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a b s t r a c t 

Heat and mass transfer to or from single active particles surrounded by inert (passive) particles in a flu- 

idized bed has been investigated based on published correlations. Special emphasis is on the application 

of a proposal by Baskakov, further developed by Palchonok. This representation describes heat and mass 

transfer as a function of the size ratio of inert to active particles. Two limits have been chosen: the limit 

of small active particles, where the active and the inert particles are equal, and the limit of large ac- 

tive particles, where the influence of the size of the active particle has vanished. The presentation aims 

at finding a suitable relationship, describing the size ratio of inert to active particles on heat and mass 

transfer to/from particles in fluidized beds and to critically evaluate its usefulness. It seems that the 

agreement between available correlations is qualitative and only approximate estimations can be made. 

A generalized scheme for calculations is presented. The formulation is made for bubbling fluidization. A 

discussion is presented on its use in circulating fluidized bed applications for fuel conversion as well. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Heat and mass transfer to or from active particles surrounded 

y inert (passive) particles in a fluidized bed has many appli- 

ations, of which conversion of solid fuel (devolatilization, com- 

ustion or gasification) is an important one. This topic has been 

reated frequently in the literature, and many correlations for the 

etermination of heat and mass transfer coefficients have been 

roposed, often starting from single-phase expressions. Judging 

rom recent (last decades) literature on conversion of fuels, there 

s no consensus on which representation to use, especially not for 

eat transfer. The procedure proposed by Baskakov et al. [1] and 

ubsequently elaborated by Palchonok [ 2 , 3 ], is just one of several

lternatives, but it has not been sufficiently well documented and 

nalysed. This is the purpose of the present work. The heat trans- 

er concerns small particles, where minimum fluidization veloc- 

ty ( u mf ) plays a role, and large particles, where a maximum heat 

ransfer occurs at an optimum fluidization velocity. For mass trans- 

er, no significant influence of the fluidization velocity u has been 

bserved for superficial velocities above the minimum one u mf , 

ee for example [4] . Recently, a Baskakov-Palchonok model of heat 

ransfer was mentioned in a study by von Berg et al. [5] on the in-

uence of the fluidization velocity. The information was taken from 
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n overview on gasification modelling [6] , where only a brief sur- 

ey was given on Palchonok’s model formulation. This is another 

eason to explain the background and the validity of the concept 

ore extensively. 

The comparison with independent data is made by selecting a 

ew model-free correlations to check the consistency of the formu- 

ation studied. A comprehensive overview on heat and mass trans- 

er to particles is found in Di Natale et al. [7] , which can be re-

erred to for a more complete picture. The only remark that should 

e done here is that, because of a misinterpretation, the work of 

alchonok got an unfavourable evaluation by Di Natale et al. Fur- 

hermore, the present topic area, fluidized beds of inactive bed 

articles containing a minor quantity of active particles whose size 

ay differ from that of the inactive bed particles, the much-quoted 

ork of Gunn [8] is not included in the present survey. 

The transfer mechanisms are gas conduction and gas and par- 

icle convection (radiation can be added but is not treated here). 

he well-known correlations for heat and mass transfer to par- 

icles in single-phase flow [ 9 , 10 ] express the mechanisms of gas 

onduction and convection based on the analogy of heat and mass 

ransfer. In the fluidized bed application, there is an additional 

echanism in the case of heat transfer, particle convection, which 

reaks the analogy. However, the analogy is still useful for the gas- 

onvective component, as will be explained below. Because of the 

mpact of bed particles in a fluidized bed, another influencing pa- 
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Nomenclature 

Ar = d i 
3 g ρg ( ρs - ρg )/ μ2 Archimedes number 

c p specific heat, J/kg,K 

d diameter, m or mm 

D diffusivity, m 

2 /s 

f() function, - 

g gravity, m/s 2 

h heat transfer coefficient, W/m 

2 K 

H height of combustion chamber, m 

j mass transfer factor, - 

k thermal conductivity, W/ms 

Nu = hd/k Nusselt number, - 

P pressure, Pa 

Pr = μc p /k Prandtl number, - 

Re = ud/ ν Reynolds number, - 

Sh = βd/D Sherwood number, - 

Sc = ν/D Schmidt number, - 

T temperature, K 

u velocity, m/s 

β mass transfer coefficient, m/s 

δ void phase, - 

ε voidage, - 

ν kinematic viscosity, m 

2 /s 

μ dynamic viscosity, kg/ms 

ρ density, kg/m 

3 

Subscripts, superscripts 

a active particle 

e emulsion phase 

g gas 

i inert particle, bed particle 

mf minimum fluidization condition 

m superscript in Prins’ correlation, coefficient 

n decay coefficient, coefficient 

s solisds, particle, slip 

1 ∞ large active particle 

ameter plays a role, namely the ratio of the sizes of active ( d a )

nd inactive ( d i ) particles. 

. The Baskakov-Palchonok model 

Available data on heat and mass transfer in fluidized bed can 

e expressed as Nu(Sh) = f(Ar, Pr (Sc),d i /d a ), where the size of an

ctive particle is contained between a small-particle limit and a 

arge active particle limit. As a small-particle limit, with equally 

ized active ( d a ) and bed particles ( d i ) is chosen (index 1), estab-

ished by a comparison with available data, Palchonok [ 2 , 3 ], with-

ut considering particle densities, as they were shown to only have 

 minor impact as long as the particles are well fluidized, 

 u 1 = 

2 (
1 −

(
1 − ε m f 

)1 / 3 
) + 0 . 117 A r i 

0 . 39 P r 0 . 33 (1) 

 h 1 = 2 ε m f + 0 . 117 A r i 
0 . 39 S c 0 . 33 (2) 

or large active objects, the size of the object ceases to be im- 

ortant, and results from heat and mass transfer measurements to 

arge objects in fluidized beds can be used as a basis for the large

ctive-particle limit d a >> d i . Such data were measured for fixed, 

ounded objects of a size between 10 and 60 mm in a fluidized 

ed at 1170 K, Baskakov et al. [ 1 , 11 ]. 

 u i, ∞ 

= 0 . 85 Ar 0 . 19 + 0 . 006 Ar 0 . 5 
0 . 33 

Pr (3) 
i i 

2 
 h i, ∞ 

= 0 . 009 Ar 0 . 5 i S c 0 . 33 (4) 

The gas convective component ( Eq. (4 ) and the second term of 

q. (3 )) was obtained from naphthalene samples, 11–50 mm in di- 

meter and 70–132 mm long, inserted vertically in well fluidized 

eds at 330 K. Conduction 2 εmf ( d i /d a ) could be added to Eq. (4) ,

ut the term is very small ( d a large), and it is only used for com-

leteness when plotting over a wide range of Ar . 

