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Urban environments are challenged with a plethora of wicked problems in the face of rapid 

urbanization and land use change, not least natural capital degradation and widespread land and 

water contamination. Brownfields, under-used sites with real or perceived contamination, are 

significant urban and peri-urban land resources which, with well-designed remediation and 
management strategies can address these concerns. Gentle remediation options (GRO) are 

scalable nature-based techniques which provide significant opportunities for multi-

functionality: managing risks posed by contaminants and at the same time enhance ecosystem 

services (ES) by improving the soil ecosystem in a low-impact, cost-effective manner. GRO 

align with an increasing interest in taking a holistic view on soil and land management to 

protect and improve the soil ecosystem for direct human benefit in the form of ES as well as 

for its indirect, intrinsic value as a haven for biodiversity. This short review aims to present a 

synthesis of ideas to raise awareness for urban planners about GRO techniques as nature-based 

solutions which can promote green infrastructure in the urban environment.  

1.  Introduction 

1.1.  Remediation of today 
In Europe, there are more than 2.5 million potentially contaminated sites caused by anthropogenic 

activity, of which approximately 85 000 are in Sweden [1]. Brownfields are typically defined as 

underused or derelict areas with, in many cases, real or perceived, soil and groundwater pollution that 

require intervention to bring them back into beneficial use [2]. These sites often face a barrier to 
redevelopment due to investment risks, ownership constraints, risk of future liability claims and public 

stigma [3]. Global perceptions, regulations, policies and challenges associated with brownfields differ 

depending local context; however, market and exploitation pressures and stakeholders’ perception of 
uncertainties in time, costs, efficiency of alternative remediation options, and future liabilities have a 

crucial impact on the selection of treatment solutions at contaminated sites regardless of location [4]. 

Commonly today, contaminated masses are excavated and landfilled due to time constraints, low 
disposal fees and well-established effectiveness in removing the source of the contamination, which is 

readily accepted by regulatory authorities [4]. Perhaps most importantly, this quick conventional 

method is feasible for rapid redevelopment in urban areas with high land value. However, excavation 

entails many disadvantages, including the negative effects caused by transportation (use of fossil fuels, 
emissions and accident risks), use of virgin material for refilling at the sites, the production of non-
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recyclable waste for landfilling as well as significant economic and social costs [5,6]. In general, 

conventional remediation techniques like excavation, where soil is viewed as a disposable waste, are 

often resource intensive and entail multiple environmental externalities. In addition, it often destroys 
the soil ecosystem thus making it unfit for 'soft' end uses like green spaces, which require ecological 

functioning [7–9]. There is an international consensus on promoting increased use of alternative, more 

sustainable remediation methods [5–7,10–13]. Indeed, new practices are crucial, because a significant 
amount of brownfield land area remains derelict or underutilized due to restoration being uneconomic 

or unsustainable using conventional methods [11]. This problem is of particular concern for larger 

land areas or smaller, marginal sites where contamination inhibits immediate development, but 

economic return post-remediation does not justify the costs [11]. Alternative methods should ideally 
enable soft land uses by incorporating alternative low-cost, low-impact in situ remedial measures 

which may be viable to manage low and moderate risks posed by contaminants to human health and 

the environment while providing societal benefits and improving soil quality [11,14,15]. A promising 
field of innovative remediation technologies which have received much attention in recent years are 

those involving amendment-, plant- (phyto-), fungi- (myco-) and/or bacteria- (bio-) based methods, i.e. 

gentle remediation options (GRO). This review aims to discuss the potential of GROs as an alternative 
remediation strategy in urban environments to mitigate the abovementioned problems and improve 

human well-being by restoring soil functioning.  

1.2.  Soil as a resource 

A series of agenda-setting reports by the European commission (e.g. Vision for a Resource Efficient 
Europe, European Biodiversity Strategy to 2020) have raised awareness of the widespread degradation 

of soil ecosystems by over-exploitation, land-use change, contamination, sealing, compaction, erosion, 

neglect, etc. [16–18]. These stressors have led to rapid losses in biodiversity and diminished total 
provided ecosystem services (ES), defined as the direct and indirect contributions of ecosystems to 

human well-being [19], by approximately 60% worldwide in the past 50 years alone. Urgent action is 

mandated by the European Commission and United Nations to curb the loss of biodiversity, resource 

degradation, and land take by transitioning to a more sustainable development pattern where soil and 
land are viewed as a resource. Soil and its functions have been raised to a position of critical 

importance for our common future through the (currently revisited) Thematic Strategy on Soil 

