
S-RASTER: contraction clustering for evolving data streams

Downloaded from: https://research.chalmers.se, 2021-08-31 11:21 UTC

Citation for the original published paper (version of record):
Ulm, G., Smith, S., Nilsson, A. et al (2020)
S-RASTER: contraction clustering for evolving data streams
Journal of Big Data, 7(1)
http://dx.doi.org/10.1186/s40537-020-00336-3

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

S‑RASTER: contraction clustering
for evolving data streams
Gregor Ulm1,2*  , Simon Smith1,2  , Adrian Nilsson1,2  , Emil Gustavsson1,2  and Mats Jirstrand1,2 

Introduction
Clustering is a standard method for data analysis and many clustering methods have
been proposed [29]. Some of the most well-known clustering algorithms are DBSCAN
[9], k-means clustering [23], and CLIQUE [1, 2]. Yet, they have in common that they do
not perform well with big data, i.e. data that far exceeds available main memory [34].
This was also confirmed by our own experience when we faced the real-world indus-
trial challenge of identifying dense clusters in terabytes of geospatial data. This led us to
develop Contraction Clustering (RASTER), a very fast linear-time clustering algorithm
for identifying approximate density-based clusters in 2D data, primarily motivated by
the fact that existing batch processing algorithms for this purpose exhibited insufficient
performance. We previously described RASTER and highlighted its performance for
sequential processing of batch data [32]. This was followed by a description of a paral-
lel version of that algorithm [33]. A key aspect of RASTER (cf. Fig. 1) is that it does not

Abstract 

Contraction Clustering (RASTER) is a single-pass algorithm for density-based cluster-
ing of 2D data. It can process arbitrary amounts of data in linear time and in constant
memory, quickly identifying approximate clusters. It also exhibits good scalability in
the presence of multiple CPU cores. RASTER exhibits very competitive performance
compared to standard clustering algorithms, but at the cost of decreased precision.
Yet, RASTER is limited to batch processing and unable to identify clusters that only exist
temporarily. In contrast, S-RASTER is an adaptation of RASTER to the stream processing
paradigm that is able to identify clusters in evolving data streams. This algorithm retains
the main benefits of its parent algorithm, i.e. single-pass linear time cost and constant
memory requirements for each discrete time step within a sliding window. The sliding
window is efficiently pruned, and clustering is still performed in linear time. Like RASTER,
S-RASTER trades off an often negligible amount of precision for speed. Our evaluation
shows that competing algorithms are at least 50% slower. Furthermore, S-RASTER shows
good qualitative results, based on standard metrics. It is very well suited to real-world
scenarios where clustering does not happen continually but only periodically.

Keywords:  Big data, Stream processing, Clustering, Machine learning, Unsupervised
learning, Big data analytics

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Ulm et al. J Big Data (2020) 7:62
https://doi.org/10.1186/s40537-020-00336-3

*Correspondence:
gregor.ulm@fcc.chalmers.se
1 Fraunhofer-Chalmers
Research Centre for Industrial
Mathematics, Chalmers
Science Park, 412
88 Gothenburg, Sweden
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-7848-4883
http://orcid.org/0000-0001-8525-2474
http://orcid.org/0000-0002-8927-845X
http://orcid.org/0000-0002-1290-9989
http://orcid.org/0000-0002-6612-8037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00336-3&domain=pdf

Page 2 of 21Ulm et al. J Big Data (2020) 7:62

exhaustively cluster its input but instead identifies their approximate location in linear
time. As it only requires constant space, it is eminently suitable for clustering big data.
The variant RASTER′ retains its input and still runs in linear time while requiring only a
single pass. Of course, it cannot operate in constant memory.

A common motivation for stream processing is that data does not fit into working mem-
ory and therefore cannot be retained. This is not a concern for RASTER as it can pro-
cess an arbitrary amount of data in limited working memory. One could therefore divide
a stream of data into discrete batches and consecutively cluster them. Yet, this approach
does not address the problem that, in a given stream of data, any density-based cluster
may only exist temporarily. In order to solve this problem, this paper presents Contraction
Clustering for Evolving Data Streams (S-RASTER). This algorithm has been designed for
identifying density-based clusters in infinite data streams within a sliding window. S-RAS-
TER is not a replacement of RASTER, but a complement, enabling this pair of algorithms
to efficiently cluster data, regardless of whether it is available as a batch or a stream.

Given that there is already a number of established algorithms for detecting clusters
in data streams, the work on S-RASTER may need to be further motivated. The origi-
nal motivation is related to the batch processing clustering algorithm RASTER, which is
faster than competing algorithms and also requires less memory. This comes at the cost
of reduced precision, however. For the use case we have been working on, i.e. very large
data sets at the terabyte level, even modest improvements in speed or memory require-
ments compared to the status quo were a worthwhile pursuit. Indeed, RASTER satisfied
our use case in industry as it is faster than competing algorithms and also requires less
memory. Yet, we wanted to improve on it as it did not help us to process data streams.
It also is not able to detect clusters that only exist temporarily. Furthermore, we also
wanted to explore if there is a faster way to process the data we needed to process, given
our constraints (cf. Sect. “Identifying evolving hubs”). These reasons motivated our work
on S-RASTER. The goal was to achieve faster data processing than existing methods
allow, using only a single pass, but with an acceptable loss of precision. As the results in
this paper show, S-RASTER is, in a standard benchmark, indeed faster than competing
algorithms for clustering data streams.

(a) Input data (b) Significant tiles (c) Clustered tiles (d) Clustered points
Fig. 1  High-level visualization of RASTER (best viewed in color), using a simplified example on a small 5 ×
5 grid. Please also refer the section “RASTER” and Table 1. The precision of the input is reduced, with leads
to an implied grid. This grid is shown to aid the reader but it is not explicitly constructed by the algorithm.
The original input is shown in a, followed by projection to tiles in b where only significant tiles that contain
at least τ = 4 values are retained. Tiles that contain less than τ values are subsequently ignored as they are
treated as noise. The result is a set of significant tiles. The parameter µ specifies how many significant tiles
a cluster has to contain as a minimum. In this case, given a minimum cluster size of µ = 2 and a maximum
distance δ = 1 , i.e. significant tiles need to be adjacent, two clusters emerge (cf. c), which corresponds to
RASTER. Clusters as collections of points are shown in d, which corresponds to the variant RASTER′

Page 3 of 21Ulm et al. J Big Data (2020) 7:62 	

In the remainder of this paper, we provide relevant background in the Sect. “Background”,
which contains a brief recapitulation of RASTER and the motivating use case for S-RASTER,
i.e. identifying evolving hubs in streams of GPS data. In the Sect. “S-RASTER” we provide a
detailed description of S-RASTER, including a complete specification in pseudocode. This is
followed by a theoretical evaluation of S-RASTER in the Sect. “Theoretical evaluation” and a
description of our experiments in the Sect. “Experiment”. The results of our experiments as
well as a discussion of them are presented in the Sect. “Results and discussion”. Some related
work is part of the evaluation section as we compare S-RASTER to competing algorithms.
However, further related work is highlighted in the Sect. “Related work” and future work in
“Future work” section. We finish with a conclusion in “Conclusions” section.

Background
In this section, we give a brief presentation of the sequential RASTER algorithm in the
Sect. “RASTER”. This is followed by a description of the motivating problem behind
S-RASTER, i.e. the identification of so-called hubs within a sliding window, in the Sect.
“Identifying evolving hubs”.