The active particles of a size d a exchange heat or mass with the 

as and the surrounding inert particles whose size is d i . This can 

e described by interpolation between the small and large parti- 

le limits, expressed to obtain the desired Nusselt and Sherwood 

umbers Nu i and Sh i 

N u i − N u i, ∞ 

) / (N u 1 − N u i, ∞ 

) = f ( d i / d a ) (5) 

S h i − S h i, ∞ 

) / (S h 1 − S h i, ∞ 

) = f ( d i / d a ) (6) 

The interpolation function f(), to be discussed below, is deter- 

ined by fitting to various measured data sets and correlations. 

referably model-free correlations are looked for. 

Eqs. (1) –(6) are related to the inert particle size d i , but the re-

ults are normally desired related to the active particle size d a . 

ransformations are carried out as follows: 

N u a = N u i d a /d i 

it h N u i = N u i, ∞ 

+ ( N u 1 − N u i, ∞ 

) f ( d a /d i ) fro m Eq . ( 5 ) (7) 

Sh a = Sh i d a /d i 

it h Sh i = Sh i, ∞ 

+ ( Sh 1 − Sh i, ∞ 

) f ( d a /d i ) fro m Eq . ( 6 ) (8) 

Below, the small and large particle limits will be defined. 

.1. The small active particle limit 

Nusselt and Sherwood numbers for the d a = d i limit were re- 

orted by Palchonok et al. [2] , referring to a number of measured 

ata sets and models. A few of those plus some more recent data 

re presented in Fig. 1 and Table 1 , showing that the agreement 

s quite good. The data employed are valid for the condition of 

 a = d i . 

The first term on the right-hand side of Eqs. (1) and (2) is the

onduction term inherited from the derivation of the single-phase 

xpressions [9] . For the case of d i = d a in a fluidized bed, this term

onsiders heat or mass conducted through the gas to an active par- 

icle, which is not exposed to a convective movement of the gas. 

hen, a heat balance on the particle becomes 

πd 2 a ( T a − T i ) = 

2 πk g ( T a − T i ) 

1 / d a − 1 / d e 
(9) 

here h (W/m 

2 ,K) is the heat transfer coefficient, k g (W/m,K) the 

hermal conductivity of the gas, T a and T i (K) are the temperatures 

f the active particle d a and of the surrounding inert particles. In- 

egration from the surface of the particle to the end of the bound- 

ry layer d e , going to infinity, yields the well-known result for a 

ingle-phase situation: Nu = Sh = 2 (see Eq. (10 )). 

In the case of mass transfer to an active particle surrounded 

y non-absorbing inert particles, the concentration boundary layer 

till extends itself, but the transfer is shielded by the surround- 

ng inert particles, impeding the transfer of gas, and S h a = ε2 was 

uggested [16] where ε is the voidage of the surrounding medium. 

n the case of heat transfer, the surrounding inert particles ab- 

orb heat and limit the extension of the boundary layer d e . From 

q. (9) we have 

 u a = 

2 

(1 − d a / d e ) 
(10) 
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Fig. 1. The d a = d i limit. Palchonok’s correlation (Eqs. (1) Fig. 1 a) and ( (2) ( Fig. 1 b)) is derived from various sets of measurement data from freely moving particles of the 

same size as the bed material, evaluated at 300 K. See also [2] . 

Table 1 

Correlations for equal particle sizes d a = d i . 

Reference Correlation 

Experimental 

conditions 

Turton et al. [12] Nu = 0 . 46( Re /ε) 0 . 09 
m f 

[ 
(1 −ε m f ) ρs c p,s 

ε m f ρg c p,g 
] 0 . 36 0.106 < d i < 0.670; 

d a wires; 

920 <ρs < 2700, 

300 < T < 450 K 

Palchonok and Tamarin [13] Nu = 0 . 41 A r 0 . 3 

1.55 •10 5 < Ar < 2.2 •10 7 

900 <ρs < 2500; 

T = 300 K 

Hsiung and Thodos [14] Sh 
Re m f ·S c 0 . 33 = 0 . 040 + 

2 . 12 

Re 0 . 59 
m f 

+ 

0 . 62 

Re 1 . 51 
m f 

Seven d i between 

0.248 and 2.0 mm. 

300-350 K 

Baskakov et al. [11] Sh i = 1 + 0.26(ArSc) 0.33 0 < Ar < 10 8 . 

Temperature not 

given, probably 

300 K 

Scott et al. [15] See Table 2 
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An active particle is in a particle phase, where it is surrounded 

y inert particles. The packing is not necessarily regular, but for 

odelling purposes it was assumed to be cubical with a voidage of 

= 0.48. The equivalent boundary layer, extending from d a to d e , is 

btained from the space defined by πd a 
3 /6/( πd e 

3 /6) = (1- ε). With

 a /d e = (1- ε) 1/3 , Eq. (10) yields Nu a ≈10 as used by Baskakov et al.

1] and also proposed by Zabrodsky [17] . Palchonok et al. [2] in- 

luded the surrounding gas space d a 
3 - πd a 

3 /6 and added also the 

as lenses formed by the 6 adjacent spheres in the cubical packing, 

( πd a 
3 /24), calculated as a difference in volume between a cylin- 

er and the half-sphere of the adjacent particle. Then, they arrived 

t N u a ≈ 6 . 

Obviously, these results are approximate, and further, the con- 

ition of low velocity contradicts fluidization, which does not al- 

ow velocities lower than that of minimum fluidization. However, 

he estimation serves the purpose of providing a point for extrap- 

lation of the results in the low-velocity range, and, in fact, the 

eviation is similar to that in single-phase flow at increasing gas 

elocity [9] , when the convective terms were simply added to the 

onductive term. 

The reason why d i is taken as a characteristic size of Sh i and Nu i 
qs. 7 , (8) is that the large active-particle limit is expressed in this 
3 
ay, being independent of the active particle size d a , but related 

o the bed particles ( d i ). 

The second term on the right-hand side (gas convection) in Eqs. 

