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a b s t r a c t 

In this study, an application of the adapted Co-Heating methodology for thermal performance evaluation 

of closed refrigerated display cabinets (RDCs) has been presented. A novel test series comprising three 

experiments has been developed and demonstrated on a commercial RDC with four doors to evaluate 

the envelope heat transfer coefficient, thermal inertia, infiltration at idle state and dynamic infiltration 

caused by door operations. The latter two experiments were conducted in parallel with the condensate 

collection method for validation of the results for infiltration. It was concluded with good ( < 10%) con- 

formance between the methods that the infiltration at idle state for the tested RDC is approximately 

0 . 022 kg/s and that one 15 s door opening causes approximately 0 . 94 kg of ambient indoor air to infil- 

trate. Additionally, the time, equipment and associated costs for running the tests were compared, and 

it was concluded that the adapted Co-Heating methodology could substitute the condensate collection 

method for the evaluation of infiltration while providing additional results on the thermal performance. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

Méthode de co-chauffage pour l’évaluation des performances thermiques des 

meubles frigorifiques de vente fermés 

Mots clés: Meuble frigorifique de vente; Performance thermique; Expérimentation; Condensat; Co-chauffage 
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. Introduction 

Global initiatives to reduce the climate impact of electrical en- 

rgy generation are leading to an increased share of renewable 

nergy sources in the energy mix. However, the electrical power 

enerated from renewable energy sources such as solar, wind and 

ave energies cannot be adapted to the electrical demand in the 

ame flexible way as gas, coal and hydro. Therefore, there is a need 

o add energy storage capacity in a grid with a larger share of 

hese non-dispatchable renewable sources ( Farhangi, 2010 ). 

The purpose of the added energy storage capacity in the grid 

s to bridge the time-shift between the supply of electrical power 

rom the non-dispatchable sources to the energy demand of the 

nd-users. Within the storage units, the electrical energy is com- 
∗ Corresponding author. 
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only stored as a potential that later can be regenerated into 

lectricity such as electrochemical potential in batteries or grav- 

tational potential energy in pumped hydropower plants. Conse- 

uently, to provide the needed energy storage capacity, invest- 

ents in storage infrastructures are required. 

Alternatively, to reduce the need for intermediate energy 

torage, the end-users could adapt their electrical energy de- 

and to the available supply, i.e. demand-side response ( Albayati 

t al., 2020; Khan et al., 2018 ). For some processes with 

arge inertia, the electrical energy demand could be increased 

r reduced for a period of time without noticeable con- 

equences for the end-user. One such example is the en- 

rgy intense refrigeration systems of supermarkets that po- 

entially could be used for demand-side response purposes. 

his potential has previously been concluded and discussed in 

lbayati et al. (2020) , Funder (2015) , Hovgaard et al. (2011) , 

ånsson and Ostermeyer (2019) , Månsson and Ostermeyer (2013) , 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Temperature variations in an RDC from Månsson and Ostermeyer (2019) . 

When refrigeration is active, the temperature decreases from 7 . 7 ◦C to 6 . 3 ◦C within 

approximately 100 s. The temperature is then increasing back to the upper limit of 

7 . 7 ◦C for 300 s before the refrigeration cycle begins again. 
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Nomenclature 

C Heat capacity J/kg 

ξ Correction factor –

c p Specific heat capacity J/kgK 

K Heat transfer coefficient W/K 

m Mass kg 

˙ m Mass flow rate kg/s 

p Pressure Pa 
˙ Q Heat flux rate W 

R Gas constant J/kgK 

ρ Density kg/m 

3 

t Time s 

τ Temperature K 

T Temperature ◦C 

X Moisture ratio g / g D 

Subscripts 

Amb Ambient 

Cond Condensate 

Corr Corrected 

CO,i Condensate collection method, Step i 

COH,i Co-Heating method, Step i 

D Dry air 

Env Envelope 

Exf Ex-filtration 

i General index 

In Indoor 

Inf Infiltration 

Int Internal 

Opening Door opening 

RDC Refrigerated display cabinet 

T Total 

W 

Water (or water vapour) 

Ws Saturated water 

nd Pedersen et al. (2014) . The thermal inertia of the refrigerated 

ood and infrastructure connected to the refrigeration system al- 

ows the system to shift the time of energy use for periods of time 

n the magnitude of minutes. The time-shift is relatively short be- 

ause any violation of temperatures outside the allowed range for 

efrigerated goods would be devastating as the value of the goods 

ar outweighs the cost of energy. Therefore, it would be required to 

ave a highly detailed understanding of the thermal loads affect- 

ng the temperatures of the refrigerated goods in the supermar- 

et to implement control strategies that allow the electrical grid to 

tilise this resource. 

An example of the thermal response to a cooling and heat- 

ng cycle of a refrigerated display cabinet (RDC) can be found 

n Månsson and Ostermeyer (2019) , which is also presented in 

ig. 1 . Here the temperature is reduced as the refrigeration sys- 

em extracts heat from the RDC. Once the temperature has reached 

 lower limit ( 6 . 3 ◦C ), the heat extraction process ends. Subse-

uently, the internal and ambient thermal loads will increase the 

emperature in the RDC until the upper limit ( 7 . 7 ◦C ), and then, the

eat extraction process starts again. The frequency and duration of 

he processes are depending on the intensity of the thermal loads 

nd the heat capacity of the RDC. The larger the heat capacity, the 

lower the processes. Conversely, an increased thermal load would 

ause the temperature to increase faster and thereby shorten the 

uration of the period without any heat extraction demand. 