RASTER

In this subsection, we provide a brief description of RASTER [32, 33]. This algorithm
approximately identifies density-based clusters very quickly (cf. Alg. 1). The main idea
is to project data points to tiles and keep track of the number of points that are pro-
jected to each tile. Only tiles to which more than a predefined threshold number τ of
data points have been projected are retained. These are referred to as significant tiles σ ,
which are subsequently clustered by exhaustive lookup of neighboring tiles in a depth-
first manner. Clustering continues for as long as there are significant tiles left. To do so,
the algorithm selects an arbitrary tile as the seed of a new cluster. This cluster is grown
iteratively by looking up all neighboring tiles within a given Manhattan or Chebyshev
distance δ . This takes only O(1) as the location of all potential neighbors is known due to
their location in the grid. Only clusters that contain more than a predefined number µ of
significant tiles are retained. While RASTER was developed to identify dense clusters, it
can identify clusters that have irregular shapes as well. Refer to Fig. 2 for an illustration.

The projection operation consists of reducing the precision of the input by scaling a
floating-point number to an integer. For instance, take an arbitrary GPS coordinate
(34.59204302, 106.36527351), which is already truncated compared to the full representa-
tion with double-precision floating-point numbers. GPS data is inherently imprecise, yet
stored in floating-point format with the maximum precision, which is potentially mis-
leading, considering that consumer-grade GPS is only accurate to within about 5 to 10 m
in good conditions, primarily open landscapes [8, 36]. In contrast, in urban landscapes
GPS accuracy tends to be much poorer. A study based on London, for instance, found
a mean error of raw GPS measurements of vehicular movements of 53.7 m [30]. Conse-
quently, GPS data suggests a level of precision they do not possess. Thus, by dropping a
few digit values, we do not lose much, if any, information. Furthermore, vehicle GPS data
is sent by vehicles that may, in the case of trucks with an attached trailer, be more than 25
m long. To cluster such coordinates, we can truncate even more digit points. For instance,
if four place values after the decimal point are enough, which corresponds to a resolution

Page 4 of 21Ulm et al. J Big Data (2020) 7:62

of 11.1 m in the case of GPS, we transform the aforementioned sample data point to
(34.5920, 106.3652). However, to avoid issues pertaining to working with floating-point
numbers, the input is instead scaled to (345920, 1063652). Only before generating the
final output, all significant tiles of the resulting clusters are scaled back to floating-point
numbers, i.e. the closest floating-point representation of (34.592, 106.3652).

Algorithm 1 RASTER
input: data points, precision ξ, threshold τ , distance

δ, minimum cluster size µ
output: set of clusters clusters
1: acc := ∅ � {(xπ, yπ) : count}
2: clusters := ∅ � set of sets
3: for (x, y) in points do
4: (xπ, yπ) := project(x, y, ξ) � O(1)
5: if (xπ, yπ) �∈ keys of acc then
6: acc[(xπ, yπ)] := 1
7: else
8: acc[(xπ, yπ)] += 1
9: for (xπ, yπ) in acc do
10: if acc[(xπ, yπ)] < τ then
11: remove acc[(xπ, yπ)]
12: σ := keys of acc � significant tiles
13: while σ �= ∅ do � O(n) for lls. 12–24
14: t := σ.pop()
15: cluster := ∅ � set
16: visit := {t}
17: while visit �= ∅ do
18: u := visit .pop()
19: ns := neighbors(u, δ) � O(1)
20: cluster := cluster ∪ {u}
21: σ := σ \ ns � cf. ln. 13
22: visit := visit ∪ ns
23: if size of cluster ≥ µ then
24: add cluster to clusters

Fig. 2  The precision parameter ξ greatly influences clustering results of RASTER (best viewed in color).
This illustration is based on retaining all data points (cf. Fig. 1d). With a precision of ξ = 0.90 (top), all but
the rightmost data set are clustered satisfactorily. Reducing the precision to ξ = 0.73 (bottom) improves
the results of that data set. It is a matter of debate which value of ξ led to a better result with the data set
in the middle as a good case could be made for either result, depending on whether the goal of the user
is to identify dense or sparse clusters. The data sets were taken from a collection of standard data sets
for the evaluation of general-purpose clustering algorithms that are part of the machine learning library
scikit-learn [27]. A more extensive discussion of these results is provided in a previous paper on
RASTER [33]

Page 5 of 21Ulm et al. J Big Data (2020) 7:62 	

Two notes regarding the reduction of precision are in order. First, this procedure is not
limited to merely dropping digit values. As those values are only intermediary represen-
tations that are used for clustering, any non-zero real number can be used as the scaling
factor. Second, the magnitude of the scaling factor depends on two aspects, precision of
the provided data and size of the objects we want to identify clusters of. For the former,
it should be immediately obvious that data that suggests a greater precision than it actu-
ally possesses, like GPS data mentioned above, can be preprocessed accordingly without
any loss of information. The latter depends on the domain and the trade-off the user is
willing to make as both clustering speed and memory requirements directly depend on
the chosen precision.

As clustering belongs to the field of unsupervised learning, there are potentially mul-
tiple satisfactory clusterings possible with any given dataset. With RASTER, the user
can influence clustering results by adjusting four parameters (cf. Table 1): precision ξ ,
threshold for a significant tile τ , maximum distance of significant tiles in a cluster δ , and
threshold for the cluster size µ . The precision parameter ξ directly influences the granu-
larity of the implied grid (cf. Fig. 1). A lower precision value for ξ leads to a coarser grid,
and vice versa. With the value τ , it is possible to directly influence the number of signifi-
cant tiles that are detected in any given data set. The higher this value, the fewer signifi-
cant tiles will be identified. While the most intuitive value for the distance parameter δ is
1, meaning that all significant tiles that are combined when constructing a cluster need
to be direct neighbors, it is possible to also take the case of sparser clusters into account.
For instance, if the user detects two dense clusters that are only one tile apart, it may
make sense to set δ = 2 to combine them. Of course, this depends on the application
domain. Lastly, the parameter µ determines when a collection of significant tiles is con-
sidered a cluster. The higher this value, the fewer clusters will be detected.

RASTER is a single-pass linear time algorithm. However, in a big data context, its big-
gest benefit is that it only requires constant memory, assuming a finite range of inputs.
This is the case with GPS data. It is therefore possible to process an arbitrary amount of
data on a resource-constrained workstation with this algorithm. We have also shown
that it can be effectively parallelized [33]. A variation of this algorithm that retains its
inputs is referred to as RASTER′. It is less suited for big data applications. However, it is
effective for general-purpose density-based clustering and very competitive compared to
standard clustering methods; cf. Appendix A in [33].

Identifying evolving hubs

RASTER was designed for finite batches of GPS traces of commercial vehicles. The goal
was to identify hubs, i.e. locations where many vehicles come to a halt, for instance vans
at delivery points or buses at bus stops. After identifying all hubs in a data set, it is pos-
sible to construct vehicular networks. However, what if the data does not represent a
static reality? It is a common observation that the location of hubs changes over time. A
bus stop may get moved or abolished, for instance. This motivates modifying RASTER
so that it is able to detect hubs over time and maintaining hubs within a sliding window
W. The length of W depends on the actual use case. With GPS traces of infrequent but
important deliveries, many months may be necessary. Yet, with daily deliveries, a few
days would suffice to detect new hubs as well as discard old ones.

Page 6 of 21Ulm et al. J Big Data (2020) 7:62

S‑RASTER
This section starts with a concise general description of S-RASTER in the Sect. “Idea”,
followed by a detailed specification in the Sect. “Detailed description”. Afterwards, we
highlight some implementation details in the Sect. “Implementation details” and out-
line, in the Sect. “Retaining data points with S-RASTER′”, how S-RASTER has to be
modified to retain its inputs, which makes this algorithm applicable to different use
cases.