1 , 2 ) was determined by a fit to measurement data, equal for heat

nd mass transfer. The similarity between the two equations im- 

lies that the analogy of heat and mass transfer was valid in this 

ase. When d a = d i , the active particle is contained in, and moves

ith, the matrix of inert particles. Then it is reasonable to think 

hat the relative movement between the active and inert particles 

s insignificant, so there is no contribution from particle convec- 

ion. Gas convection rules the transfer. Support for this is found in 

18] , where the heat transfer caused by particle convection tends 

owards zero in beds of equal active and inert particle sizes, leav- 

ng gas conduction and convection as the sole sources of trans- 

er. Another interesting support was given by Palchonok [19] who 

howed the similarity between a fluidized bed dominated by gas 

onvection and the gas-convective transfer in fixed beds. In beds 

f large particles, the impact of gas convection was shown in [19] , 

omparing the part of Eq. (1) that was determined by mass trans- 

er (gas convection) with the correlation of Palchonok and Tamarin 

13] : at Ar > 4 •10 6 gas convection was already dominant (see also 

ig. 2 ). 
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Because of the similarity of heat and mass transfer, the data of 

askakov et al. [11] in Fig. 1 are valid both for heat and mass trans-

er, which also shows that there is no contribution from particle- 

onvective heat transfer in this fluidization situation where all par- 

icles are equally large. In the comparison of Fig. 1 , the conduc- 

ive term of Baskakov et al. (amounting to 10) was replaced by 6 

o coincide with Palchonok’s value, a reasonable adjustment, con- 

idering the derivation of this term. Likewise, 2 ε as in Eq. (2) is 

aintained instead of the simplified form 2 ε ≈ 1 used by Baskakov 

t al. [11] . Both Hsiung and Thodos [14] and Turton et al. [12] pro-

uced well known unique sets of data in this difficult experimental 

ange. Scott et al. [15] , owing to their experimental technique, had 

o pay the prize of using quite large bed particles to attain d a = d i ,

nd their data are found at high Archimedes numbers. 

.2. The large active particle limit 

When the active particle is larger than the surrounding bed par- 

icles, it will not readily move along with the bed particles, but it 

ill experience a relative movement with respect to these parti- 

les. Gradually, as the active particle increases in size, this move- 

ent of the bed particles becomes similar to the classic particle 

onvection heat transfer situation in fluidized beds described by 

he “packet theory” (see any textbook on fluidization). The gas con- 

ection may also be affected by the formation of bubbles around 

he active particle depending on its degree of mobility. There are 

wo aspects: one concerns the influence of the size of the ac- 

ive particle, and the other the difference in heat or mass trans- 

er between a fixed and a mobile active particle. Equations (3) and 

4) were introduced as limiting cases when the size of the active 

article no longer plays a role, and only the size of the bed parti-

les and property data are important. 

The gas convective component in Eqs. (3) and (4) was deter- 

ined from mass transfer measurements [ 20 , 1 ] and was applied 

lso for heat transfer according to the analogy of heat and mass 

ransfer. The relationships were obtained by fitting to various data 

s described in [1] . The small difference between the terms for 

eat and mass transfer in Eqs. (3) and (4) most likely originates 

rom such fits to data made at different occasions. 

Fig. 2 illustrates the contributions corresponding to particle and 

as convective heat transfer to a large active particle surrounded 

y inert particles. The gas convection starts becoming notable 

bove Ar = 10 4 and is equal to particle convection at Ar = 10 7 . In
Fig. 2. The components of Eq. (3) , heat transfer to a large particle. 
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4 
he important range for fuel conversion 1 < Ar < 10 4 , gas convection 

eat transfer is small compared to particle convection. 

The particle convective part in Eq. (3) is very well supported 

y several investigations for maximum heat transfer, for instance 

17] and [21] . Based on a detailed model of gas convective heat 

ransfer, Mazza and Barreto [22] found that their results agreed 

ell with the description of gas convection heat and mass transfer 

n the region of interest here. Molerus and Schweinzer [23] pre- 

ented gas convective heat transfer from packed beds, which 

grees well within the range of the parameter variation studied for 

uidized beds in [1] . The applicability of the mass transfer results 

n both fixed and fluidized beds was also noted in [4] , verifying the 

revious experience. 

Large particles in a bed of fine particles may move from their 

osition and end up in a less representative location than intended, 

or instance in the bottom region of the bed. Therefore, in exper- 

ments large objects are often fixed in the bed. (See further com- 

ents on fixed vs freely moving objects below). In all cases con- 

idered, it is assumed that, even for small d i /d a , no particle segre-

ation occurs in a bed, or if it happens, effort s are made to avoid it

r to treat it separately. If the active particles sink to the bottom or 

ise to the surface, the heat transfer will be affected [18] . Likewise, 

n some investigations like that of Palchonok and Tamarin [13] it 

s explicitly stated that, depending on their size and density, par- 

icles may float or sink, but such situations were excluded in the 

valuation of the data. 

The influence of the size of the active particle is seen qualita- 

ively in many results. The best description is found in Prins [24, 

hapter II, Fig. 5 , and Chapter III, Figs. 3 and 4 ]. There, the mag-

itude of the heat or mass transfer coefficients falls gradually as 

he size of the active particle increases. In fact, the coefficients ap- 

roach asymptotic values, while the impact of the size of the ac- 

ive particle declines and disappears. This is indirectly supported 

y Barbosa et al. [25] who claim that the size of d a has no signif-

cance for larger active particles than about 7 mm. (This appears 

 low limit, but it also depends on the size of the inert particles 

nd property data. The argument was based on the well-known 

abrodsky [17] correlation, which is valid for large active particles 

n the range where it is not affected by the size of the receiving 

article). 