The heat gains of the RDC comprise a baseline load by infil- 

ration through gaps and conduction through the envelope, which 

re respectively proportional to the enthalpy and temperature dif- 

erence between the ambient air and the air inside the RDC. 
52 
dditionally, internal heat gains from lights and fans inside the 

DC are constant during the opening hours of the supermar- 

et, and normally the lighting is then reduced while the super- 

arket is closed. Furthermore, the operation of the doors of the 

DC constitutes the only short-term variable thermal load for the 

DC ( Månsson, 2016 ). The door opening frequency, duration and 

ngle vary significantly in time and between different RDCs in a 

upermarket ( Månsson et al., 2019 ). Hence, as the thermal load 

aries in time and between individual RDCs, so does the heat ex- 

raction demand of the individual RDCs. 

If supermarket refrigeration systems are to be utilised for 

emand-side response, the available buffering capacity should be 

onitored, i.e. when and for what duration the refrigeration sys- 

em can be turned off or, alternatively, ran on reduced or increased 

ower without violating the temperature limits of the goods stored 

n the RDCs. As an indicative measurement for the duration of 

hese cooling and heating processes, the time constant, t c , for the 

ystem can be used. t c = C RDC /K RDC describes the time it takes for a

elative step-wise temperature change in a linear thermal system. 

arger values of t c indicate a system with larger thermal inertia 

nd vice versa. Based on experience from earlier experiments, t c 
or an RDC with doors is approximately 2 h at idle state and 1 h

hen the doors are operated at peak hours, i.e. the demand re- 

ponse potential is affected significantly by the door operations. It 

s, however, important to notice that the time constant can only 

e used as an indicative measurement as parts of the loads are 

atent. 

To gain adequate insights on the thermal performance and, 

hereby, the demand response potential of an RDC the influenc- 

ng variables for heat gains such as the heat transfer coefficient of 

nvelope ( K Env ), infiltration rate of air through gaps ( ˙ m In f ) and by

oor openings ( m Opening ), as well as the heat capacity of the RDC 

nd its content ( C i ), should be quantified. 

In Faramarzi (1999) the author presented a study where the 

hermal load components of an open RDC were defined and es- 

imated by heat transfer calculations and experimental experience. 

ased on this study, infiltration was found to be the most signifi- 

ant contributor for thermal loads for the RDC (73%). Additionally, 

he author concluded that infiltration is the most challenging as- 

ect to evaluate. 

In a follow-up study ( Faramarzi et al., 2002 ), the authors ap- 

lied a method where the condensation water was collected to 

ompare the infiltration rate to an RDC with and without doors. 

hen doors were installed, a reduction of 68% in total heat 
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Fig. 2. Illustration of the test series used for the experiments. Test (1) with all gaps 

sealed. Test (2) with the RDC in its original setup. Test (3) with motors attached to 

induce dynamic door openings. 
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xtraction demand was determined. Consequently, the remaining 

hermal loads become significantly more important. However, in- 

ltration remained the single most influencing factor, representing 

0.6% of the total thermal load after doors were installed. 

For the evaluation of infiltration, an alternative to the Con- 

ensation collection method is the Enthalpy method presented in 

avaz et al. (2005) . Here, the authors presented a method where 

he infiltrating air of an open RDC can be evaluated by measuring 

he mass flow rate of the supply air of the RDC and the enthalpies

r temperatures of the spilling air from the RDC, ambient air as 

ell as the discharge and return air of the RDC. 

Later, in Amin et al. (2009) , a tracer gas method for the eval-

ation of infiltration based on the concentration of a tracer gas at 

ertain points in and around the RDC was presented. Besides the 

as concentration in the discharge air, return air and ambient air, 

he mass flow rate of the discharge air must also be known to eval-

ate the infiltration rate with this method. 

The methods mentioned above only evaluate the infiltration, 

nd the Enthalpy method is limited to open RDCs only. The 

racer gas method requires significant investments to accurately 

istribute and measure the tracer gas concentration in the RDC, 

hereas the Condensation collection requires only an elevated 

oisture content of ambient air. To the best of our knowledge, 

here is no existing experimental methodology that can be used 

o evaluate both the thermal performance variables and the infil- 

ration of an RDC simultaneously. 

As an alternative to experimental work, in 

rlandi et al. (2013) the authors presented a study where the 

hermal load caused by operation of sliding versus hinged doors 

as compared based on the results of dynamic CFD simulations. 

he relation between thermal loads from individual components 

as also evaluated and presented for the two door types, by in- 

luding both the scenario with and without customer interactions. 

ased on the results, the conduction through the envelope of 

he RDC with two hinged doors contributes to 70% of the overall 

hermal loads during nighttime when the RDC is idle. During 

aytime, the contribution decreases to 44% as the influence of in- 

ltration through door openings increases significantly. Regardless 

f time, the thermal loads caused by transmission through the 

nvelope are of magnitudes that demand careful evaluation. In the 

onclusions, the authors emphasise the possibilities to separate 

nfluencing factors and investigate isolated details of an RDC in 

he computer models. However, significant effort s must be made 

o find data on material properties and to geometrically depict the 

DC with all internal and external details that might affect the 

esults. 

