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Robust Connectivity with Multiple Directional
Antennas for Vehicular Communications

Keerthi Kumar Nagalapur, Erik G. Ström, Fredrik Brännström, Jan Carlsson, and Kristian Karlsson

Abstract—For critical vehicular communication services, such
as traffic safety and traffic efficiency, it is advisable to design
systems with robustness as the main criteria, possibly at the
price of reduced peak performance and efficiency. We describe a
simple, low-cost method for combining the output of L directional
(i.e., not omnidirectional) antennas to the input of a single-port
receiver with the aim to guarantee robustness, i.e., to minimize
the probability that K consecutive packets arriving from the
worst-case angle-of-arrival are decoded incorrectly. To minimize
complexity, the combining network does not estimate or use
channel state information. The combining network consists of
L − 1 analog phase shifters whose phases are affine functions
of time. For a general L ≤ K and when the packet error
probability decays exponentially with the received SNR, the
optimum slopes of the affine functions can be computed by
solving an optimization problem that depends on the antenna
far-field functions. We provide analytical solutions for the special
case of L = 2 and 3 antennas, which turns out to be independent
of the antenna far-field functions and placement on a vehicle.
In an experimental setup consisting of two monopole antennas
mounted on the roof of a Volvo XC90, the proposed combining
method is shown to give significant performance gains, compared
to using any one of the antennas.

Index Terms—Robustness, vehicular communications, burst er-
ror probability, directional antennas, analog combining network

I. INTRODUCTION

Vehicular traffic safety and traffic efficiency applications
demand robust (reliable) communication between vehicles.
Many of these applications rely on that vehicles transmit
periodic status messages containing current position, speed,
heading, etc. These packets are referred to as cooperative
awareness messagess (CAMs) in Europe and basic safety
messages (BSMs) in the US [1], [2]. The time between
packets, T , is typically in the order of 100 ms, but can
vary due to vehicle dynamics and application requirements.
Occasional packet losses are normally not problematic, since
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the CAMs contain information of physical quantities that vary
slowly over the time duration of a few packets. However, if
a number of consecutive packets from a vehicle are lost, this
might lead to an application failure. Using a similar argument,
the probability distribution of K consecutive packet drops
is used as a metric to define application-reliability in [3].
In [4], awareness-probability, defined as the probability of
successfully decoding of at least K packets in a tolerance time-
window, is considered to study the performance of vehicular
networks. It is therefore reasonable to design the communi-
cation system to minimize the burst error probability (BrEP),
i.e., the probability of incorrectly decoding K > 1 consecutive
packets, where K depends on the application and T . This is
in contrast to the more common design goal to minimize the
packet error probability (PEP).

A shark fin antenna module located on top of a vehicle’s
roof is the standard method for housing the antennas used for
vehicular communications today. However, conformal/hidden
antennas are also being considered for the reasons of safety
of the antennas, exterior appearance of the vehicle, and aero-
dynamics. Far-field functions of hidden antennas are typically
directional, i.e., far from omnidirectional, due to the vehicle
components that closely surround them. In fact, the antenna
far-field functions might have very low, or even zero, gain in
certain directions and packets arriving from an unfavorable
angle-of-arrival (AOA) might be lost due to low signal-to-
noise ratio (SNR). Moreover, since the vehicle position varies
slowly over the time duration of a few consecutive packets,
we can expect the AOA of the signal from a certain vehicle to
remain approximately the same over this duration, and there
is a risk of losing a number of consecutive packets from the
same vehicle.

The problems due to directional antenna far-field functions
can be remedied by using multiple antennas with comple-
menting far-field functions. Combining the outputs of the
multiple antennas is a well studied topic and methods such
as selection combining (SC), equal gain combining (EGC),
and maximal ratio combining (MRC) have been investigated
thoroughly [5, Ch. 9]. The performance improvements in terms
of bit error rate (BER) and/or frame error rate (FER) obtained
by using these methods in vehicular scenarios has been shown
in [6]–[8]. These methods either require the knowledge of
the instantaneous channel amplitude and phase, or the SNR
of the output signal on each antenna. Schemes that do not
require the aforementioned information for combining have
also been studied. A scheme called random beamforming
has been explored in [9], [10], where the antenna far-field
function is randomized over several time-frequency blocks to
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achieve omnidirectional coverage on average at the transmitter.
A similar approach can be used at the receiver to combine the
output of the antennas.

Typically, the combining methods described above require
a multiport receiver (RX) to combine the signals digitally.
An alternative to this approach is to use an analog com-
bining network (ACN) consisting of analog phase shifters,
variable gain amplifiers, and combiners to obtain a single
combined signal that requires only a single-port RX [11], [12].
In [13], a multi antenna system that uses a hybrid precoder
(a combination of digital processing and phase shifters) at
the transmitter and an ACN at the receiver is described.
A hybrid beamforming structure that uses a combination of
digital processing and ACN at both the transmitter and receiver
is studied for large-scale MIMO systems in [14]. In the above
studies, the weights and the phases applied to the output
of the receive antennas are computed at the RX. When the
antennas and the RX are co-located, it is convenient to use
a closed loop system where the information from the RX is
used to control the analog combining network. However, from
a modularity and implementation complexity perspective, it
would be beneficial to devise an ACN that does not require
RX feedback or knowledge of the SNR or other channel state
information (CSI). This is indeed the approach taken in this
paper. Moreover, since the application is traffic safety and
losing a burst of consecutive packets can result in application
outage leading to disastrous consequences (loss of life), we
concentrate on minimizing the BrEP rather than average or
peak performance.