The observation on the asymptotic behaviour is confirmed by 

he striking coincidence between Eq. (3) and the asymptotic heat 

ransfer values (when d a → infinity) in Prins’ data, such as shown 

n Fig. 3 . There is a reasonable agreement between Baskakov’s data 

or large fixed active “particles” and the asymptotic values read 

rom Prins’ diagrams as the size of the active particle goes to in- 

nity. Some scatter is seen, however, particularly for mass trans- 

er, Fig. 3 b. To appreciate the magnitude of the discrepancies, the 

ata read from Prins’ diagrams (circles, o) can be compared with 

hat is obtained by Prins’ correlation for mass transfer in the case 

 i /d a = 0 (crosses, + ). The circles and the crosses intend to de-

ict the same thing, and the difference between them is not more 

han what could be expected from the uncertainty in describing 

n asymptotic limit. It should be noted that Prins studied the dif- 

erence between a freely moving and a fixed object in the bed 

nd found that the transfer was always somewhat larger to the 

xed object for small bed particles, but it was less for the larger 

ed particles investigated. For mass transfer Prins [24, Chapter III, 

ig. 6 ] shows an influence of the size of the heat transfer probe 

sed in [26] that seems to contradict the above conclusion on the 

symptotic behavior. However, the data concerned measurements 

n tubes with diameters of ≤10 mm. For larger tubes, ≥10 mm, 

o significant influence of tube size was observed in [26] , which 

onfirms the above statements on the asymptotic behavior. 
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Fig. 3. The asymptotic (a) heat and (b) mass transfer coefficients from Prins’ data (symbols) compared with the heat and mass transfer to large particles from Eqs. (3) and 

(4) (lines). 
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In conclusion, a moving particle has about the same values of 

eat transfer coefficient as a fixed large particle. This is shown by 

rins’ [24] experimental results: only for small bed particles some 

ifference was observed, which, however, was not seen in Fig 3 a. 

n the case of mass transfer, on the other hand, Prins et al. [4] ob-

erved that a fixed object has 20-50% higher values than a mov- 

ng object, and this was partly supported by the above-mentioned 

xperiments by Berg and Baskakov [26] . To illustrate the effect of 

uch a change, the large-particle asymptote is reduced by 50%, as 

hown by the dashed curve in Fig. 3 b. 

Prins’ observation on the mobility of a particle was supported 

y Turton et al. [12] , who made this experience with fixed and 

oose wires, submerged in a fluidized bed. In contrast, in [27] the 

eat transfer was enhanced when an object was free to move. 

ore details are needed to explain these contradictions. 

The above discussion concerns two cases: The heat transfer data 

re in a size range of bed particles where particle convection domi- 

ates ( Fig. 2 ). Gas convection contributes only in beds of very large

articles. However, in mass transfer, gas convection dominates for 

ll particle sizes. 

In conclusion, the representations of the limits, Eqs. (1) to (4) , 

re supported by many independent investigations and appear to 

e reliable, except for a minor influence, yet to be specified in de- 

ail, from the mobility on the large active-particle limit for mass 

ransfer, Eq. (4) . 

. Comparisons 

.1. Parameters 

In published correlations Nu or Sh are related to Re mf , Re opt or 

r . For a comparison between correlations, they should be trans- 

ated into the same form, preferably related to Ar ( d i ). Both Prins

24] and Scala [28] use Re mf in their mass transfer correlations. 

or heat transfer, the correlations could be related to minimum or 

ptimum fluidization velocity, but Ar also expresses these quanti- 

ies. The Reynolds numbers can be converted into the Archimedes 

umber, because the active particle is supposed to be in the parti- 

le phase most of the time subjected to minimum fluidization, or 

or larger particles, under the condition of maximum heat trans- 

er (at optimum fluidization velocity). The translation between Re 

nd Ar is achieved by the relationships of Aerov and Todes [29] . 
5 
he results from these relationships coincide with those of similar 

xpressions [30] . 

e m f = Ar/ 
(
1400 + 5 . 22 A r 1 / 2 

)
(11) 

e opt = Ar/ 
(
18 . 0 + 5 . 22 A r 1 / 2 

)
(12) 

To make a comparison possible, the correlations in Table 2 , 

hich are not already expressed in Nu i , are transformed by Eqs. 

7) or (8) and as a function of the Archimedes number, accord- 

ng to Eqs. (11) and (12) , times a diameter ratio d i /d a , which has

 power of n around 0.2 (partly depending on the definition of Nu 

elated to d i ), expressed as Nu i = f(Ar)(d i /d a ) 
n . 

.2. Heat transfer results 

Table 2 and the corresponding Fig. 5 summarize a set of corre- 

ations from literature, selected to be the most comprehensive and 

traight-forward to evaluate. 

Shah [31] established and verified a correlation for fixed cylin- 

ers and spheres in a fluidized bed. Palchonok and Tamarin 

13] studied moving active particles in coarse particle beds. Prins 

24] carried out a study on moving particles, covering a wide range 

f parameters. Tsukada and Horio [32] collected and synthesized 

ll available information at the time, including their own previous 

ork. Barbosa et al. [25] performed a study covering relevant pa- 

ameter ranges. Scott et al. [15] focused on the low velocity range 

ear minimum fluidization and used freely moving active particles 

just like in most other similar studies, the particle was attached 

o a flexible thermocouple). The particle sizes were rather large in 

he case of Joulié et al. [33] and Joulié and Rios [34] , containing 

 large collection of data in the form of dimensional and dimen- 

ionless correlations. Unfortunately, there is some difficulty in in- 

erpretation of the details in the conditions for the correlations in 

he latter investigations, and it can only be stated that the results 

oincide grossly with those presented here, with one important 

ifference: the ratio of the densities of active and inert particles 

as found to be important in contrast to Palchonok and Tamarin 

13] who found this influence insignificant as long as the bed was 

ell fluidized. In the other correlations of Table 2 the density ratio 

s not considered. 

The correlations are presented in plotted form for different ac- 

ive particle sizes versus the Archimedes number (the inert bed- 
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Fig. 4. Summary of the correlations in Table 2 , plotted as thin lines within the frame of Eqs. (1) and (3) (thick blue curves) at 600 K. The thick parts of the correlation 

lines are the parameter ranges where the correlations are supported by measured data. The Ar range of primary interest for fuel conversion is marked by vertical lines. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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article size) in Fig. 4 . In general, the data are contained between 

he limits represented by Eqs. (1) and (3) in a wide span of Ar . 