Idea

Before we present a more technical description of S-RASTER, we would like to start
with a more intuitive description of this algorithm, using GPS coordinates for the
purpose of illustration. For the sake of simplicity, we also ignore parallel computa-
tions for the time being. Imagine five sequential nodes: source (s), projection ( π ),
accumulation ( α ), clustering ( κ ), and sink (t). The general idea is that S-RASTER pro-
cesses input data using those five nodes. Input is provided by the source s and, with-
out modification, forwarded to node π , which performs projections, e.g. it reduces
the precision of the provided input by scaling it. A simple example consists of drop-
ping place values of GPS coordinates (cf. Sect. “RASTER”). The projected values are
sent from node π to node α , which keeps track of the number of points that were
projected to each tile in the input space for the duration of the chosen window. Once
the status of a tile changes, i.e. it becomes significant or was once significant but no
longer is, an update is sent to node κ . These steps happen continually whenever there
is new data to process. In contrast, node κ performs clustering based on significant
tiles in a fixed interval, which is followed by sending clusters as sets of significant tiles
to the sink node t.

More formally, S-RASTER (cf. Fig. 3) performs, for an indefinite amount of time,
projection and accumulation continually, and clustering periodically. Projection
nodes π receive their input from the source node s. Each incoming pair (x, y), where
x, y ∈ R , is surjected to (xπ , yπ) , where xπ , yπ ∈ Z . Together with a period indicator
∆z , these values are sent to accumulation nodes α . The identifier ∆z ∈ N0 designates

Table 1  Overview of symbols used in the description of RASTER and S-RASTER

The parameters ξ  , τ  , δ , and µ are used for both RASTER and S-RASTER and directly influence clustering results. In contrast,
the symbols π , α , and κ are only used for the description of S-RASTER

Symbol Meaning

ξ Precision for projection operation

τ Threshold number of points to
determine if a tile is significant

δ Distance metric for cluster definition

µ Minimum cluster size in terms of the
number of significant tiles

π Projection operator

α Accumulation operator

κ Clustering operator

Page 7 of 21Ulm et al. J Big Data (2020) 7:62 	

a period with a fixed size, e.g. one day, and is non-strictly increasing. Each α-node
maintains a sliding window W of length c, which is constructed from c multisets W∆z .
Each such multiset W∆z keeps running totals of how many times the input was sur-
jected to any given tuple (xπ , yπ) in the chosen period. The sliding window starting
at period ∆i is defined as W∆i+c

∆i
=

⋃i+c
z=i W∆z.

1 It contains the set of significant tiles
σ = {(xπ , yπ)

d ∈ W
∆i+c
∆i

| d ≥ τ } , where d indicates the multiplicity, i.e. the number of
appearances in the multiset, and τ the threshold for a significant tile. If a tile becomes
significant, its corresponding value (xπ , yπ) is forwarded to the clustering node κ . When-
ever W advances from W∆i+c

∆i
 to W∆i+c+1

∆i+1
 , the oldest entry W∆i is removed from W. Fur-

thermore, all affected running totals are adjusted, which may lead to some significant
tiles no longer being significant. If so, node κ receives corresponding updates to likewise
remove those entries. Node κ keeps track of all significant tiles, which it clusters when-
ever W advances (cf. Alg. 1, lls. 12–24). The preliminary set of clusters is ks . The final
set of clusters is defined as {k ∈ ks | k > µ} , where µ is the minimum cluster size. Each
(xπ , yπ) in each k is finally projected to (x′π , y′π) , where x′π , y′π ∈ R . Together with cluster
and period IDs, these values are sent to the sink node t.

Detailed description

S-RASTER processes the data stream coming from source s in Fig. 3 and outputs clus-
ters to sink t. There are three different kinds of nodes: projection nodes π project points
to tiles, accumulation nodes α determine significant tiles within each sliding window
W

∆i+c
∆i

 , and one clustering node κ outputs, for each W∆i+c
∆i

 , all identified clusters. Below,
we describe the three nodes in detail.

Fig. 3  Flow graph of S-RASTER, a modification of RASTER (cf. Fig. 1) for evolving data streams. Refer to the
Sect. “Idea” for a detailed description. The input source node s distributes values arbitrarily to projection
nodes π , which reduce the precision of the input. In turn, they send projected values to accumulation nodes
α . These nodes keep a count of points for each tile and determine significant tiles for the chosen sliding
window. Should a tile become significant or a once significant tile no longer be significant, a corresponding
update is sent to the clustering node κ . Node κ periodically performs clustering of significant tiles, which is a
very fast operation

1  The notation W∆i+c

∆i
 expresses a window of length c, which implies that the upper delimiter is excluded. This is done to

simplify the notation as we otherwise would have to specify the upper limit as i + c − 1.

Page 8 of 21Ulm et al. J Big Data (2020) 7:62

Algorithm 2 Projection node π

input: stream of tuples (x, y,∆z) where x, y are
coordinates and ∆z is the current period;
precision ξ

output: stream of tuples (xπ, yπ,∆z)
1: xπ := 10ξx
2: yπ := 10ξy
3: send (xπ, yπ,∆z) to node α

Projection

Nodes labeled with π project incoming values to tiles with the specified precision
(cf. Alg. 2). In general, the input (x, y,∆z) is transformed into (xπ , yπ ,∆z) . Projection of
any value v to vπ , using precision ξ , is defined as vπ = 10ξv , where v, ξ ∈ R, vπ ∈ N . This
entails that vπ is forcibly typecast to an integer. Thus, the fractional part of the scaled
input is removed as this is the information we do not want to retain. The period ∆z is a
non-strictly increasing integer, for instance uniquely identifying each day. Projection is
a stateless operation that can be executed in parallel. It is irrelevant which node π per-
forms projection on which input value as they are interchangeable. However, the input
of the subsequent accumulator nodes α needs to be grouped by values, for instance by
assigning values within a certain segment of the longitude range of the input values. Yet,
this is not strictly necessary as long as it is ensured that every unique surjected value
(xπ , yπ) is sent to the same α-node.

Accumulation

The accumulator nodes α keep track of the number of counts per projected tile in the
sliding window W∆i+c

∆i
 (cf. Alg. 3). The input consists of a stream of tuples (xπ , yπ ,∆z)

as well as the size of the sliding window c and the threshold value τ . A global variable ∆j
keeps track of the current period. Each α-node maintains two persistent data structures.
For reasons of efficiency, the hashmap totals records, for each tile, how many points were
projected to it in W∆i+c

∆i
 . Tiles become significant once their associated count reaches

τ . In addition, the hashmap window records the counts per tile for each period W∆z in
W

∆i+c
∆i

 . Given that input ∆z is non-strictly increasing, there are two cases to consider:

	 i.	 ∆z = ∆j , i.e. the period is unchanged. In this case, the count of tile (xπ , yπ) in totals
as well as its count corresponding to the key ∆z in window are incremented by 1. If
the total count for (xπ , yπ) has just reached τ , an update is sent to the κ-node, con-
taining (xπ , yπ) and the flag 1.

	 ii.	 ∆z > ∆j , i.e. the current input belongs to a later period. Now the sliding window
needs to be advanced, which means that the oldest entry gets pruned. But first, an
update is sent to the κ-node with ∆j and the flag 0. Afterwards, the entries in the
hashmap window have to be adjusted. Entry ∆z−c is removed and for each coordi-
nate pair and its associated counts, the corresponding entry in the hashmap totals
gets adjusted downward as the totals should now no longer include these values.
In case the associated value of a coordinate pair in totals drops below τ , an update
is sent to κ , consisting of (xπ , yπ) and the flag -1. Should a value in totals reach 0,

Page 9 of 21Ulm et al. J Big Data (2020) 7:62 	

the corresponding key-value pair is removed. Afterwards, the steps outlined in the
previous case are performed.