In the search for alternative, more comprehensive experimental 

ethods to evaluate factors influencing the heat gains for RDCs, 

he authors of the presented work adopted the Co-Heating method, 

hich is used for the evaluation of the overall heat transfer co- 

fficient of a building “as built” ( Sonderegger and Modera, 1979 ). 

he methodology implies that a building is heated to an elevated 

ndoor temperature ( T In = T Amb + �T ) while the supplied heating 

ower is monitored ( ˙ Q Supply ). The overall heat transfer coefficient 

 K Building ) is then found as: K Building = 

˙ Q Supply / �T . In an ideal case,

he measurements are conducted at stable indoor and ambient 

emperature conditions and without any external heat gains that 

nfluence the controlled supplied heating power that elevates the 

ndoor temperature. However, in the case of buildings, the outdoor 

limate variations and intermittent solar heat gains pose a chal- 

enge to estimate the overall heat transfer coefficient accurately 

 Bauwens and Roels, 2014 ). If stable ambient conditions can be 

chieved, e.g. if the test object is located indoors, the precision of 

he Co-Heating method is substantially increased ( Sasic Kalagasidis 

t al., 2016 ). 
53 
By applying this methodology to an RDC in an experimental 

eries of three tests as described in Section 2 , the K Env , ˙ m In f and

 Opening as well as the heat capacity C RDC can be evaluated. 

This study presents the novel application of the adapted Co- 

eating method to an RDC equipped with four doors. In analogy 

ith both the Tracer Gas article ( Amin et al., 2009 ) and the En-

halpy method article ( Navaz et al., 2005 ), the infiltration measure- 

ents from the Co-Heating experiments are validated towards the 

esults of experiments conducted following the Condensate collec- 

ion method. The Condensation collection method is, however, not 

xplicitly defined in the available literature and is therefore fully 

escribed and derived in this article. 

. Method 

The adapted Co-Heating method as described in Section 2.1 was 

pplied to an empty RDC to evaluate its thermal performance in 

erms of heat transfer coefficient of the envelope ( K Env ), heat ca- 

acity of the RDC ( C RDC ), infiltration through gaps ( ˙ m In f ) and infil-

ration caused by door openings ( m Opening ). The Condensate collec- 

ion method as described in Section 2.2 was then applied to the 

ame RDC to validate the infiltration measurements. 

Both methods were applied in a series of three test variations: 

Test (1) – Doors closed and all gaps between the doors and the 

DC sealed with tape. 

Test (2) – Doors closed but gaps not sealed. (Original design) 

Test (3) – Doors opened and closed periodically. 

Fig. 2 illustrates the test variations. For Test (1), gaps around 

he doors were sealed with tape ensuring an airtight seal. All vis- 

ble gaps of the RDC except the drain pipe were sealed. Internally 
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Fig. 3. Photo from the test room showing the RDC prepared for Test (1) with sealed 

gaps. Data logging equipment is located to the left of the RDC. The RDC located 

further to the right was inactive during all experiments. 
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Fig. 4. Left: Mass balance of air within the fixed volume of the RDC where infiltra- 

tion is balanced by exfiltration. Right: Heat balance of the RDC in its original setup 

where three unknown fluxes are contributing to the overall balance. 
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he drain was covered with a fine grille, which was connected via 

 90 ◦ elbow joint to a 2 m long pipe with a diameter of 50 mm .

he infiltrating air through this pipework was considered to have 

 negligible contribution in comparison with the overall infiltration 

nd was therefore left unsealed. Test (1) is primarily used for the 

valuation of the heat transfer coefficient for the envelope, which 

n combination with Test (2) is required for the evaluation of the 

nfiltration through gaps by the Co-Heating method. From Test (2), 

he infiltration rate through gaps is directly evaluated by the Con- 

ensation collection method. The infiltration caused by the door 

penings can be estimated by subtracting the estimated idle infil- 

ration rate from the infiltration rate evaluated in Test (3). 

Both Test (1) and Test (2) are conducted under stationary condi- 

ions. For the dynamic Test (3), each door was opened for 15 s ev- 

ry 66 s, i.e. 4 openings per 66s for the RDC f Openings = 0 . 0606 Hz . 

The RDC used in the experiment was a 2016 KMW model FR4D- 

SST-G equipped with four double-glazed doors, placed in a tem- 

erature and humidity-controlled room complying to the demands 

f ISO 23953-2 ( ISO, 2005 ). Fig. 3 shows a photo from the test

oom with the RDC prepared for Test (1) with sealed gaps. 

.1. Co-Heating method 

This test is conducted by placing two electrical heating rods 

ith a known power in the RDC while measuring the temperature 

evelopment of the air in the RDC. Once a steady-state tempera- 

ure is reached, the heat transfer coefficient can be evaluated, and 

he infiltration can be estimated. The transient regime of the heat- 

ng process is used for the estimation of the heat capacity for the 

DC. The refrigeration was de-activated during the full duration of 

he Co-Heating experiments. 

The calculation of infiltration rate by the Co-Heating method 

s based on two balancing equations, namely the mass balance of 

ir and the sensible heat balance. The two balances are shown in 

ig. 4 and described in Eqs. (1) and (2) . 

