve that while some challenges might be visible there as well,
hey can likely be managed ad hoc or within the scope of agile
ractices. We designed our study to identify common challenges
cross participating companies. Thus, our research method does
ot support any deep argument about differences between com-
anies, domains, and market positions. However, given that we
ound similar themes in all cases, we expect that these apply
imilarly to other companies or projects in large-scale systems
ngineering.
To increase internal validity, we regularly discussed the results

f our analysis in multiple cross-company workshops (XComp 2
alidation WS, XComp PV). The workshops included key roles
rom each company that were already involved in the study. We
lso used the workshops to discuss underlying root causes and
hallenges that are shared by all companies.
To avoid a too restricted view on smaller parts of a project

r a product, we selected interviewees from different parts of
he development, including at least one team and several system
evel roles in each case. Workshops often involved a variety of
oles from a variety of divisions/areas within the companies.
e relied on a convenience sample and companies provided us
ith access to dedicated company experts in the areas of agile
ransformation and RE, with a genuine but diverse interest in the
ield. While we hope that this improved internal validity, it might
ave introduced a selection bias, which we tried to mitigate by
ncouraging participation of both proponents and opponents of
gile/RE. Our contact persons at the case companies all have sub-
tantial knowledge in the area of agile transformation. Therefore,
e expect that they were able to select suitable participants.
To mitigate threats to construct validity, we designed and im-

roved the interview guides in multiple iterations and with cor-
espondence from the company contacts that, as mentioned, are
nowledgeable with agile transformation. During the interviews,
orkshops and focus groups, we gave explanations where con-
epts were not clear and asked participants or interviewees for
laborations in case of an ambiguous answer. Data was collected
rom multiple sources including different companies and existing
iterature (SAFe R⃝ and LeSS) which helped us ensure we identi-
ied the challenges correctly. During data analysis, we used data
riangulation between interviews, company workshops, and the
iterature. Further, in case of ambiguous statements, we would
ontact the interviewee or include a discussion of these state-
ents in the next XComp workshop. While it is important to
aintain a chain of evidence from the data to findings, we did not
ttempt to connect all found challenges to specific cases. Since
any data points came from cross-company workshops or focus
6

roups with many participating companies, it was not always
ossible to clearly decide which company had this challenge. We
ould have tried to establish these connections, e.g., by following
p with a survey. However, we refrained from doing so to avoid
onfirmation bias or bandwagon effect, i.e., that company repre-
entatives would agree to challenges simply because they sound
ikely and because others experience them as well.

Reliability is hard to achieve in qualitative studies. However,
e tried to describe our study design, in particular the data
ollection and analysis procedures, in a detailed fashion and
hared the various instruments used for data collection. At least
wo researchers were involved in all interviews, focus groups,
nd workshops, to reduce the impact of subjectivity. Similarly,
e analyzed all data involving at least two researchers at a
ime. With all case companies, we have a prolonged involvement
eading to mutual trust among the parties.

The potential solutions proposed in Section 5 are based on
ur own reasoning, claims in related work (that these solutions
elp with a certain challenge), and on discussions with the case
ompanies. Thus far, we have not applied the solutions from the
iterature in the case companies, or solutions suggested by one
ompany in further companies. Further validation of the collected
olutions is needed.

. Study context: Pervasiveness of Agile development

Before answering the RQs as outlined in Section 3, we need to
et an overview of how the case companies work with agile in a
arge-scale, setting the context of the study. For this, we analyzed
ur collected data and confirmed our summaries with the com-
any representatives. We found it challenging to characterize the
tate of agility in potential case companies. Especially at scale,
t becomes very hard to give an overview of concrete practices
eing applied within a development organization. As one of our
ompany contacts stated:

‘‘I suspect that our organization is very agile when judged on what is found on
powerpoint level, but hardly agile at all when judged on how agile practices
are implemented.’’ — Anonymous interviewee

The challenges we discuss in this paper may offer potential
xplanations for why adopting satisfactory agile practices is so
ard. They should not be seen as challenges that only occur once a
ompany has completely transitioned to agile, but more generally
s challenges that companies need to consider when they aim to
e agile.
In addition to the practices being followed, we found it impor-

ant to distinguish how widespread agile approaches are in the
ompany. Fig. 3 is a simplified visualization of the different states
e found within the case companies. For some, agile practices
re only applied by software teams, for others, they span the de-
elopment of complete functions (incl. hardware and potentially
echanics), and for some, the full development organization aims

or continuous and agile development. Note that not only do
he companies differ in the way they (aim to) implement agile
ractices, but that there is also a huge variation within the indi-
idual companies’ products, services and structures. This section
rovides an overview of the contexts of our case companies.

elecom company. The Telecom case relates to the development
f one major product. More than 30 Scrum teams develop in par-
llel based on a scaled agile approach (adapted from SAFe R⃝ Leff-

ingwell et al., 2014). Scrum sprints are based on a backlog and
a hierarchy of product owners breaks down product require-
ments and customer visible features to backlog items. While
these product owners represent the customer requirements to-
wards the product development, system managers represent a

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851
Fig. 3. Different scopes of agile development within system development and a
typical V model. (Light gray box denotes RE, arrows indicate how requirements
are used for informing developers about what to implement, testers about what
to test, and for documenting the system for maintenance. Three black boxes
show the different agile scopes discussed in this case study.).

system requirements perspective. The overall effect is a contin-
uous development stream and feature flow, which is supported
by a powerful infrastructure that enables continuous integra-
tion and testing. Pre-development generates knowledge about
new features, which enables effective planning for continuous
delivery.

Particular to the Telecom case, hardware development is
largely decoupled from the software development. New hardware
becomes available with a regular, but low frequency. Thus, the
software development sets the pace of system development,
which can be seen as continuous and agile, in that it embraces
agile values as much as possible. In Fig. 3 this is shown by the
largest outer box encompassing the entire V model, which implies
that the whole scope of a traditional V model is covered.

Automotive company 1. In Automotive 1, agile methods have been
successfully applied to in-house development of software compo-
nents. In the light of growing competition from software-centric
companies, e.g., on autonomous driving, there is a desire to scale
up these fast-paced approaches from developing software com-
ponents to developing complete functions, thus including agile
development of hardware and mechatronic. The selected case is
a pilot project that re-implements a whole customer function
in an agile way. Integration of this function into a real vehicle
requires additional verification with respect to safety and overall
system behavior. Thus, we would characterize this situation with
the second largest box in Fig. 3, where a function owner takes
responsibility for one particular function and implements it with
an agile team.

Automotive company 2. With Automotive 2, we selected a case
responsible for safety critical functionality developed in house.
As with Automotive 1, agile teams develop software within a de-
velopment process that still corresponds to the V model. Within
the agile software teams, software requirements are transformed
into backlog items. In order to speed up development of this
differentiating functionality, different measures have been taken
to speed up the overall system development, such as introducing
a shared information model that supports storing requirements,
design elements, tests, and implementation models throughout
the system development. Since this helps shortening develop-
ment time significantly, participants referred to this approach as
narrow V model (comparable to agile loop in Eklund et al., 2014)
in FG-4. In Fig. 3, we describe this as the smallest box, not to
refer to overall development speed, but to the fact that hand-
over between plan-driven and agile development happens on a
low level of abstraction.

Technology company 1. Technology 1 develops mechatronic prod-
ucts, both for consumer markets and for industrial development
and manufacturing, as well as for OEM system integrators. Their
7

system development is decomposed into several system ele-
ments. Software development is mostly confined to two of these
elements, both of which are characterized by agile methods and
practices such as Scrum and Continuous Integration. As with
Automotive 2, we refer to this situation with the smallest box in
Fig. 3, as Technology 1 enables agile work of more than 20 Scrum
teams within a plan-driven system development organization.

Technology company 2. Technology 2 develops advanced systems
both for consumer markets and for OEMs, including systems
that are safety critical. In order to better serve their customers,
Technology Company 2 is increasing their agile development com-
petency. Especially for interacting with OEMs, this entails chal-
lenging established ways of working throughout the company,
and at the time of this investigation, we discussed agility on the
scale of a full customer project.

Manufacturing company. The Manufacturing company, develops
high-tech products of supreme complexity and very large soft-
ware parts for the medical domain. In order to decrease lead-time
for delivering new features and to increase throughput, continu-
ous development paradigms have been embraced throughout the
R&D department. Agile principles and practices are considered
on all levels, yet must be carefully considered due to regulatory
requirements and the very large scale of the development effort.
The software development is to a good extent independent from
hardware development cycles and can be considered very large
scale. It is increasingly organized according to large-scale agile
development frameworks and continuous software development
paradigms and at this scale, we would characterize its level of
agility to correspond with the second largest box in Fig. 3.

Processing company. The processing company, Processing , of-
fers components, services, and management for production and
factories. Services provide detailed intelligence about physical
processes within a factory or plant. The company has adopted
agile ways of implementing software based services, which how-
ever rely on capabilities of physical components within a factory
or plant. Thus, the scope of agility roughly relates to the smaller
box of Fig. 3, when considering a complete facility as the system.

Summarizing the seven cases, we recognize that some case
companies have come a long way towards continuous software
engineering and enterprise-wide adoption of agile (Ståhl and
Bosch, 2014). Others are currently moving in that direction. Our
research aims for common themes, regardless of the pervasive-
ness of agile adoption or agile maturity (which we did not ex-
plicitly investigate in this study). In the analysis of interview and
workshop data, we uncovered challenges and practices that relate
to the application of agile methods in these contexts, described in
the next section.

5. Challenges and potential solutions (RQ1 and RQ2)

With respect to RQ1, we see 24 challenges that we group into
six areas of challenges: Build and Maintain Shared Understanding of
Customer Value, Support Change and Evolution, Build and Maintain
Shared Understanding about System, Representation for Require-
ments Knowledge, Process Aspects and Organizational Aspects. For
each challenge, we also discuss potential solutions from literature
and practice to answer RQ2.

In this section, we present the challenges along with solutions
candidates from SAFe R⃝ and LESS, and, when available, solutions
suggested by our participating companies. It is our goal to provide
a comprehensive overview. Although we have tried to organize
the challenges in similar areas to facilitate understanding, the
areas are not independent, and often there is overlap between
areas and challenges. Fig. 4 provides an overview of the cate-
gories and challenges, and, in addition, we summarize challenges,

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

p
d
i
i
s
c
t

i
t
v
v
i
o

Fig. 4. Challenging Areas of RE for Large-Scale Agile System Development.
Source: Updated from Kasauli et al. (2017b).
Table 3
Summary of results for challenge area 1: Build and maintain shared understanding of customer value.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices from
LeSS

Research gap in
large-scale agile

1.a Bridge gap to
customer

→Visualization of
requirements to facilitate
discussion;
→Reduce handovers, XFTs
across levels;
→Keep product
management close;
→Focus on value every
sprint.

→Frequent (train)
demos;
→Customer involved at
every level;
→Teams take economic
view;
→Team covers all
necessary roles.

→Customer-centric;
→Sprint-Review bazaar;
→PO connects teams /
customer

→Provide concrete advice
and tools for establishing,
managing, and validating
shared understanding of
customer value.

1.b Building long-lasting
customer knowledge

– →Feature teams;
→Component teams.

– →Research gap similar to
1.a, but with long-term
memory in mind.
potential solutions, and research gaps for each category in six
summary tables, Tables 3 to 8. Readers can either follow our
report sequentially, or use the figure and the tables as a starting
point to directly jump to a challenge of interest.

5.1. Build and maintain shared understanding of customer value

5.1.1. C1.a: Bridge gap to customer

C1.a: In large organizations, it is challenging to achieve
sufficient customer collaboration. It is hard to make
teams understand customer value, express actual cus-
tomer value in terms of user stories that can be imple-
mented in a single sprint, as well as to provide feedback
to and obtain clarifications from the customer.

Despite the close customer relations advocated by agile, study
articipants indicate a large distance between customers and
evelopers. In all our cases we found dedicated roles that channel
nformation from multiple stakeholders down to the teams. It
s not trivial to bridge that gap, direct interaction of teams and
takeholders can lead to chaos when established plans are cir-
umvented or on-site customers are not an option. Teams want
o be agile, but do not focus on customer value.

. Make team understand customer value. Independent of dis-
ance/gap, the teams struggle to understand their customers’
iew and cannot describe how their work provides customer
alue. Teams work with sub-features and tasks that can be fin-
shed during a typical sprint as opposed to the bigger features in
rder to ensure frequent delivery, a practice noted from all our
8

case companies, although the methods used differ. However, one
interviewee (T-ScrM) pointed out that a feature is what is sold
to the customer. It thus becomes hard to gauge what the value
of a sub-feature is. One participant (XComp 1) claimed that the
focus on agile practices occupied the teams so much that this
caused a neglect of product value. Teams just want to be agile.
However, value creation is not solely the teams’ responsibility as
the requirements breakdown starts from the customer units, as
in the Telecom case, or from the function management units, in
the Automotive cases. One interviewee (T-APO-1) pointed out that
it is hard to break down the requirements such that they carry
user value, a challenge also recognized in other cases (Automotive
1 and Technology 1).

ii. Unable to express value in user stories. Due to complexity of
systems it is hard to write user stories that can be addressed by
one team in one sprint and at the same time relate to value that
could be recognized by a user/customer. User stories provide a
fast means to share knowledge both on a high and a low level in
an agile system development. In the Telecom as well as in the two
Automotive cases, user stories are used for two purposes:

‘‘... so there are user stories that of course take the view from the end customer
and describe what the end customer wants from our system and why. But then
there are other user stories that are more like work descriptions of what the
team should achieve and those could be like internal things that need to be
developed in order to keep the architecture constrained.’’ — T-SysM

A Function Owner in Automotive 2 specifically expressed that
high-level user stories could help to communicate value early.
However, it is particularly difficult to write user stories that have
direct value for the user. Such user stories would typically be
too large to be completed and demonstrated in one sprint. Yet,
breaking it into more user stories or more detailed requirements

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

T
S

t

able 4
ummary of results for challenge area 2: Support change and evolution.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices from
LeSS

Research gap in
large-scale agile

2.a Managing
experimental
requirements

→Introduce Learning and
increment planning Sprints;
→T-Reqs: Use git branching
and merging.

→Combine enabler
stories, architecture, and
exploration;
→Set-based design;
→(Variable) solution
intent.

→Use backlog →Design and evaluate an
approach to manage
experimental
requirements.

2.b Synchronization of
development

→Differing levels of agile
pervasiveness

→Biweekly ART sync;
→F2f PI planning;
→Enabler stories
(Exploration);
→Tribes, chapters,
guilds;
→Unity hour

→Continuous
improvement;
→Retrospectives (Team
+ overall).

→Design and evaluate an
approach to synchronize
development based on
promising ideas in
literature.

2.c Avoid re-specifying,
encourage re-use

→Product-line engineering;
→Move from project to
product focus.

→Product-focused;
→Set based design.

→Product-focused;
→Avoid duplicate
product functionality;
→Avoid narrow product
definition.

→Strategies and guidance
for systematic reuse and
agile product-line
engineering at scale.

2.d Updating
requirements

→T-Reqs: Reviews
supported by git and gerrit.

→Guilds and chapters. →Requirement areas
will change, will get less
important, have a
lifecycle, be retired.