The main contributions of this paper are:
• formulation of a general framework for the design of

an ACN, which combines the outputs of L antennas
to a signal that is fed to a single-port receiver, that is
optimized to minimize the BrEP for the worst-case AOA;

• derivation of closed-form optimal ACN parameters for
L ∈ {2, 3} when L ≤ K and the PEP decreases
exponentially in SNR;

• derivation of closed-form ACN parameters for L > 3 and
L ≤ K that guarantee that the sum of the SNRs of K
consecutive packets is lower bounded by the SNR for an
isotropic antenna scaled with K times the average of the
L antenna gains (which in turn guarantee that the BrEP
is upper bounded by a value that is a function of the sum
of the SNRs when the PEP decreases exponentially in
SNR).

II. SYSTEM MODEL

A. Data Traffic Model and Time Scales

We consider periodic transmission of CAM-like packets.
That is, packets with duration TP are transmitted every T
seconds. We assume that TP � T , which is consistent with the
IEEE 802.11p standard based V2X communications. Indeed,
for CAMs broadcasted over IEEE 802.11p, the duration of a
packet TP is approximately 0.5–2 ms (the CAM packet sizes of
varies between approximately 400 to 1500 byte and the data
rate is fixed to 6 Mbit/s [15]). Hence, TP is very small in
comparison to T , which varies between 100–1000 ms [1, Table
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Fig. 1. Antenna coordinate system. The roof of the vehicle is in the xy plane.

1]. We declare an application outage when K consecutive
packets are lost, i.e., when the receiver has not decoded any
packets for KT seconds. Therefore, we design a time-varying
ACN to minimize the probability of application outage. The
design is optimal under the condition that the change in AOA
is negligible over KT seconds and the time-varying changes
in the ACN are negligible over TP. The exact statement of
these assumptions is made more precise below.

B. Antennas

Consider L ≥ 2 antennas located on a vehicle. All the
antennas are assumed to be at the same height from the ground
and in the xy plane as shown in Fig. 1. The angles φ and θ
are the azimuth and polar angles, respectively, and the vehicle
orientation with respect to the coordinate system is also shown
in the figure. Two examples of antenna placement are also
shown in the figure (circles and squares).

Let gl(φ) be the far-field function of Antenna l ∈
{0, 1, . . . , L− 1} in the azimuth plane. The far-field function
is normalized such that |gl(φ)|2 represents the relative directive
gain of Antenna l with respect to an isotropic antenna. We
assume that the antennas are vertically polarized and that the
incident electrical field is composed of a number of vertically
polarized plane waves (multipath components) arriving in the
azimuth plane, i.e., with the polar angle θ = π/2.

C. Propagation Environment and Antenna Output Signals

The performance of the antenna system depends on the
propagation environment. Since the focus of the paper is to
provide robustness, i.e., to improve the worst-case perfor-
mance, we study the system under the worst-case propagation
conditions. It is intuitively clear that the worst-case propaga-
tion condition from an antenna system perspective is when the
incident field consist of multipath components arriving from
the worst-case AOA. That most of the power comes from a
single AOA is a reasonable model for highway environments,
which typically have a dominating line-of-sight component or
a few strong scatterers [16], [17]. In Appendix A, we briefly
discuss the performance of the proposed combining scheme
when there are many multipath components arriving to the
receiver.
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For simplicity, we assume that a single multipath compo-
nent1 is impinging on the antenna configuration from AOA
φ(t). We assume that the geometry and mobility of the
transmitter, receiver, and potential scatterers is such that the
change in AOA is negligible over KT seconds, and therefore
omit the explicit time dependence from the notation. The
complex-valued channel gain at Antenna l is then given by [18,
(8)]

hl(t) = ã(t)gl(φ)e−Ω̃l(t) (1)

where ã(t) is the complex-valued gain and Ω̃l(t) is the
distance-induced phase shift at Antenna l, i.e., Ω̃n,l(t) =
(2π/λ)dl(t), where dl(t) is the time-varying propagation
distance from the transmitter to Antenna l and λ is the
wavelength of the carrier signal. The model in (1) is obtained
from [18, (8)] by setting the number of multipath components
to one. Since we are interested in optimizing the ACN at the
receiver, the angle-of-departure (AOD) of the single multipath
component at the transmitter is irrelevant and the transmitter
antenna gain at AOD of the single component is captured
by ã(t). Consequently, considering the Antenna 0 as the
reference, the channel gain at Antenna l can be written as

hl(t) = a(t)gl(φ)e−Ωl(t), (2)

where a(t) = ã(t)e−Ω̃0(t) and Ωl(t) = Ω̃l(t) − Ω̃0(t) is the
phase difference at Antenna l with respect to the reference
antenna. Under the above assumption of slowly varying AOA,
Ωl(t) is approximately constant over KT seconds. Dropping
the time-dependency of Ωl(t), we arrive at

hl(t) = a(t)gl(φ)e−Ωl , (3)

and the signal at the output of the lth antenna under the
narrowband assumption is given by

rl(t) = s(t)hl(t) + nl(t), (4)

where s(t) is the transmitted signal and nl(t) for l =
0, 1, . . . , L−1 are independent identically distributed complex
additive white Gaussian noise (AWGN) processes with power
E{|nl(t)|2} = Pn over the bandwidth of the signal s(t).