˙ 
 In f − ˙ m Ex f = 0 (1) 

˙ 
 Supply − ˙ Q En v + 

˙ Q In f − ˙ Q Ex f = 0 (2) 

The difference in 

˙ Q In f − ˙ Q Ex f represents the heat flow caused by 

eakages in the envelope. Assuming no re-circulation of exfiltrated 

ir, i.e. that ambient air is infiltrated and air from the gross volume 

s exfiltrated, the expression can be rewritten as: 

˙ 
 In f − ˙ Q Ex f = 

˙ m In f c p T Amb − ˙ m Ex f c p T RDC (3) 

Rearranging Eq. (1) gives that ˙ m In f = ˙ m Ex f , and by approximat- 

ng the specific heat capacity of air, c p , to be constant for the tem-
54 
erature range in the experiment, Eq. (4) can be derived. 

˙ 
 In f − ˙ Q Ex f = 

˙ m In f c p (T Amb − T RDC ) (4) 

Now inserting Eq. (4) into (2) gives Eq. (5) where ˙ m In f is the 

nknown variable and 

˙ Q En v can be quantified either by experiment 

s Test (1) or calculations. 

˙ 
 Supply − ˙ Q En v + 

˙ m In f c p (T Amb − T RDC ) = 0 (5) 

By sealing the RDC as described in Test (1), the infiltration term 

isappears, and the heat transfer coefficient for the RDC envelope 

 Env can be evaluated as shown in Eq. (6) . 

 En v = 

˙ Q Supply 

T RDC − T Amb 

(6) 

˙ Q En v can be described as K En v (T RDC − T Amb ) and inserted to 

q. (5) . By rearranging this expression, the infiltration rate, ˙ m In f , 

an be written as a function of the measured quantities as shown 

n Eq. (7) . 

˙ 
 In f = 

˙ Q Supply − K En v (T RDC − T Amb ) 

c p (T RDC − T Amb ) 
(7) 

.1.1. Heat capacity of an empty RDC 

The heat capacity of the RDC can be estimated based on the 

ata from the transient regime generated in the initialisation of 

est (1). For an RDC that initially has the same internal temper- 

ture as the ambient, the transient RDC temperature development 

an be described as shown in Eq. (8) , where T RDC , ∞ 

is the balancing

emperature for when a steady-state condition has been reached, 

.e. the balancing temperature used for the evaluation of K Env in 

est (1). 

 RDC (t) = T RDC, ∞ 

+ (T Amb − T RDC, ∞ 

) e −t(K En v /C RDC ) (8) 

The thermal inertia C RDC is then evaluated based on a curve fit 

f Eq. (8) to the measured data. An example is given in Section 3.1 .

.1.2. Experimental setup 

The temperature was recorded at a sample rate of 30 s −1 with a 

IOKI LR8431 data logger connected to eight K-type thermocouples, 

ositioned as shown in Fig. 5 . Sensors 4 and 1 failed during the 

reparations of the experiment and were, therefore, excluded from 

he results and experimental setup. The setup was calibrated with 

n accuracy of ±0 . 1 ◦C prior to the execution of the experiment. 

The internal heat gains, ˙ Q Supply , comprise of the circulation fans 

 137 . 2 W ), internal lights ( 70 . 0 W ) and a longitudinal heating rod

 911 . 3 W ) located in the front of the RDC as indicated in Fig. 5 .

he supplied electrical power was measured with a Voltcraft Ener- 

yLogger 40 0 0 , with a 1% accuracy according to the manufacturer’s 

pecifications. 
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Fig. 5. Illustration of the sensors and heater placement in the RDC for the Co- 

Heating experiments. Sensors 5 and 6 are located in the ambient air in front of and 

besides the RDC respectively. Sensors 4 and 1 failed and were, therefore, excluded. 

Left: Section drawing. Right: Front view. 

Fig. 6. Left: Mass balance of moist air and water within the fixed volume of the 

RDC. Right: Mass balance of water vapour and liquid in the RDC. 
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Fig. 7. Illustration of sensor placement in the RDC for the Condensation collection 

experiments. Sensor 3 is located in the ambient in front of the RDC. Left: Section 

drawing. Right: Front view. 
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.2. Condensate collection method 

This test is conducted by monitoring the temperature and hu- 

idity of the ambient air and the air in the RDC, as well as the

ass of the condensed water. During the full duration of the Con- 

ensation collection experiments, the refrigeration was activated 

or the RDC. The temperature set-point was adjusted so that the 

vaporator temperature was kept above the freezing point of water 

o ensure that no accumulation of frost occurred on the evaporator. 

The evaluation of infiltration rate by the Condensate collection 

ethod is based on the mass balance of moist air and the mass 

alance of water as shown in Eqs. (9) and (10) and depicted in 

ig. 6 . 

˙ 
 In f − ˙ m Ex f − ˙ m W,Cond = 0 (9) 

˙ 
 W,In f − ˙ m W,Ex f − ˙ m W,Cond = 0 (10) 

These formulations can be expressed as 

qs. (11) and (12) where the water vapour mass in the air is 

efined by the moisture ratio X i g / g D . These formulations are 

alid if no re-circulation of exfiltrating air is present, i.e. ambient 

ir is infiltrating and air from the gross volume of the RDC is 

xfiltrating. 