→Provide concrete advice
and tools for updating
requirements and to
establish awareness of the
current state.
Table 5
Summary of results for challenge area 3: Build and maintain shared understanding about system.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices from
LeSS

Research gap in
large-scale agile

3.a Documentation to
complement tests and
stories

→Use models for interfaces
and behaviors, additional
text summaries.

→Use models to analyze
requirements.

– →Methods to capture
comprehensible big
picture of agile
requirements and
motivations.

3.b System vs.
component thinking

→Need (global) baseline;
→Requirements for
product, not organization;
→Establish ownership on
all levels;
→Architects on each team.

→Clear breakdown from
enterprise level to team;

→Feature and
component teams;
→Systems thinking;
→Tribal unity;
→Communicating the
vision.

→Principle: Whole
product focus;
→Multi-team product
backlog refinement;
→PO engages team to
own product.

→Provide and evaluate
concrete advice and tools
to support systems
thinking on all levels as
well as governance of
requirements.

3.c Creating and
maintaining traces

→Reuse features (= groups
of reqs);
→Reusable modules (=
requirements and
solutions);
→Move from project to
product focus.

→Describe the solution
(Documentation).

→Link to wiki pages;
→Backlog items to
ancestors, max. 3 levels.

→Provide guidance and
tools for large-scale agile
traceability.

3.d Learning and
long-term knowledge

→Exploit ownership of
feature and tools to
document less.

→ART focus on value,
not project;
→Enabler stories
(Exploration);
→Feature and
Component teams;
→Community of
practice, chapters, guilds.

→Reflection +

improvement
experiments;
→Experts teach each
other, informal
networks;
→Specification by
example.

→New approaches
towards requirements as a
knowledge management
problem.

3.e Backward
compatibility

→Push responsibility (and
freedom) to developer.

– – →Strategies and guidance
for systematic
management of backwards
compatibility.
could deteriorate requirements quality since not enough effort
goes into maintaining the requirements. This also creates trace-
ability challenges, as it is hard to understand which high-level
user story can be traced to detailed requirements. We discuss
traceability further in challenge C3.c Creating and maintaining
races. In summary, user stories are hard to write at the scale
9

and complexity of the cases in our study, yet they offer a unique
opportunity to bridge distances between customer and developer.

iii. Feedback and clarification. Our teams suffer from long feed-
back cycles, which are a consequence of (a) dependence on slow
hardware development/deployment, (b) customers not being ag-
ile, (c) large numbers of stakeholders. In several companies, study

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

T
S

able 6
ummary of results for Challenge Area 4: Representation of requirements knowledge.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices from
LeSS

Research gap in
large-scale agile

4.a Manage levels vs.
decomposition

→ Allow stakeholders to
specify on any level of
abstraction, e.g. through
traceability and reqts
structure;
→Support distributed reqts
analysis;
→Distinguish dimensioning
FR and NFR.

→Clear hierarchy, from
enterprise level to team;

→Requirements
information model (epic-
capability-feature-story):
transport stakeholder
view to components.

→Various splitting and
refinement guides with
depth 3 limit.

→Strategies and guidance
for requirements
decomposition, including
how to manage customer
and system requirements
as well as on how to
inter-relate them.

4.b Quality requirements
as thresholds

→Thresholds to negotiate
prizes;
→Trade-offs brought up by
team and peer-reviewed by
teams and system
managers.

→NFR are constraints
on program level,
constraining (a) the
system and the product
backlog or (b) a feature
and the team backlog.

– →Strategies and guidance
on managing and evolving
quality requirements.

4.c Tooling not fit for
purpose

→PO updates
requirements;
→Team updates
requirements.

– →No software tools for
sprint backlog;
→Tools for large
product backlogs
(boards, pictures, wikis,
spreadsheets).

→Tools specifically
designed for large-scale
scale agile practices,
including reqts access
control.

4.d Accommodate
different
representations

– →Teams can have
individual user stories
flavor;
→Emphasize team
independence;
→Responsibility for
Ways of Working, book
clubs, guilds.

– →Strategies and guidance
to balance independence
of teams and system level
consistency.

4.e Consistent
requirements quality

→Operationalization from
experience;
→Peer-reviews by teams
and system manager.

→Responsibility for
Ways of Working, book
clubs, guilds;
→Community of
practice to align on what
is needed.

– →Ways to share
experiences on quality;
→Empirical evaluation of
suggested methods in
practice.
Table 7
Summary of results for Challenge Area 5: Process aspects.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices from
LeSS

Research gap in
large-scale agile

5.a Prioritization of
distributed
functionality

→Business dashboard to
help rank reqts;
→Clear product owner
(hierarchy);
→More focus on
interfaces, less on reqts;
→Estimation by risk.

→Combining ‘‘weighted
shortest job first’’, ‘Portfolio
backlog‘‘, and ‘‘Program
Kanban’’ to support
cross-cutting initiatives;
→Combine team backlog,
business value, and
interaction backlog;
→Sequencing based on cost
of delay.

→One PO single source
of prio.;
→Multi-site product
backlog review;
→Challenge: Join the
split-to-see problems.

→Empirical evidence and
proven strategies on what
works in specific context.

5.b Manage completeness – →No potential solution
found in SAFe. Instead,
build incrementally
(Principle) and MVP suggest
the opposite.

→LeSS-Guideline ‘‘take a
bite’’.

→Provide a clear
taxonomy or language to
reason about requirements
completeness in
incremental work at scale.

5.c Consistent
requirements
processes

→Delivery = code, test,
and reqt (update).

→Clear hierarchy, from
enterprise level to team;
→Emphasis on team
independence;
→Responsibility for WoW,
book clubs, guilds.

– →Strategies and
guidelines to balance
alignment and diversity of
reqts practices.

5.d Quality vs.
time-to-market

→Frequent reviews of
reqts in relation to
Sprint deliverables.

→Clear hierarchy, from
enterprise level to team;
→Built-in-quality;
→Reduce time-to- market:
Value stream mapping.

– →Guidelines to achieve
just-enough quality of
requirements, products,
deliverables in order to
reduce time-to-market.
10

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

T
S

c
l
a
u
r
t
r
o
i
w
f
e
b
e

able 8
ummary of results for Challenge Area 6: Organizational aspects.
ID Challenge Proposed practices from

case companies
Proposed practices from
SAFe

Proposed practices
from LeSS

Research gap in
large-scale agile

6.a Bridge plan-driven
and agile

→Dedicated governance
of reqts across levels;
→Team updates
requirements;
→PO updates
requirements.

→Clear hierarchy, from
enterprise level to team.

– →Strategies and
guidelines to replace static
documents with actively
managed boundary objects
to allow coordination
across levels.

6.b Plan V&V based on
reqts

→Establish virtual test
rigs and simulation
models;
→Manage reqts and
tests together.

→Solution intent links
specifications to tests;
→Duality of backlog items
and tests;
→Cross-functional org.

– →Empirical evidence and
proven approaches.

6.c Time for invention
and planning

→Solution intent, a
repository of current and
future solution behaviors;
→Innovation and planning
iterations;
→Enabler stories.

– →Empirical evidence and
proven approaches.

6.d Impact on
infrastructure

→Establish virtual test
rigs and simulation
models.

→Feature teams;
→Component teams;
→Cross-functional org.

– →Proven strategies for
achieving system-level
awareness about critical
reqt changes.
participants raised the issue of long or complicated feedback
cycles. At Automotive 1, one study participant named slow me-
hanical or hardware development as one of the main reasons for
ong feedback cycles. If software has to be tested together with
ctual hardware, feedback on software functionality is postponed
ntil the hardware is ready. One study participant stated a second
eason — often customers are not agile and take a long time to
ry out and approve new features. By the time feedback then
eaches the agile teams, they are already working on another part
f the product and do not remember exactly what the feedback
s about. That is, for the teams the feedback comes too late,
hile customers do not see value in giving quick and frequent

eedback, even on smaller increments. This challenge is especially
ncountered if the system under development is supposed to
e integrated into a larger system at the customer site, as for
xample in the Telecom and Technology cases. A third reason

for complicated feedback cycles is that there is a large number
of stakeholders, both external and internal. Due to the complex
nature and the scale of the products developed by our case
companies, there is rarely a single customer. Instead, require-
ments inflow occurs from many different sources, e.g., customers,
authorities, managing subcontractors and sourcing, or standard-
ization organizations. In many cases, requirements need to be
discussed with and communicated to other stakeholders within
or outside the organization, delaying feedback.

Potential solution. In our view, the root cause of these challenges
relates to size and complexity of the systems we investigated. In
such large-scale systems, customers and end-users cannot easily
relate or give feedback on things developers work on.

In our workshops and focus groups, participating companies
brought up potential solutions. Many of these relate to facilitating
discussion and communication, which could for example be sup-
ported through better visualization of requirements (Technology
1) or by investing into teams to focus on customer value ev-
ery sprint (Telecom). Further, the companies suggested that han-
dovers should be reduced, e.g., by introducing cross-functional
teams that span traditional levels of abstraction (FG-1 and FG-
5) or by keeping the product management close to development
teams (ProcWS).

Common frameworks for large-scale agile, such as SAFe R⃝

(Knaster and Leffingwell, 2017) and LeSS (Larman and Vodde,

2016), focus on customer-value and offer advice that relates to

11
our challenges. SAFe R⃝ generally suggests frequent (train) demos
as well as to involve customers on every level (Knaster and
Leffingwell, 2017). Similarly, LeSS recommends organizations to
be customer-centric (Larman and Vodde, 2016). While we agree
with this advice, we suggest that more concrete support must
be provided in the light of our challenges. If work provided by
an individual team does not clearly relate to a feature for which
a customer could care, it will be hard to demo or to involve
customers in decisions.

In line with Lean Software Development, SAFe R⃝ also suggests
that teams take an economic view, which, if sufficiently sup-
ported within an organization can help (Knaster and Leffingwell,
2017; Larman and Vodde, 2016). In addition, SAFe R⃝ suggests that
teams should cover all necessary roles (Knaster and Leffingwell,
2017), which might help, but could also be problematic, since
the inter-disciplinary nature of large-scale system development
may lead to a large number of necessary roles. LeSS offers Sprint-
review bazars (Larman and Vodde, 2016), which might offer
teams an opportunity to practice relating their work to customer-
value. Other than that, LeSS suggests to rely on product owners
to connect teams and customers (Larman and Vodde, 2016), but
does not share concrete advice or tools for product owners to
navigate the challenges we bring up.

5.1.2. C1.b: Building long-lasting customer knowledge

C1.b: In complex product families and large stakeholder
landscapes, it is hard to maintain reusable knowledge
about customers. Thus, each change could result in
repeated efforts to acquire similar information from
customers.

Even if the challenges related to feedback and clarification can
be addressed, gained knowledge must be effectively managed, as
pointed out by participants in FG-5 and FG-3.

‘‘ The teams have a lot of tacit knowledge, which is not available beyond their
scope. But how much ceremony should we force on teams?’’ — FG 3

Even beyond designing a single system, knowledge about cus-
tomers and their needs should be maintained for future projects.
Without a good knowledge management approach, this can col-
lide with the desire to allow empowered component teams to

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

m
a
e
a
t
o
d

P
t
(
w
a
i
e

e
t
t
m
i

l
p
u

5

5

e
a
a
s
p
t
f
s
w
u

t
f
s
a
c
f
a
t
d
t
r

P
e
p
o
a

b
a
u
t
2

ake fast, local decisions. Two aspects of this knowledge man-
gement challenge were raised: First, it is unclear where knowl-
dge about a specific customer can be managed beyond the team
nd current project. Second, in continuous product development,
eams might not realize that they have valuable knowledge for
ther parts of the system development, while those other parts
o not know that valuable knowledge is available.

otential solution. Both, SAFe R⃝ and LeSS focus on short lead-
imes. It appears that long-term knowledge is mainly captured as
automated) tests and in the product itself, but also maintained
ithin the agile organization. To this end, we find discussions
bout component and feature teams within the SAFe R⃝ community
nsightful. In particular, the community indicates a slight prefer-
nce towards feature teams (Leffingwell, 2010).
In contrast, component teams can maintain long-term knowl-

dge about which features their component supports and how
his is providing customer value. However, problem-based cus-
omer or end-user requirements must be translated into require-
ents that a particular component should fulfill. This additional

ndirection is likely to increase the team–customer gap.
We did not find relevant practices specifically for building

ong-lasting customer knowledge in LeSS. Our participating com-
anies could not provide further potential solutions beyond the
se of feature or component teams.

.2. Support change and evolution

.2.1. C2.a: Managing experimental requirements

C2.a: When exploring new functionality or product ideas,
experimental requirements need to be treated differently
from stable requirements. Still, they need to be captured
and potentially integrated in the system view at a later
time.

Organizations that develop large, complex products have often
stablished significant research and pre-development operations
s part of traditional systems engineering. When changing to an
gile organization of system development, it is not clear where
uch activities (which can easily span a year) fit in. Should a
articular cross-functional team research, create a prototype, and
hen develop a specific system function? This does not likely
it well into an agile iteration and release rhythm. Should a
pecialized market/research department do such activities? This
ould introduce hand-overs, often including comprehensive doc-
mentation, which would appear un-agile.
On the scale of typical system functions or user-visible fea-

ures, research and pre-development also asks for explicit support
or managing experimental requirements. That is, given a current
tate of the system requirements, it should be able to create
variant, exploring what-if scenarios and identifying potential

hanges to the overall requirements model that a specific new
unction or feature might entail. Given the scale of products
nd their features, it is clear that the current state of the sys-
em requirements will evolve during such research and pre-
evelopment activities. Thus, our case companies were raising
he need to create, synchronize and merge variants of the system
equirements.

otential solution. In our workshops, participants were consid-
ring to introduce specific sprints for learning and increment
lanning. It seems generally more promising to broaden the views
f team-members and allow them to participate in such activities,
nd by this to reduce hand-overs. With respect to the actual
12
managing of variants, there was a suggestion to manage require-
ments as part of the product. T-Reqs, a specific solution that
we explored, considers to maintain (textual) system requirement
in the same repository as tests and source code (Knauss et al.,
2018). This allows to rely on powerful support for branching and
merging that modern source control systems such as git provide.

SAFe R⃝ proposes some mechanisms that can support the man-
agement of experimental requirements, e.g. by relying on enabler
stories, architecture, and exploration (Knaster and Leffingwell,
2017, p. 108). Further, set-based design allows to some extent
to reason about different alternatives during the development
flow (Knaster and Leffingwell, 2017, p. 178). Input from explo-
ration, research, and pre-development can also be managed as
(variable) solution intents (Knaster and Leffingwell, 2017, p. 186ff).

LeSS, in contrast, appears to suggest that this complex topic
can be handled using a backlog (Larman and Vodde, 2016).

In summary, we identify encouraging building blocks for solv-
ing the challenge of managing experimental requirements, but
have to note that combining them into a convincing strategy
remains non-trivial.

5.2.2. C2.b: Synchronization of development

C2.b: In large organizations, there exists a large variety
of stakeholders, teams, projects and features. This va-
riety makes it challenging to synchronize development
between teams. A trade-off arises between documenting
extensively and specializing teams to take ownership of
a single feature or system aspect.

In many of our case companies, teams receive requirements
from the product managers through several organizational levels.
Furthermore, they often need to exchange information with other
teams to synchronize the development. This process of channel-
ing the ‘right’ information towards and between teams is difficult
and time-consuming. Hence, it limits agility and speed of teams.