D. Analog Combining Network

We restrict the ACN to consist of analog phase shifters and
an adder as seen in Fig. 2. The output of the combiner r(t) is
given by

r(t) =

L−1∑
l=0

rl(t)e
ϕl(t), (5)

where ϕl(t) is the time-varying phase shift applied to the lth
antenna output and ϕ0(t) = 0. For simplicity, we let

ϕl(t) = αlt+ βl, l = 0, 1, . . . , L− 1.

Hence, αl is the phase slope and βl is the phase offset of the
lth phase shifter, and α0 = β0 = 0 (since ϕ0(t) = 0). By

1The extension to multiple components from the same AOA is straight
forward, but complicates notation and does not change the development of
the optimum ACN.

+

n0(t)

+

n1(t)

+

nL−1(t)

×

ejϕ1(t)

×

ejϕL−1(t)

+
...

r(t)

r0(t)

r1(t)

rL−1(t)

Fig. 2. The analog combining network with L antennas.

combining (4) and (5) , we can write the output of the ACN
as

r(t) = s(t)a(t)

L−1∑
l=0

gl(φ)e−(Ωl−αlt−βl) +

L−1∑
l=0

ñl(t)

= s(t)a(t)g(φ,α,β, t) +

L−1∑
l=0

ñl(t), (6)

where

g(φ,α,β, t) =

L−1∑
l=0

gl(φ)e−(Ωl−αlt−βl)

is the effective time-varying antenna far-field function, α =
[α1, . . . , αL−1]

T, β = [β1, . . . , βL−1]
T, and ñl(t) = nl(t)e

φl

has the same distribution as nl(t) since nl(t) is circularly
symmetric.

To avoid complicating channel estimation, we choose αl
for all l to be small enough such that the phase change
over a packet duration TP is negligible, which implies that
the effective far-field function during the kth packet can be
approximated to be g(φ,α,β, kT ). Consequently, the average
SNR of the kth packet is given by

γ̄(φ,α,β, k)=
E
{
|a(t)s(t)|2

}
|g(φ,α,β, kT )|2

E
{∣∣∣∑L−1

l=0 ñl(t)
∣∣∣2}

=
Pr

LPn
|g(φ,α,β, kT )|2, (7)

where we have assumed that the change in pathloss and large-
scale fading is negligible for KT seconds, implying that the
average received signal power E

{
|a(t)s(t)|2

}
= Pr is the

same for K consecutive packets.

III. BURST ERROR PROBABILITY

In this section, we formulate the problem of design-
ing the ACN to minimize the BrEP. The PEP of the kth
packet is a function of the average SNR and is denoted by
Pe(γ̄(φ,α,β, k)). The function Pe(·) depends on the modula-
tion and coding scheme used, the length of the packet, and the
characteristics of the channel. As mentioned earlier, we intend
to minimize the probability of having a burst of K consecutive
packet errors denoted by PB(φ,α,β,K). Assuming that the
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packet errors are independent, the BrEP is the product of the
individual PEPs of the K consecutive packets and is given by

PB(φ,α,β,K) =

K−1∏
k=0

Pe(γ̄(φ,α,β, k)). (8)

Since we are interested in determining the optimum α that
minimizes the BrEP for the worst-case AOA φ ∈ [0, 2π), we
formulate the following optimization problem.

α∗ = arg inf
{αl}∈R

sup
φ,βl∈[0,2π)

PB(φ,α,β,K). (9)

Note that we maximize the BrEP with respect to β in addition
to φ to include the effect of the worst-case initial offset
of ϕl(t). The optimization problem considers the worst-case
AOA and β for each α while finding α∗.

We now have a framework to find α∗ that minimizes the
BrEP for arbitrary far-field functions of the antennas and
PEP functions when the signal arrives at the RX as a single
component or when the spread of the AOA is very small. It
might not be possible to solve the optimization problem in (9)
analytically for any given far-field function and PEP function,
in which case numerical optimization can be used.

As a special case of PEP function, we consider an expo-
nential PEP function of the form Pe(γ̄) = a exp(−bγ̄), where
a, b > 0 are constants. The BrEP in the case of the exponential
PEP function is given by

PB(φ,α,β,K) =

K−1∏
k=0

ae−bγ̄(φ,α,β,k). (10)

The optimization problem in (9) can then be written as

α∗ = arg inf
{αl}∈R

sup
φ,{βl}∈[0,2π)

ln (PB(φ,α,β,K))

= arg sup
{αl}∈R

inf
φ,{βl}∈[0,2π)

K−1∑
k=0

γ̄(φ,α,β, k) (11)

= arg sup
{αl}∈R

inf
φ,{βl}∈[0,2π)

K−1∑
k=0

Pr

LPn
|g(φ,α,β, kT )|2

= arg sup
{αl}∈R

inf
φ,{βl}
∈[0,2π)

K−1∑
k=0

∣∣∣∣∣
L−1∑
l=0

gl(φ)e−(Ωl−αlkT−βl)

∣∣∣∣∣
2

.