Some additional terms in the original publications have been 

isregarded as they were claimed to have a small impact. In gen- 

ral, the active particles are freely moving in the size range of 2 

o 20 mm, whereas Shah’s data cover a much wider range of fixed 

bjects (cylinders). The bed particles range from the conditions in 

eds for fuel conversion, whose particles are often sand-like with 

izes between 0.0 0 01 and 0.0 01 m, and the temperature is be-

ween 300 and 1100 K, so the gas density is between ρg = 1.3 and
6 
.3 kg/m 

3 . The inert particles have a solid density of ρ i = 2500 

o 2700 kg/m 

3 and the dynamic viscosity varies with temperature 

etween μ = 1.9 •10 −5 and 4.5 •10 −5 kg/m s. This means that Ar is 

etween 5 and 50 0 0 in this application at 1100 K. At room temper-

ture the corresponding Ar is 100 to 10 0 0 0 0. Those limits are in-

icated in the diagrams. Two of the correlations, [15] and [13] , are 

ased on large Ar , and they also have a limited range of d i /d a . The

ase of d i /d a = 1 was particularly treated in Fig. 1 , and therefore

his limit is also presented as circles in Fig. 4 , although in most 

ases the data are extrapolated from the measured ranges and the 
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Fig. 5. Results from Scala’s [28] (a) and Prins’ [4] (b) correlations for mass transfer coefficient shown as Sh i = f(d a ,Ar). Resulting values for d a = d i and for d a → large are also 

shown. Scala: d a = 1, 2.5, 4, 6.1, 10 mm; T = 723 K, ρs = 2500 kg/m 

3 , Sc = 0.74, ε = 0.44; Prins: T = 338 K, ρs = 2750 kg/m 

3 , Sc = 2.6, ε = 0.40. The thick dashed lines 

are 50% of the low limit, added for comparison. 
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greement is moderate. Likewise extrapolated is the d a = 80 mm 

ase, illustrating the fact that the correlations are not restricted to 

 large particle limit but continue to Nu i (Sh i ) = 0 for d i /d a → 0. The

est behavior in relation to Eqs. (1) and (3) is shown by Prins’ cor-

elation if applied in the range of measurements. 

Prins used the data of Hsiung and Thodos [14] at d i = d a to sup-

ort his correlation. Therefore, the correlation agrees rather well 

ith Palchonok’s correlation, Eq. (1) , in this limit. The only de- 

iation from the small particle-size limit, represented by Eq. (1) , 

s that Prins did not include a conduction term, which creates a 

ap at very low Ar . Scott’s correlation [15] , on the other hand in-

ludes such a term, 2d i /d a , if related to Nu i . The agreement be-

ween Scott’s extrapolated correlation and the present data was 

ound to be better if 2 is replaced by 6 to coincide with Pal- 

honok’s term, and this is used in Figs. 1 and 4 . 

There is a qualitative agreement between the various data sets 

n Fig. 4 and the data are mostly contained between the limits de- 

ned above: the d a = d i limit and the large active-particle limit. 

owever, the data sets show considerable individual features. They 

ere measured in quite different parameter ranges. The expres- 

ions are empirical relationships and cannot really be extrapolated 

eyond the range of measurements, although some correlations 

ppear to represent data outside of the measured ranges reason- 

bly well. 

.3. Mass transfer correlations 

Mass transfer to particles in fluidized beds has been more stud- 

ed than heat transfer. A recent review summarizing previous work 

as presented by Scala [ 28 , 35 ], and this background does not have

o be repeated here. Focusing on correlations (and avoiding models 

r semi-empirical developments), it can be concluded that correla- 

ions of the Frössling type (the form used for single phase flow) are 

ommon also in the fluidized bed application, as seen in Table 3 . 

arly proposals for fluidized beds did not clearly specify the defini- 

ion of the Reynolds number. La Nauze and Jung [36] pointed out 

hat the active particle was contained in the particle phase, con- 

isting of inert particles, and the relevant velocity experienced by 

he particle should be ( u/ ε) , although La Nauze and coworkers 
mf 

7 
37] were uncertain about the choice of velocity u . Later, Hayhurst 

nd Parmar [38] verified this matter and stated that the velocity 

s related to the minimum fluidization of the inert bed particles, 

onstituting the particle phase ( d i ) of a fluidized bed, while Sh and

e are related to the size of the active particle, d a . Then, with the

onduction term according to Avedesian and Davidson [16] , the 

xpression got the forms shown in Table 3 . This form was also 

xploited by Scala [28] who carried out well planned and care- 

ully verified experiments. Another important relationship is that 

f Prins [24] also shown in Table 3 , translated from the original 

ormulation into the present terminology, as shown in the Supple- 

entary material. 

The results of Table 3 are transformed from the formulations in 

he table to allow a comparison with Eqs. (2) and (4) in Fig. 5 . 

Scala ( Fig. 5 a) carried out his measurements for different active 

article sizes at d i = 0.55 mm ( Ar = 20 0 0) and for d a = 4.6 mm in

 range of bed particle sizes of 0.16 < d i < 1.3 mm (40 < Ar < 20 0 0 0

723 K). This gives a cross of measurement points marked in 

ig. 5 a, supporting his correlation in a rectangular area of validity. 

xtrapolation outside of this area is possible but does not coincide 

ith Eq. (2) , as can be seen from the square symbols represent- 

ng the d a = d i limit, to be discussed below. Extrapolation towards 

ery large active particles becomes unrealistic in this formulation; 

t tends towards Sh i = 0 when d a → ∞ . 

Prins measured over a wider range ( Fig. 5 b). Moreover, he com- 

lemented his data with the mass transfer coefficients of Hsiung 

nd Thodos [14] allowing him to cover the entire range of active 

article sizes down to d a = d i . In addition, he identified the large

ctive particle limit from where the size of the active particle loses 

ts significance. This is included in his correlation and is depicted 

y circles in Fig. 5 b. Just like in Fig. 3 b it is clearly seen that Prins’

esults, and probably also those of Scala, are below the limiting 

ass transfer defined by Baskakov’s measurements (lower thick 

olid line in Fig. 5 a and b) in the lower Ar region. There is only

 possible explanation for this deviation, given by Prins: the mass 

ransfer to a fixed object in a fluidized bed is higher than that to a

obile particle, such as used by Scala and Prins. If this is the case, 

eing 20-50% as Prins et al. [4] mentioned, Baskakov’s relationship 
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ould be reduced with the corresponding amount, as illustrated by 

he dashed line in Fig. 5 . However, such a reduction only occurs 

t small bed particles, as also seen in the linear-scale diagram of 

ig. 3 b. Furthermore, this phenomenon is only observed in rela- 

ion to the gas-convective term (mass transfer), which, in the heat 

ransfer case, only plays a role at large bed material (large Ar) . Ac- 

ordingly, it is not noticed in the above heat transfer correlations 

see Fig. 3 a). 

.4. Variation of media properties 

The dynamic viscosity and gas density (related to type of gas 

nd temperature), particle size and density, but also other data, 

uch as voidage, may influence the results. However, the relative 

ariation of temperature is similar for the two most important pa- 

ameters, Ar and Re mf . Comparisons were carried out using the 

ata of the respective correlation compared with the Baskakov- 

alchonok model. 