FG-2 participants wondered whether agile should be limited to
the development only, or should start from a feature request. In
the former case, developers would receive feature requests in the
form of already broken down requirements for implementation.
In the latter case, developers would have to do the breakdown of
a feature request into smaller units themselves. While both cases
seem to be feasible, the question is how teams can be synchro-
nized in any of these cases, especially at scale, where some form
of decomposition is required. If requirements are broken down
by an external role or team, possibly in a plan-driven way, they
can be handed to different agile teams and their work needs to be
synchronized. If they are broken down and implemented within
one team, multiple agile teams only need to synchronize when
there is interaction with or dependencies to features developed
by other teams. However, analysis of a user-visible feature with
respect to its implications and suitable decomposition takes time
and it is not clear how this work can be fit into the tight sprint
schedule of agile teams. Awareness about such dependencies is a
pre-requisite.

Potential solution. As described above, our company partners
suggest different levels of agile pervasiveness as a way to ad-
dress this issue, although different choices have different trade-
offs. SAFe R⃝ suggests to provide such synchronization through
i-weekly synchronization of agile release trains (ART, a set of
gile teams that work together towards a shared release sched-
le) (Knaster and Leffingwell, 2017). This is further supported
hrough enabler stories for exploration (Knaster and Leffingwell,
017, p. 108).

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

s
i
p
a
t
4
s
m
e
t
r
2
s

m
r
2

5

w
p
p
o
m
c
r
g
n
h

g
o
p
f

P
a
g
W
i
t
k
l

f
f
s
n
t
1

With respect to organizing such synchronization, SAFe R⃝ also
uggests tribes (i.e. organizational units of around 100 members
n a common scope, such as an ART), chapters (i.e. communities of
ractices, that can discuss cross-cutting concerns within a tribe),
nd guilds (allowing to discuss cross-cutting concerns beyond
he scope of a single ART or tribe) (Campbell-Pretty, 2016, p.
6). We believe that such structures provide good support for
ynchronization of development, mainly however for discussing
ethods and processes. It remains an open question whether for
xample a safety or performance guild could also provide value
o discuss cross-cutting requirements. Further, the unity hour, a
egular meeting meant to bring together a tribe (Campbell-Pretty,
016, p. 33), can be used to make announcements that can foster
ynchronization between teams.
LeSS is comparably brief on the synchronization of develop-

ent, but suggests aiming for continuous improvement based on
eflection, both on team level and overall (Larman and Vodde,
016, p. 69).

.2.3. C2.c: Avoid re-specifying, encourage re-use

C2.c: Focusing on projects discourages re-use between
projects. Defining a strategy to manage existing require-
ments and encourage their re-use across projects is
challenging.

Our company partners have indicated that dealing effectively
ith legacy systems is becoming more important. Previous ap-
roaches which focused on projects instead of products or com-
onents lead to re-inventing common requirements. Several of
ur companies are searching for ways to reuse existing require-
ents, e.g., beyond copy and paste (Processing). One participant
ompany with a shared requirements database indicated that
eusing requirements was still a challenge, as reusing requires a
eneral knowledge of existing features — in order to reuse, one
eeds to know what is there. Currently, requirements reuse only
appens on the lowest levels.
Requirements reuse also potentially involves some level of

overnance. On one hand, it may be desirable to avoid duplicate
r very similar requirements in the repository (e.g., for different
rojects or products), but on the other hand agile teams want
reedom and autonomy in their practices.

otential solution. In our workshops, we explored two different
pproaches to facilitate re-use of requirements: product line en-
ineering and shifting from a project focus to a product focus.
hile the former approach would aim to group requirements

nto customer-visible and reuse-oriented features directly linked
o existing solutions and components, the latter would bundle
ey requirements into a core product that can be maintained over
onger time.

It appears that both SAFe R⃝ and LeSS are assuming a product-
ocused organization. In such a context, set-based design could
acilitate reuse (Knaster and Leffingwell, 2017, p.75,190). LeSS
uggests to avoid duplicate product functionality as well as a
arrow product definition, which could to some extent remove
he need to reuse requirements (Larman and Vodde, 2016, p.
59).
Despite these recommendations, SAFe R⃝ and LeSS do not go

into detail or emphasize systematic reuse in large-scale agile

projects.

13
5.2.4. C2.d: Updating requirements

C2.d: Requirements can be defined at the beginning of
the sprint, but often these requirements become out of
date, and no longer reflect the solution. This causes issues
in organizational memory. It is challenging to understand
when and who should update requirements.

In TechWS, the company explained that their requirements
and feature models are often old and not up to date. Require-
ments are not being updated, in part due to the nature of agile
work, which does not explicitly factor in activities for keeping
requirements up-to-date. This issue was echoed by Telecom and
Manufacturing , in the latter case requirements are defined at
the beginning of the sprint, but then kept the same; however,
the company would like to enable more flexible requirements
updates. In the Telecom case, non-functional requirements are
kept in a document originating from before the agile transfor-
mation took place and for which there is no obvious way of
providing regular updates. In the short term, this works, as these
requirements are relatively stable; however, it is not clear within
their current processes how to deal with this document becom-
ing slowly out of date. From an agile perspective, perhaps the
requirements only serve to get the development started, and it
is therefore not important to keep them up to date with the
eventual product. However, the overall problem is that hav-
ing out-of-date requirements can cause confusion, discourage
requirements reuse, and prevents companies from using require-
ments as a form organizational memory, a practice which we
found desirable in our subject companies.

Potential solution. LeSS acknowledges that requirements areas
have a lifecycle in which they will change, get less important,
or are retired (Larman and Vodde, 2016, p. 105). This clearly
shows that the problem is known, yet there is a lack of con-
crete guidance on how to do this. We believe that guilds and
chapters in SAFe R⃝ could be useful for bringing together interested
parties in a platform that could make decisions about updates of
cross-cutting requirements (Campbell-Pretty, 2016, p. 46).

Still, we are surprised about the lack of explicit mechanisms
for updating or changing requirements in large-scale agile frame-
works. It suggests that epics and user stories do not provide value
beyond planning the next releases and that updates from the agile
teams (such as hidden dependencies or costs) are irrelevant for
updating such planning as well as that no other requirements-
related information (beyond for example tests) should be shared
between teams. Neither of these suggestions match our data.

One suggestion from our focus groups is again based on T-
Reqs, a system that allows cross-functional teams to manage
system requirements together with source code and tests in a
version control system (Knauss et al., 2018). T-Reqs allows all
teams to update requirements via git and relies on gerrit for peer-
reviews, which not only allows to check a team’s suggestion for
updating or deprecating requirements, but also to share infor-
mation about such updates with peers. Thus, requirements could
be updated or deprecated based on knowledge generated during
agile sprints. Note the strong relationship to C4.c Tooling not fit
for purpose

5.3. Build and maintain shared understanding about system

While the C1 challenges focus on building and maintaining
shared knowledge of the customer value, these challenges focus
on building and maintaining knowledge about the system, a more
internal view.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

5

r
n
W
e
i
i

r
b
n
t
s
m

g
s
n
a
t
f

h
2
f
S
2
t

.3.1. C3.a: Documentation to complement tests and stories

C3.a: For complex systems, user stories and test cases are
often insufficient to understand the overall functionality.
It is challenging to complement these artifacts with ap-
propriate but yet agile documentation of requirements
that provides this understanding.

The idea of using test cases both as actual test artifacts and as
equirements documentation is wide-spread in the agile commu-
ity (Meyer, 2014) and was also discussed by several participants.
hile this was seen as a potential way to reduce documentation

ffort, several issues with this approach were brought up. Accord-
ng to several study participants, test cases do not carry enough
nformation to serve as a means of documentation:

‘‘Tests are written in a pragmatic way. They do not capture the ‘why’.’’ —
Tec-SRR

Other interviewees throughout the companies added that one
would need a number of tests to document any significant re-
quirement, which will then be hard to reconstruct from just
reading the tests during maintenance.

Several participants saw similar problems with user stories,
as they would only reflect single scenarios. The overall system
behavior would then emerge from the synthesis of all these single
scenarios. To derive this full picture from tests or user stories only
would, however, be too difficult:

‘‘If we don’t specify this kind of complete [requirements] specification, we could
try to use all [..] user stories [..]. But then we must base the understanding on
[..] lets say [..] 2000 user stories [..] and try to find a good way of describing
the complete system.’’ — T-SysM

It is interesting to note that this challenge surfaces early on,
i.e., when an incoming customer request is analyzed. Therefore,
if agile teams only develop backlog items based on finished re-
quirements that they receive from other parts of the organization,
they might not be aware of this challenge and therefore wrongly
consider user stories complemented by test cases to be sufficient.

While in the Telecom case the issue of understanding sys-
tem behavior from user stories or tests was mainly discussed
with respect to new features, participants in Automotive 1 raised
this issue especially for system maintenance. FG-2 participants
agreed that user stories or test cases would not be appropriate
to understand the behavior. They were unsure what form of
documentation should be used instead, which level of detail the
requirements should be on, and how they could be different from
‘traditional’ requirements.

Potential solution. With respect to complementing user stories
and tests, the focus groups yielded suggestions relating to two
areas: modeling customer-value (see C1.a Bridge gap to customer
and C1.b Building lasting customer knowledge) and modeling (dis-
tributed) system behavior. With respect to the latter, the rea-
soning is that teams could use models to explicitly describe the
intended behavior of their solutions. However, some of the same
challenges with traditional large-scale requirements documents
could arise with models, e.g., scalability, and modifiability.

Furthermore, we note that several companies create additional
custom requirements documentation to supplement tests and
stories. For example, Telecom creates a one-slide description of a
feature, giving a high-level view, and then traces this description
down to requirements.

SAFe R⃝ provides suggestions to model both interfaces and be-
haviors to account for their importance. There have also been
14
further suggestions in the large-scale agile literature to use mod-
els to analyze requirements (Leffingwell, 2010, pg. 356), how-
ever, it is not exactly clear how these models will relate to the
requirements information model suggested in SAFe R⃝ .

We did not identify artifacts to potentially complement tests
and user stories in LeSS. In contrast, the focus on specification
by example and acceptance test driven development seems to
suggest that such a complement is not anticipated in LeSS.

To summarize, modeling in an agile manner is one possibility
to supplement the description of overall system functionality
provided by user stories and test cases. Other forms of lightweight
textual summaries can also be possible.

5.3.2. C3.b: System vs. component thinking

C3.b: It is hard to balance system versus component
versus feature thinking in complex system development
with multiple teams.

Teams typically have specialized knowledge for their scope.
However, they may lack the overall system knowledge. This
can be problematic when developing a feature in a complex
product, as several components might be affected. Our companies
had different types of agile software development teams. Some
companies relied mainly on component teams, who become ex-
perts for their component, but do not necessarily understand
all features that are supported by their component or the im-
plications of their design decisions on the overall system. Thus,
when reasoning about the quality of a component, teams might
sub-optimize with regard to the overall system. Other companies
relied mainly on feature teams, which might find an elegant
way of implementing a new feature. Such feature teams struggle
however to monitor the evolution of all affected components as
well as their quality. Often, we even find a mixture of feature
and component teams in complex systems, where some of the
more sophisticated components are maintained and developed by
dedicated teams.

Overall, we find it is challenging to provide teams with system-
level knowledge while at the same time maintaining specialized
knowledge about features or components in the teams.

Potential solution. In our focus groups, Automotive 2 sees a clear
need for a global baseline that allows to reason about the full
system. In large system development, requirements can be seen
as a way to put tasks on specific sub-organizations. Automotive 2
eported that this is not beneficial. Instead, requirements should
e split with respect to the product while all parts of the orga-
ization should be encouraged to also monitor requirements for
he full system, not only for their component. Processing further
uggested that these ideas should be complemented by a clear
odel of ownership of requirements on all levels.
System thinking on all levels could, according to our focus

roups, be facilitated by placing architects in teams and to take
pecial care with respect to the architectural runway, when plan-
ing architectural enablers. Our companies saw the need for
ctive governance of APIs, dependencies, and interfaces between
eams, and to manage volatile architectural concepts differently
rom those that are stable.

It is one strength of SAFe R⃝ to provide a clear breakdown
ierarchy from enterprise level to teams (Knaster and Leffingwell,
017), which, when combined with awareness on how each part
its in the complete picture, could discourage localized thinking.
AFe R⃝ does promote system thinking (Knaster and Leffingwell,
017, pg. 70f), (Larman and Vodde, 2016, pg. 12), yet it is hard
o deduct from the textbooks on how such thinking will emerge.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

n
o
f
i
t
c
m
t
l
2

u
t
t
o

5

t
p
g
a
i
e

o
t
l
t
a
w
r
o
s
t
s
b
t

T
s
f
o
v
c

P
t
c
f
m
q
t
t
r

k
c
t
M
k
n
e

o
a
h
o
t
t

P
o
t
t

n
e
l
a
t
s
i
o
2
L
e

s
t
a
b
m
i
c
V

It is interesting to look at the discussion of feature or compo-
ent teams (Leffingwell, 2010), particularly from the perspective
f this challenge (systems vs. component-thinking). Clearly, a
eature team will find it easier to think about the system and how
t relates to a particular feature. Yet, their goal will be primarily
o implement the feature. The long-term quality of the different
omponents as well as their role for the overall system is not their
ain concern. One of the more concrete suggestions with respect

o SAFe R⃝ is to strive for tribal unity and use regular release train
evel meetings for communicating the vision (Campbell-Pretty,
016, pg. 78,83).
Similarly, also LeSS emphasizes the importance of whole prod-

ct focus (Larman and Vodde, 2016, pg. 11,78), which is par-
ially provided by multi-team product backlog refinement and
he engagement of the product owner with the team to facilitate
wnership of the product.

.3.3. C3.c: Creating and maintaining traces

C3.c: Traces are valuable and often required, but rarely
provide a direct value to their creators. Thus, they
are typically produced inefficiently post-development
and not maintained. It is challenging to incentivize the
creation and maintenance of trace links.

In several of our companies, we see the existence of both
extual requirements and user stories, where requirements are
roduced in a plan-driven way and provided to teams or or-
anizations, who then create user stories to work locally in an
gile way. However, since user stories relate directly to feature
mplementation they are not always systematically derived from
xisting requirements. Thus, direct tracing is not always possible.
A similar situation occurs in Automotive 2, where product

wners write user stories based on plan-driven requirements
hey receive as an input. These user stories can in fact be rather
ocal development tasks and backlog items that do not require
racing to system requirements. Thus, traces are not system-
tically managed, which can lead to additional work in cases
here such backlog items become relevant for tracing to system
equirements. The fact that often only the product owner is aware
f which user stories originate from which requirements can
low down collaboration between agile teams and plan-driven RE
eams. Interviewees in the agile teams considered tracing user
tories to requirements to be documentation, which should not
e part of the agile process. Instead they preferred to spend their
ime on implementation:

‘‘I don’t think traceability is not required or something like that. It’s just that
my focus hasn’t been on documenting the function. I just focus on doing
implementation and developing the function.’’ — A2-PO

his view was also shared in Automotive 1: while participants
tated that tracing is valuable, or even required by standards, they
elt that right now there is not enough incentive for agile devel-
pers to create traces. They wished for an incentive or directly
isible benefit for the developers as well as for simplifying trace
reation.

otential solution. In our focus groups, most focus was on how
o reduce the workload related to tracing. One way of doing this
ould be through a better approach to reuse, where complete
eatures (equal to a group of requirements) are seen as reusable
odules, consisting both of reusable requirements (with ade-
uate tracing) and reusable solutions. By moving from project
o (long-term) product focus, such reuse could further be facili-
ated, and agile teams would find themselves integrating existing
equirements with strong traceability.
15
For system engineering companies, it is slightly concerning
how little scaled agile frameworks discuss tracing. SAFe R⃝ suggests
to describe the solution, which will likely result in technical
documentation with rich trace links (Knaster and Leffingwell,
2017, pg. 184ff). LeSS suggests to link to wiki pages for additional
information (Larman and Vodde, 2016, pg. 33), as well as to
suggest to link backlog items to ancestors for maximum three
levels (Larman and Vodde, 2016, pg. 204,222), but does not offer
rich details on how and by whom such links are maintained.