Regarding significant tiles, only status changes are communicated from α nodes to κ ,
which is much more efficient than sending a stream with constant status updates for
each tile.

Algorithm 3 Accumulation node α

input: stream s of tuples (xπ, yπ,∆z), sliding window
size c, threshold τ

output: stream of tuples (flag , val) where flag ∈
{−1, 0, 1} and val ∈ {(xπ, yπ),∆j}

1: totals := ∅ � {(xπ, yπ) : count}
2: window := ∅ � {∆j : {(xπ, yπ) : count}}
3: ∆j := −1 � Period count
4: for (xπ, yπ,∆z) in s do � ∆z −∆j ∈ {0, 1}
5: if ∆z > ∆j then � New period
6: send (0,∆j) to node κ � Re-cluster
7: ∆j := ∆z

8: key := ∆j − c � Oldest Entry
9: if key ∈ keys of window then � Prune
10: vals := window [key]
11: for (a, b) in keys of vals do
12: old := totals[(a, b)]
13: totals[(a, b)] −= vals[(a, b)]
14: new := totals[(a, b)]
15: if old ≥ τ and new < τ then
16: send (−1, (a, b)) to node κ � Remove
17: if new = 0 then
18: remove entry (a, b) from totals
19: remove entry key from window
20: if (xπ, yπ) /∈ keys of totals then
21: totals[(xπ, yπ)] := 1
22: window [∆z][(xπ, yπ)] := 1
23: else
24: totals[(xπ, yπ)] += 1
25: if (xπ, yπ) /∈ keys of window [∆z] then
26: window [∆z][(xπ, yπ)] := 1
27: else
28: window [∆z][(xπ, yπ)] += 1
29: if totals[(xπ, yπ)] = τ then
30: send (1, (xπ, yπ)) to node κ � Add

Clustering

The clustering node κ (cf. Alg. 4) takes as input a precision value ξ , which is identi-
cal to the one that was used in the α-node, the minimum cluster size µ , and a stream
consisting of tuples of a flag ∈ {−1, 0, 1} as well as a value val ∈ {(xπ , yπ),∆j} . This
node keeps track of the significant tiles σ of the current sliding window, based on
updates received from all α nodes. If flag = 1 , the associated coordinate pair is
added to σ . On the other hand, if flag = −1 , tile (xπ , yπ) is removed from σ . Thus,
σ is synchronized with the information stored in all α nodes. Lastly, if flag = 0 , the
associated value of the input tuple represents a period identifier ∆j . This is inter-
preted as the beginning of this period and, conversely, the end of period ∆j−1 . Now
κ clusters the set of significant tiles (cf. Alg. 1, lls. 12–24), taking µ into account,
and produces an output stream that represents the clusters found within the current
sliding window. In this stream, each projected coordinate (xπ , yπ) is assigned period

Page 10 of 21Ulm et al. J Big Data (2020) 7:62

and cluster identifiers. The coordinate pairs (xπ , yπ) are re-scaled to floating point
numbers (x′π , y′π) by reversing the operation performed in node π earlier. The output
thus consists of a stream of tuples of the format (∆j , cluster_id, x

′
π , y

′
π).

Algorithm 4 Clustering node κ

input: stream s of tuples (flag , val) where flag ∈ {−1, 0, 1}
and val ∈ {(xπ, yπ),∆j}, precision ξ, size µ

output: stream of tuples (∆j , cluster id , x′
π, y

′
π)

1: σ := ∅ � Significant tiles
2: for (flag , val) in s do
3: if flag = 1 then
4: (xπ, yπ) := val
5: σ := σ ∪ {(xπ, yπ)}
6: if flag = −1 then
7: (xπ, yπ) := val
8: σ := σ \ {(xπ, yπ)}
9: if flag = 0 then � Next period
10: ∆j := val
11: clusters := cluster(σ, µ) � cf. Alg. 1, lls. 12 – 24
12: id := 0 � Cluster ID
13: for cluster in clusters do
14: for (xπ, yπ) in cluster do
15: (x′

π, y
′
π) := rescale(xπ, yπ, ξ) � Int to Float

16: send (∆j , id , x′
π, y

′
π)

17: id += 1

Implementation details

The previous description is idealized. Yet, our software solution has to take the vagar-
ies of real-world data into account. Below, we therefore highlight two relevant practical
aspects that the formal definition of our algorithm does not capture.

Out‑of‑order processing

Tuples are assigned a timestamp at the source, which is projected to a period identi-
fier ∆z . Assuming that the input stream is in-order, parallelizing the α-operator could
nonetheless lead to out-of-order input of some tuples at the κ node, i.e. the latter
could receive a notification about the start of period ∆j , cluster all significant tiles as
they were recorded up to the seeming end of ∆j−1 , but receive further tuples pertain-
ing to it from other α-nodes afterwards. One solution is to simply ignore these values
as their number should be minuscule. Commonly used periods, e.g. one day, are quite
large and the expected inconsistencies are confined to their beginning and end. Thus, it
may make sense to set the start of a period to a time where very little data is generated,
e.g. 3:00 a.m. for a 24-h period when processing data of commercial vehicles. Depend-
ing on actual use cases, other engineering solutions may be preferable. One promising
approach would be to not immediately send a notification to initiate clustering to node
κ when the first element of a new period ∆j is encountered by any α node. Instead, one
could buffer a certain number of incoming elements that are tagged with ∆j for a suf-
ficiently large amount of time, call it a grace period. During that time, elements tagged
with ∆j are not processed yet. Instead, only elements that are tagged with ∆j−1 are. Once
the grace period is up, a signal is sent to κ to initiate clustering and the buffered elements
in each α node are processed.

Page 11 of 21Ulm et al. J Big Data (2020) 7:62 	

Interpolating periods

The algorithm as it is described does not take into account that there could be periods
without new data. For instance, after processing the last data point in period ∆x , the next
data point may belong to period ∆x+2 . When pruning the sliding window, it is there-
fore not sufficient to only remove data for key ∆x+2−c , where c is the size of the sliding
window, as this would lead to data for ∆x+1−c remaining in perpetuity. Thus, the sliding
window also has to advance when there is no data for an entire period. If a gap greater
than one period between the current and the last encountered period is detected, the
algorithm has to advance the sliding window as many times as needed, one period at a
time. After each period, the κ node then clusters the significant tiles it has records of.
Interpolation is omitted from Alg. 3 for the sake of brevity. Instead, we assume that there
is at least one value associated with each element of the input stream. However, our pub-
lished implementation is able to correctly prune the sliding window and update its clus-
ters when it detects such a skip in the period counter.