Protection [18]. From this report, seven essential soil functions have been established: (i) biomass 
production, including agriculture and forestry; (ii) storing, filtering and transforming nutrients, 

substances and water; (iii) biodiversity pool, such as habitats, species and genes: (iv) physical and 

cultural environment for humans and human activities; (v) source of raw materials; (vi) acting as a 
carbon pool; (vii) archive of geological and archaeological heritage. Soil functions are here defined as 

what the soil has the capability to do in its natural (undisturbed) state as a result of the (bundles of) 

soil processes (e.g. soil formation, nutrient cycling, etc.) arising out of the complex interaction 

between biotic and abiotic components in the soil environment [20,21]. Soil functions thus can be 
viewed as a subset of wider ecosystem functions which underpin the delivery of ecosystem services 

[20,21]. Soil quality is another key concept when discussing restoration. Soil quality has an agreed 

upon definition broadly meaning the capacity of a soil to perform its functions necessary for its 
intended end use [22]. This inherently anthropocentric term has alternatively been defined to include 

soil functioning 'within ecosystem and land-use boundaries to sustain biological productivity, maintain 

environmental quality, and promote plant and animal health' [23]. This expanded definition reflects 
more the concept of 'soil health', in terms of ecological functioning while under productive use and 

supports the multi-functionality of soils [21]. 

1.3.  Alignment with international goals – connecting to the SDGs 

The concept proposed in this review (as well as the larger ongoing project) of utilising GRO for 
brownfield remediation and soil restoration to enhance SF and ES primarily supports achieving four of 
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the declared UN Sustainable Development Goals (SDGs) within the context of the built environment: 

15 – Life on land, 13 – Climate action , and 11 – Sustainable cities and communities.  

• SDG 15: Many ecosystem services and soil functions are connected to this goal, e.g. nutrient 

cycling, habitat provisioning, biodiversity, and biomass production. Utilising GRO supports 
the rehabilitation of ecological soil functions, making soils more resilient and increasing the 

provision of ecosystem services in areas where those currently are low due to contamination 

or other forms of degradation. Increased provision of ES can further contribute to human 
wellbeing and social sustainability. Improving biodiversity is a key theme of this goal since 

soil is a major reservoir of the Earth's total biodiversity, which underpins ecosystem 

functioning, as is reflected in the milestones established in the EU Biodiversity Strategy [17].  

• SDG 13: The soil function of carbon sequestration directly contributes to the climate targets to 

mitigate carbon emissions. Soil has the capability to sequester large amounts of carbon if well-
managed. This storage potential will be instrumental in the achieving the 4‰ annual growth 

rate of the soil carbon stock to halt atmospheric CO2 increases established at COP 21 of the 

UNFCCC. Furthermore, GRO can be included in cities as green infrastructure that can 
increase the resilience of cities for adapting to climate-related hazards like erosion and 

flooding due to soil's innate capacity to regulate water. 

• SDG 11: The ES concept as a part of land use planning can promote the consideration of soil 

aspects in early planning phases and by doing so, support more informed and sustainable 
management of brownfields and the surroundings. Also, GRO as a nature-based solution can 

be designed for accessibility as a greenspace, which provides ES like local climate regulation, 

with due consideration to the risks posed by potential contamination. 

Soil science and management is essential in achieving the SDGs as many of them have a strong 
connection to land and water management [24]. Keesstra et al. [24] link specific soil functions and 

ecosystem services to the SDGs that ultimately call for sustainable use of resources, ecosystem 

restoration, biodiversity, carbon sequestration, and sustainable catchment management for which 
enhanced ecosystem services are essential to realize [24,25]. Furthermore, a shift from predominantly 

grey, 'hard' built infrastructure to 'soft' nature-based solutions [25] or green infrastructure [26], terms 

used to stress the multi-functionality offered by green spaces and natural processes, is essential to meet 
the abovementioned goals [7,27,28]. 

2.  Method  

This review paper is intended to specifically raise the question of 'What value does contaminated soil 

have in the built environment?' The aim is to elucidate the potential value brownfields offer in urban 
environments as a resource for meeting environmental goals that can be leveraged by considering 

alternative land management strategies using innovative techniques. In the following sections, this 

paper presents a brief compilation of best practices and ideas utilising GROs, with references to other 
reviews for further reading, that can be taken into consideration during the early phases of urban 

planning to enable green infrastructure. The main points of discussion include: 1) reviewing the 

potential of GRO to manage risks posed by contaminants via degradation, extraction and stabilisation 

mechanisms, 2) reviewing the added value of GRO in providing a range of wider benefits to enhance 
ES and SF, including how these strategies can promote green infrastructure for sustainable living 

environments, 3) comparing to conventional remediation techniques, and 4) showing how applying 

GROs intersects with urban planning and design. 