(12)

If we let ψl = mod (Ωl − βl − ∠gl(φ), 2π), where mod (u, v)
is the remainder after dividing u by v, then βl ∈ [0, 2π)
implies that ψl ∈ [0, 2π) and the optimization problem can
be written as

α∗ = arg sup
{αl}∈R

inf
φ,{ψl}∈[0,2π)

K−1∑
k=0

∣∣∣∣∣
L−1∑
l=0

|gl(φ)| e−(ψl−αlkT )

∣∣∣∣∣
2

(13)
= arg sup
{αl}∈R

inf
φ,{ψl}∈[0,2π)

J(φ,α,ψ,K), (14)

where the objective function J(φ,α,ψ,K) is found through
algebraic manipulation of (13) to be

J(φ,α,ψ,K) =K

L−1∑
l=0

|gl(φ)|2 + 2

L−2∑
l=0

L−1∑
m=l+1

|gl(φ)| |gm(φ)|
K−1∑
k=0

cos(ψm − ψl − (αm − αl)kT ) . (15)

Theorem 1. The optimum of the objective function for an
arbitrary φ,

J∗(φ) , sup
α

inf
ψ
J(φ,α,ψ,K), (16)

is lower bounded as

J∗(φ) ≥ K
L−1∑
l=0

|gl(φ)|2 when L ≤ K, (17)

and the solutions

α∗0 = 0, ((α∗m − α∗l )T/2) ∈ X ∗ for 0 ≤ l < m ≤ L− 1,

X ∗ , {qπ/K : q ∈ Z} \ {qπ : q ∈ Z}, (18)

guarantee the lower bound. The solution in (18) with the
smallest nonnegative phase slopes is

α∗l =
l2π

KT
, l = 1, 2, . . . , L− 1. (19)

Furthermore, for L = 2 and 3, the bound in (17) is tight and
the solutions in (18) are optimal.

Proof: See Appendix B.

In summary, Theorem 1 shows that by using the solutions in
(18) and (19) it is possible to guarantee a minimum value for
the objective function and hence limit the BrEP to a maximum
value for all AOAs including the worst-case AOA.
Example 1. For L = 5 and K = 5, a solution set that
achieves the lower bound in (17) is given by [α∗1, α

∗
2, α
∗
3, α
∗
4] =

[2π/(KT ), 4π/(KT ), 6π/(KT ), 8π/(KT )] and α∗0 = 0 as
the output of the l = 0 antenna is not phase shifted. 4

In the case of L > 3, proving the tightness of the bound
in (17) seems to be analytically intractable. In such a case, the
optimization problem (14) can be solved numerically when L
is not large.

When the phase slopes α∗l in (18) are used, the objective
is independent of ψl and hence independent of βl. Therefore,
for any initial offset βl the worst-case AOA φ that results in
the highest BrEP is given by

φ? = arg min
φ∈[0,2π)

L−1∑
l=0

|gl(φ)|2 . (20)

As a consequence, when the proposed combining scheme is
used to minimize the BrEP in case of multiple directional
antennas, the antennas should be designed and oriented such
that

∑L−1
l=0 |gl(φ?)|

2 is maximized.

A. Two Antenna Case

In this section, a few aspects specific to the L = 2 antenna
case are discussed.
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1) Different repetition periods: the optimum phase slope
α∗ = α∗1 for L = 2 antennas and a given K and T is
not unique, see (18). This allows a choice of α∗ that is the
optimum for several different repetition periods. Indeed, (18)
tells us that α∗ = 2π/(KT1) is optimum for the period
T = T1. However, since

α∗ =
2π

K(rT1)
r, (21)

it follows from (18) that α∗ is also optimum for period T =
rT1, where r ∈ N \ {K, 2K, . . .}.
Example 2. Let T1 = 0.1 s and T2 = 0.3 s be the periods
of the messages arriving at the RX from two different trans-
mitters. Suppose K = 5, the optimum rate of phase shift
α∗ = 2π/(KT1) is optimum for both periods. 4

2) Similarity to EGC: in EGC, signals from the two an-
tennas are phase aligned or co-phased before they are added
together to increase the SNR. This co-phasing can be achieved
by phase shifting the output of the l = 1 antenna r1(t)
and adding it to the output of the reference antenna r0(t).
In the proposed combining scheme, r1(t) is phase shifted
continuously and added to r0(t). When α∗ = 2π/(KT ),
the signal corresponding to the K consecutive packets at the
l = 1 antenna is shifted with K different phases that uniformly
sample the domain [0, 2π). Therefore, α∗ minimizes the phase
difference between the signals at the two antennas during one
of the K consecutive packets. The deviation from perfect co-
phasing is dependent on the initial phase offset β = β1.
As K increases, the phase difference during one of the K
consecutive packets decreases and the output average SNR of
one of the K packets reaches close to the case of EGC.

IV. COMPARISON WITH STANDARD SCHEMES

In this section, the performance of the proposed combining
scheme is compared with a few standard combining schemes.
In the case of the exponential PEP function considered in
Section III, minimizing the BrEP is equivalent to maximizing
the sum of the average SNRs of the K packets as seen in (11),
hereafter referred as the sum-SNR. Therefore, the sum-SNR is
used as a performance criterion to compare the performance
of the combining schemes.

1) Single antenna: the sum-SNR at the output of Antenna l
is given by

ρl(φ) =

K−1∑
k=0

γ̄l(φ, k) =
KPr

Pn
|gl(φ)|2 .

When the antenna is omnidirectional in the azimuth plane,
the sum-SNR is given by

ρl,OMN(φ) =
KPrGl
Pn

,

where Gl is the directive gain of Antenna l in all the
directions. In the case of an isotropic antenna with Gl =
1, ρl,ISO(φ) = KPr/Pn.

2) MRC: this scheme requires L RF-chains and analog to
digital converters (ADCs), and a multiple port receiver

that estimates the complex-valued channel gains and
performs combining digitally. The sum-SNR is given by

ρMRC(φ)=

K−1∑
k=0

γ̄MRC(φ, k)=
KPr

Pn

(
L−1∑
l=0

|gl(φ)|2
)
.