The property data play a role, and this may impair the agree- 

ent between correlations like, for example, those of Scala and 

rins, despite the great care taken in the performance of these ex- 

eriments. Small deviations occur, because of the choice of data (T, 

, and ε) despite the fact that the correlations are expressed in di- 

ensionless form. Fig. 6 shows a comparison between Scala’s and 

rins’ results. In Fig. 6 a Scala’s data are used in both cases, and in

ig. 6 b Prins’ data are used in both cases with input from Table 4 .

he conclusion is that the property data have an influence. The in- 

uence of temperature on Ar is also seen in the two diagrams. 

The two investigators have established their correlations at 

lightly different voidages (it should be mentioned that both in- 

estigators chose a voidage that was representative to their bed 

aterial). The impact of the voidage follows directly from the cor- 

elations. Another important deviation is that between Eq. (2) and 

cala’s correlation extrapolated to d a /d i = 1 in Fig. 5 a. Like the

ther comparisons, the same property data were used in both cor- 

elations. This discrepancy should be judged by comparing differ- 

nces between the data seen in Fig. 1 and in the original [2] as

ell as in Scala’s and Prins’ results, illustrated in Figs. 5 and 6 . 

. Development of correlations 

It would not be meaningful to try to find average values by 

ombining the various correlations into one. Instead, the strategy 

mployed here is to distribute the active particle sizes between the 
Table 3 

A few mass transfer correlations. 

Source Mass transfer correlation 

Scala [28] S h a = 2 . 0 ε m f + 0 . 7 ( 
R e m f,a 

ε m f 
) 0 . 5

Hayhurst and Parmar [38] “

La Nauze et al. [37] “

Prins et al. [4] 
S h i = [ 

1 −ε m f 

ε m f 
] m [ 

Re m f,i 

ε m f 
] 1 −m S c 0 .

m = 0 . 35 + 0 . 29 ( d i / d a ) 
0 . 5 an

8 
mall ( d a = d i ) and the large active particle ( d a → ∞ ) limits propor-

ionally, as shown by Eqs. (5) and (6) and illustrated in Fig. 7 a with

so- d i /d a curves for heat and for mass transfer. 

The interpolation function f(d i /d a ) could have various forms, 

ut the scatter of data does not justify elaborate functions, and 

(d i /d a ) = (d i /d a ) 
n with n ≈2/3 results from a rough fit to measure-

ent data. The function should be unity for active and inert parti- 

les of equal size (index 1), giving Nu i = Nu 1 , and it should be zero

hen d a → ∞ , yielding Nu i = Nu i, ∞ 

. 

Fig. 7 b shows d i /d a curves for heat transfer, expressed in the 

orm of Nu i as a function of d a for two sizes of bed particles d i ,

ne small (0.1 mm, about Ar = 20) and one large (1 mm, about 

r = 20 0 0 0) representing the range of bed materials commonly 

sed in fuel converters. Correlations from Table 2 are included for 

omparison. The curves start at d a = d i and approach the large 

ctive particle-limit gradually for each of the two d i ’s chosen for 

he diagram. The curves for the large d i particles cross the large 

 a limit and continue towards low Nu i . Two striking impressions 

hould be commented upon: 1) The agreement between the curves 

nd the various correlations is not good, as is obvious from the 

ather scattered results of the correlations shown in Fig. 4 ; 2) The 

arge active particle limit is usually exceeded when the correlations 

re extrapolated beyond their range of validity for large d a , because 

he term d i /d a → 0 as d a → ∞ . This problem is avoided by Eq. 5 . The

vailable correlations are intended for the range covered by mea- 

urements, but not for data exceeding that range. Often the lim- 

ts cannot be seen from the correlations themselves. In most cases 

hey are not seen from the presentations of the measured data, as 

heir limits are expressed in ranges of d a and d i rather than d i /d a . 

Curves for mass transfer, made in the same way are presented 

n Fig. 8 with n ≈1. 

The fit to Eq. (6) with n = 1 is not perfect for mass transfer ei-

her. Fitting is complicated by the disagreement between the mea- 

ured data sets. Here, the fitting was made with the property val- 

es used by Scala [28] (723 K and Sc = 0.7). If Prins’ [4] values

338 K and Sc = 2.6) had been used instead, Prins’ curves would 

ave been closer to the present representation. The reduction of 

he large active particle asymptote by 50% ( Fig. 8 b) improves the 

epresentation, as seen by comparing Fig. 8 a and b, but it is not 

bvious that the complication involved is motivated. The impact of 

roperty data is equally important. 
Experimental 

conditions 

 S c 0 . 3 Sh a ,Re a based on d a 
0.1 < d i < 1.18 mm 

1 < d a < 10 mm; 

723 K. 

Sh a ,Re a based on d a 
d i = 0.3; 0.5; 0.6; 

d a > 3mm; 

1000-1200 K. 

Coke particles 

3-15 mm in sand 

0.665-0.925 mm, 

1000-1200 K. 
 33 (0 . 105 + 1 . 505 ( d i / d a ) 

1 . 05 ) 

d Re m f,i = u m f d i /ν
0.1 < Re mfi< 20 

1 < d a /d i < 200 

0.098 < d i < 0.620 mm 

338 K. 

Supplementary 

material 
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Fig. 6. Comparison between Prins’ [4] and Scala’s [28] mass transfer data Sh i = f(d a ,Ar) for two sets of property data used originally by Scala (a) and by Prins (b), see 

Tables 4 and Fig. 5 . Relationships for three active particle sizes are shown in the range of bed particles covered by measurements. 

Fig. 7. (a) Nu i and Sh i for active particle sizes between the limiting values. (b) Interpolation curves for bed particles ( d i ) between 0.1 and 1 mm, plotted vs the diameter of 

the active particle d a compared with some correlations. The parts of the correlations covered by measurements are drawn thick. Three data sets are inserted in the diagram 

for comparison between d a = 1 and 10 for each bed particle size, d i = 0.1 and 1.0 mm. 
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. Extension and ranges of validity 

.1. Influence of fluidization velocity 

The data treated above are from well-fluidized regions in bub- 

ling fluidized beds, mostly operated at or above the optimum ve- 

ocity for maximum heat transfer. Even in this situation, a particle 

xchanging heat or mass may encounter itself in regions with non- 

epresentative fluidization conditions: A large particle may sink to 

 bottom layer (segregation) or it may move in the descending par- 

icle streams, meeting a lower gas velocity where the bed move- 

ent is less vigorous than in the well-fluidized regions of the ves- 

el, for which the heat and mass transfer correlations are valid. 