3.  Results 

3.1.  Gentle remediation options 

GRO have been defined as risk management strategies or technologies that result in a net gain (or at 
least no gross reduction) in soil function as well as achieving effective risk management [11,29]. The 

most common of these techniques is plant-based phytoremediation; however, the term includes also 
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fungal and microbial-based methods, with or without chemical additives or soil amendments 

[11,29,30]. Monitored natural attenuation (i.e. long-term self-cleaning via natural processes) could 

also technically be included within GRO [29], but it will be not be covered in this review. In terms of 
technical applicability for risk management, GROs are primarily applied on contaminated soils to 

reduce contaminant transfer to local receptors by removing the bioavailable pool of inorganic 

contaminants (phytoextraction), removing or degrading organic contaminants (phyto- and 
rhizodegradation), filtering contaminants from water (rhizofiltration), and stabilising or immobilising 

contaminants in the soil matrix (phytostabilisation, in-situ immobilization or phytoexclusion), see 

Table 1. The degradation, extraction and stabilisation mechanisms will be briefly discussed in this 

review; however, for more technical reviews the reader is referred to previously conducted reviews 

and research [9,11,31,32] and best practice guides for implementation [30,33–35]. 

Table 1. List of definitions for GROs used to remediate soils contaminated by either trace elements or mixed 

contamination, summarized from Greenland [30]. 

GRO Definition 

Phytoextraction 
The removal of metal(loids) or organics from soils by accumulating them in the harvestable 
biomass of plants.  

Phytodegradation/ 
phytotransformation 

The use of plants (and associated microorganisms like endophytic bacteria) to uptake, store and 
degrade pollutants.  

Rhizodegradation The use of plants and rhizospheric (in root zone) microorganisms to degrade organic pollutants.  

Rhizofiltration The removal of pollutants from aqueous sources by plant roots and associated microorganisms.  

Phytostabilisation 
Reduction in the bioavailability of pollutants by immobilisation in root systems and/or living dead 

biomass in the rhizosphere soil.  

Phytovolatilisation 
The use of plants to remove pollutants from the growth matrix, transform them to less toxic forms 
and disperse them (or their degradation products) into the atmosphere.  

In-situ immobilisation/ 
phytoexclusion 

Reduction in the bioavailability of pollutants by immobilisation or binding them to the soil matrix 
through the incorporation into the soil of organic or inorganic compounds to prevent excessive 

uptake of contaminants.  

3.1.1.  Degradation. Breaking down organic contaminants into carbon dioxide, water, microbial 

biomass, bioenergy and/or less harmful by-products via endophytic and rhizospheric bacteria has seen 

definitive success in multiple studies and is one of the most promising areas for applying GRO as a 
remediation strategy [9,31,32]. The key to effective degradation is the presence of biologically active 

microorganisms, though microorganisms are potentially impaired by contaminants and poor soil 

quality. Plants themselves enable microbial activity by supplying oxygen, water and a variety of 

rhizodeposits (i.e. residual photosynthesis products like sugars) into the root zone that are critical for a 
rich microbial life as well as inducing breakdown of organic compounds by bacteria [32,34,36]. Two 

promising strategies to improve the effectiveness of organic degradation can be broadly classified into 

those based on biostimulation (improving the existing microbiome using additives) and/or 
bioaugmentation (introducing external microbes which may be better suited for degrading specific 

contaminants) to promote plant growth and tolerance and increase degradation rates [31,32,34]. 

3.1.2.  Extraction. Extraction is the primary mechanism for managing inorganic contaminants (e.g. 

metals), and phytoextraction is arguably the most well-known and thoroughly tested GRO technique. 
Typically, hyperaccumulator plants (those that can store an inordinate amount of metals in their tissue) 

and fast-growing, high biomass producing plants would be used as 'bio-pumps' to take up metals from 

the soil and store in their biomass [37]. The plants would then be harvested and processed by e.g. 
incineration, landfilling, etc. to eventually reduce concentrations to acceptable thresholds after 

successive cropping [36,37]. However, due to several failures to perform as expected [11,35], the 

exceedingly long timeframe required [38] and other significant obstacles phytoextraction has seen 
limited full-scale application [39]. Phytoextraction with the narrow focus of exclusively taking up 

metals as a stand-alone technology may indeed rarely be suitable for strictly remediation purposes 