3) EGC: this scheme requires L RF-chains and ADCs, and
a multiple port receiver that estimates the channel phases
and performs combining digitally. The sum-SNR is given
by

ρEGC(φ)=

K−1∑
k=0

γ̄EGC(φ, k)=
KPr

LPn

(
L−1∑
l=0

|gl(φ)|
)2

.

4) SC: this scheme requires L RF-chains, and a digital or
analog circuitry to measure the SNRs on each branch and
choose a branch. The sum-SNR is given by

ρSC(φ)=

K−1∑
k=0

γ̄SC(φ, k)=
KPr

Pn
max
l

{
|gl(φ)|2

}
.

5) ACN: the proposed scheme requires analog phase shifters
on L − 1 branches operating independently and a com-
biner. The sum-SNR when the solution in (18) is used is
given by

ρACN(φ) =

K−1∑
k=0

γ̄(φ,α∗,β, k)

=
KPr

LPn

(
L−1∑
l=0

|gl(φ)|2
)
,∀βl ∈ [0, 2π).

The sum-SNR in the case of MRC and ACN are relate as
ρMRC(φ) = LρACN(φ).

The MRC scheme outperforms EGC, SC, and ACN for
any far-field functions gl(φ). The relative performance of SC
and EGC for an AOA φ depends on the far-field functions
gl(φ). The sum-SNR of MRC, EGC, and SC schemes is
higher compared to our ACN scheme, implying lower BrEP.
However, these schemes require additional hardware and/or
signal processing as mentioned above.

V. NUMERICAL RESULTS

In this section, the performance of the ACN is studied
by using example antenna far-field functions. The sum-SNR
ρ(φ) discussed in Section IV is used to illustrate the direction
dependency of the BrEP. The ρl(φ) of Antenna l is directly
proportional to |gl(φ)|2 and therefore it also serves the purpose
of visualizing the AOA dependent gain of the antenna.

A. Two Monopoles on a Vehicle Roof

We consider the measured far-field functions of two
monopole antennas placed on the roof of a Volvo XC90 to
analyze the performance of the ACN. The l = 0 and l = 1
monopole antennas are located at (x, y) = (0, 0.4 m) and
(0,−0.4 m), respectively (indicated by circles in Fig. 1). The
ρ0(φ) and ρ1(φ) of the two monopole antennas are shown in
Fig. 3. The ρ(φ) have been plotted by setting Pr/Pn = 1 and
K = 5. As seen in the figure, both the antennas exhibit very
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Fig. 3. Sum-SNR ρ(φ) of the two individual roof-top monopoles and sum-
SNR after combining with ACN and EGC. Here, Pr/Pn = 1 and K = 5.
The worst-case sum-SNR is marked with circles.
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Fig. 4. BrEP as a function of αT for a fixed AOA φ? ≈ 68◦ and worst-case
β using the two roof-top monopole antennas, Pr/Pn = 10, and K = 5.

low ρ(φ) at certain AOAs. If only one of the two antennas is
used, the packets arriving in the AOAs of low ρ(φ) will, of
course, have high BrEP. The sum-SNR can be improved by
combining the output of the antennas using the proposed ACN.
As seen in the figure, ρACN(φ) is (as expected) sandwiched
between the two individual antenna sum-SNRs, ρ0(φ) and
ρ1(φ). Hence, the ACN gives improved robustness against
unfavorable AOA. The sum-SNRs for EGC is also shown
in the figure, while the sum-SNRs for MRC and SC have
been omitted. However, the latter are related to the plots in
the figure through the relation ρMRC(φ) = 2ρACN(φ) and
ρSC(φ) = max {ρ0(φ), ρ1(φ)}.

Comparing the sum-SNRs of the antenna arrangements at
worst-case AOAs in Fig. 3, we note that the ACN is 17.4 dB
and 16.5 dB better than Antenna 0 and Antenna 1, respectively.
The ACN is 1.81 dB worse than EGC, 1.83 dB worse than
SC, and 3 dB worse than MRC. Hence, the ACN provides a
tremendous gain in robustness compared to choosing just one
of the antennas. The performance loss against the standard
combining schemes is relatively modest, especially consider-
ing that a 2-port receiver is needed for these schemes.
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Fig. 5. ρ(φ) of the four patch antennas. The patch antennas exhibit directional
power gains. Pr/Pn = 1 and K = 5.
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Fig. 6. BrEP as a function of AOA φ for the individual an-
tennas and the combined output when K = 5, [α∗

1, α
∗
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∗
3] =

[2π/(KT ), 4π/(KT ), 6π/(KT )].