5.3.4. C3.d: Learning and long-term knowledge

C3.d: Due to their long lifetime, product families require
knowledge to be built up and maintained over longer
periods of time and across products. It is challenging to
optimize an organization towards generating and main-
taining this knowledge, both on system level and on team
level.

In the Tech1WS, the company expressed that agile is needed
at the beginning of development, but later the need shifts to
knowledge management, in part to support the learning of future
personnel and other teams. Often requirements management is
an activity that is performed at the end of the sprint. Technol-
ogy 1, Manufacturing , and Processing expressed that spreading
nowledge and networking knowledge was a challenge, it is not
lear for them how to synchronize knowledge across different
eams working in different cycles or on different projects. In the
anWS, the participants discussed the use of specialists to share
nowledge (e.g., a specialist in security), but decided that this was
ot the most effective solution in practice, as often the specialists
nded up being rare, and working in too many different contexts.
TelWS brought up the challenging trade-off between feature

wnership and documentation. If a feature is strongly owned by
n individual or team, it does not need extensive documentation;
owever, others are then dependent on the team or product
wner for anything to do with that feature, and this places
he company in a dangerous position in the case of personnel
urnover, where important, non-documented knowledge is lost.

otential solution. Although turnover is a problem, one solution
ffered by Telecom is to exploit ownership of features and tools
o document less. One way to mitigate personnel loss would be
o support ownership by teams rather than individuals.

According to SAFe R⃝ , agile release trains should focus on value,
ot on projects (Knaster and Leffingwell, 2017). Thus, knowl-
dge about value for customers can be maintained in such re-
ease trains without additional documentation, even with normal
mounts of staff turnover. SAFe R⃝ also proposes the use of fea-
ure or component teams (Leffingwell, 2010). SAFe R⃝ recommends
upporting communities of practice, helping to share information
n particular areas (Knaster and Leffingwell, 2017). The creation
f chapters or guilds has also been proposed (Campbell-Pretty,
016) as a way to support and share specific topical knowledge.
eSS proposes something similar, encouraging experts to teach
ach other, and to create informal networks.
In addition, SAFe R⃝ introduces the idea of enabler stories, user

tories that are explicitly aimed for exploration. This allows teams
o learn about a particular topic and explore feasibility (Knaster
nd Leffingwell, 2017, pg. 108). LeSS promotes a similar practice
y discussing reflection and encouraging improvement experi-
ents (Larman and Vodde, 2016, p. 7,20). As a form of learn-

ng, LeSS also recommends specification by example, using con-
rete examples instead of more abstract user stories (Larman and
odde, 2016, p.3,254).

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

5

b

v
t
i
h
r

P
p
A
m
o
f

f
s
c
t
s
s
c
d
g

d

1
o
d
l
y
s
b
s
t

t
g
c
f
w
f
t
g
f

f
7
f
t
2
m
h
g
g
w
a
i
t
2
t

t
l
s
L
l
a

5

.3.5. C3.e: Backward compatibility

C3.e: As a part of the maintained product knowledge,
teams need to be aware of compatibility issues. In partic-
ular, as part of an agile way of working, it is challenging
to maintain the knowledge of backwards compatibility
as part of the requirements across different products and
product versions of a product family.

Several of our companies have indicated the importance of
ackwards compatibility, particularly for customers.

‘‘ But also we use them (detailed requirements) for regression result, to make
sure have we . . . its very important for our customers that we don’t change
backward compatibility, we don’t change the behaviour without notifying our
customers. ’’ — T-APO

In some ways, using an agile way of working makes the preser-
ation of backwards compatibility easier, as developers are given
he freedom to handle changes in a way in which compatibility
s not broken. However, in cases where the developer does not
ave this knowledge, if it is not somehow also captured via the
equirements, compatibility may be broken

‘‘ For me the part of being agile here is that we don’t define it (compatibility)
on the highest level and just say you never break backward stability but you
handle the changes. And of course you can only tolerate (this) to a certain
degree. At some point it breaks legacy and then it goes to a level (where) we
cannot release software anymore. You need to make sure that doesn’t happen.’’
— T-OPO

otential solution. We have not found suggestions from the com-
anies for this challenge as part of our interviews or focus groups.
lthough agility in general can help, the companies are lacking
ethods to capture backwards compatibility at a higher-level
f abstraction, as captured by requirements. Furthermore, we
ind no potential solutions in SAFe R⃝ /LeSS to address backward
compatibility issues.

5.4. Representation of requirements knowledge

While the C3 challenges focus on internal understanding, the
C4 challenges focus on how this knowledge can be effectively
captured, managed and accessed.

5.4.1. C4.a: Manage levels vs. decomposition

In an agile environment, it is hard to map requirements
to levels of decomposition. Classic levels (stakeholder,
system, system element) do not fit with an agile way of
working, since stakeholders can define low-level require-
ments. Yet the complexity of the software calls for some
form of decomposition.

In Tech1WS, the participants explained that requirements
rom the customer express needs, and are very different from
ystem requirements, which express elements of a solution. This
ompany very much wants stakeholder requirements, they want
o always define the problem before the solution, but customers
ometimes provide them with detailed solutions instead of de-
cribing their problem. Although one can consider this a rather
lassical requirements problem, it is exacerbated by agility, which
iscourages many levels of requirements, and does not distin-
uish between different types of requirements.
In the ProcWS, we covered challenges in consistently breaking

own requirements, particularly non-functional requirements,
16
and expressed the need for more levels of classification. They
made the point that breaking down requirements is very much
experience-based, and is part of the process of building knowl-
edge. Along the same lines, Manufacturing expressed the problem
that requirements are often in the form of system requirements,
focusing on a technical thing, and the real customer problem
behind this requirement may be lost. They also echoed the chal-
lenge that those who describe problems (sales, customers) often
have solutions in mind, meaning that the problem may not be
captured. Telecom reported something similar, that although they
have a means to capture the motivation behind requirements via
a one-page slide, sometimes this step is skipped. Often their user
stories (despite the name) tend to be more technically focused,
and the user value is only implicit.

Potential solution. One potential solution offered by Technology
is to allow stakeholders to specify requirements on any level
f abstraction, but then use matching between levels to match
etails to motivations, or point out missing requirements at one
evel. They also suggest to support distributed requirements anal-
sis, so that stakeholder with different expertise (e.g., problem,
olution) can contribute. Traceability was offered as a solution
y both Processing and Technology 2, allowing for a requirements
tructure linked via traceability, bearing similarity to the sugges-
ion above.

Automotive 2 emphasized the importance of the interplay be-
ween requirements and architecture. They suggested to distin-
uish dimensioning functional requirements (e.g. in form of use
ases) and quality attributes and to use both separately as input
or a suitable architectural decomposition. As is common practice
ith quality attributes and quality scenarios, such dimensioning

unctional requirements would be carefully chosen early on as
ypical representatives and could be used to reason whether a
iven architecture is suitable to support such functionality, thus
unctioning as a blue print for architectural decomposition.

SAFe R⃝ suggests having a clear hierarchy of people and roles,
rom enterprise level to team (Knaster and Leffingwell, 2017, p.
0), complemented by a hierarchical view of requirements in
our levels, from epics to capabilities to features to user stories
hat corresponds to this clear hierarchy (Knaster and Leffingwell,
017, p. 177–6,104-109). Based on this hierarchy and require-
ents information model, SAFe R⃝ advises to transport the stake-
older view to components across potential hierarchies (Leffin-
well, 2010). LeSS also provides various splitting and refinement
uides using requirement areas, major areas of customer concern,
here each area has its own backlog and feature teams (Larman
nd Vodde, 2016, p. 30). LeSS advises for traceability of certain
tems (e.g., product backlog items have requirement area at-
ributes which trace to their associated area) (Larman and Vodde,
016, p. 216). However, they advise splitting requirements only
o three levels (Larman and Vodde, 2016, p. 222).

Overall, we see potential solutions from both industry and
he literature; however, although recommendations are given for
imited refinement and traceability, this issue of customer vs.
ystem requirements is not deeply addressed. It seems SAFe R⃝ and
eSS may advise to avoid purely system requirements with no
inks to customer rationale, which does not appear to be good
dvice for our case companies.

.4.2. C4.b: Quality requirements as thresholds

Often quality targets are within a range. Negotiation of
cost-value trade-off is difficult to capture and manage
with current representations.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

T
t
q
q
t
n
d
n
p
c

P
c
a
a
t
r
n

p
f
s

a
m
o

5

d
a
r
r
f
e
t
w
a
r
a

s
i
m
(
d

d
p
b
s
c
a

f

m

As agile methods recommend various levels of user stories,
ech1WS reported issues with using such presentations for quan-
itative quality requirements trade-offs. For them, quality re-
uirements are thresholds, and it often takes a lot of time to
uantify thresholds for requirements, leaving ‘TBD’ in the mean-
ime. The systems and representations the company has now are
ot capable of dealing with these type of thresholds, and they
efault to a single hard target for requirements. There is also a
eed for guidance in how to find these boundaries, a process as
art of requirements specification. Other companies confirm this
hallenge.

otential solution. The companies offered a few solutions to this
hallenge. For example, Telecom discusses trade-offs when they
re brought up by a team, and these trade-offs are peer-reviewed
mong teams and system managers in gerrit (a code collabora-
ion tool). Technology 1 emphasized that thresholds for quality
equirements can be a good way to indicate and moderate price
egotiations between different development partners.
In SAFe R⃝ , non-functional requirements4 are constraints on a

rogram level, constraining the backlogs at every level (system,
eature, team) (Leffingwell, 2010, p.77,79). We find no potential
olution in LeSS to help with quality requirements.
Overall, one can argue that this issue may occur also in a non-

gile context, but use of user stories makes solving this issue
ore challenging, and current scaled agile frameworks do not
ffer any specific solutions for it.

.4.3. C4.c: Tooling not fit for purpose

Tooling plays a significant role in agile processes, but
available tools are often not designed to support large-
scale agile practices. Part of the problem is access to
requirements, as traditionally tools do not allow access
to all requirements, but some form of managed access is
often needed.

Agile endeavors to empower teams, but it is challenging to
etermine the scope of this power. Technology 1 has expressed
requirements/tooling access challenge where teams rely on

equirements they do not have view or edit access to. These
equirements are exported outside of the tool to other formats
or them to use as inputs to their process. This requires extra
ffort and results in inconsistent requirements, but the alterna-
ive, to let every team access and edit/refine all requirements,
ould need to be carefully managed both in terms of processes
nd tools. Often, teams lack expertise and knowledge to modify
equirements that they have not worked closely with, even if they
re dependent on those requirements, and would like changes.
This brings up a broader challenge related to the need for

pecialized tools. Automotive 1 have described their used of tool-
ng, at the moment they use traditional tools for requirements
anagement (e.g., Doors), and tools that are aimed for agile

e.g., JIRA). However, these tools are largely separated and not
esigned to fit a large-scale agile process.
Similarly, in Telecom, current tooling was brought up as a hin-

rance for speed and agility. Interviewees described the current
rocess of updating system requirements as too slow and cum-
ersome. They stated that by introducing a more efficient tool
olution, engineers could potentially be more motivated to make
hanges to requirements and by this narrow the gap between
gile user stories and requirements.
The need of a tool-chain that better supports agile information

lows was further confirmed by other companies.

4 For our purposes we treat NFRs and quality requirements as the same, a
ore detailed debate on this is out of our scope.
17
Potential solution. There are a few solutions to this challenge sug-
gested by industry: Technology 2 suggests that only the product
owner updates requirements, and all requests must go through
them. Tooling should be updated to support this model. This
imposes governance, but may create bottlenecks if change re-
quests are frequent. In Automotive 1, 2, and Telecom, it is suggested
that the team itself takes the main responsibility to update the
requirements. This approach removes bottlenecks, but makes
governance more difficult and requires strong support from tool-
ing, especially when knowledge of updates needs to be shared
across teams and abstraction levels.

SAFe R⃝ offers no solutions to this issue. LeSS advices against
using software tools for sprint backlogs (Larman and Vodde, 2016,
p. 18, 281), but discusses tooling for large product backlogs such
as boards, wikis, pictures and spreadsheets (Larman and Vodde,
2016, p. 23, 210). However, the source does not discuss the issue
of tool or requirements access.

To summarize, our companies of study are looking for better
tooling and more effective requirements access solutions, and
while some custom tools show promise, SAFe R⃝ and LeSS do not
emphasize tooling or discuss access control.

5.4.4. C4.d: Accommodate different representations

Individual teams strive to tailor requirements related ar-
tifacts to what works best in their context. This however
is seemingly in conflict with the system level goal of
keeping artifacts consistent and manageable. Companies
experience a lack of support for navigating this conflict.

In Tech1WS, the participants expressed frustration with this
challenge. On the one hand, specific teams use a variety of
different representations for requirements depending on purpose.
Word documents are used for quick exchange with external
stakeholders, figures, graphs, and models are used to discuss,
and teams use them in the way most promising to get the job
done. On the other hand, a consistent view on system level needs
to be arranged and there are reasons to limit the flexibility in
representations. This is partly due to technical reasons (it is easier
to store text requirements in a requirements database, see also
Challenge 4.c tooling not fit for purpose in Section 5.4.3) and partly
due to organizational reasons (system-level planning demands
that certain information is easily accessible, it is easier to share a
small number of simple formats across a large organization).

This trade-off demands for an approach that allows starting
from a consistent requirements model of the full system, quickly
draft sketches in arbitrary representations and coordinate be-
tween teams and external stakeholders, and then re-integrate
any knowledge gained in the consistent requirements model
to evaluate it in the context of system or platform variability
constraints.

Potential solution. We did not find potential solutions to this
issue from our participating companies as part of current work-
shops or interviews. SAFe R⃝ advocates for teams to have their
own individual user story flavor (Knaster and Leffingwell, 2017),
which to some degree supports freedom in using a format that
best fits local work. This goes along with SAFe R⃝ ’s tendency to
emphasize team independence, where teams are responsible for
their own way of working. However, SAFe R⃝ does recommend
some sharing of knowledge and practices using book clubs and
guilds (Campbell-Pretty, 2016). We find no potential solutions for
different representations of requirements in LeSS.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

5

t
e
a
u
a
i
b
h

n
l
w
m
t
b
t
p
b
u

.4.5. C4.e: Consistent requirements quality

The quality of requirements artifacts (i.e. user stories,
backlogs) differs (e.g. level of detail). This makes work-
ing with requirements at higher levels, across teams or
boundaries, difficult.