[36,38]. However, alternate extraction strategies like soil polishing (reducing marginally elevated 
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concentrations to threshold levels) or bioavailable contaminant stripping (reducing the soluble, plant-

available fraction of metals thereby reducing environmental risk) are viable niche-solutions which 

could be more widely applicable at various scales [36,38–40]. A promising new direction in this field 
is the development of phytomanagement as a long-term land management strategy that incorporates 

such techniques as phytoextraction and stabilisation to maximise the wider benefits offered by GRO 

like provisioning ecosystem services [9,11,30,40]. 

3.1.3.  Stabilisation. Stabilisation mechanisms to decrease mobility and bioavailability of 

contaminants with (i.e. 'aided') or without amendments is promising both as a stopgap remediation 

strategy and for enabling synergies to garner wider benefits at a site as in phytomanagement. For 

example, the Rejuvenate project [41] was created to develop a methodology for designing and 
implementing profitable biomass production on marginal land while effectively managing risks by 

stabilising the contaminants using plants. These 'crop-based' systems for risk-based land management 

have successfully demonstrated the benefits of vegetation-, energy crop-, or generally nature-based 
solutions for both managing risks and providing wider value at contaminated sites including ES 

provisioning [14,15,30]. Stabilisation, rather than uptake of contaminants, is well-suited to this type of 

strategy where the future usage and economic return of the produced biomass can be dependent upon 
contaminant concentrations in the various plant tissue [41].  

3.2.  Comparison to conventional techniques 

Potentially, several low- and moderate-risk contaminated sites can be treated within a budget for 

excavation and disposal of one high-risk site, increasing the overall remediation progress at national 
level in the long-run. GROs are low-cost, low-impact in situ remediation technologies which could be 

stand-alone or a part of treatment trains (i.e. combined with conventional techniques like when 

excavations are unavoidable because of hotspots or construction of foundations) and are estimated to 
cost at least 50% less than excavation in total [9,31,32,42]. A few life cycle assessments (LCA) have 

been performed to evaluate GRO (often phytoremediation with productive biomass use) as a 

standalone technology or in comparison with excavation. The studies show that GROs are indeed low-

cost, low-impact solutions with a small or even positive environmental footprint [43] that also offer 
substantial socio-economic benefits like an attractive landscape and resilience to climate change 

impacts (e.g. sea level rise) [44], profitable and sustainable bioenergy production provided the biomass 

is valorised as a product and not as a waste [45], and marginal carbon abatement costs of between €55-
501/ha when used as biomass for renewable energy [46]. For further reference on cost estimates and 

comparison with other technologies, see [34,35]. 

3.3.  Accounting for soil functions and ecosystem services 
Integrating key concepts of soil science like soil quality, soil functions, and soil parameters into 

contaminated site investigation and management is a significant step in the right direction towards 

sustainable soil and land management. By using such tools as the Soil Function Box tool [47], 

accounting for soil parameters in addition to contamination levels will enable soil being managed in 
accordance with the soil's capability to its best condition [48]. Means of enhancing SF and ES are 

many and varied, but much research interest has focused on the set of land and soil management 

strategies included under the umbrella term of nature-based solutions (NBS), e.g. [25]. A growing 
body of research has shown that GRO, often included within NBS, can provide both effective risk 

management and result in a net gain in ecological soil function at contaminated sites [11,31,32,49]. 

Many researchers argue that it is exactly these wider benefits offered by GRO, as shown in the 
Brownfield Opportunity Matrix [7,50], that should lie at the core of site design and will provide added 

value [11,50]. Also, the ultimate goal must be not only to manage the contamination but also to restore 

soil health, functioning and thus delivery of ES [51]. Therefore, the restoration of soil to provide 

ecosystem services should be a central feature in evaluating the success of any GRO endeavour. For 
doing such an evaluation at micro-scale, a series of 'bio-indicators' have been created to measure 
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microbial health linking directly to soil functioning (thus ecosystem services) to directly measure the 

improvement in soil health that can result from GRO [22,52]. Taking a different approach, as part of 

the Balance 4P project [53] an 'ecosystem services mapping' method was developed for decision-
support in selecting remediation techniques. By applying a semi-quantitative approach (i.e. evaluating 

on a point scale between 1-5 using indicators), the changes in ecosystem services resulting from 

various remediation alternatives could be evaluated [54]. The value in this method is that it brings 
urban and soil ES, to the forefront of the decision-making process in a clear, scalable way by 

providing indicators (or proxy indicators) for quantifying and evaluating the expected change in the 

services for each alternative (Table 2). For a more recent application and evaluation of the ES 

mapping methodology paired with cost-benefit analysis as part of the Applicera project for improving 

ecological risk assessment in Sweden, see [55]. 