1 + X Amb ) ˙ m D,In f − (1 + X RDC ) ˙ m D,Ex f − ˙ m W,Cond = 0 (11) 

 Amb ˙ m D,In f − X RDC ˙ m D,Ex f − ˙ m W,Cond = 0 (12) 
55 
By isolation of ˙ m D,Ex f in Eq. (11) , this expression can be inserted 

o Eq. (12) , where ˙ m D,In f is isolated as shown in Eq. (13 ). 

˙ 
 D,In f = 

˙ m W,Cond 

X Amb − X RDC 

(13) 

Eq. (13) expresses the mass flow rate of dry air into the RDC 

s a function of the condensate flow and ambient moisture ratio. 

ence, the mass flow rate of the infiltrating air can be expressed 

s shown in Eq. (14) . 

˙ 
 In f = 

(1 + X Amb ) ˙ m W,Cond 

X Amb − X RDC 

(14) 

.2.1. Experimental setup 

The temperature and RH were recorded at a sample rate of 

0 s −1 by three separate loggers [ Clas Ohlsson ST-171 ] with an ab- 

olute accuracy of ± 3% for RH and ±0 . 5 ◦C fort temperature. Indi- 

idual differences between the loggers were controlled prior to the 

xperiment and were found to be < 1% for RH and < 0 . 2 ◦C for

emperature. Two loggers were placed in the RDC and one logger 

n the test room as illustrated in Fig. 7 . 

The condensed water was collected in a container connected to 

he drainpipe of the RDC. The mass of the container was measured 

ourly ( ±60 s ) with an accuracy of ±1 g . 

.3. Infiltration per opening 

Both methods evaluate the average infiltration rate of ˙ m In f in 

g/s over the time period of the experiment. As shown in Eq. (15) , 

he influence of door openings can be evaluated by subtracting the 

esults from the dynamic Test (3) from the idle infiltration rate 

rom Test (2). 

˙ 
 In f, 3 − ˙ m In f, 2 = 

˙ m Openings (15) 

The infiltration caused by each door opening can be obtained 

s described in Eq. (16) . 

˙ m Openings 

f Openings 

= m Opening (16) 

.4. Properties of moist air 

To evaluate the infiltration for the Condensation collection 

ethod, the measured RH is translated to moisture ratio ( X i g / g D ),

hich can be expressed as a function of the partial pressure as 

hown in Eq. (17) ( ASHRAE, 2017 ). 

 i = 

0 . 621945 p W s · RH 

p − p 
(17) 
T W s 
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Fig. 8. Temperature data for 1 h from the Co-Heating Test (1) with all gaps sealed. 

Average temperature over time for T RDC = 64 . 66 ◦C and T Amb = 22 . 98 ◦C as indicated 

by the dashed lines. 
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Fig. 9. Transient temperature development for the RDC when Co-Heating Test (1) 

was initiated. All temperature data-points indicated with light-grey dots. A geomet- 

ric curve fit of Eq. (8) is illustrated by the black line. The red lines show the impact 

of increasing or decreasing the value of C RDC by ± 10%. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 10. Temperature data for 1 h from the Co-Heating Test (2) with no gaps sealed 

on the RDC. T RDC = 47 . 87 ◦C and T Amb = 23 . 01 ◦C as indicated by the dashed lines. 
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The total pressure ( p t ) is considered to be constant at 

01 325 Pa during the experiment. The saturated vapour pres- 

ure p Ws was found from interpolation between tabulated values 

n ASHRAE (2017) . 

In the Co-Heating method, the thermal heat capacity of air is 

ssumed to be c p,Air = 1006 J/kg · K ( ASHRAE, 2017 ). 

The temperature- and moisture-dependent density is estimated 

s described by Eq. (18) , where the universal gas constant for dry 

ir is R D = 287 . 058 J/kgK and for water vapour R W 

= 461 . 495 J/kgK

 ASHRAE, 2017 ). 

Air = 

p 0 − (RH · p W s ) 

R D τ
+ 

RH · p W s 

R W 

τ
(18) 

. Results and discussion 

The results for each testing method are first presented sepa- 

ately, followed by a comparison between evaluated quantities and 

ethods. 

.1. Co-Heating 

For Test (1), the RDC was heated to 64 . 66 ◦C by a constant sup-

ly of 1118 . 5 W consisting of the summed electrical power from 

he heater, fans and lights within the RDC gross volume. In Fig. 8 ,

he temperature data used for the evaluation of K Env are illustrated 

n a line graph. During Test (1), all visible gaps were sealed. How- 

ver, any infiltration caused by imperfections or through the drain 

ould be included in the overall heat transfer coefficient K Env . 

rom the results, it could be concluded that the heat transfer coef- 

cient of the RDC envelope K En v = 26 . 83 W/K . 