Telecom reports that the quality of requirements differs from
system to system, or between roles and sites. They find that
the quality of user stories also varies, sometimes they are from
the perspective of the user, while often they are phrased like a
technical task. Technology 1 reports similar findings, with backlogs
from different teams relating to the same product or platform
having very different styles. Processing similarly reports that they
lack a common way of working with requirements, which means
that some teams try to minimize the requirements they write,
while other teams try to specify everything, defining similar
requirements over and over across projects or backlogs.

Potential solution. Manufacturing expresses the importance of ex-
perience in operationalizing requirements in an effective way. As
such, either skilled personnel or training may be required. Cur-
rently, Telecom are exploring supporting requirements reviews
using T-Reqs and gerrit.

SAFe R⃝ advocates responsibility for Ways of Working, and
other practices such as book clubs and guilds (Campbell-Pretty,
2016), potentially sharing knowledge on ways of working with
requirements or ideas on requirements quality. Similarly, SAFe R⃝

supports the formation of community of practices to align on
needs (Knaster and Leffingwell, 2017, p.25,43,290). Less offers
no potential solution to help with requirements quality. Overall,
some practices are suggested by our industry sources and the
large-scale agile literature, but the challenge is not yet sufficiently
addressed.

5.5. Process aspects

5.5.1. C5.a: Prioritization of distributed functionality

The frequency of dependencies in large-scale agile makes
prioritization of products or requirements between teams
difficult. Bottom-up prioritization is not working well,
since teams tend to start with simpler tasks.

In TelWS, participants reported that, before their agile transi-
ion, they had spent a lot of time analyzing features that did not
nd up in the product. They see an improvement on this using
more agile approach. However, a potential drawback brought
p at our case companies relates to features that have a scale
t which many teams or even several release trains need to be
ncluded. Each of these teams or release trains usually has a full
acklog and when coordinating functionality, each involved party
as their own critical parts to consider.
In ManWS, participants complained that developers often do

ot take on the highest priority task first, often because they are
acking expertise. When prioritizing their backlog, teams consider
hich of the tasks they can do in the time available provides
ost value. A particular complex task may therefore not be

ouched, since the team considers the time to implement it to
e in no good relation to the value they could provide with other
asks. This can be a problem when considering highly complex
roducts. A complex feature then might take a very long time to
e deployed, since teams go for ‘‘lower hanging fruits’’ and are
nable to consider the cost this delay creates. This becomes a
18
problem, especially if other teams or release trains have already
committed to develop their part of the complex feature, as their
effort then does not generate business value (since the overall
feature is still incomplete).

Simplifying, one could summarize this as: Letting individual
teams prioritize (bottom-up prioritization) is not working well,
as teams tend to favor simple tasks.

Potential solution. Although our participating companies have
prioritization with coordination as a challenge, they also offer
several potential solutions. Manufacturing prioritizes their release
backlog based on a business dashboard, including items such
as commitments to customer. Automotive 2 aims to address this
challenge by introducing a clear product owner hierarchy and
puts the focus on interfaces instead of requirements. This helps
address prioritization as teams can articulate their needs towards
other teams and interface issues can be addressed with high pri-
ority. Through appropriate architectural decomposition, complex
requirements will inform changes on interface definitions and
concrete requirements on team level. Processing has developed a
system with some success, prioritizing by risk, and working on
the next part with the highest technical risk. They calculate risk
via a system design meeting focusing on technical needs. They
also have forums with both business and technical experts, fo-
cusing on a bidirectional flow between both roles. Technical risks
are transferred in technical review meetings, helping awareness.

The large-scale agile frameworks also offer some solutions.
SAFe R⃝ describes techniques such as combining ‘‘weighted short-
est job first’’, ‘‘portfolio backlog’’, and ‘‘program kanban’’ to sup-
port cross-cutting initiatives towards prioritization (Knaster and
Leffingwell, 2017, p.65,104,212). It also advocates the combina-
tion of team backlog, business values and an ‘‘interaction back-
log’’ (Knaster and Leffingwell, 2017, p.109,127,137) and sequenc-
ing tasks based on the cost of delay (Knaster and Leffingwell,
2017, p. 175). However, it is not clear how to combine all these
suggestions together into one coordinated process. LeSS recom-
mends that one product owner acts as a single source of priori-
tization, and that a multi-site product backlog review is used to
help prioritization across products (Larman and Vodde, 2016).

Overall, this is a challenge that comes with a lot of poten-
tial solutions; however, there is a lack of empirical evidence or
proven strategies to inform companies on which approach may
work best in a particular context.

5.5.2. C5.b: Manage completeness

In a large-scale agile context, it is not clear when re-
quirements are complete enough. It is also not clear on
what level to judge completeness: per sprint? per prod-
uct? per system? Which view is the most important for
completeness?

The ProcWS participants described their agile transition in re-
lation to requirements completeness goals. Initially, they wanted
to have complete requirements, but it was difficult to have an
overview. They questioned how many requirements they could
manage in a sprint. The ManWS participants expressed similar
difficulties with their specification of system control, the require-
ments could not cover everything, but instead focused on the
algorithm and control.

Potential solution. Generally, for our companies that mentioned
this as an issue, the goal of complete requirements was relaxed
for something more manageable. SAFe R⃝ offers no potential solu-
tion, in fact, by advocating building incrementally and produc-
ing minimal viable products (MVPs) as principles, SAFe R⃝ actually

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

r
L
b
f
p

c
c
w
r

5

m
c
a
p
f
c
m
t
E
t
n
s
s
c
q

P
t
T
i
d
w

e
c
2
w
m
p
P

o

5

t
o
a
r
i

ecommends against requirements completeness (Knaster and
effingwell, 2017, p. 77). Similarly, LeSS recommends to ‘‘take a
ite’’, analyzing and implementing small parts of the problem,
orgoing completeness in requirements (Larman and Vodde, 2016,
.3,202).
Taking an agile mindset, one can argue that requirements

ompleteness should not be a goal; however, at least two of our
ompanies have struggled with this even in an agile context. Even
orking incrementally, it is not clear how complete or detailed
equirements for an increment should be.

.5.3. C5.c: Consistent requirements processes

Different teams create and manage their requirements
using different processes, tools and level of detail.
Coordination and sharing is difficult.

The TelWS participants indicated that distributed develop-
ent in different countries with different cultures has made
onsistency in requirements processes difficult. Some locations
re embracing agile, with others still want a more procedural ap-
roach with document approval. Processing has addressed similar
rustrations, but with tooling. People are reluctant to stop using
ommon tools like Excel and migrate to modern requirements
anagement tools. The result ranges from full to partial migra-

ion, sometimes moving between the tool and Excel, with the
xcel version updated more frequently. The problem persists due
o usability complaints about the new tool as well as management
ot enforcing its use. If some migrate and some do not, incon-
istency is the result, hampering coordination. Technology 1 sees
imilar tool-related migration and consistency problems. This
hallenge relates strongly to both Challenge 4.c (requirements
uality) and 4.e (tooling).

otential solution. Telecom suggested that requirements consis-
ency could be managed similarly to code and test consistency.
herefore, they aimed for a system were requirements are stored
n the same repository as code and test, be consistently updated
uring sprints, and peer-reviewed to ensure comparability. This
ould then lead to a more consistent requirements process.
With respect to SAFe R⃝ , the recommendation for a clear hi-

rarchy, from the enterprise level to team, may help to promote
onsistent processes (Knaster and Leffingwell, 2017; Leffingwell,
010). However, SAFe R⃝ also advocates for team independence,
ith responsibility for their own way of working. Coordination
echanisms like book clubs and guilds can help to share best
ractices, even given independence between teams (Campbell-
retty, 2016). LeSS does not appear to directly address this issue.
Overall, the level of consistency needed between teams is an

pen question, likely depending on context.

.5.4. C5.d: Quality vs. time-to-market

It is often not clear what quality level (of require-
ments, products, deliverables) is good enough. It is not
clear when to continue improving or when to release,
particularly on a large-scale.

Given the aim to shorten time-to-market, answering the ques-
ion of what is good-enough quality is becoming a challenge for
ur case companies. This challenge holds for the releases of the
ctual product, but also for intermediate deliverables, such as
equirements. It is one of the agile dogmas that one should not
nvest time into high-quality specifications of requirements that
19
then might never be implemented. The same holds for products:
there is a widely spread idea that it is better to have a first
version of the product in the market and then iteratively improve
it to achieve good fitness for purpose without overshooting the
required quality.

This view however raises practical concerns, especially when
embracing agility at scale. Telecom and Automotive 2 did indicate
that sometimes requirements were not of sufficient quality to
allow testing. While in small-scale agile, this could be mitigated
through intra-team communication, at large-scale there must be
a form of moderation to ensure that lack of information can be
articulated and fixed between teams and release trains.

Technology 1 indicated a related challenge with respect to
releases of products. Obviously, quality comes at a price which
could manifest in product cost, time-to-delivery, or a combination
of both. However, it is very hard to discuss this with customers,
since for large-scale products it is difficult to make customers
aware of the price. Thus, when discussing with customers about
quantitative quality requirements on systems that include hard-
ware or software components, customers usually strongly de-
mand very high quality, even beyond what they actually need or
can afford for a concrete business case.

Often, there is also a reluctance to record a number on quality
requirements, as then there is a level of commitment for this
number, when agility demands flexibility. Yet, for many quali-
ties, it will be difficult to address them late in the development
without careful planning. While for example functionality can be
added later, fixing major performance or usability problems late
can entail major refactoring and rework. In addition, customer
expectations about quality remain rather constant.

Potential solution. Relying on frequent reviews of requirements
as part of sprint deliverables can be a good way to establish a
feedback channel about requirements quality and lack of infor-
mation, as brought up by Telecom. This could help teams to find
over time a good balance on providing just enough requirement
quality: missing information might delay development, while
to elaborate requirements will unnecessarily lengthen time-to-
market.

SAFe R⃝ advocates for built-in-quality as part of the agile pro-
cess (Knaster and Leffingwell, 2017, p.23, 140), and provides
guidance for reducing time-to-market through value streammap-
ping (Knaster and Leffingwell, 2017, p. 298), but does not explic-
itly address the trade offs between time and quality. We did not
identify concrete guidance for this challenge within LeSS.

Generally, there is a trade-off between product quality and
time-to-market, for products and releases as well as for deliver-
ables and artifacts needed during development. There is a lack of
guidance to balance this trade-off.

5.6. Organizational aspects

5.6.1. C6.a: Bridge plan-driven and agile

It is hard to bridge the gap between plan-driven,
document-centric approaches on system level and value-
driven, agile approaches on team level. Companies strug-
gle to stay pro-active on system level as well as to
leverage knowledge about requirements that is generated
on team level.

From a product perspective, a plan-driven or stage-gate ap-
proach is important. Release of a new product needs to be
planned and longer development cycles for hardware and me-
chanical components need to be scheduled. All of our case compa-
nies have agile software development teams that operate within

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

t
i

T
s
d
v
o
p
d

d
o
k
v
a
c

S
A
o
H
r
n
b
d
t
a
o
t

A
b
w
e
a
m
o
s
b
c
f
n
i
d
v

F
f

P
m
a
e
s
w

I
r

t
a
h
L
r
d
i

p
W
f
d
h
s
c

5

he context of a larger system engineering process, which one
nterviewee described as agile islands:

‘‘It feels like agile islands in a waterfall.’’ — FG 2

he challenge we found here regardless of agile scope in the
pecific case is continuous information exchange between plan-
riven and agile parts of an organization. Incubation of new inno-
ative ideas, facilitating quick feedback loops, and quick learning
n potential business value are important assets to remain com-
etitive, yet they are hard to integrate into the overall system
evelopment approach in all our cases.
In the Telecom case, we found that system managers feel

isconnected from the agile teams. Their role is to be experts
n a certain part of the system and support teams with their
nowledge of the system requirements. However, as one inter-
iewee stated they currently cannot be in contact with all teams
nd might therefore not get a notification if something has been
hanged with respect to existing requirements.

‘‘If [..] a team updates a past requirement, perhaps I should get like a notification
on that so I can ask them ‘Have you forgotten X?’.’’ — T-SysM

imilar challenges exist with the other companies, e.g. in the
utomotive 2 case where agile teams can add new backlog items
r change existing ones in collaboration with the product owner.
owever, since agile teams do not interact directly with system
equirements (see C3.c creating and maintaining traces), they do
ot consider knowledge about them to be of importance. Further,
acklog items are easy to understand, even for stakeholders not
irectly involved, and allow them to share their opinion. While
his is generally perceived positively by the interviewees, it was
lso brought up that this can cause the function owner to be
verexposed to change requests. One function owner expressed
his as follows.

‘‘The more people look into requirements, the more they read them, the more
iterations it will become. [..] there is going to be more opinions, comments and
also more work.’’ — A2-FO

s this can lead to inconsistencies between changed and new
acklog items and the system requirements, e.g., in the case
here a system requirement related to a new user story already
xisted, increased gate-keeping becomes necessary. This gener-
tes effort for backlog grooming by the (agile) product owner, and
anaging of system requirements by the (plan-driven) function
wner. The current separation between both worlds does not
eem to be ideal, since product and function owner can easily
ecome bottlenecks, and late resolution of inconsistencies can
reate additional effort. If the actual implementation deviates
rom the original requirement or when some requirements are
ot implemented, this will surface as problems during system
ntegration and testing. Tests are developed against the plan-
riven requirements and are therefore in need of an up-to-date
ersion.

‘‘If I have a requirement saying this thing should happen, when I test it, I find
out that what is supposed to happen doesn’t happen. [..] And then I find out
the requirement wasn’t updated. So actually the implementation was correct
but the requirement isn’t matching the implementation.’’ — A2-ST

urther, if the system has to be evolved or maintained in the
uture, outdated requirements can cause misunderstandings.

otential solution. In our focus groups, the governance of require-
ents between system level planning and agile teams was raised
s a key issue. Telecom emphasized that the team should be
nabled to update the requirements during sprints, similarly to
ource code, tests, and documentation. TReqs as a tool solution
as again mentioned as potential enabler (Knauss et al., 2018).
20
n contrast, Technology 2 placed the responsibility of updating
equirements with the product owner.

While we did not identify related practices in LeSS, we believe
hat SAFe R⃝ offers good advice on governance of requirements
nd related knowledge across levels in that it provides a clear
ierarchy from enterprise level to individual teams (Knaster and
effingwell, 2017; Leffingwell, 2010). Yet, mastering this part will
equire significant effort by any company transitioning into agile
evelopment, as we found few concrete practices and guidelines
n the agile frameworks.

While transitioning from plan-driven to large-scale agile, com-
anies start to rethink the role of systems engineering artifacts.
hile many of these artifacts (including requirements speci-

ications on various levels) have been static documents, agile
evelopment now demands for actively managed artifacts that
elp with the coordination of agile teams within a plan-driven
ystem engineering organization. We believe that this will be a
hallenge even for fully agile system development.

.6.2. C6.b: Plan V & V based on requirements

In the past, verification and validation (V & V) was
planned based on requirements. Now that requirements
are inherently incomplete and incremental throughout
development, how does one plan for testing? Particu-
larly, it is hard to provide guidelines and traceability,
to allocate resources, manage test artifact information
for decision making, and align requirements with system
tests.