Retaining data points with S‑RASTER′
There are use cases where it is desirable to not only identify clusters based on their sig-
nificant tiles but also on the data points that were projected to those tiles (cf. Fig. 1c, d).
In the following, we refer to the variant of S-RASTER that retains relevant input data
as S-RASTER′. The required changes are minor. With the goal of keeping the overall
design of the algorithm unchanged, first the π nodes have to be modified to produce
a stream of tuples (xπ , yπ , x, y,∆z) , i.e. it retains the original input coordinates. In the
α nodes the hashmaps totals and window have to be changed to retain multisets of
unscaled coordinates (x, y) per projected pair (xπ , yπ) . Counts are given by the size of
these multisets. This assumes that determining the size of a set is an O(1) operation in
the implementation language, for instance due to the underlying object maintaining this
value as a variable. In case a tile becomes significant, each α-node sends not just the
tile (xπ , yπ) but also a bounded stream to κ that includes all coordinate pairs (x, y) that
were projected to it up to that point in the current window. Furthermore, after a tile
has become significant, every additional point (xπ , yπ) that maps to it also has to be for-
warded to κ , which continues for as long as the number of points surjected to that tile
meet the threshold τ . Lastly, in the κ node, the set tiles has to be turned into a hash-
map that maps projected tiles (xπ , yπ) to their corresponding points (x, y) and the output
stream has to be modified to return, for each point (x, y) that is part of a cluster, the tuple
(∆j , cluster_id, xπ , yπ , x, y).

Theoretical evaluation
As we have shown previously, RASTER generates results more quickly than competing
algorithms [33], with the caveat that the resulting clusters might not include elements
at the periphery of clusters that other methods might include. Yet, the big benefit of our
algorithm is its very fast throughput, being able to process an arbitrary amount of data
in linear time and constant memory with a single pass. This makes it possible to use a
standard workstation even for big data, while comparable workloads with other algo-
rithms would necessitate a much more expensive and time-consuming cloud computing

Page 12 of 21Ulm et al. J Big Data (2020) 7:62

setup; transferring terabytes of data to a data center alone is not a trivial matter, after all,
even if we ignore issues of information sensitivity [17, 25]. The same advantages apply to
S-RASTER as it is an adaptation of RASTER that does not change its fundamental prop-
erties. Our reasoning below shows that the performance benefits of RASTER for data
batches, i.e. linear runtime and constant memory, carry over to S-RASTER for evolving
data streams.

Linear runtime

RASTER is a single-pass linear time algorithm. The same is true for S-RASTER, which
we will show by discussing the nodes π , α , and κ in turn. In general, data is continually
processed as a stream, in which every input is only processed once by nodes π and α .
These nodes perform a constant amount of work per incoming data point. The clus-
tering node κ , however, performs two different actions. First, is continually updates
the multiset of significant tiles σ and, second, it periodically clusters σ . It is easy to see
that there is at most one update operation per incoming data point, i.e. changing the
multiplicity of the associated value of an incoming point in σ . In practice, the number
of significant tiles m is normally many orders of magnitude smaller than the number
of input data points n. Furthermore, the threshold τ for a significant tile is normally
greater than 1. Yet, even in the theoretically worst case it is not possible that m > n
as this would mean that at least one point was projected to more than one tile, which
is not possible as the projection node π performs a surjection. Consequently at worst
there are m = n significant tiles if there is exactly one point per significant tile and
τ = 1.

Clustering in κ does not happen continually but periodically, i.e. in an offline man-
ner. Furthermore, clustering significant tiles is a very fast procedure with a very
modest effect on runtime. Even though Alg. 1, lls. 12–24, show a nested loop for clus-
tering, this part is nonetheless linear because the inner loop removes elements from
the input the outer loop traverses over. Thus, the entire input, which is the set of sig-
nificant tiles σ , is traversed only once. In addition, lookup is a O(1) operation because
the location of all neighboring tiles is known.

In the node κ , clustering is performed once per period, so take the number of input
points per period n and the number of significant tiles m. As we have shown, it is not
possible that m > n , so at worst m = n . Clustering only happens once per period, for
a total of P periods in the stream. Periods are not expressed in relation to n but are
dependent on time. Thus, P can be treated as a constant. The total runtime complex-
ity of S-RASTER is O(n) . Nodes π and α perform a constant amount of work per data
point. The same applies to the updating of multiplicities in κ , which is likewise a con-
stant amount of work per data point. Lastly, the cost of clustering, which is an O(m)
operation, is amortized over all data points in a period, which is a constant because
clustering happens only periodically as opposed to continually, i.e. for each new data
point. Expressed as a function on n, the time complexity of S-RASTER is, for π , α , and
the two parts of κ , O(n)+O(n)+ (O(n)+O(Pm)) = O(n) . On a related and more
practical note, the performance impact of periodic clustering in the κ node can be
mitigated by running this node on a separate CPU core, which is straightforward in

Page 13 of 21Ulm et al. J Big Data (2020) 7:62 	

the context of stream processing. This does not affect the previous complexity analy-
sis, however.

Constant memory

RASTER needs constant memory M to keep track of all counts per tile of the entire
(finite) grid. In contrast, S-RASTER uses a sliding window of a fixed length c. In
the worst case, the data that was stored in M with RASTER requires cM memory
in S-RASTER, which is the case if there is, for each discrete period ∆z , at least one
projected point per tile for each tile. Thus, S-RASTER maintains the key property of
RASTER of using constant memory.

Experiment
This section describes the design of our experiments, gives details of the experimental
environment, and specifies how we performed a comparative empirical evaluation of
S-RASTER and related clustering algorithms for data streams.

Design

For our experiments, we generated input files containing a fixed number of points
arranged in dense clusters. These data sets contain no noise. The reason behind this
decision is that RASTER is not affected by it. Noise relates to tiles that contain less than
τ projected data points, which are simply ignored. In contrast, other algorithms may
struggle with noisy data, in particular if they retain the entire input, which would poten-
tially disadvantage them. Our primary goal was to measure clustering performance,
i.e. speed. In addition, we took note of various standard clustering quality metrics such
as the silhouette coefficient and distance measurements. Concretely, in the first experi-
ment, the chosen algorithms process 5M data points. This set contains 1000 clusters.
Every 500K points, we measure how long that part of the input data took to process. This
implies a tumbling window, and for each batch of the input there are 100 different clus-
ters, modeling an evolving data stream. This experiment is run ten times. In contrast, in
the second experiment, we use a smaller input data set of 2K points. The variant of our
algorithm for this experiment is SW-RASTER, which, in contrast to S-RASTER, does
not have a notion of time but instead uses points to define window sizes. This modifica-
tion was done because the algorithms we use for comparisons define the sliding window
similarly. In this experiment, we use a number of established clustering quality metrics,
i.e. the within-cluster sum of squares (SSQ) [14, p. 26], adjusted Rand index (cRand)
[15], silhouette coefficient [28], and Manhattan distance.

Data set

S-RASTER was designed for handling a particular proprietary real-world data set, which
we cannot share due to legal agreements. However, in order to evaluate this algorithm,
we developed a data generator that can create an arbitrarily large synthetic data set that
has similar properties. This data generator is available via our code repository. In short,
the data generator randomly selects center points on a 2D plane and scatters points

Page 14 of 21Ulm et al. J Big Data (2020) 7:62

around each such center point. There is a minimum distance between each center. For
the experiment, we created a file with 1000 clusters of 500 points each, i.e. 500K points
in total per batch. A batch corresponds to a period, e.g. one day. As we have processed
ten batches, the total is 5M data points.

Environment

The used hardware was a workstation with an Intel Core i7-7700K and 32 GB RAM. Its
main operating system is Microsoft Windows 10 (build 1903). However, the experiments
were carried out with a hosted Ubuntu 16.04 LTS operating system that was executed in
VirtualBox 5.2.8, which could access 24 GB RAM.