Additionally from Test (1), the thermal inertia ( C RDC ) of the RDC 

as evaluated by performing a geometric curve fit of Eq. (8) on 

he measured data as shown in Fig. 9 . The best fit was found for

 RDC = 283 kJ/K . The red lines show the sensitivity band for the 

stimation of C RDC where the fitted value was increased and de- 

reased by ± 10%. As shown, the curve is not following the tem- 

erature increase during the first hour of the experiment. This is a 

onsequence of a delayed start of the heaters while the tempera- 

ure increased due to the heat gains from the fans and lights. This 

eriod has been neglected since it has a negligible impact on the 

valuated value for C . 
RDC 

56 
For Co-Heating Test (2), the tape seal was removed, and the 

DC was left idle with the heater, lights and fans active until a new 

nd lower equilibrium temperature inside the RDC was reached. 

ig. 10 illustrates the decreased T RDC and constant T Amb , indicating 

hat infiltration through the gaps significantly affected the over- 

ll heat transfer coefficient of the RDC. By inserting the measured 

emperatures ( T Amb T RDC ) into Eq. (7) , it was found that the idle in-

ltration through gaps was ˙ m In f, COH 2 = 0 . 0181 kg/s . Alternatively, 

n terms of equivalent heat transfer coefficient based on Eq. (6) , 

 COH 2 = 45 . 00 W/K i.e. 67 % higher than with sealed gaps. 

For Co-Heating Test (3), the doors were opened individually ev- 

ry 66 s . Hence, the temperature of the RDC, T RDC , decreased fur- 

her and got stabilised at 34 . 48 ◦C as shown in Fig. 11 . The ther-

al inertia of the RDC smooths periodic variations in temperature 

hat the RDC door openings cause, allowing to reach a quasi-steady 
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Fig. 11. Temperature data for 1 h from the Co-Heating Test (3) where the doors 

were opened periodically. T RDC = 34 . 48 ◦C and T Amb = 22 . 86 ◦C as indicated by the 

dashed lines. 

Table 1 

Overview of measured data and conditions during the 

Co-Heating experiments. 

Test 1 Test 2 Test 3 Unit 

T Amb 22.98 23.01 22.86 ◦C 

ρAmb 1.18 1.18 1.18 kg/m 

3 

T RDC 64.66 47.87 34.48 ◦C 

ρRDC 1.04 1.09 1.14 kg/m 

3 

˙ Q Supply 1 118.5 1 118.5 1 118.5 W 

s
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Fig. 12. Moisture ratio data for 4 h from the Condensate collection Test (2) with no 

gaps sealed on the RDC. X RDC = 0 . 0063 g/g D and X Amb = 0 . 0130 g/g D as indicated by 

the dashed lines. 

Fig. 13. Moisture ratio data for 4 h from the Condensate collection Test (3) where 

the doors were opened periodically. X RDC = 0 . 0069 g/g D and X Amb = 0 . 0127 g/g D as 

indicated by the dashed lines. 

Table 2 

Overview of measured data and conditions during the Conden- 

sation collection experiments. 

Test 1 Test 2 Test 3 Unit 

T Amb 26 25.92 25.70 ◦C 

X Amb 0.0126 0.0130 0.0127 g/g D 
ρAmb 1.17 1.17 1.17 kg/m 

3 

T RDC 7.5 7.80 9.58 ◦C 

X RDC 0.0058 0.0063 0.0069 g/g D 
ρRDC 1.25 1.25 1.24 kg/m 

3 

˙ m W,Cond 4 . 5 · 10 −6 1 . 54 · 10 −4 4 . 49 · 10 −4 kg/s 

a

s

0

e

E

p

tate. Based on Eq. (7) , the infiltration rate during this opening sce- 

ario was ˙ m In f, COH 3 = 0 . 0691 kg/s . 

Furthermore, based on Eq. (16) the infiltrating mass per door 

pening can be evaluated as, m opening, COH = 0 . 8800 kg at the spe- 

ific conditions. 

Table 1 shows the measured quantities from all three experi- 

ents. 

.2. Condensate collection 

By sealing the RDC and applying Test (1), the Condensation col- 

ection method should result in nil condensate flow for a sealed 

DC. However, from Test (1) it was seen that a mass flow of con- 

ensate water ˙ m Cond, 1 = 4 . 5 · 10 −6 kg/s was present when mea- 

ured 60 h after the seal was applied. This indicates an unintended 

nfiltration of ˙ m In f, CO 1 = 0 . 0 0 067 kg/s due to imperfections in the 

nvelope or sealing tape and through the drainpipe. This amount 

s negligible and it is included in the total infiltration measured in 

est (2). 

The temperature of the evaporator varied during the test period 

ue to the chosen temperature control strategy of the RDC. Hence, 

s shown in Fig. 12 , the de-humidification varied in time, which 

s reflected in the fluctuating moisture ratio. Thus, a quasi-steady 

tate was reached by averaging the data over a 4-h time frame. For 

he calculation of the infiltration rate in Test (2), the mean mea- 

ured moisture ratio from Fig. 12 and the measured condensate 

ow of ˙ m CO 2 = 1 . 54 · 10 −4 kg/s are used, resulting in an estimation 

f the infiltration through gaps to be ˙ m In f, CO 2 = 0 . 0234 kg/s . 

For Test (3), the doors were periodically opened, causing a sig- 

ificant increase in heat extraction demand due to the infiltrat- 

ng air. Consequently, a more stable evaporator temperature was 
57 
chieved, leading to decreased fluctuations in moisture ratio, as 

hown in Fig. 13 . From the results, an infiltration of ˙ m In f, CO 3 = 

 . 0779 kg/s was found. By subtracting ˙ m CO 2 from ˙ m CO 3 , the influ- 

nce of the door openings was estimated. Furthermore, based on 

q. (16) , the difference could be translated to an infiltrating mass 

er door opening, m opening,CO = 0 . 9407 kg . 