Using the V model, our case companies were used to a tight
link between requirements and tests. As the nature of require-
ments changes, these links must be rethought. However, planning
of test activities is still critical, particularly in order to allocate
resources (time, hardware, people, etc.), and can be costly. Man-
ufacturing has indicated that following new agile practices means
there is only partial traceability between tests and requirements.
High-level artifacts are used to define test guidelines (boundaries
on tests); however, these are hard to follow, as for example, a
wide range of test oracles needs to be taken into account, which
vary from numbers (dimensions or signals) to user action re-
sponses. More guidelines are needed in testing. In this company,
system engineers are responsible for the V & V strategy, while the
project managers, who are more in line with the agile processes,
do not do such planning. This gap between agility and the testing
team causes challenges.

More generally, this requires to rethink traceability and one
has to discuss the different information items in relation to the
roles that use them. In our large-scale agile system development
cases, we find a very complex picture and it is partially un-
clear how information items relate and which stakeholder needs
could be satisfied through traceability. Several interviewees in the
Telecom case stated that their system requirements work as a
documentation of what the system is doing, rather than a plan
of what shall be implemented.

‘‘You can’t really afford to have this kind of static requirements work upfront
which will be a waste anyway when you implement stuff. The way we handle
requirements now is more like a system description.’’ — T-TA

Yet, as mentioned before, user stories and tests are not enough
(C3.a), thus there is a need to document any assumptions or
decisions taken during testing, which can be interpreted as re-
quirements that the system should fulfill from now on.

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

P

d
s
d
c

5

a
w

otential solution. Manufacturing has partially addressed this chal-
lenge by establishing virtual test rigs and simulation models,
reducing the cost of testing and at the same time making test-
ing infrastructure more directly available to development teams.
Telecom suggested to include system requirements in the same
repository as code and tests and to make sure that the same
quality assurance mechanisms are applied. Ideally, this ensures
that tests and requirements are consistent, as they are modified
at the same time, and traced, as they share the same commit as
well as explicit trace links.

SAFe R⃝ recommends duality in backlog items and tests, and de-
scribes solution intents as linking specifications to tests (Knaster
and Leffingwell, 2017, p. 187). Adopting a more cross-functional
organization, including testers or system engineers in the agile
teams, would also help to alleviate these issues (Knaster and
Leffingwell, 2017, p. 97). LeSS does not offer any specific solution
here.

Despite these promising suggestions, the planning of vali-
ation and verification remains a huge challenge especially in
ystem engineering and its various disciplines. Empirical evi-
ence about the proposed practices and proven approaches are
urrently lacking.

.6.3. C6.c: Time for invention and planning

Research activities and exploration are hard to fit into
development sprints but offer fundamental information
towards requirements.

Study participants in Automotive 1 reported that an explo-
ration of solution space is difficult within agile sprints, as it
would be impossible to commit to a fixed schedule without deep
knowledge about new features. Pre-development is required to
better understand the impact of new features. If this is done by
a dedicated group, this would imply documentation and hand-
over of results and slow down the process. If it were done by the
developers the development process would be slowed.

Potential solution. As a remedy, specific exploration sprints were
brought up. Another solution could be to transfer engineers be-
tween pre-development and agile system development, so that
they can also share their knowledge with team members.

SAFe R⃝ again recommends capturing the solution intent,
including a repository of current and future solution behav-
iors (Knaster and Leffingwell, 2017, p. 20). SAFe R⃝ also describes
both enabler stories, stories that explicitly support exploration
(Knaster and Leffingwell, 2017, p. 108) and iterations
dedicated to innovation and planning (Knaster and Leffingwell,
2017, p.96,154). LeSS offers no potential solution.

In summary, there is a lack of experience or evidence with
respect to the proposed practices. For a company transitioning
towards large-scale agile, this challenge requires careful scoping
of agility within system development.

5.6.4. C6.d: Impact on infrastructure

When neglecting upfront analysis, the impact on infras-
tructure might become obvious too late. Then, updating
infrastructure (e.g., improving labs for testing) increases
cycle time and time-to-market.

In system development, integration testing often depends on
strong laboratory setup that allows testing hardware, soft-
are, and potentially mechanics together. Although this relates
21
to challenge C6.b, required infrastructure changes may go be-
yond testing infrastructure. While a new feature might mainly
depend on changes of software and can be provided in an in-
cremental, fast-paced way, it could require an update of the
test environment, which may include sophisticated hardware and
environment models. However, changing the test environment
might take as long as finishing the software components, thus
introducing delays, if not started in due time. Similar concerns
relate to other infrastructure for continuous integration, delivery,
and deployment.

Potential solution. From a testing prospective, as mentioned in
C6.b, companies can make use of virtual test rigs and simulation
models to avoid physical infrastructure changes. Peer-reviewing
of requirements can raise awareness about potential impact on
infrastructure early on.

SAFe R⃝ recommends having a cross-functional organization,
which can help teams to understand the wider impact of their
features and changes, including impact on infrastructure (Knaster
and Leffingwell, 2017, p. 97). We do not find a potential solution
in LeSS.

This challenge shows that independent of the pervasiveness
in Fig. 3, there is a need to maintain a system-level perspective
beyond self-organized teams and to allow requirements related
information to escalate to this level as early as possible.

6. Discussion and implications

Even though the seven cases differ in their context, i.e., domain
and pervasiveness of agile methods within system development,
we found common concerns and challenges with respect to RE.
As our investigation reveals, systems companies face severe chal-
lenges that are not sufficiently covered by common large-scale
agile frameworks. Generally this suggests that in order to yield
their full benefits, agile practices must be combined with a suf-
ficiently strong mechanism to manage requirements and related
knowledge. We found challenges in six different areas and while
we could derive potential solutions from data collected with our
case companies as well as from our analysis of agile frameworks,
we see a significant need for future research. We will discuss each
of the challenge areas and their implications for future research
in the following.

6.1. Build and maintain shared understanding of customer value

Managing customer value is usually assumed to be the core
strengths of agile approaches and we identified potential solu-
tions both in LeSS and SAFe R⃝ . Yet, we found in all our case
companies that the distance between the customers and the
development is perceived to be too large (summarized in Table 3).
In particular, it was described as difficult to break down a feature
request into small packages that both have customer value and
can be delivered in small iterations. However, agile values such
as individuals and interactions (Evbota et al., 2016) as well as
agile practices such as continuous delivery (Kasauli et al., 2017a)
depend on a good notion of value. Yet, we found this particularly
hard to establish in large-scale system development, because
of unclear customer role and scale. The customer role is often
unclear, since development teams do not only need to produce
value to external customers, but also to other roles within the
company, e.g., in order to prepare for maintenance.

In case of an external customer, any customer-visible feature
will imply more work than can be done within one sprint or by
one team, at the scale of our case companies. This makes feature
decomposition necessary and it is impossible for a single team to
demonstrate customer value at the end of a typical sprint. Related

work in this direction has, in particular, pointed out challenges

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

w
2
t
d
2
e
L
t
c
s

6

f
i
q
a
a
a
o
i
u
a
p
o
r
(
o
A
r

n
a
t
t
i
i

6

a
T
g
(
i
m
c
t
b
a
s
c
t
k
e

p
s
t
t
2
O
w
s

w
q
c
O
f
H
t
t

m
p
o
m
m
I
e
o
r
t
i
a
k
t
g
r
t

6

t
u
s
s
f
b
i
t
t
i
b

i
c
f
o
o
t
a

ith the practice of customer representatives (Heikkilä et al.,
015; Ramesh et al., 2010; Inayat et al., 2015), but it seems that
he notion of value itself is problematic and a shared language for
iscussing value is needed (Kasauli et al., 2017a; Khurum et al.,
013; Horkoff et al., 2018) as well as approaches to systematically
nable, build, and assess shared understanding (Batsaikhan and
in, 2018). Without those concepts, our case companies struggle
o establish, manage, and validate a shared understanding of
ustomer value throughout the development organization and we
ee the need for future research to address these challenges.

.2. Support change and evolution

As summarized in Table 4, our results indicate that sufficient
acilities for updating system requirements based on agile learn-
ng are currently missing affecting managing experimental re-
uirements, synchronizing development, re-using requirements,
nd managing the lifecycle of requirements. Thus, such updates
re a result of manual work, leading to inconsistencies, which
re expensive to remove and can be considered waste in the
verall development process. In addition, developers have little
ntrinsic motivation to update requirements models based on
pdates to user stories, as they are not part of their delivery (usu-
lly code and tests). If, however, requirements updates were not
ropagated, the system requirements view would become quickly
bsolete and detached from the real system. Consequently, roles
esponsible for customer and high-level system requirements
product owners, function owners, system managers) fear a loss
f important knowledge for later maintenance of the systems.
more systematic approach to manage requirements updates

eceived from agile teams would make their jobs much easier.
We believe that more research on these aspects is urgently

eeded to provide better guidance, approaches and tools to man-
ge evolving requirements. In line with Cockburn, we believe
hat agility is a game on two levels: not only should one aim
o deploy features to the market quickly, but one should also
ncrease the organizations ability to provide value to customers
n the future (Cockburn, 2006).

.3. Build and maintain shared understanding about system

Our third challenge area relates to building and maintaining
shared understanding about the system and is summarized in
able 5. Historically, plan-driven approaches suggest to distin-
uish between requirements specified from a user perspective
user or customer requirements specification) and those spec-
fied from a system perspective (system or supplier require-
ents specification) (Sommerville, 2015). Agile methods mainly
oncern themselves with customer or user value, thus covering
he content of a user requirements specification and even going
eyond by focusing on the value that is generated for users
nd customers. There is virtue in such value- or problem-based
pecifications (Lauesen, 2002, 2017), and we agree that user or
ustomer value is an important knowledge area with respect
o requirements. We found, however, that system requirements
nowledge is crucial for large-scale system development as well,
specially considering the very long maintenance cycles.
We generally find this perspective of requirements with a

articular system or solution in mind to be underrepresented in
caled agile frameworks. User stories have been found insufficient
o cover such knowledge (Heikkilä et al., 2015) and (automated)
est cases are often named as an alternative (Heikkilä et al.,
015; Bjarnason et al., 2016), especially for small-scale projects.
ur findings suggest that using test cases, even in combination
ith user stories, is not sufficient, in particular with respect to

upporting the understanding of a system’s current functionality.

22
Specifically, we identify a lack of guidance in agile frameworks
with respect to capturing a comprehensive big picture of require-
ments and their rationale, a finding in agreement with Heikkilä
et al. (2017). Because of this lack it is challenging to support
systems thinking and requirements governance, to provide (often
required) traceability, and to manage long-term knowledge as
well as backwards compatibility. Therefore, we see the need for
more work investigating the use of different notations, techniques
or methods to inform early analysis of incoming requirements.

Even though such documentation and management of system
requirement may feel non-agile by nature, it becomes crucial to
support agile systems development. While significant work exists
in the area of agile modeling (Ambler, 2002; Rumpe, 2004), our
focus companies do not report experiences with these solutions.
We distinguish therefore between agile requirements engineering
as covered in most of the related work (Inayat et al., 2015) and
requirements engineering for agile system-development (RE4agile),
here we do not require an agile approach to engineering re-
uirements. We see RE4agile as a fundamental service to provide
rucial requirements knowledge so that agile teams can perform.
ur findings suggest that such support cannot be offered suf-
iciently by traditional, upfront RE, as indicated (Meyer, 2014;
eikkilä et al., 2017). Similarly, we did not find any specific roles
hat emerge in the large-scale agile environment comparable to
he roles presented in Hoda et al. (2013).

Our results suggest that continuous and agile development
ethods on a large scale require new concepts. Hybrid ap-
roaches (Kuhrmann et al., 2017) that aim to combine strengths
f both plan-driven (waterfall) and value-driven (agile) paradigms
ay offer inspiration, but are at this point not sufficiently docu-
ented through empirical studies to relate them to our findings.

n more recent parallel work with the same companies (Wohlrab
t al., 2019; Lindman et al., 2020), we have been exploring the-
ries and methods to manage and govern shared objects such as
equirements, architecture descriptions, APIs, and user documen-
ation. Interpreting such items as boundary objects can help link
ndividual teams to shared views of vision of the whole system
nd ultimately lead to effective agile approaches to manage such
nowledge at scale (Wohlrab et al., 2019). We have explored
his approach with respect to strategic API management and
overnance (Lindman et al., 2020) and we are confident that this
esearch direction will yield useful concepts and theories to tackle
his challenge area.

.4. Representation of requirements knowledge

The fourth challenge area includes challenges that relate to
he representation of requirements knowledge (see Table 6). One
nderlying observation of the challenges in this area relates to the
hared responsibility for requirements knowledge. In particular,
caled agile appears to imply that teams take more responsibility
or both customer and system requirements. This in turn implies a
i-directional flow of requirements knowledge. On the one hand,
t must both be relayed top-down, from system level planning to
eams. On the other hand, it must flow bottom-up, from teams
hat explore the best way of satisfying a customer need through
ncremental and iterative work. We discovered challenges with
oth directions.
Bottom-up, the current tooling is not fit for purpose, since

t does not allow teams to create and share knowledge effi-
iently. In addition, teams are expected to take responsibility
or their own ways of working and to establish suitable flavors
f requirements artifacts. How can individual teams have their
wn specialized requirements representations and still relate to
he overall system-level requirements model? Top-down, a suit-
ble decomposition of requirements is hard to achieve, especially

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

s
s
r
t
e
n
d

m
t
l
e

t
w
s
a
o
E
u
t
a
w
S
t
w
r

c
a
a
t
n
s
t

b
b
(

6

r
q
s
a
t
t
t
o

ince agile frameworks do not cover the duality of customer and
ystem requirements. It is also difficult to establish a consistent
equirement quality. Related work by Wohlrab et al. suggests
hat diversity and alignment of representations can be balanced,
specially when taking into account information and consistency
eeds on different levels of abstractions and at different times
uring the development cycle (Wohlrab et al., 2020).
Challenges with this shared responsibility for generating and

anaging requirements-related knowledge surfaces in difficulties
o establish thresholds for quality requirements. How does a
arge-scale organization align on such threshold and manage their
volution when new knowledge becomes available?
We have been evaluating the use of T-Reqs, an approach

o manage textual requirements in git version control together
ith tests and source code (Knauss et al., 2018). Custom tools
uch as T-Reqs can be accessible across an organization, and
llow for customized access to requirements and peer-reviews
f requirements changes by other teams and system managers.
xisting work in the requirements literature has recognized that
ser story quality in practice can be problematic and has in-
roduced various quality frameworks and tools to manually and
utomatically detect quality issues, e.g., Lucassen et al. (2015),
hich in our view would integrate well with such peer-reviews.
uch an approach promises to help with giving teams access
o requirements tooling, supporting quality assurance, and even
ith re-negotiating quality thresholds and we encourage further
esearch in this area.

As our results suggest, it is crucial to establish suitable ex-
hange and management of knowledge throughout large-scale
gile system development. Agile development works best with
continuous inflow of new requirements and can in turn help

o resolve ambiguities and refine requirements just in time, as
ew knowledge becomes available. However, it is important to
upport updating system requirements models and to coordinate
he information flow between parallel teams.

This finding suggests that communication issues continue to
e relevant in large-scale agile RE, in contrast to what is suggested
y related studies, e.g., Inayat et al. (2015) and Bjarnason et al.
2011).