Comparative empirical evaluation

In order to compare S-RASTER to standard algorithms within its domain, we imple-
mented the algorithm for use in Hahsler’s popular R package stream [14]. For our
purpose, the main benefit is that it contains an extensive suite for the evaluation of algo-
rithms. Of the available algorithms in this R package, we selected DStream [7], DBstream
[4, 13], and Windowed k-means Clustering, which was implemented by Hahsler himself.
They were chosen because they are standard clustering algorithms for data streams.

DStream is a density-based clustering algorithm that uses an equally spaced grid. It
estimates the density of each cell in a grid, which corresponds to a tile in our description
of S-RASTER. For each cell, the density is computed based on the number of points per
cells. Subsequently, they are classified as dense, transitional, or sporadic cells. A decay-
ing factor ensures that cell densities reduce over time if no new points are encountered.
DBStream uses a dissimilarity metric for data points. If a data point in the incoming data
stream is below the given threshold value for dissimilarity of any of the hitherto identi-
fied micro-clusters, it is added to that cluster. Otherwise, this data point is the seed of a
new cluster. Lastly, Windowed k-means clustering is an adaptation of the well-known
k-means algorithm. It partitions the input based on a fixed number k of seeds.

For each algorithm, we chose parameters that delivered good clustering results, based
on visual inspection. Concretely, this led to the following parameter values: DStream
uses a grid size of 0.0003. DBStream uses a radius r = 0.0002 , a minimum weight
Cm = 0.0 , and a gap time of 25,000 points. Windowed k-means uses a window length
of 100 and k = 100 . Any parameter we did not specify but is exposed via the stream
package was used with its defaults. Lastly, for S-RASTER, we used a precision ξ = 3.5
and a window size c = 10.

Results and discussion
In this section we present the results of our evaluation of S-RASTER as well as a discus-
sion of these results.

Results

The results of the first experiment are shown in Fig. 4. We start with the most relevant
results. As Fig. 4a shows, S-RASTER is faster than Windowed k-means, DBStream and
DStream, processing each batch of 500K points in a little less than 1.5 s. In contrast, the

Page 15 of 21Ulm et al. J Big Data (2020) 7:62 	

competing algorithm are at least 50% slower. DBStream takes about 40 times as long as
S-RASTER. Figure 4b shows the number of clusters the various algorithms have found
while processing the input data stream. The Windowed k-means algorithm was provided
with an argument specifying k = 100 . S-RASTER and Windowed k-means Cluster-
ing reliably identify 100 clusters per batch in the input data set whereas DBStream and
DStream get close.

The results of the second experiment are summarized in Table 2, and visualized in
Fig. 5. SW-RASTER, DBStream, and DStream deliver good results. Conceptually, the
algorithms in the stream package identify clusters (macro clusters) that are based on
smaller micro clusters, which may be defined differently, based on the chosen algo-
rithm, e.g. squares in a grid or center points of a circle and their radius. Visual inspection
seems to suggest that there are four macro clusters in the data set, which are made up of
around 100 micro clusters. SW-RASTER delivers the densest and most separate clusters,
which is expressed in the lowest adjusted Rand index (cRand) in this comparison. The
cRand measure takes a value between 0 and 1. A value of 1 indicates complete similar-
ity of two partitions, a value of 0 the opposite. SW-RASTER has a cRand value of 0.04,
while the other clustering algorithms have cRand values of 0.06. In addition, together
with Windowed k-means, SW-RASTER has the lowest silhouette coefficient with 0.18.
Lastly, SW-RASTER has the lowest Manhattan distance of the chosen algorithms.

Discussion

We have shown that both in theory and practice the benefits of RASTER are retained for
S-RASTER. S-RASTER is very fast, outperforming other clustering algorithms for data
streams. Of course, the drawback is that there is some loss of precision. In other words,
the comparatively good resulting metrics for various cluster quality measures are partly
due to the algorithm ignoring points due to the chosen δ and σ parameters. This is also
reflected in the lower values for the SSQ and purity metrics, which are due to the algo-
rithm ignoring points at the periphery. That being said, S-RASTER performs very well
in the use case it has been designed for, which is not negatively affected by the trade-offs
we made in the design of this algorithm. Also note that, at least theoretically, S-RASTER
can be easily parallelized (cf. Sect. “Future work”). Yet, as the R package stream is a
single-threaded library, this is not an angle we have pursued in this paper. After all, we
would not have been able to reap any benefits from creating a multi-threaded implemen-
tation in this scenario.

It should be pointed out that both k-means clustering and S-RASTER consistently
identify 100 clusters per batch in the input data stream. In the case of the former, this
is due to the provided parameter k = 100 , which invariably leads to the identification of
100 clusters. However, the case is much different with S-RASTER. The reason this algo-
rithm identifies 100 clusters in each batch is that this algorithm was developed for reli-
ably detecting dense clusters, ignoring noise and the sparser periphery of a collection of
points that competing algorithms may classify as being part of the same cluster. Because
there are 100 dense clusters in the input, S-RASTER was able to detect that number with
suitable parameter values. In fact, it would have been cause of concern for us had this
algorithm not reliably detected all clusters.

Page 16 of 21Ulm et al. J Big Data (2020) 7:62

(a) (b)
Fig. 4  Evaluation of S-RASTER (best viewed in color). As a shows, S-RASTER is faster than competing
algorithms in terms of throughput. The algorithms processed 5M points in 10 batches of 500K points. The
stated times refer to the end of each batch. As a sanity check, b plots the number of identified clusters. The
input data set contained 100 dense clusters per batch. Windowed k-means was provided with the argument
k = 100 . All data is the average of 10 runs

−5 0 5

−5
0

5

Sliding window + k−Means (weighted)

x

y

−5 0 5

−5
0

5

DStream

x

y

−5 0 5

−5
0

5

DBSTREAM

x

y

−5 0 5

−5
0

5

SW−RASTER

x

y

Fig. 5  Illustration of clustering results with micro and macro clusters after clustering 500 points of the input
data stream. S(W)-RASTER produces denser clusters than the other algorithms. The trade-off is that the
algorithm ignores points at the periphery of the clusters, depending on the chosen parameters

Page 17 of 21Ulm et al. J Big Data (2020) 7:62 	

Related work
Two prominent related algorithms we did not consider in this paper are DUC-STREAM
[11] and DD-Stream [16], which is due to the absence of a conveniently available open-
source implementation. DUC-STREAM performs clustering based on dense unit detec-
tion. Its biggest drawback, compared to S-RASTER, is that it has not been designed for
handling evolving data streams. While it also uses a grid, the computations performed
are more computationally intensive than the ones S-RASTER performs, many of which
are based on O(1) operations on hash tables. DD-Stream likewise performs density-
based clustering in grids and likewise uses computationally expensive methods for
clustering. DD-Stream is not suited for handling big data. Furthermore, unlike those
algorithms, S-RASTER can be effectively parallelized (cf. Fig. 3). This primarily refers to
the nodes π and α , which can be executed in an embarrassingly parallel manner.

None of the aforementioned clustering algorithms are quite comparable to S-RAS-
TER, however, as they retain their input. Also, their clustering methods are generally
more computationally costly. Thus, S-RASTER requires less time and memory. S-RAS-
TER′ is closer to those algorithms as it retains relevant input data. As it does not retain
all input, S-RASTER is only inefficient with regards to memory use in highly artificial
scenarios. This is the case where there is at most one point projected to any square in
the grid, which implies that the algorithm parameters were poorly chosen as the basic
assumption is that many points are surjected to each significant tile. Ignoring pathologi-
cal cases, it can thus be stated that S-RASTER is very memory efficient. Furthermore,
clustering, in the κ node, is a very fast operation. In summary, S-RASTER is, for the
purpose of identifying density-based clusters in evolving data streams, more memory
efficient than competing algorithms, and also less computationally intensive. Thus, it is a
good choice if the trade-offs they make are acceptable for a given use case.