T. Månsson, A. Sasic Kalagasidis and Y. Ostermeyer International Journal of Refrigeration 121 (2021) 51–60 

Table 3 

Overview of the calculated results from the Co-Heating and Condensation collection 

experiments for infiltration and thermal performance. 

Test 1 Test 2 Test 3 Unit 

Co-Heating 

K i 26.83 45.00 99.31 W/K 

C RDC 283 kJ/K 

˙ m In f – 0.0181 0.0691 kg/s 

m Opening 0.8800 kg 

Condensation 

˙ m In f 0.00067 0.0234 0.0779 kg/s 

m Opening 0.9407 kg 

t
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Table 4 

Corresponding initial infiltration rate and correction factor ξ i based on the specific 

conditions at each Test. 

Test 1 Test 2 Test 3 Unit 

Co-Heating 

ξ i – 0.9237 0.9661 –

˙ m In f,Corr – 0.0195 0.0715 kg/s 

m Opening,Corr 0.8961 kg 

Condensation 

ξ i 1.0684 1.0684 1.0598 –

˙ m In f,Corr – 0.0219 0.0735 kg/s 

m Opening,Corr 0.8906 kg 
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Table 2 shows the measured quantities and test room condi- 

ions. 

.3. Comparison of results 

In Table 3 , the results from each test and method are tabulated 

or easy reference. 

For Test (1) with the sealed RDC, the Condensation collec- 

ion method indicates that the RDC is not perfectly sealed. The 

nfiltrating mass flow was ˙ m CO , 1 = 0 . 0 0 067 kg/s . For the Co-

eating method, such imperfections cannot explicitly be seen as 

he method is based on the heat balance of the RDC, which as- 

umes no infiltration. Thus, the effects of imperfections are in- 

luded in the heat transfer coefficient of the envelope. 

From Test (2), the Condensation method indicates a 

 . 0053 kg/s (23%) higher infiltration rate than the Co-Heating 

ethod. A marginal part of the discrepancy can be explained by 

nfiltration through imperfections ( ˙ m CO , 1 ) . However, the expansion 

r contraction of the infiltrating air parcel due to changes in 

ensity has a significantly stronger influence. For the Conden- 

ation collection method, the infiltrating parcel of ambient air 

ontracts once its temperature is lowered in the RDC. Hence, 

dditional ambient air infiltrates to the RDC to equalise the pres- 

ure difference between the fixed volume of the RDC and the 

mbient. This process starts with an initial volume infiltrating 

nd repeats for parcels with decreasing volume until the pres- 

ures are at equilibrium. The ratio between the initial infiltrating 

arcel and the measured total infiltrated volume of the thermal 

xpansion/contraction is described in Eq. (19) . 

i = 

∞ ∑ 

n =1 

(1 − ρAmb /ρRDC ) 
(n −1) (19) 

As shown in Eq. (20) , the mass of the initially infiltrated parcel 

an be determined by dividing the measured infiltration by the fac- 

or ξ i . Additionally, the factor allows adjustment of the measured 

nfiltration at higher temperatures in the Co-Heating experiment to 

onditions for RDCs in operation. 

˙ 
 i,Corr = 

˙ m i 

ξi 

⇔ 

˙ m i = 

˙ m i,Corr · ξi (20) 

Table 4 shows the corresponding initial infiltration. As shown, 

he discrepancies has significantly decreased. Hence, the results are 

onverging with an accuracy well within the error range of the 

easurements. 

The results can be adjusted to an equivalent infiltration occur- 

ing at the same conditions as the Condensation collection ex- 

eriment by applying the correction factor ξTest 2 = 1 . 0684 to the 

nitial infiltration from the Co-Heating experiment. The adjusted 

quivalent infiltration from Test (2) was found to be 0 . 0208 kg/s 

ompared with 0 . 0234 kg/s from the Condensation collection ex- 

eriment. In analogy, the mass of infiltrating air per door opening 

rom Co-Heating experiment was found to be 0 . 9497 kg compared 

ith 0 . 9407 kg for the Condensate collection method. 
58 
. Comparison of methods for the evaluation of infiltration 

The Condensation collection method, Entalphy method and 

racer gas method were briefly described in the introduction of 

his article. All three methods are solely focused on the evalua- 

ion of the infiltration to the RDC. Both the Condensation collection 

ethod and the Tracer gas method could be applied to a closed 

DC for the evaluation of infiltration through gaps and caused 

y door operations. The Enthalpy method does however require a 

easuring point in the spilling air from the air curtain of the RDC, 

hich for an open RDC would be uniform in the longitudinal di- 

ection of the RDC. For a closed RDC, this effect would vary due 

o the influence of intermittent vertical gaps causing local varia- 

ions of air-flow, temperature and moisture content. Therefore, the 

ethodology cannot be applied to a closed RDC without modifica- 

ions. In Table 5 , the Condensation collection, Enthalpy and Tracer 

as methods are compared with the adapted Co-Heating method. 