.5. Process aspects

Our fifth challenge area relates to the process of working with
equirements. As the previous challenge areas indicate that re-
uirements knowledge is not only continuously evolving, but also
pread between customer value and system requirements as well
s between a consistent requirements model of the complete sys-
em and specialized views of individual teams, it becomes clear
hat strong, continuous, and distributed processes must be es-
ablished. Within this problem-space, the well-known challenge
f just enough requirements engineering (Davis, 2005) reappears

with force: how can a developing organization with dozens of
agile teams find this fine balance where time-to-market is nei-
ther impacted by too much missing information nor excessive
requirements work?

A concrete challenge relates to distributed prioritization (Bjar-
nason et al., 2011; Heikkilä et al., 2015; Inayat et al., 2015).
While this is certainly challenging, it appears that prioritization
by risk rather than value can be a good practice in many cases.
This suggestion is in line with recent research by Hadar and
Hassanzadeh (2019), suggesting to use risk for prioritization. They
suggest that risk is in many cases easier to quantify than value,
thus providing a strong prioritization criteria, if applicable.

Further, requirements processes are expected to help estab-
lishing a meaningful concept of completeness as well as con-
sistency. Yet, they must enable agile teams to take responsibil-
ity for their own ways of working. Recent works on boundary
23
objects (Sedano et al., 2019; Wohlrab et al., 2019) and bridg-
ing methodological gaps between different scopes in large-scale
agile (Kasauli et al., 2020) may offer useful guidelines.

6.6. Organization aspects

Related to the process aspects, our final challenge area in-
cludes challenges that relate to the overall organization in which
requirements engineering is practiced. It is inherent to systems
engineering that some long-term planning is needed, especially
to plan for facilities to manufacture and test hardware and me-
chanics, but also to coordinate the integration of components
across disciplines. Our challenges here relate to bridging between
such system-level planning and agile work in software teams,
to the planning of integrated system testing, to manage the
research and pre-development, and to identify impacts on critical
infrastructure in good time.

At the moment, we are not aware of proven approaches,
neither through empirical evidence nor within agile frameworks,
that can address these challenges. As with our challenges re-
lated to process aspects, we believe that recent research around
boundary objects could offer a framework to encourage self-
organization in system development (Sedano et al., 2019; Wohl-
rab et al., 2019). If constructively used to establish boundary
objects as means of coordination between plan-driven and agile
areas of an organization, we expect a positive impact on orga-
nizational aspects with engineering requirements in scaled-agile
system development (Kasauli et al., 2020). Our works on T-Reqs
can be seen as a special boundary objects, where teams can
communicate critical requirements changes early on and spread
awareness through peer reviews (Knauss et al., 2018).

6.7. Challenges beyond the scope of this study

Through the transition to large-scale agile, many aspects of
the overall processes, organization and ways of working of our
case companies were under consideration at the time of our
investigation. Requirements are of critical importance to all of our
case companies and they traditionally relate directly or indirectly
to all aspects of system development. Thus, we found at several
times during this investigation that we needed to sharpen the
scope. We wanted to create a catalog of general requirements-
related challenges that are relevant to system development of
organizations that have transitioned or desire to transition to
large-scale agile.

One big challenge that we ultimately excluded from the scope
relates to the development of safety-critical or regulated systems.
It is an exciting research field, but deserves a dedicated space. Our
challenges of large-scale agile system development also apply if
safety-critical systems are developed, yet, safety and regulation
bring in an additional level of complexity to an already complex
topic. We will instead spend a few lines here to relate our findings
to safety-critical systems.

Traditionally, long upfront analysis and planning aimed to
address these needs (Meyer, 2014). However, as companies try
to speed up their development, research needs to investigate new
ways of dealing with documentation of such cross-cutting issues.
Ensuring qualities and addressing non-functional requirements
has been brought forward as a challenge in agile RE (Inayat et al.,
2015; Heikkilä et al., 2015), and first works exist to address regu-
lations in agile (Hanssen et al., 2016; Fitzgerald et al., 2013). This
is an interesting area, since it allows to look at requirements prac-
tice in large-scale agile as a spectrum, where regulation or safety
demand for a more formal approach. Several of our case compa-
nies develop such systems and participants repeatedly expressed

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

c
w

m
a
i
t
r

oncerns that the development of safety critical software together
ith corresponding standards could impede agile development.
As examples, the participants expressed the need for docu-

entation and tracing that is required by several standards, such
s ISO26262 (ISO, 2018). However, an expert for functional safety
n Automotive 1 stated that the need for documentation and
racing is related more to the size of the company and the system
ather than regulations.

‘‘Many see that as a problem. Many say that it’s safety problem, it is a 26262
problem. But we say [..] we need to document anyway since then half a year
later it is a different team [working on the same software]’’ — A1-TS

According to our interviewees, standard conformance could be
combined with agile development if only this was planned in a
systematic fashion, e.g., by sandboxing safety critical parts. Fur-
ther, our case companies discussed a spectrum of requirements
method ranging from full-scale for regulated and safety-critical
systems to lightweight for unregulated and non-critical systems.
Yet, it is unclear which concrete practices and approaches are
distributed over this spectrum in large-scale agile, which is con-
firmed by our parallel work on safety in agile system develop-
ment (Kasauli et al., 2018; Steghöfer et al., 2019).

7. Conclusion and outlook

We presented our results from a multiple-case study with
seven systems engineering companies on the interaction of RE
and agile methods in large-scale development. We studied the
pervasiveness of agile methods adoption, requirements-related
challenges of large-scale agile systems development and solu-
tions from best practices in industry as well as those provided
by SAFe R⃝ and LeSS. In all case companies, the way plan-driven
and agile development currently co-exist within the systems
engineering environment limits the potential development speed.
We found that in all companies, there is a need for strong re-
quirements engineering approaches, especially with respect to
documenting a system’s behavior for future feature requests or
maintenance. The pervasiveness of agile implementation in the
case companies differs, ranging from agile development on team-
level embedded in an overall plan-driven process up to agile
development for the entire product development. Despite the
difference in pervasiveness, we observed similar challenges in all
companies. These relate to establishing a shared view of value
from the customer and other stakeholders down to development,
supporting change and evolution, building up and maintaining
a shared understanding about the system, representation of re-
quirements knowledge, as well as dealing with process and or-
ganizational aspects. Proposals to mitigate these challenges have
been extracted from SAFe R⃝ and LeSS, and we have collected
further practices from the companies. Despite these proposals
and practices, we note that many challenges remain open or have
solutions without realistic evaluation.

At the time of this investigation, we conclude that neither tra-
ditional requirements engineering nor scaled-agile frameworks
provide satisfying concepts to manage requirements knowledge
effectively, when developing at the scale and speed that our case
companies desire. Thus, each organization must find workarounds
for their particular context. Our results facilitate the search for
such individual solution strategies by providing a comprehensive
overview of challenges. In particular, it helps to design solutions
that do not over-optimize solving one challenge at the expense
of a different challenge. Further inspiration is provided by listing
relevant solution candidates. Yet, more general and reusable
approaches are desperately needed. Therefore, we encourage
future work to not only produce further practices to solve open
challenges, but also focus on evaluation of existing large-scale
24
agile proposals from a requirements perspective. Ideally, this will
allow large-scale system development efforts to fully benefit from
agile methods, while still systematically managing knowledge
about customer value and the system under construction.

CRediT authorship contribution statement

Rashidah Kasauli: Methodology, Formal analysis, Investiga-
tion, Data curation, Writing - original draft, Writing - review &
editing, Visualization. Eric Knauss: Conceptualization, Method-
ology, Validation, Formal analysis, Investigation, Writing - orig-
inal draft, Writing - review & editing, Supervision, Project ad-
ministration, Funding acquisition. Jennifer Horkoff: Conceptual-
ization, Methodology, Validation, Formal analysis, Investigation,
Data curation, Writing - original draft, Writing - review & editing.
Grischa Liebel: Methodology, Formal analysis, Investigation, Data
curation, Writing - original draft, Writing - review & editing.
Francisco Gomes de Oliveira Neto: Methodology, Investigation,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We thank all participants in this study for their great support,
deep discussions, and clarifications. This work was supported
by Software Center Project 27 on Requirements Engineering for
Large-Scale Agile System Development and the Sida/BRIGHT
project 317 ‘‘Building Research Capacity in Innovative Informa-
tion and Communication Technologies for Development (ICT4D)
for Sustainable Socio-economic Growth in Uganda (BRIGHT)’’
under the Sida contribution No: 51180060.

References

Ambler, S., 2002. Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. John Wiley & Sons.

Batsaikhan, O., Lin, Y.-C., 2018. Building a Shared Understanding of Customer
Value in a Large-Scale Agile Organization: A Case Study (master thesis).
Chalmers | University of Gothenburg, Dept. of Computer Science and
Engineering.

Beck, K., 2000. Extreme Programming Explained: Embrace Change. Addison
Wesley Longman Inc..

Berger, C., Eklund, U., 2015. Expectations and challenges from scaling agile in
mechatronics-driven companies – A comparative case study. In: Lassenius, C.,
Dingsøyr, T., Paasivaara, M. (Eds.), Agile Processes in Software Engineering
and Extreme Programming. Springer International Publishing, Cham, pp.
15–26.

Bjarnason, E., Unterkalmsteiner, M., Borg, M., Engström, E., 2016. A multi-
case study of agile requirements engineering and the use of test cases
as requirements. Inf. Softw. Technol. 77, 61–79. http://dx.doi.org/10.1016/
j.infsof.2016.03.008.

Bjarnason, E., Wnuk, K., Regnell, B., 2011. A case study on benefits and
side-effects of agile practices in large-scale requirements engineering. In:
Proceedings of the 1st Workshop on Agile Requirements Engineering. In:
AREW ’11, Association for Computing Machinery, New York, NY, USA, pp.
1–5. http://dx.doi.org/10.1145/2068783.2068786.

Campbell-Pretty, 2016. Tribal Unity: Getting from Teams to Tribes by Creating
a One Team Culture. CreateSpace Independent Publishing Platform.

Chow, T., Cao, D.-B., 2008. A survey study of critical success factors in agile
software projects. J. Syst. Softw. 81 (6), 961–971. http://dx.doi.org/10.1016/
j.jss.2007.08.020, Agile Product Line Engineering.

Cockburn, A., 2006. Agile Software Development: The Cooperative Game. Pearson
Education.

Davis, A.M., 2005. Just Enough Requirements Management: Where Software
Development Meets Marketing. Dorset House.

Dikert, K., Paasivaara, M., Lassenius, C., 2016. Challenges and success factors
for large-scale agile transformations: A systematic literature review. J. Syst.
Softw. 119, 87–108. http://dx.doi.org/10.1016/j.jss.2016.06.013.

http://refhub.elsevier.com/S0164-1212(20)30241-7/sb1
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb1
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb1
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb2
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb3
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb3
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb3
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb4
http://dx.doi.org/10.1016/j.infsof.2016.03.008
http://dx.doi.org/10.1016/j.infsof.2016.03.008
http://dx.doi.org/10.1016/j.infsof.2016.03.008
http://dx.doi.org/10.1145/2068783.2068786
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb7
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb7
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb7
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb9
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb9
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb9
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb10
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb10
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb10
http://dx.doi.org/10.1016/j.jss.2016.06.013

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

E

E

E

F

G
H

H

H

H

H

H

I

I

J

K

K

K

K

K

K

K

K

bert, C., Paasivaara, M., 2017. Scaling agile. IEEE Softw. 34 (6), 98–103. http:
//dx.doi.org/10.1109/MS.2017.4121226.

klund, U., Holmström Olsson, H., Strøm, N.J., 2014. Industrial challenges
of scaling agile in mass-produced embedded systems. In: Dingsøyr, T.,
Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (Eds.), Agile
Methods. Large-Scale Development, Refactoring, Testing, and Estimation.
Springer International Publishing, Cham, pp. 30–42.

vbota, F., Knauss, E., Sandberg, A., 2016. Scaling up the planning game: Collab-
oration challenges in large-scale agile product development. In: Sharp, H.,
Hall, T. (Eds.), Agile Processes, in Software Engineering, and Extreme
Programming. Springer International Publishing, Cham, pp. 28–38.

itzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D., 2013. Scaling agile methods
to regulated environments: An industry case study. In: 35th International
Conference on Software Engineering (ICSE). IEEE, pp. 863–872. http://dx.doi.
org/10.1109/ICSE.2013.6606635.

ibbs, G.R., 2008. Analysing Qualitative Data. Sage.
adar, E., Hassanzadeh, A., 2019. Big data analytics on cyber attack graphs

for prioritizing agile security requirements. In: IEEE 27th International
Requirements Engineering Conference (RE). Jeju Island, South Korea. pp.
330–339. http://dx.doi.org/10.1109/RE.2019.00042.

anssen, G.K., Haugset, B., Stålhane, T., Myklebust, T., Kulbrandstad, I., 2016.
Quality assurance in scrum applied to safety critical software. In: Sharp, H.,
Hall, T. (Eds.), Agile Processes, in Software Engineering, and Extreme
Programming. Springer International Publishing, Cham, pp. 92–103.

eikkilä, V.T., Damian, D., Lassenius, C., Paasivaara, M., 2015. A mapping
study on requirements engineering in agile software development. In: 41st
Euromicro Conference on Software Engineering and Advanced Applications.
pp. 199–207. http://dx.doi.org/10.1109/SEAA.2015.70.

eikkilä, V.T., Paasivaara, M., Lasssenius, C., Damian, D., Engblom, C., 2017.
Managing the requirements flow from strategy to release in large-scale agile
development: a case study at Ericsson. Empir. Softw. Eng. 22, 2892–2936.
http://dx.doi.org/10.1007/s10664-016-9491-z.

oda, R., Noble, J., Marshall, S., 2013. Self-organizing roles on agile software
development teams. IEEE Trans. Softw. Eng. 39 (3), 422–444. http://dx.doi.
org/10.1109/TSE.2012.30.

orkoff, J., Lindman, J., Hammouda, I., Knauss, E., 2018. Experiences applying
e3 value modeling in a cross-company study. In: Trujillo, J.C., Davis, K.C.,
Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (Eds.), Conceptual Modeling. Springer
International Publishing, Cham, pp. 610–625.

nayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S., 2015. A
systematic literature review on agile requirements engineering practices
and challenges. Comput. Hum. Behav. 51, 915–929. http://dx.doi.org/10.
1016/j.chb.2014.10.046, Computing for Human Learning, Behaviour and
Collaboration in the Social and Mobile Networks Era.

SO, 2018. ISO 26262:2018: Road Vehicles – Functional Safety. ISO, Geneva,
Switzerland.