Table 2. Urban and soil ecosystem services, adapted from [54]. 

Type Category Ecosystem Service 

Urban 

Provisioning Food, fresh water 

Regulatory 
air quality, climate (global), climate (local), water, noise reduction, water purification and waste 
treatment, pollination and seed dispersal, maintaining nursery populations and habitats, natural hazard 

regulation 

Cultural Knowledge systems, aesthetic values, cultural heritage, recreation 

Soil 

Provisioning Food, biomass 

Regulatory Water purification, climate regulation (global), water regulation, erosion regulation, waste treatment  

3.4.  Intersection with urban planning  

As brownfields are primarily located in urban areas, they have the potential to be considered as 

opportunities for further development in dense urban areas [56]. Since they are numerous and possess 
the potential threat of contamination, efficient strategies such as screening processes will enable 

planners to better integrate brownfields in urban land management process and leverage this important 

land resource. More holistic approaches, e.g. [7,53], to brownfield redevelopment consider 
sustainability, soil and groundwater quality and are better implemented in the early phases of a 

redevelopment project. There are numerous ways to improve integration of the sustainable soil 

perspective into urban planning, e.g. the hierarchical approach for 'planner-oriented' soil functions 

suggested by Lehmann et al. [57], but a prerequisite is to plan according to a 'longer time-horizon' to 
allow for more proactive remediation [3]. In general, a longer time-horizon would enable alternative 

land management and remediation approaches other than the typical quick and intensive remediation 

solutions which are dominant today. Pairing such strategies with brownfields characterisation 
processes, e.g. by market land value [2] and/or according to time and level of intervention required for 

future green land use [58], would ensure that more sustainable solutions are not excluded due to time 

shortages and redevelopment urgency in later stages. Also, brownfields could be screened far in 

advance of the planned redevelopment to identify sites amenable to GRO or determine GRO 
feasibility at a particular site. Examples of screening criteria which do not favour traditional 

remediation, but may be suitable for GRO, include [11,29,30]: 

• Where there are budgetary and deployment constraints (e.g. large areas with diffuse 

contamination not causing immediate concern such as abandoned rail tracks);  

• Where biological functioning is desired post remediation (e.g. greenspaces, bioswale);  

• Where ecosystem services are highly valued (e.g. riverbank greens, urban wilderness);  

• Where there is a need to restore land and a potential to produce non-food crops (e.g. for 
biofuels);  

Typically, these constraints describe a site where a 'soft' end use is envisaged [30], which are well-

suited for provisioning greenspace, green infrastructure, or other similar land uses which require a 
functioning soil ecosystem [7,50]. This kind of land use can be readily incorporated into urban design 

and landscape architecture either on a long-term basis as a 'self-funding land management regime' [59] 
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or as an interim 'holding strategy' at vacant sites [11]. Also, landscape design strategies incorporating 

GRO, 'phytotypologies', have been extensively covered from a landscape architecture perspective [35]. 

4.  Conclusion  

• Brownfield sites present a significant opportunity for exploiting the latent potential of soil and 
land resources in and around cities to meet national and international environmental goals, 

including Sustainable Development Goals 11, 13 and 15. 

• Given land shortages, increased demand for land resources, the EU no net land take goal, and 

the challenge of climate change, brownfield sites form an important resource for urban 
development and should be viewed as a societal resource. 

• In suitable situations, well-designed GRO-based remediation strategies have the potential to 

play a significant role in long-term, holistic management and decontamination of brownfield 

land as well as promoting green infrastructure to restore soil functioning and enhance 

ecosystem services. 

• GRO are highly applicable for large land areas and peri-urban areas which tend to not be 
economically beneficial for 'hard' redevelopment and lie abandoned as traditional remediation 

techniques are unreasonably expensive or undesirable. GRO's inherent multi-functionality can 

be utilised to manage the risks posed by contaminants, provision ecosystem services as well as 
serve as long- or short-term land management strategies for proactively restoring brownfield 

sites to productive 'soft' use or in expectation of future redevelopment. 
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