The performance of the ACN for an suboptimum choice of
α is shown in Fig. 4. The previous setup of the two monopole
antennas with K = 5 and Pr/Pn = 10 dB is used. We consider
the exponential PEP function Pe(γ̄) = exp(−γ̄/5). For L = 2,
the sum-SNR and, therefore, the BrEP is a function of αT
and β, see (12). Fig. 4 plots the BrEP versus αT for the
worst-case AOA φ? ≈ 68◦ (marked by a circle in Fig. 3). The
worst-case initial offset β?(αT ) is used for every αT . We
note that the BrEP is minimized when αT = u(2π/K) where
u ∈ {1, 2, . . .} \ {K, 2K, . . .}, which is in agreement with the
solution in (18). An α′ = 2π/(KT ′) designed for T = T ′

is optimum for several integer multiples of T ′ and this result
agrees with the discussion in Section III-A1. It can also be
observed that the deviation of the BrEP from the minima is
not significant for a large range of αT . Therefore, the ACN
can handle small mismatches in α or T without significant
performance loss.
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B. Four Patch Antennas on a Vehicle Roof

As an example of L > 2, we consider L = 4 patch antennas.
The antennas l = 0, 1, 2, and 3 are located at (x, y) =
(1 m, 0 m), (0 m, 0.6 m), (−1 m, 0 m), and (0 m,−0.6 m), re-
spectively (indicated by squares in Fig. 1). The antennas
are oriented such that the E-plane far-field function of each
antenna coincides with the xy plane and the perpendiculars to
the ground planes pass through the origin of the coordinate
system. The width, length, and height of the patch antennas
are 0.5λ/

√
εr, 0.5λ/

√
εr, and 0.05λ/

√
εr, respectively, where

λ is the wavelength of the carrier with frequency 5.9 GHz and
εr = 2.2 is the dielectric constant of the substrate. The length
and width of the ground plane is equal to λ. The far-field
functions of the patch antennas are obtained using the method
of moments. The sum-SNR ρ(φ) of the antennas is shown in
Fig. 5, Pr/Pn = 1 and K = 5 are used. It can be observed
that a single patch antenna exhibits very low ρ(φ) for a large
range of AOAs in the azimuth plane, implying higher BrEP at
these AOAs. The ACN can be used to combine the outputs of
the four antennas to minimize the BrEP in these AOAs. The
phase slopes for the three antennas are chosen according to
(19), i.e., α∗l = l2π/(KT ), for l = 1, 2, 3. It can be observed
that ρACN(φ) of the ACN has higher values for AOAs where
the individual antennas have very low values. The sum-SNR
in the case of a single isotropic antenna and in the case of the
patch antennas combined using EGC are also shown in the
figure. The plots corresponding to MRC and SC have been
omitted in the figure. However, they are related to the plots
in the figure through the relation ρMRC(φ) = 4ρACN(φ) and
ρSC(φ) = max {ρ0(φ), ρ1(φ), ρ2(φ), ρ3(φ)}.

Comparing the sum-SNRs of the antenna arrangements at
worst-case AOAs in Fig. 5, we note that the ACN is much
better than Antenna 0 (or any of the other individual antennas),
which is not surprising since the patch antennas are not
designed to be omnidirectional (as opposed to the monopoles
in Fig. 3). The ACN is 3.49 dB worse than EGC, 3.00 dB
worse than SC, 6 dB worse than MRC, but 1.10 dB better
than an isotropic antenna. In fact, the ACN is better than the
isotropic antenna for all AOAs. Again, comparing with the
standard combining schemes is not fair, since a 4-port receiver
is needed for these schemes.

The BrEP in the setup of the four patch antennas as a
function of AOA is shown in Fig. 6. An exponential PEP
function Pe(γ̄) = exp(−γ̄/5) is used and Pr/Pn = 10 dB. As
in the case of L = 2, the BrEP of the individual antennas is
close to 1 for the AOAs that have very low ρ(φ). The BrEP
for the AOAs corresponding to low gains in the individual
antennas is reduced by the ACN. The ACN enables robust
communication for signals from all AOAs. The figure also
shows the BrEP in the case of a single isotropic antenna and
in the case of the patch antennas combined using EGC, the
BrEP in these cases is in agreement with their ρ(φ) in Fig. 5.

C. Numerical Optimization

The optimization problem in (9) may not be analytically
tractable for an arbitrary PEP function, K, and L. In such a

scenario, numerical optimization can be used to find the opti-
mal phase slopes for the ACN. We considered the optimization
problem in the case of the two measured monopole antennas
and K = 5 with two PEP functions for uncoded Gray-coded
QPSK with independent bit errors [19, Ch. 6], namely

AWGN: Pe(γ̄) = 1−
(
1−Q

(√
γ̄
))Nb ,

Rayleigh fading: Pe(γ̄) = 1−
(

1

2
+

1

2

√
γ̄

2 + γ̄

)Nb

,

where Nb is the number of bits in the packet and γ̄ is
the average SNR. Exhaustive search was used to solve the
optimization problem numerically with Nb = 3200 and
Pr/Pn = 10 dB. The analytically obtained optimum solution
α∗ = 2π/(KT ) in the case of exponential PEP function was
found to be the optimum solution. We conjecture that the
optimal solution in (18) is optimal for other monotonically
decreasing PEP functions.

VI. CONCLUSIONS

In this paper, we have proposed a simple method consisting
of phase shifters to combine the outputs of L directional
antennas to enable robust vehicle-to-vehicle communications
with a single-port receiver. To guarantee robustness, we have
designed our method to minimize the burst error probability,
i.e., the probability of K consecutive packet errors for the
worst-case angle of arrival. The combining scheme does not
need knowledge of the instantaneous complex-valued channel
gains or the SNRs on each antenna branch in contrast to the
standard combining schemes. We have used measured far-field
functions of two monopole antennas mounted on a vehicle
and other example far-field functions to show the benefits of
the scheme. For example, the ACN gives a gain of more than
16.5 dB in worst-case sum-SNR compared to using just one of
the two realized monopole antennas. For the simulated patch
antennas, it is shown that the ACN gives a quite smooth and
relatively large sum-SNR for all angle-of-arrivals.