When comparing the infiltration rates through gaps, Test (2), 

s evaluated by the Co-Heating test to the Condensation collection 

ethod, it was found to be 11% lower and only 3% lower for Test 

3) with dynamic door operations. The error caused by the preci- 

ion of the instruments is less than 2% for both methods, meaning 

hat the discrepancies must be caused by other factors. As it can 

e seen in the presented data from the experiments, the tempera- 

ure within the RDC varies with 2 ◦C and the moisture ratio varies 

ith 0 . 0015 g/g D , causing uncertainties for the measurements due 

o spatial variations. For the Co-Heating test, the internal average 

emperatures of the RDC were estimated based on six measuring 

oints, lowering the impact of local discrepancies. For the conden- 

ate collection method, there were only two measuring points in 

he RDC and the uncertainties are therefore more significant. This 

ould be mitigated in future applications by the introduction of 

ore measurement points in the RDC. 

For the Tracer gas method and Enthalpy method, the locations 

f the measurements are specific regions within or around the 

DC. This implies that the methods are sensitive to non-uniform 

elds. For the measurement in the return air, the temperature is 

nown to be non-uniform ( Månsson, 2016 ) with a temperature 

radient up to 4 ◦C per 5 mm perpendicular from the floor. Hence 

here is a need for several distributed measuring points within 

ach region to ensure an accurate average. Besides the uncertain- 

ies caused by the locations of the measurements, both the Tracer 

as and Enthalpy methods are based on the mass flow rate of the 

an in the RDC, which is challenging to measure with a high accu- 

acy. 

Other important aspects for the methods are the associ- 

ted cost, time and effort it takes to execute the experiments. 

he Tracer gas test can generate results already after 15 min 

 Amin et al., 2009 ) as the stable equilibrium concentration of the 

race gas is reached very fast. The other presented methodolo- 

ies need to initialise longer to ensure a steady state tempera- 

ure and/or moisture content in the RDC. It is, however, possible 

o setup the measuring equipment while the RDC is running, i.e. 
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Table 5 

Comparison matrix of methods for evaluating the thermal performance and infiltration of an RDC. 

Condensation Enthalpy Tracer gas Co-Heating 

( Faramarzi, 1999 ) ( Navaz et al., 2005 ) ( Amin et al., 2009 ) –

Time 15 + 4 h(1 h a ) 15 + 4 h(1 h a ) 15 min 15 h + 1 h (15 min a ) 

Equipment 2 × RH+T Logger 4 × RH+T Logger Gas injection system 1 × Heater 

1 × Scale 1 × Air Flow meter Gas sampling system 2 × T Logger 

Tracer gas 

2 × T Logger 

1 × Air Flow meter 

Min. cost b $200 $900 $3000 $200 

RDC type Open/Closed Open Open/Closed Open/Closed 

Active refrigeration Yes Yes No/Yes No 

Ambient conditions High Steady RH Steady T&RH Steady T Steady T 

Evaluated variables 

K Env – – – � 

C RDC – – – � 

˙ m I n f,I dle � � � � 

m Opening,Door � – � � 

Comments 

Drainpipe must Mass-flow of Corr. factor needed Corr. factor needed 

be connected to circulating air if no refrigeration due to high 

reservoir. Ambient must be known is present. temperatures, 

dew-point higher to quantify ˙ m In f . i.e. density change. 

than T RDC . 

a At steady state conditions. 
b Excluding costs of door opening automation and other infrastructure components. 
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H  
he setup time can be included in the initialisation time. For the 

racer gas method, the equipment must be installed prior to the 

est, adding the needed time of installation to the startup time. 

The tracer gas equipment consists of a gas injection system 

nsuring that the gas is distributed uniformly. Additionally, a gas 

nalyser connected to a gas sampling system is required to mea- 

ure the concentration in the locations defined in the method. 

oreover, the massflow rate of the discharge air in the RDC must 

e measured. In general terms, the setup is rather complex and 

onsists of delicate equipment that requires a minimum budget of 

30 0 0 to perform a test. 

The Co-Heating and the Condensation collection methods are 

n the other hand both based on simpler equipment and can be 

xecuted with an equipment budget as low as $200. These meth- 

ds are also independent of the air discharge mass flow rate, which 

ncrease the accuracy of the evaluated infiltration rate. 

. Conclusions 

The aim of the presented study was to develop a simple experi- 

ental methodology for the evaluation of the thermal performance 

f RDCs. The results for both infiltration through gaps at idle state 

nd the infiltration caused by door openings show good conformity 

hen comparing the values from the Co-Heating method with the 

esults from the Condensate collection method. In addition to the 

esults on infiltration, the Co-Heating method evaluates the heat 

ransfer coefficient K Env and the heat capacity C RDC of the RDC. 

ence, the adapted Co-Heating method presented in this article as- 

embles a complete methodology for evaluating the necessary vari- 

bles for the evaluation of the infiltration and thermal performance 

f an RDC. 

The methodology can be applied to RDCs at any location where 

he ambient temperature is constant, i.e. the existing stock of RDCs 

ithin a supermarket can conveniently be assessed. It does, how- 

ver, demand that the tested RDC temperature is increased beyond 

mbient temperature, which might damage the stored food unless 

emoved. 

As a complementary for the evaluation of infiltration only, the 

ondensation collection method can be applied in an operational 
59 
upermarket without interfering with the stock of refrigerated 

oods. 

From the results it was found that the infiltration for the tested 

DC with four doors is approximately 0 . 022 kg/s and that one 

oor opening with a duration of 15 s would cause approximately 

 . 94 kg of ambient air to infiltrate to the RDC. 
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