ørgensen, M., 2018. Do agile methods work for large software projects? In:
Garbajosa, J., Wang, X., Aguiar, A. (Eds.), Agile Processes in Software Engi-
neering and Extreme Programming. Springer International Publishing, Cham,
pp. 179–190.

ahkonen, T., 2004. Agile methods for large organizations - building communi-
ties of practice. In: Agile Development Conference. pp. 2–10. http://dx.doi.
org/10.1109/ADEVC.2004.4.

asauli, R., Knauss, E., Kanagwa, B., Nilsson, A., Calikli, G., 2018. Safety-critical
systems and agile development: A mapping study. In: 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
pp. 470–477. http://dx.doi.org/10.1109/SEAA.2018.00082.

asauli, R., Knauss, E., Nilsson, A., Klug, S., 2017a. Adding value every sprint:
A case study on large-scale continuous requirements engineering. In: Pro-
ceedings of 3rd Workshop on Continuous Requirements Engineering. Essen,
Germany. p. 10.

asauli, R., Liebel, G., Knauss, E., Gopakumar, S., Kanagwa, B., 2017b. Re-
quirements engineering challenges in large-scale agile system development.
In: IEEE 25th International Requirements Engineering Conference (RE). pp.
352–361. http://dx.doi.org/10.1109/RE.2017.60.

asauli, R., Wohlrab, R., Knauss, E., Steghöfer, J.-P., Horkoff, J., Maro, S., 2020.
Charting coordination needs in large-scale agile organisations with boundary
objects and methodological islands. In: Proceedings of the International
Conference on Software and System Processes (ICSSP ’20)’. pp. 51–60. http:
//dx.doi.org/10.1145/3379177.3388897.

hurum, M., Gorschek, T., Wilson, M., 2013. The software value map—an
exhaustive collection of value aspects for the development of software
intensive products. J. Softw.: Evol. Process 25 (7), 711–741. http://dx.doi.
org/10.1002/smr.1560.

naster, R., Leffingwell, D., 2017. SAFe 4.0 Distilled: Applying the Scaled Agile
Framework for Lean Software and Systems Engineering. Addison-Wesley
Professional.

nauss, E., Liebel, G., Horkoff, J., Wohlrab, R., Kasauli, R., Lange, F., Gildert, P.,
2018. T-Reqs: Tool support for managing requirements in large-scale agile
system development. In: IEEE 26th International Requirements Engineering
Conference (RE’18). Banff, Canada. pp. 502–503. Demo Track. http://dx.doi.
org/10.1109/RE.2018.00073.
25
Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trek-
tere, K., McCaffery, F., Linssen, O., Hanser, E., Prause, C., 2017. Hybrid
software and system development in practice: Waterfall,scrum, and beyond.
In: Proc. of Int. Conf. on Software System Process (ICSSP). pp. 30–39. http:
//dx.doi.org/10.1145/3084100.3084104.

Laanti, M., Salo, O., Abrahamsson, P., 2011. Agile methods rapidly replacing
traditional methods at Nokia: A survey of opinions on agile transformation.
Inf. Softw. Technol. 53 (3), 276–290. http://dx.doi.org/10.1016/j.infsof.2010.
11.010.

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Ståhl, D., 2013. The
impact of agile principles and practices on large-scale software development
projects: A multiple-case study of two projects at ericsson. In: 2013 ACM
/ IEEE International Symposium on Empirical Software Engineering and
Measurement. pp. 348–356. http://dx.doi.org/10.1109/ESEM.2013.53.

Larman, C., Vodde, B., 2016. Large-Scale Scrum: More with LeSS. Addison-Wesley
Professional.

Lauesen, S., 2002. Software Requirements. Pearson / Addison-Wesley.
Lauesen, S., 2017. Guide to Requirements SL-07: Problem-Oriented Requirements

v5. The course book (Lau).
Leffingwell, D., 2010. Agile Software Requirements: Lean Requirements Practices

for Teams, Programs, and the Enterprise. Addison-Wesley Professional.
Leffingwell, D., et al., 2014. Scaled Agile Framework 3.0. Scaled Agile, Inc.
Lindman, J., Horkoff, J., Hammouda, I., Knauss, E., 2020. Emerging perspectives

of application programming interface strategy: A framework to respond to
business concerns. IEEE Softw. 37 (2), 52–59. http://dx.doi.org/10.1109/MS.
2018.2875964.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kahkonen, T., 2004. Agile software development in large organizations.
Computer 37 (12), 26–34. http://dx.doi.org/10.1109/MC.2004.231.

Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S., 2015. Forging
high-quality user stories: Towards a discipline for agile requirements. In:
IEEE 23rd International Requirements Engineering Conference (RE). pp.
126–135. http://dx.doi.org/10.1109/RE.2015.7320415.

Meyer, B., 2014. Agile! The Good, the Hype and the Ugly. Springer International
Publishing, Switzerland, http://dx.doi.org/10.1007/978-3-319-05155-0.

Paasivaara, M., Lassenius, C., 2016. Challenges and success factors for large-scale
agile transformations: A research proposal and a pilot study. In: Proceedings
of the Scientific Workshop Proceedings of XP’16. Association for Computing
Machinery, New York, NY, USA, p. 9. http://dx.doi.org/10.1145/2962695.
2962704.

Paetsch, F., Eberlein, A., Maurer, F., 2003. Requirements engineering and
agile software development. In: WET ICE 2003. Proceedings. 12th IEEE
International Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, 2003. pp. 308–313. http://dx.doi.org/10.1109/ENABL.
2003.1231428.

Pernstål, J., Magazinius, A., Gorschek, T., 2012. A study investigating challenges in
the interface between product development and manufacturing in the devel-
opment of software-intensive automotive systems. Int. J. Softw. Eng. Knowl.
Eng. 22 (07), 965–1004. http://dx.doi.org/10.1142/S0218194012500271.

Ramesh, B., Cao, L., Baskerville, R., 2010. Agile requirements engineering practices
and challenges: an empirical study. Inf. Syst. J. 20 (5), 449–480. http://dx.
doi.org/10.1111/j.1365-2575.2007.00259.x.

Rumpe, B., 2004. Agile modeling with the UML. In: Wirsing, M., Knapp, A.,
Balsamo, S. (Eds.), Radical Innovations of Software and Systems Engineering
in the Future. Springer, Berlin, Heidelberg, pp. 297–309.

Runeson, P., Höst, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering, first ed. Wiley.

Salo, O., Abrahamsson, P., 2008. Agile methods in European embedded software
development organisations: a survey on the actual use and usefulness of
extreme programming and scrum. IET Softw. 2, 58–64, (6).

Savolainen, J., Kuusela, J., Vilavaara, A., 2010. Transition to agile development
- rediscovery of important requirements engineering practices. In: 18th
IEEE International Requirements Engineering Conference. pp. 289–294. http:
//dx.doi.org/10.1109/RE.2010.41.

Sedano, T., Ralph, P., Péraire, C., 2019. The product backlog. In: IEEE/ACM
41st International Conference on Software Engineering (ICSE). Montreal, QC,
Canada. pp. 200–211. http://dx.doi.org/10.1109/ICSE.2019.00036.

Sommerville, I., 2015. Software Engineering, tenth ed. Pearson.
Steghöfer, J.-P., Knauss, E., Horkoff, J., Wohlrab, R., 2019. Challenges of scaled

agile for safety-critical systems. In: Franch, X., Männistö, T., Martínez-
Fernández, S. (Eds.), Product-Focused Software Process Improvement.
Springer International Publishing, Cham, pp. 350–366.

Ståhl, D., Bosch, J., 2014. Modeling continuous integration practice differences in
industry software development. J. Syst. Softw. 87, 48–59. http://dx.doi.org/
10.1016/j.jss.2013.08.032.

Uludag, Ö., Kleehaus, M., Caprano, C., Matthes, F., 2018. Identifying and struc-
turing challenges in large-scale agile development based on a structured
literature review. In: IEEE 22nd International Enterprise Distributed Object
Computing Conference (EDOC). pp. 191–197. http://dx.doi.org/10.1109/EDOC.
2018.00032.

http://dx.doi.org/10.1109/MS.2017.4121226
http://dx.doi.org/10.1109/MS.2017.4121226
http://dx.doi.org/10.1109/MS.2017.4121226
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb13
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb14
http://dx.doi.org/10.1109/ICSE.2013.6606635
http://dx.doi.org/10.1109/ICSE.2013.6606635
http://dx.doi.org/10.1109/ICSE.2013.6606635
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb16
http://dx.doi.org/10.1109/RE.2019.00042
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb18
http://dx.doi.org/10.1109/SEAA.2015.70
http://dx.doi.org/10.1007/s10664-016-9491-z
http://dx.doi.org/10.1109/TSE.2012.30
http://dx.doi.org/10.1109/TSE.2012.30
http://dx.doi.org/10.1109/TSE.2012.30
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb22
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb24
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb24
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb24
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb25
http://dx.doi.org/10.1109/ADEVC.2004.4
http://dx.doi.org/10.1109/ADEVC.2004.4
http://dx.doi.org/10.1109/ADEVC.2004.4
http://dx.doi.org/10.1109/SEAA.2018.00082
http://dx.doi.org/10.1109/RE.2017.60
http://dx.doi.org/10.1145/3379177.3388897
http://dx.doi.org/10.1145/3379177.3388897
http://dx.doi.org/10.1145/3379177.3388897
http://dx.doi.org/10.1002/smr.1560
http://dx.doi.org/10.1002/smr.1560
http://dx.doi.org/10.1002/smr.1560
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb32
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb32
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb32
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb32
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb32
http://dx.doi.org/10.1109/RE.2018.00073
http://dx.doi.org/10.1109/RE.2018.00073
http://dx.doi.org/10.1109/RE.2018.00073
http://dx.doi.org/10.1145/3084100.3084104
http://dx.doi.org/10.1145/3084100.3084104
http://dx.doi.org/10.1145/3084100.3084104
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://dx.doi.org/10.1109/ESEM.2013.53
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb37
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb37
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb37
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb38
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb39
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb39
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb39
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb40
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb40
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb40
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb41
http://dx.doi.org/10.1109/MS.2018.2875964
http://dx.doi.org/10.1109/MS.2018.2875964
http://dx.doi.org/10.1109/MS.2018.2875964
http://dx.doi.org/10.1109/MC.2004.231
http://dx.doi.org/10.1109/RE.2015.7320415
http://dx.doi.org/10.1007/978-3-319-05155-0
http://dx.doi.org/10.1145/2962695.2962704
http://dx.doi.org/10.1145/2962695.2962704
http://dx.doi.org/10.1145/2962695.2962704
http://dx.doi.org/10.1109/ENABL.2003.1231428
http://dx.doi.org/10.1109/ENABL.2003.1231428
http://dx.doi.org/10.1109/ENABL.2003.1231428
http://dx.doi.org/10.1142/S0218194012500271
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb50
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb50
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb50
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb50
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb50
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb51
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb51
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb51
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb52
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb52
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb52
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb52
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb52
http://dx.doi.org/10.1109/RE.2010.41
http://dx.doi.org/10.1109/RE.2010.41
http://dx.doi.org/10.1109/RE.2010.41
http://dx.doi.org/10.1109/ICSE.2019.00036
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb55
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb56
http://dx.doi.org/10.1016/j.jss.2013.08.032
http://dx.doi.org/10.1016/j.jss.2013.08.032
http://dx.doi.org/10.1016/j.jss.2013.08.032
http://dx.doi.org/10.1109/EDOC.2018.00032
http://dx.doi.org/10.1109/EDOC.2018.00032
http://dx.doi.org/10.1109/EDOC.2018.00032

R. Kasauli, E. Knauss, J. Horkoff et al. The Journal of Systems & Software 172 (2021) 110851

W

W

W

iklund, K., Sundmark, D., Eldh, S., Lundqvist, K., 2013. Impediments in agile
software development: An empirical investigation. In: Heidrich, J., Oivo, M.,
Jedlitschka, A., Baldassarre, M.T. (Eds.), Product-Focused Software Process
Improvement. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 35–49.

ohlrab, R., Pelliccione, P., Knauss, E., Larsson, M., 2019. Boundary objects and
their use in agile systems engineering. J. Softw.: Evol. Process 31 (5), e2166.
http://dx.doi.org/10.1002/smr.2166, e2166 smr.2166.

ohlrab, R., Knauss, E., Pelliccione, P., 2020. Why and how to balance alignment
and diversity of requirements engineering practices in automotive. J. Syst.
Softw. 162, 110516. http://dx.doi.org/10.1016/j.jss.2019.110516.

Rashidah Kasauli is an Assistant Lecturer at Makerere
University, Uganda. Her research focuses on require-
ments engineering, safety-critical systems development
and large-scale agile development. She holds a Ph.D.
from Chalmers University of Technology Gothenburg,
Sweden. Contact her at rashida@chalmers.se.

Eric Knauss is an Associate Professor at Chalmers |
University of Gothenburg, Sweden. His research focuses
on managing requirements and related knowledge in
large-scale and distributed software projects. He holds
a Ph.D. from Leibniz Universität Hannover, Germany.
He is member of program and organization commit-
tees of top conferences and reviewer for top journals.
Contact him at eric.knauss@cse.gu.se.
26
Jennifer Horkoff is an Associate Professor at Chalmers
| University of Gothenburg, Sweden. Her research
focuses on requirements engineering, requirements
modeling, quality and value modeling, model analysis
and creativity. She holds a Ph.D. from the University of
Toronto. Contact her at jennifer.horkoff@gu.se.

Grischa Liebel is an Assistant Professor at Reyk-
javik University, Iceland. Grischa does empirical, often
qualitative, research with a focus on requirements
engineering, model-based engineering, software engi-
neering education, and human factors. He holds a Ph.D.
from Chalmers University of Technology. Contact him
at grischal@ru.is.

Francisco Gomes de Oliveira Neto is an Assistant
Professor at Chalmers | the University of Gothenburg,
Sweden. His research focuses on automated software
testing and test optimization (e.g., generation, selection
and prioritization of tests), particularly, to improve
continuous integration pipelines and automated main-
tenance of test repositories. He holds a Ph.D. from the
Federal University of Campina Grande. Contact him at
francisco.gomes@cse.gu.se.

http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://refhub.elsevier.com/S0164-1212(20)30241-7/sb59
http://dx.doi.org/10.1002/smr.2166
http://dx.doi.org/10.1016/j.jss.2019.110516
mailto:rashida@chalmers.se
mailto:eric.knauss@cse.gu.se
mailto:jennifer.horkoff@gu.se
mailto:grischal@ru.is
mailto:francisco.gomes@cse.gu.se

	Requirements engineering challenges and practices in large-scale agile system development
	Introduction
	Related work
	Large-scale Agile
	RE and Agile
	Summary of related work

	Research methodology
	Case companies
	Sampling and data collection
	Round one elicitation and validation
	Round two elicitation and validation

	Data verification
	Data analysis
	Threats to validity

	Study context: Pervasiveness of Agile development
	Challenges and potential solutions (RQ1 and RQ2)
	Build and maintain shared understanding of customer value
	C1.a: Bridge gap to customer
	C1.b: Building long-lasting customer knowledge

	Support change and evolution
	C2.a: Managing experimental requirements
	C2.b: Synchronization of development
	C2.c: Avoid re-specifying, encourage re-use
	C2.d: Updating requirements

	Build and maintain shared understanding about system
	C3.a: Documentation to complement tests and stories
	C3.b: System vs. component thinking
	C3.c: Creating and maintaining traces
	C3.d: Learning and long-term knowledge
	C3.e: Backward compatibility

	Representation of requirements knowledge
	C4.a: Manage levels vs. decomposition
	C4.b: Quality requirements as thresholds
	C4.c: Tooling not fit for purpose
	C4.d: Accommodate different representations
	C4.e: Consistent requirements quality

	Process aspects
	C5.a: Prioritization of distributed functionality
	C5.b: Manage completeness
	C5.c: Consistent requirements processes
	C5.d: Quality vs. time-to-market

	Organizational aspects
	C6.a: Bridge plan-driven and agile
	C6.b: Plan V V based on requirements
	C6.c: Time for invention and planning
	C6.d: Impact on infrastructure

	Discussion and implications
	Build and maintain shared understanding of customer value
	Support change and evolution
	Build and maintain shared understanding about system
	Representation of requirements knowledge
	Process aspects
	Organization aspects
	Challenges beyond the scope of this study

	Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

