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Abstract: This talk surveys the security threats pertinent to the optical network and outlines the 

progress and challenges in developing machine learning approaches for cognitive management of 

optical network security. © 2020 The Author(s) 

 

1. Security Challenges in Optical Networks 

As the only communications technology capable of supporting the incessant network traffic growth, optical 

networks are critical communication infrastructure carrying massive amounts of data over ultra-long distances. 

Because of their vital role in supporting services crucial for the society to function, they must be secured from 

various types of deliberate man-made attacks aimed at service disruption or unauthorized access to the carried data. 

Despite its extensive implications to overlaying communication services, optical-layer security has not been 

systematically addressed and incorporated into the overall network security management [1]. Network operators still 

lack the tools to achieve cognitive optical network security management, leaving important aspects of attack 

prevention, detection and remediation uncovered. Such a framework, supporting autonomous security diagnostics 

and management, is critical for realizing the Observe-Analyze-Act control loop to improve network performance 

and cost efficiency [2]. 

Security-oriented design of optical networks requires an assessment of various risks and attack vectors and 

incorporating this knowledge into optimization frameworks for solving complex network design problems. 

Examples of such approaches include attack-aware upgrade of the network infrastructure by sparsely adding links 

and/or nodes [3] or carefully distributing the content across a data center network [4] to alleviate the impact of 

targeted fiber cut attacks. Techniques to reduce the network exposure to harmful signal insertion attacks include 

strategic placement of devices with attack-thwarting capabilities, as well as attack-aware Routing [5] and Spectrum 

Assignment [6] under static [7], dynamic [8] and multi-hour traffic [9]. Eavesdropping attacks can be counteracted 

via encryption at various network layers – for example, using quantum shot noise-assisted ciphers at the optical 

layer [10]; or by increasing confidentiality levels via network coding and spread-spectrum techniques [11]. Network 

planning techniques to aid remediation of service disruption attacks can benefit from the identification of attack radii 

of each connection’s working path and ensuring that the backup path does not fall within range of the same attack 

[12]. While classical optimization techniques (e.g., linear programming and heuristics) have been shown to 

substantially improve optical network resiliency to targeted attacks when applied to the above problems of attack 

surface reduction and remediation, they are incapable of eliminating the threat, calling for intelligent solutions for 

cognitive and automated attack detection. 

2.  Machine Learning for Security Monitoring Automation 

Physical-layer attacks can have vastly different effects on the distinct Optical Performance Monitoring (OPM) 

parameters, which makes their detection extremely challenging. For example, a harmful jamming signal adds 

unfilterable noise to optical channels with whose spectrum it overlaps (in-band jamming), but it can also affect 

optical channels sufficiently separated from it in the spectral domain (out-of-band jamming), typically reducing the 

signal power at the received and degrading the Optical Signal to Noise Ratio (OSNR), leading to transmission 

errors. A polarization scrambling attack, in which the fiber is squeezed at a high frequency to cause fast-varying 

changes in the channel polarization state, can cause error bursts without affecting the channel power levels or 

OSNR. Encompassing experimental studies of physical-layer attacks at the optical link- and network level were 

performed in [13] and [14], respectively. Due to the complex interplay among different OPM parameters and the 

absence of models capable of capturing these effects or even consistent observable trends in OPM parameter values 

for different attack regimes, it is not possible to rely on a threshold-based approach for detection and identification 

of physical-layer attacks. Even more so, the use of pre-determined thresholds as triggers for (re)configuration 

actions is considered unreliable, ineffective and unscalable in the forthcoming transition towards cognition-driven 

automation of network planning and management workflows urged by network operators [15].  
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Due to their ability to process massive amounts of data and identify intricate patterns among a great number of 

performance indicators without the need to explicitly specify models or parameter thresholds, machine learning 

(ML) techniques are highly suitable for optical layer security diagnostics. ML has been applied to the detection of 

unauthorized signal presence by scrutinizing the received optical spectrum [16], and to the detection and 

identification of in-, out-of-band jamming and polarization scrambling [13,14], demonstrating strong potential to 

perform these functions in runtime environments. Despite this huge potential, carrier-grade deployment of ML 

techniques is still in its infancy and many challenges need to be overcome before achieving cognitive and 

autonomous optical network security management. 

The choice of suitable ML techniques and their adaptation to runtime environments in Software-Defined Optical 

Networks is not trivial. It should take into account the requirements and performance of ML in terms of their 

accuracy, granularity of the diagnostic information they can provide, their applicability to novel emerging threats in 

the evolving network and security landscape, the complexity of their learning and/or inference phases, memory and 

processing requirements, etc. For example, as shown in [14], supervised learning techniques (e.g., Artificial Neural 

Networks, ANNs) can provide highly accurate and fine-granular information on the type and intensity of physical-

layer attacks, learned through training. This comes at a trade-off of a relatively complex training phase, relying on 

abundant, representative data labeled by experts with prior specialist knowledge on the attack specifics, and the need 

to retrain upon admittance of a new connection or an emergence of a new type of threat. However, once trained, the 

inference complexity is relatively low. Unsupervised learning (e.g., Density-Based Spatial Clustering of 

Applications with Noise), on the other hand, does not perform any (re)training and hence, does not require attack-

specific training data, but identifies attacks, i.e. anomalies as outliers in the clustered data. This allows for detection 

of new, previously unseen attack methods, at the expense of being unable to provide any fine-granular information 

about the attack type. The clustering requires obtaining and processing prior data, yielding high inference 

complexity. Semi-supervised learning (e.g., one-class support vector machine) combines the two aforementioned 

ML approaches and is applicable when data labelling is too costly or infeasible, so only a small subset of the data is 

labeled. This reduces its training complexity but also incurs inability of fine-granular attack identification. The lower 

accuracy of semi- and unsupervised learning (as opposed to supervised) requires embedding extra intelligence in the 

usage of ML modules' output using observation window and threshold definition, ensemble models that combine 

multiple ML models, and symbolic models that combine specialist knowledge with ML models. 
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