There is a superficial similarity between the output of self-organizing maps (SOMs)
[19] and S-RASTER. We therefore want to clearly highlight the differences. First, SOMs
belong to an entirely different category of algorithms, i.e. artificial neural networks
(ANNs). They are likewise used for unsupervised learning, albeit there are adaptations
for unsupervised online learning [10]. SOMs were initially developed for visualizing
nonlinear relations in high dimensional data [20], but they have been applied to cluster-
ing problems [18, 35] and even suggested as a substitute for k-means clustering [3]. Prac-
tical clustering applications include, for instance, biomedical analyses [21] and water

Table 2  Comparison of SW-RASTER with various standard clustering algorithms

The best values in this comparison are listed in italics. The number of micro clusters is listed for the sake of completion
but we abstain from making a judgment as the resulting macro clusters are more relevant. Our algorithm does well in this
comparison, as evinced by the cRand, silhouette coefficient and Manhattan distance values

SW-RASTER Windowed k-means DStream DBStream

Macro clusters 4 4 3 2

Micro clusters 103 100 108 118

purity 0.93 0.94 0.96 0.97

SSQ 77.80 114.26 50.70 44.72

cRand 0.04 0.06 0.06 0.06

silhouette 0.18 0.18 0.21 0.27

Manhattan 00.11 0.12 0.13 0.13

Page 18 of 21Ulm et al. J Big Data (2020) 7:62

treatment monitoring [12]. It may be that SOMs can achieve results similar to S-RAS-
TER, but at an arguably much larger runtime and memory cost, given that distance
matrices are the standard data structure and the fact that the so-called Best Matching
Unit is determined by computing the minimum Euclidian distance between the input
and the neuron weights. Thus, a standard SOM requires O(m) distance computations for
each input point, where m is the number of neurons in the ANN. In contrast, S-RASTER
requires only a single projection operation for each input, plus the amortized cost of
clustering at the end of each period. Lastly, it is not obvious how sliding windows would
be represented with SOMs.

Future work
This paper is accompanied by an implementation of S-RASTER for use in the R
package stream. In the future, we may release an implementation of S-RASTER
for use in Massive Online Analysis (MOA) [5]. In addition, we may release a com-
plete stand-alone implementation of this algorithm that can be fully integrated into
a standard stream processing engine such as Apache Flink [6] or Apache Spark [37,
38]. This is particularly relevant for an area we have not considered in this paper,
i.e. the scalability of S-RASTER on many-core systems. As we have shown theoreti-
cally, S-RASTER is easily parallelizable. What is missing is to quantify the perfor-
mance gains that can be expected. The reason we have not pursued this yet is that
S-RASTER performs real-world workloads easily in sequential operation. Further-
more, we are interested in applying S-RASTER to data with higher dimensionality.
As we elaborated elsewhere [33, Sect. 3.3], there are 2d lookups per dimension d.
As we are primarily interested in processing 3D data, the additional total overhead
due to lookup is modest. As S-RASTER was designed for solving a particular real-
world problem, the theoretical objection of the curse of high dimensionality is not
relevant.

As S-RASTER was developed in response to a concrete use case (cf. Sect. “Iden-
tifying evolving hubs”), we focussed on periodical clustering as this entailed only
a negligible cost, in particular because clustering can be performed at convenient
times (cf. Sect. “Implementation details”). However, other use cases may necessitate
continual clustering. Thus, it seems worthwhile to explore modifications to the clus-
tering node κ that perform the clustering operations in a more efficient manner. We
explored a few possibilities for parallelizing of the clustering algorithm in our work
on batch processing with RASTER [33, Sect. 3.5], which would be a good starting
point. Another promising idea would be to only selectively perform clustering. Right
now, the entire set of significant tiles σ is clustered at the end of a period. Yet, in
real-world scenarios, it is quite likely that there are not many changes between peri-
ods, in particular if they are short. This is even more relevant when we consider
the case of continual clustering. In those cases, a lot of redundant work would be
performed if we clustered all of σ , considering that most clusters would not have
changed much.

A potential application domain for RASTER and S-RASTER is image clustering,
in particular with a focus on clustering multispectral images, which is a well-estab-
lished area of research [31]. This would necessitate adding another dimension to

Page 19 of 21Ulm et al. J Big Data (2020) 7:62 	

the algorithm, i.e. spectral as well as spatial information. There is a potentially wide
domain of applications as multivariate images are very common in some domains.
Two very prominent examples are magnetic resonance images and remote sensing
images. k-means clustering has been successfully applied to this problem domain
[24, 26]. One issue of k-means clustering, however, is its susceptibility to get trapped
in local optima [22], which is not an issue for S-RASTER. It is also the case that
k-means clustering is slower than S-RASTER. A particularly fruitful field of applica-
tion for S-RASTER could be image-change detection, which has seen some interest
[39], as some imprecision can be tolerated as long as changes are reliably detected.

Conclusions
The key takeaway of our original work on RASTER was that by carefully chosen
trade-offs, we are able to process geospatial big data on a local workstation. Depend-
ing on the use cases, those trade-offs may furthermore have a negligible impact on
the precision of the results. In fact, in the case of the problem of identifying hubs in a
batch of geospatial data, the loss of precision is immaterial. However, because RAS-
TER is limited to processing batch data, we redesigned this algorithm as S-RASTER,
using a sliding window. Thus, S-RASTER can be used to determine clusters within
a given interval of the data in real-time. This algorithm is particularly relevant from
an engineering perspective as we retain the same compelling benefits of RASTER,
i.e. the ability to process data in-house, which leads to significant savings of time and
cost compared to processing data at a remote data center. It also allows us to sidestep
problems related to data privacy as business-critical geospatial data can now remain
on-site. The trade-offs of S-RASTER compared to other streaming algorithms are also
worth pointing out, as we, again, carefully designed its features with an eye to real-
world applications. While many clustering algorithms for data streams continually
update the clusters they identified, S-RASTER avoids this overhead by doing so only
in fixed intervals, which is made possible by the very fast clustering method of RAS-
TER, entailing an insignificant amortized cost. The overall result is that S-RASTER is
very fast and delivers good results. Consequently, this algorithm is highly relevant for
real-world big data clustering use cases.
Acknowledgements
This research project was carried out in the Fraunhofer Cluster of Excellence Cognitive Internet Technologies.

Authors’ contributions
GU conceived the S-RASTER algorithm and its initial mathematical formulation, created a prototypal implementation
of the algorithm in Kotlin, and wrote the manuscript. SS ported the existing implementation of S-RASTER to C++, and
conducted experiments. He was assisted by AN who was also involved in the literature review. All authors were involved
in the experimental design and interpretation of results. MJ contributed to the mathematical formulations in this paper.
All authors read and approved the final manuscript.

Funding
This research was supported by the project Fleet telematics big data analytics for vehicle usage modeling and analysis
(FUMA) in the funding program FFI: Strategic Vehicle Research and Innovation (DNR 2016-02207), which is administered
by VINNOVA, the Swedish Government Agency for Innovation Systems.

Data availability
The datasets generated and analyzed during the current study are available in the following source code repository:
https​://githu​b.com/Fraun​hofer​Chalm​ersCe​ntre/s-raste​r. This repository contains a data generator and the entire code
used for benchmarking the algorithm, including a complete implementation of S-RASTER. Additionally, we provide a
reference implementation of RASTER in Python as well as a proof-of-concept implementation of S-RASTER in Kotlin.