The phase slopes that guarantee an upper bound on the
BrEP are derived in the case of L ≤ K and are given
by αl = l2π/(KT ), l = 1, 2, . . . , L − 1. Furthermore, it
is shown that that the upper bound is indeed tight for the
case of L = 2 and 3, which implies that the solution is
optimum for this case. Moreover, for L = 2, the optimum
phase slope designed for a specific T is optimum when the
actual period is certain multiples of T and robust to a large
range of other periods. It is interesting to note that the optimum
phase slopes are independent of the antenna placement and
far-field functions, which makes the method very robust to
manufacturing tolerances.

The proposed scheme is also relevant for low cost sensor
nodes with strict requirements on power consumption and
complexity. Multiple low cost antennas with directional far-
field functions can be used and combined using the proposed
method to support robust communications.

APPENDIX A
RICH MULTIPATH PROPAGATION

In this appendix, we consider rich multipath propagation,
i.e., when a large number of multipath components distributed
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uniformly in the azimuth plane are impinging on the an-
tenna system. The channel gains hl(t) can then be accurately
modeled as uncorrelated complex Gaussian processes with
zero mean when the following conditions are satisfied: (i)
the separation between the antennas is larger than λ, (ii)
a dominant component is absent, and (iii) the antennas are
assumed to be omnidirectional [20, Sec. 5.4]. The requirement
of omnidirectional antennas in assumption (iii) can be relaxed
when the antennas have a broad beamwidth or when the main
lobes of the antennas are oriented in different directions.

The signal at the output of the combiner is given by

r(t) = s(t)

L−1∑
l=0

hl(t)e
(αlt+βl) +

L−1∑
l=0

nl(t)e
(αlt+βl)

= s(t)

L−1∑
l=0

h̃l(t) +

L−1∑
l=0

ñl(t)

= s(t)h(t) +

L−1∑
l=0

ñl(t), (22)

where h̃l(t) is also complex Gaussian process due to the
circular symmetry and h(t) =

∑L−1
l=0 h̃l(t) is the equivalent

channel gain. Assuming that the path-loss and the large-
scale fading between the transmitter (TX) and the RX are
approximately constant over the duration of K packets, the
average SNR of for each of the K packets is given by

γ̄ =
E
{
|s(t)h(t)|2

}
E
{∣∣∣∑L−1

l=0 ñl(t)
∣∣∣2} =

∑L−1
l=0 Pr,l

LPn
, (23)

where Pr,l = E
{
|s(t)hl(t)|2

}
. If the antennas receive equal

amount of power, then Pr,l = Pr,0 for all l and γ̄ = Pr.0/Pn,
which is the average SNR for a single antenna configuration.
Hence, the ACN does not degrade the performance with
respect to a single antenna connected to a single-port receiver.

APPENDIX B
PROOF OF THEOREM 1

We begin the proof of Theorem 1 by proving a few lemmas.
Define the function f : R2 → R as

f(x, y) ,
K−1∑
k=0

cos(y − k2x), (24)

where K > 1 is a positive integer. It can be shown that

f(x, y) =

K cos(y), x ∈ X
sin(Kx)

sin(x)
cos(y − (K − 1)x), x /∈ X (25)

where
X , {qπ : q ∈ Z} (26)

is the set of integer multiples of π.
Lemma 1. Let f and X be as defined in (24) and (26),
respectively. Then,

f(x, y) = 0 for x ∈ X ∗ and y ∈ R, (27)

where
X ∗ , {qπ/K : q ∈ Z} \ X (28)

is the set of integer multiples of π/K excluding integer
multiples of π.

Proof: If x ∈ X ∗ then x /∈ X , and it follows from (25)
that

f(x, y) =
sin(Kx)

sin(x)
cos(y − (K − 1)x), x ∈ X ∗, (29)

= 0, x ∈ X ∗ (30)

since sin(Kx)/ sin(x) = 0 for all x ∈ X ∗.

Lemma 2. Let x , [x1, x2, . . . , xL−1]
T, X ∗ be as defined

in (28), and let x0 = 0. It is possible to find an x ∈ RL−1

such that

(xm − xl) ∈ X ∗, 0 ≤ l < m ≤ L− 1, (31)

if and only if L ≤ K. Moreover, one such construction is

xm = mπ/K, m = 1, 2, . . . , L− 1. (32)

Proof: We start by noting that, since x0 = 0, the condition
in (31) is equivalent to the conditions

(xm − x0) = xm ∈ X ∗, m = 1, 2, . . . , L− 1 (33)
(xm − xl) ∈ X ∗, 1 ≤ l < m ≤ L− 1. (34)

Now suppose L ≤ K and let xm be as in (32). Since 1 ≤
m ≤ L− 1 < K, m is not divisible by K. Consequently, we
have that xm = mπ/K ∈ X ∗ and (33) is satisfied. Moreover,
for 1 ≤ l < m ≤ L− 1,

xm − xl=(m− l)π/K ∈ {π/K, 2π/K, . . . , (L− 2)π/K},

which implies that (34) is satisfied. Hence, we have shown that
if L ≤ K, then there exists an x for which (31) is satisfied.