Another deviation occurs at fluidizing velocities between the 

inimum and the optimum ones, where the heat transfer is lower 

han that at the optimum velocity, as shown recently by von Berg 
9 
t al. [5] . Then, the present results must be completed by mod- 

lling. Reference [5] gives an example of such a procedure. The re- 

ion between minimum and optimum fluidization may be impor- 

ant in laboratory reactors, and in pyrolysers and some gasifiers. 

therwise, in commercial fuel converters the fluidization velocity 

s chosen relatively high, far from u mf , and then closer to or above

 opt , because operational safety requires to compensate for irregu- 

ar bed material, diluted by ashes or by impurities from fuels. In 

ddition, because of the desire to operate with low pressure-drop 

istributors, pressure drop and velocity are optimized to avoid lo- 

al de-fluidization, often avoiding operation at low fluidization ve- 

ocities close to the minimum one. Another interesting feature in 

yrolysers-gasifiers, operated at low velocity, is the opposite seg- 

egation to that mentioned above: light, degasified char particles 

scend to the surface of the bed where they float in large groups, 

ffecting mass transfer, Qin et al. [39] . A similar investigation for 
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Fig. 8. a. Interpolation curves for mass transfer for 0.1 and 1 mm bed particles ( d i ) plotted vs the diameter of the active particle d a , compared with some correlations. 

Fig. 8 b, the same data as in Fig. 8 a but the large-particle limit is lowered by 50%. The thick dashed part of Scala’s and Prins’ curves represent the measured ranges. The 

horizontal lines are: (a) Eq. (2) Sh small,0.1mm ; (b) Eq. (4) Sh large,0.1mm ; (c) Eq. (2) Sh small,1mm ; (d) Eq. (4) Sh large,1mm ; (e) Eq. (4) Sh large,0.1mm 
∗0.5; (f) Eq. (4) Sh large,1mm 

∗0.5. 
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eat transfer was not carried out, but heat transfer, in contrast to 

ass transfer, may be affected by particle convection. 

In general, unlike heat transfer, mass transfer depends less on 

he movement of the bed, and the mass-transfer correlations are 

ot affected as much as the ones for heat transfer. 

.2. Application of heat and mass transfer to active particles in 

irculating fluidized beds 

The conditions in a circulating fluidized bed (CFB) boiler differ 

rom those in laboratory risers: temperature 110 0-120 0 K, particle 

ize and density 10 0-30 0 μm and 160 0-260 0 kg/m 

3 , particle circu-

ation rate 10-20 kg/m 

2 ,s, cross-section size 10-20 m, and height 

0-50 m. 

Circulating fluidized bed is an important field of application 

here the above relationships are not readily valid. A CFB riser 

or fuel conversion can be divided into three regions, identified by 

ressure drop and height (examples are given in brackets): a low 

ottom bed, whose properties remind of a violently bubbling bed 

40 0 0 Pa, 0.5 m), a splash or transition zone (10 0 0 Pa, 2 m) con-

isting of particles thrown up from the bottom bed, subsequently 

alling back, except a small quantity of bed particles and fuel that 

s carried up by the gas and found in the upper part of the riser,

orming a particle-lean transport zone (70 0 0 Pa, 40 m). The par- 

icle density of (1 − ε) = �P/ (Hg ρs ) with �P pressure drop (Pa),

 = 9.81 gravity (m/s 2 ), H m height, and ρs = 2600 kg/m 

3 bed-

article density, yield with the data mentioned average particle 

oncentrations (1- ε) of 0.30, 0.02, 0.007 for the three zones, if we 

ssume the total pressure drop to be 120 0 0 Pa over the height of

3 m of a 300 MW e boiler. The active particles are below a few

ercent of the total particle inventory. The larger of these particles 

end to remain in the bottom bed, while the finer active particles 

nd the inert bed material are carried upwards in the riser. 

A general form, now related to d a , of the gas convective and 

onductive heat and mass transfer, is expressed by the relation- 

hips, Eqs. (1) and (2) , where the Ar terms have been replaced by

he Re terms because they give more freedom in handling the ve- 

ocity of the particle phase through u/ ε

 u a = 

2 

(1 −(1 −ε) 
1 / 3 

) 
+ 0 . 69 Re 0 . 5 a,s Pr 0 . 33 

 h a = 2 ε + 0 . 69 Re 0 . 5 a,s S c 
0 . 33 

(13) 
10 
The particle convective heat transfer may also be important, at 

east in the bottom bed, as will be shown below. 

The Reynolds number contains the active particle size d a and 

he superficial slip velocity u s , expressed as the velocity felt by the 

article, u s / ε. The voidage ε is that in the vicinity of the particle.

n the particle phase of a bubbling bed this term is u mf / εmf . The

elationships are used for flows with low particle concentration 

 ε → 1) where their validity is supported by the form for single 

hase flow. They, at least the mass transfer form, are also valid in 

he dense phase of a bubbling fluidized bed ( Fig. 5 ), and it can be

nferred that they can be applied in intermediate cases between 

ense and dilute suspensions. In case of large active particles, the 

eat transfer correlation of Eq (13a) should be completed with a 

erm for particle convection. 

In the transport zone, the solids concentration is higher than 

he limiting value for the formation of clusters, defined by Madsen 

40] , being (1- ε) = 0.0 0 03. However, Madsen did not specify the

article size. As seen from Bi and Fan [41] the difference between 

he free fall velocity of a single particle and the transport velocity, 

hich is illustrates the potential influence of cluster flow, grows 

maller with the increased size and density of the particles, where 

verything else is equal. With larger and heavier particles, the im- 

act of clusters becomes less significant. Consequently, Group B 

articles are less prone to form clusters in a combustor compared 

ith Group A particles in a CFB cracking unit, but nevertheless, 

lusters could be present in the core of the transport zone of a 

ombustor, and, particularly, in the in its wall layer. Whether clus- 

ers play a role or not also depends on the particle concentration 

s can be judged from a result presented by Nikolopoulos et al. 

42] , showing a homogeneity index, the ratio of the calculated drag 

f a homogeneous suspension and that of a clustering one. When 

he flow properties are in a homogeneous region, clusters play an 

nsignificant role. The transport zone, characterized as above, is 

uite dilute and mostly belongs to the homogeneous zone, while 

he transition zone, having a higher particle concentration, is, not 

urprising, in the heterogeneous zone. Then, Eqs. (13) can be used 

n the transport zone with u s = u t , the terminal velocity of a sin-

le particle, with ε ≈ 1. 