Competing interests
The authors declare that they have no competing interests.

https://github.com/FraunhoferChalmersCentre/s-raster

Page 20 of 21Ulm et al. J Big Data (2020) 7:62

Author details
1 Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, 412 88 Gothenburg, Sweden.
2 Fraunhofer Center for Machine Learning, Chalmers Science Park, 412 88 Gothenburg, Sweden.

Received: 26 April 2020 Accepted: 30 July 2020

References
	1.	 Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining

applications. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data. SIGMOD ’98.
New York: ACM; 1998. p. 94–105.

	2.	 Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data. Data Min
Knowl Discov. 2005;11(1):5–33.

	3.	 Bação F, Lobo V, Painho M. Self-organizing maps as substitutes for k-means clustering. In: International conference on
computational science. Berlin: Springer; 2005. p. 476–83.

	4.	 Bär A, Finamore A, Casas P, Golab L, Mellia M. Large-scale network traffic monitoring with dbstream, a system for rolling
big data analysis. In: 2014 IEEE international conference on big data (big data). New York: IEEE; 2014. p. 165–70.

	5.	 Bifet A, Holmes G, Kirkby R, Pfahringer B. Moa: massive online analysis. J Mach Learn Res. 2010;11(May):1601–4.
	6.	 Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K. Apache flink: stream and batch processing in a single

engine. Bull IEEE Comput Soc Tech Comm Data Eng. 2015;36(4):28–38.
	7.	 Chen Y, Tu L. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD international

conference on knowledge discovery and data mining. New York: ACM; 2007. p. 133–42.
	8.	 van Diggelen F, Enge P. The world’s first gps mooc and worldwide laboratory using smartphones. In: Proceedings of the

28th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2015). ION 2015.
p. 361–9.

	9.	 Ester M, Kriegel HP, Sander J, Xu X, et al. A density-based algorithm for discovering clusters in large spatial databases with
noise. SIGKDD Conf Knowl Discov Data Min. 1996;96:226–31.

	10.	 Furao S, Ogura T, Hasegawa O. An enhanced self-organizing incremental neural network for online unsupervised learn-
ing. Neural Netw. 2007;20(8):893–903.

	11.	 Gao J, Li J, Zhang Z, Tan PN. An incremental data stream clustering algorithm based on dense units detection. In: Pacific-
Asia conference on knowledge discovery and data mining. Berlin: Springer; 2005. p. 420–5.

	12.	 Garcı́a HL, González IM. Self-organizing map and clustering for wastewater treatment monitoring. Eng Appl Artif Intell
17(3):215–225

	13.	 Hahsler M, Bolaños M. Clustering data streams based on shared density between micro-clusters. IEEE Trans Knowl Data
Eng. 2016;28(6):1449–61.

	14.	 Hahsler M, Bolanos M, Forrest J, et al. Introduction to stream: An extensible framework for data stream clustering
research with r. J Stat Softw. 2017;76(14):1–50.

	15.	 Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
	16.	 Jia C, Tan C, Yong A. A grid and density-based clustering algorithm for processing data stream. In: 2008 second interna-

tional conference on genetic and evolutionary computing. New York: IEEE; 2008. p. 517–21.
	17.	 Kaisler S, Armour F, Espinosa JA, Money W. Big data: Issues and challenges moving forward. In: 2013 46th Hawaii interna-

tional conference on system sciences. 2013. p. 995–1004.
	18.	 Kiang MY. Extending the kohonen self-organizing map networks for clustering analysis. Comput Stat Data Anal.

2001;38(2):161–80.
	19.	 Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43(1):59–69.
	20.	 Kohonen T. Applications. In: Self-organizing maps. Berlin: Springer; 2001. p. 263–310.
	21.	 Kohonen T. Essentials of the self-organizing map. Neural Netw. 2013;37:52–65 twenty-fifth Anniversay Commemorative

Issue.
	22.	 Li H, He H, Wen Y. Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation.

Optik. 2015;126(24):4817–22.
	23.	 MacQueen J et al. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, vol. 1. 1967. p. 281–97.
	24.	 Mat Isa NA, Salamah SA, Ngah UK. Adaptive fuzzy moving k-means clustering algorithm for image segmentation. IEEE

Trans Consumer Electron. 2009;55(4):2145–53.
	25.	 Mazumdar S, Seybold D, Kritikos K, Verginadis Y. A survey on data storage and placement methodologies for cloud-big

data ecosystem. J Big Data. 2019;6(1):15.
	26.	 Ng HP, Ong SH, Foong KWC, Goh PS, Nowinski WL. Medical image segmentation using k-means clustering and

improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation. 2006. p. 61–5.
	27.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al.

Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12(Oct):2825–30.
	28.	 Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math.

1987;20:53–65.
	29.	 Xu Rui, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78. https​://doi.org/10.1109/

TNN.2005.84514​1.
	30.	 Taylor G, Brunsdon C, Li J, Olden A, Steup D, Winter M. Gps accuracy estimation using map matching techniques:

applied to vehicle positioning and odometer calibration. Comput Environ Urban Syst. 2006;30(6):757–72. https​://doi.
org/10.1016/j.compe​nvurb​sys.2006.02.006.

	31.	 Tran TN, Wehrens R, Buydens LM. Clustering multispectral images: a tutorial. Chemom Intell Lab Syst. 2005;77(1–2):3–17.

https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1016/j.compenvurbsys.2006.02.006
https://doi.org/10.1016/j.compenvurbsys.2006.02.006

Page 21 of 21Ulm et al. J Big Data (2020) 7:62 	

	32.	 Ulm G, Gustavsson E, Jirstrand M. Contraction clustering (RASTER). In: Nicosia G, Pardalos P, Giuffrida G, Umeton R, edi-
tors. Machine learning, optimization, and big data. Cham: Springer International Publishing; 2018. p. 63–75.

	33.	 Ulm G, Smith S, Nilsson A, Gustavsson E, Jirstrand M. Contraction clustering (RASTER): a very fast big data algorithm for
sequential and parallel density-based clustering in linear time, constant memory, and a single pass. 2019. arXiv preprint
arXiv​:1907.03620​.

	34.	 Venkatasubramanian S. Clustering on streams. New York: Springer; 2018. p. 488–94.
	35.	 Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Trans Neural Netw. 2000;11(3):586–600.
	36.	 Wing MG, Eklund A, Kellogg LD. Consumer-grade global positioning system (GPS) accuracy and reliability. J. For.

2005;103(4):169–73. https​://doi.org/10.1093/jof/103.4.169.
	37.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. HotCloud.

2010;10(10–10):95.
	38.	 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al. Apache

spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
	39.	 Zheng Y, Zhang X, Hou B, Liu G. Using combined difference image and k-means clustering for sar image change

detection. IEEE Geosci Remote Sens Lett. 2013;11(3):691–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arXiv.org/abs/1907.03620
https://doi.org/10.1093/jof/103.4.169

	S-RASTER: contraction clustering for evolving data streams
	Abstract
	Introduction
	Background
	RASTER
	Identifying evolving hubs

	S-RASTER
	Idea
	Detailed description
	Projection
	Accumulation
	Clustering

	Implementation details
	Out-of-order processing
	Interpolating periods

	Retaining data points with S-RASTER′

	Theoretical evaluation
	Linear runtime
	Constant memory

	Experiment
	Design
	Data set
	Environment
	Comparative empirical evaluation

	Results and discussion
	Results
	Discussion

	Related work
	Future work
	Conclusions
	Acknowledgements
	References