We show that (31) cannot be satisfied when L > K. We
note that the condition in (33) is equivalent to (xm ∈ X ∗)⇔
(mod (xm, π) ∈ X ∗∗), where

X ∗∗ , {π/K, 2π/K, . . . , (K − 1)π/K} (35)

and mod (u, v) is the remainder after dividing u by v. Since
the cardinality of X ∗∗ is K − 1 and there are L− 1 > K − 1
elements in x, all which are members of X ∗, there must exist
a pair (l,m) such that mod (xm, π) = mod (xl, π). The exis-
tence of such a pair (l,m) implies that mod ([xm − xl], π) =
0 /∈ X ∗∗, implying that (xm − xl) /∈ X ∗, which violates the
condition (34). Hence, if L > K, it is not possible to find an
x that satisfies (31).

Lemma 3. Let f be as defined in (24). If we can assign values
to any dW/2e of the elements in [y1, y2, . . . , yW ], then we can
satisfy the following condition

W∑
w=1

cwf(xw, yw) ≤ 0 (36)

for an arbitrary x = [x1, x2, . . . , xW ]
T and cw ∈ R for w =

1, 2, . . . ,W .
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Proof: The sum in (36) can be written as
W∑
w=1

cwf(xw, yw) =

W∑
w=1

dw(xw) cos(yw − e(xw)), (37)

where

dw(xw) =

{
cwK, x ∈ X
cw(sin(Kxw)/ sin(xw)), x /∈ X , (38)

and

e(xw) =

{
0, x ∈ X
(K − 1)xw, x /∈ X . (39)

Define an one-to-one mapping w 7→ w̃ ∈ {1, 2, . . . ,W}
such that |dw̃=a| ≥ |dw̃=b| for b > a. The sum in (37) can be
split into two sums

S1 =

dW/2e∑
w̃=1

dw̃(xw̃) cos(yw̃ − e(xw̃)) (40)

S2 =

W∑
w̃=dW/2e+1

dw̃(xw̃) cos(yw̃ − e(xw̃)) (41)

If, for any x = [x1, x2, . . . , xW ]
T, yw̃ can be chosen such

that

cos(yw̃ − e(xw̃)) = − sgn(dw̃) for w̃ = 1, 2, . . . , dW/2e,
(42)

then S = S1 + S2 ≤ 0 and the lemma follows.
We are now ready to start the proof of Theorem 1.

Proof: The objective function in (15) can be written as

J(φ,α,ψ,K) = K

L−1∑
l=0

|gl(φ)|2 +

2

L−2∑
l=0

L−1∑
m=l+1

|gl(φ)||gm(φ)|f(xm − xl, ym − yl), (43)

where xl = αlT/2 ∈ R and yl = ψl ∈ [0, 2π). Since α0 =
β0 = 0, we have that x0 = 0 and y0 = −∠g0(φ).

For any φ, the optimal value of the objective function,

J∗(φ) , sup
α

inf
ψ
J(φ,α,ψ,K)

= K

L−1∑
l=0

|gl(φ)|2 +

sup
x

inf
y

L−2∑
l=0

L−1∑
m=l+1

2 |gl(φ)| |gm(φ)| f(xm − xl, ym − yl),

(44)

where x , [x1, x2, . . . , xL−1]T and y , [y1, y2, . . . , yL−1]T.
From Lemma 1, we see that the second term in J∗(φ) is

zero for any y if (xm−xl) ∈ X ∗, for all pairs (l,m) that occur
in the double sum, i.e., for 0 ≤ l < m ≤ L − 1. It is shown
in Lemma 2 that it is possible to find a solution that satisfies
the aforementioned condition when L ≤ K. Therefore, we
conclude that

J∗(φ) ≥ K
L−1∑
l=0

|gl(φ)|2 , L ≤ K. (45)

We now show that the bound in (45) is tight for L = 2 and
3. The optimum objective in (44) can be written as

J∗(φ) = K

L−1∑
l=0

|gl(φ)|2 + sup
x

inf
y

W∑
w=1

cwf(x̃w, ỹw), (46)

where we have defined a mapping of the index pair (l,m) 7→
w ∈ {1, 2, . . . ,W} where W = L(L − 1)/2 such that cw =
2 |gl(φ)| |gm(φ)|, x̃w = xm − xl and ỹw = ym − yl.

As shown in Lemma 3, for an arbitrary x, if any dW/2e of
the elements in [ỹ1, ỹ2, . . . , ỹW ] can be varied independently,
then we can make

W∑
w=1

cwf(x̃w, ỹw) ≤ 0, ∀cw ∈ R. (47)

In the case of L = 2, we have dW/2e = 1 and ỹ1 =
y1−y0 can be varied independently by varying y1. Therefore,
the inequality in (47) holds.

In the case of L = 3, the relation between ỹw and y in (46)
is ỹ0

ỹ1

ỹ2

 =

 1 0
0 1
−1 1

[y1

y2

]
−

1
1
0

 y0. (48)

It is easy to see that any dW/2e = 2 rows in (48) results in a
consistent system of equations for solving for y. Hence, any
two of the three ỹw can be varied independently by varying
y1 and y2. Therefore, the inequality in (47) holds.

Consequently, for L = 2 and 3, using (47) in (46), we have

J∗(φ) ≤ K
L−1∑
l=0

|gl(φ)|2 . (49)

In summary, for an arbitrary x there exists a choice for
[ỹ1, ỹ2, . . . , ỹW ] that results in the inequality in (49). However,
by choosing (xm − xl) ∈ X ∗, the inequality in (45) can be
achieved for any y. Combining the results (45) and (49) we
conclude that

J∗(φ) = K

L−1∑
l=0

|gl(φ)|2 , L ≤ K, and L = 2, 3, (50)

which concludes the proof of Theorem 1.
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