The situation in the splash (transition) zone and in the wall- 

ayers is more complicated. In the wall-layers active particles may 

e included in descending clusters. It is not known which velocity 
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Table 4 

Property data and parameters used by Prins and Scala. 

Quantity Scala Prins 

Temperature, K 723 338 

Bed particle density, kg/m 

3 2500 2750 

Voidage, - 0.44 0.40 

Diffusivity, m 

2 /s 9.4 •10 −10 T 1.75 2.8 •10 −10 T 1.75 

Sc, - 0.7 2.6 
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11 
hey will experience relative to the falling film, but these parti- 

les are not critical for fuel conversion as their temperature falls, 

t least in a boiler with heat exchanging walls. In the splash zone, 

articles are ejected by bursting voids, carried away by the high 

hrough-flow of gas. At the top of the splash zone, the particles 

ecelerate and most of them fall back to the bottom bed again in 

 clustering flow, while the finer particles are entrained by the gas 

nto the transport zone. Eq. (13) can be used, but a refined com- 

utational analysis is required for an accurate determination of the 

lip velocity and local bed density. If such computations are not 

arried out, the average suspension density based on pressure drop 

an be estimated, while the slip velocity is difficult even to guess. 

n the absence of anything else, the terminal velocity can be used. 

The bottom bed reminds of a bubbling bed composed of a par- 

icle phase and bubbles, although much more irregular than a nor- 

al bubbling bed of Group B particles. A wide CFB bed will not 

urn into slugging and turbulent fluidization [43] and the bubbling 

haracter is maintained as long as there is bed material left in the 

ed that has not been distributed along the riser height. The bub- 

les are irregular voids and the through-flow of gas is consider- 

ble, allowing a particle phase to exist, less exposed to a very high 

elocity and expanding less than a bed of Group A particles [ 43 ,

ig 3 ]. A rough estimate of average bed voidage can be made for a

ed composed of a high-velocity void-phase δ and a low-velocity 

article phase with a voidage ε e ≥ε mf , that is, ε bed = δ+ (1- δ) εe .

ittle qualitative information is available from the bottom bed, but 

ough estimates can be based on the figure referred to in [43] , 

ielding εbed , opt ≈ 0.6 at optimum heat transfer and εbed ≈ 0.7 

t higher velocity. Werther and Wein [44] measured the density 

f the particle phase from where a value, extrapolated to typical 

onditions, would be εe ≈ 0.58. This yields δ ≈ 0.3 but this num- 

er is quite uncertain. Since the gas velocity through the particle 

hase has to be low (otherwise it would not exist), the velocity 

hrough the void phase is high, 10 to 15 m/s. the voids are not 

ree from particles and the entrainment by the void phase creates 

he splash zone. In this part of the riser, particle convection may 

ontribute to heat transfer, at least to large active particles, and Eq 

13a) must be completed by a particle convection component. Be- 

ause of the similarity of the fluidization features of the bottom 

ed and a bubbling bed, a slightly modified version of Palchonok’s 

odel can be tried, Eqs. (1 )–(6) . With the uncertainty illustrated in 

ig. 5 , Eqs. (1 and 2 ) can be tentatively replaced by Eq. (13) for the

ase d a = d i . The particle convection at optimum velocity ( Eq. 3 ) is

alid also at higher velocities in conventional beds, but in the CFB 

ottom bed the velocity is even higher, and the bed is more dis- 

erse, as pointed out above. The first term on the right-hand side 

f Eq. (3) could be compensated for this expansion by multipli- 

ation with (1- ε bed )/(1- ε bed,opt ) where εbed , and εbed,opt (the actual 

oidage and that during optimum conditions) are estimated. 

Quite clearly, heat and mass transfer to active particles in CFB 

re not yet well known. It seems from present publications that 

ost interest goes in the direction of catalytic reactors where the 

onditions are slightly different from those of converters of solid 

uels, such as boilers. Notably, there are differences in bed material 

izes, pressure drops, circulation rates etc. and particularly in the 

opic of the present account, in the interaction of active and inert 
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articles. In catalytic beds, all particles are active (if dilution is not 

pplied), while in converters of solid fuels, the quantity of active 

articles is less than a few percent of the total amount of particles. 

. Conclusion 

In contrast to heat and mass transfer to all particles in a flu- 

dized bed, here a formulation for transfer to active particles in a 

uidized bed is analysed, originally proposed by Baskakov and fur- 

her elaborated by Palchonok. The formulation estimates the distri- 

ution of the heat or mass transfer between two limits, depending 

n the size of the inert particles in relation to the active particles 

y an empirical function f(d i /d a ) = (d i /d a ) 
n , where n = 2/3 for heat

ransfer and n = 1 for mass transfer . The two limits are given by

orrelations determined by fits to data for small active particles, 

hen d i = d a , and for a limit approached asymptotically while the 

ctive particles grow large, d a → ∞ , and the size loses its signifi- 

ance. Both limits are supported by measurement data, but there 

re uncertainties as seen when comparing alternative correlations, 

otably those of Scala, employing a Frössling type of correlation 

or mass transfer, and Prins who developed correlations both for 

eat and mass transfer. Most of the comprehensive sets of mea- 

urement data found in literature and their corresponding correla- 

ions fit with minor exceptions within the above-mentioned limits, 

ut the detailed mutual agreement between the various correla- 

ions is poor, and it is not meaningful to try to find some average

alue, generalizing all correlations. Moreover, the ranges of mea- 

urements are restricted and do not well coincide in the results 

rom different research activities. In most cases, the Nu or Sh num- 

ers are functions of Re or Ar (which are related, because Re mf or 

e opt are related to the particle phase and its properties), Pr (Sc), 

nd a size ratio (d i /d a ) 
n . It is noted that the published correlations

elected for comparison do not reach the limits for small and large 

articles, and the limits defined in the present model are wider 

han most of the measured ranges in other research results. The 

orrelations quoted could not be safely extrapolated beyond the re- 

ion covered by measurement data, while the Baskakov-Palchonok 

orrelation covers a wide range of data, including both heat and 

ass transfer. 

It has been shown how correlations can be applied also in CFB 

olid fuel converters. In this case the critical parameters are the 

lip velocity in Re and the local voidage. These parameters are not 

ell known in all zones of a CFB riser, and with the present knowl- 

dge assumptions should made. 
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