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We investigate a multiterminal mesoscopic conductor in the quantum Hall regime, subject to temperature and
voltage biases. The device can be considered as a nonequilibrium resource acting on a working substance. We
previously showed that cooling and power production can occur in the absence of energy and particle currents
from a nonequilibrium resource (calling this an N-demon). Here we allow energy or particle currents from the
nonequilibrium resource and find that the device seemingly operates at a better efficiency than a Carnot engine.
To overcome this problem, we define free-energy efficiencies which incorporate the fact that a nonequilibrium
resource is consumed in addition to heat or power. These efficiencies are well behaved for equilibrium and
nonequilibrium resources and have an upper bound imposed by the laws of thermodynamics. We optimize power
production and cooling in experimentally relevant parameter regimes.

DOI: 10.1103/PhysRevB.102.155405

I. INTRODUCTION

Recently, there has been a lot of interest in the thermody-
namics of small-scale electronic devices [1–3]. The special
properties of these devices in the context of thermodynamics
stem from quantum and confinement effects. These are promi-
nent in mesoscopic systems such as qubits [4,5], quantum
dots [6], molecular contacts [7,8], or tunnel junctions [9]
whose size is small compared to the coherence length. In
most of the cases, the described processes are, analogously
to macroscopic thermodynamics, based on the exchange of
particles or energy between the system and an equilibrium
reservoir. This coupling can be used, e.g., to define heat en-
gines [2], refrigerators [10,11], or thermal devices [12–14].

This paper considers “baths” that can be in a nonequi-
librium (or nonthermal) state, without a uniquely defined
temperature. This is specific to devices that are smaller than
their thermalization length. Such a situation is rare at the
macroscopic scale, but is common in nanoscale devices. It has
similarities to recent studies of engines coupled to reservoirs
engineered to contain squeezed states [15–22] or other quan-
tum correlations [23,24]. Here we identify thermodynamic
processes that perform useful tasks by consuming a nonequi-
librium distribution in addition to consuming heat or work.
We have previously shown [25,26] that the consumption of
a nonequilibrium distribution alone (without the consumption
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of heat or work) can produce power or perform cooling. This
effect challenges the notion of usual thermal engines. For this
reason we called it an N-demon [26], where the “N” stands
for nonequilibrium.

Here, we extend our previous work [26], by relaxing the
conditions of zero particle and energy flow and investigate
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FIG. 1. Injection of a nonequilibrium distribution into a working
substance via quantum Hall edge states. (a) The system is divided
into working substance (including terminals 1 and 2), a nonequi-
librium resource region (including 3 and 4) and an interface. Each
of them contains a scattering region (white areas). (b) Minimal
requirements on the position of the scattering regions for power pro-
duction (or cooling) exploiting a nonequilibrium state as a resource.
A nonequilibrium state is injected into the working substance by
mixing the distributions of terminals 2 to 4 at the regions defined by
transmission probabilities τneq and τint . The magenta circle indicates
where this distribution is injected into the working substance. The
black circle indicates the counter flow. The injected distribution splits
at a scattering region in the working substance, whose transmission
τws defines its response.
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the impact of the incoming nonequilibrium distribution on
the output power and cooling power of the device. This leads
to devices whose operation is partly conventional thermody-
namics (i.e., consuming heat or power) and partly demonic.
We show that a conventional efficiency can then exceed the
Carnot limit and use this as a sign of the demonic action of
the nonequilibrium resource. While this effect is reminiscent
of the action of a Maxwell demon [27], the resolution of the
paradox of the apparent violation of the laws of thermody-
namics is different [26].

We wish to compare different machines that operate using
demonic resources (nonequilibriumness), conventional ther-
modynamic resources (heat or work), or a combination of the
two. For this we propose free-energy efficiencies as a com-
prehensive measure. We show that these efficiencies are well
behaved for any combination of demonic and conventional
thermodynamic operations and have upper bounds given by
the laws of thermodynamics, see Sec. VI. For example, a
machine that produces power P has a free-energy efficiency
of the form

ηfree ≡ P/(−Ḟneq) � 1, (1)

so the power produced can never exceed −Ḟneq. Here, −Ḟneq

is the rate of reduction of a free energy for a nonequilibrium
(or equilibrium) resource. This free energy takes the form of
a Helmholtz potential [28],

Fneq = Uneq − T ′Sneq, (2)

where Uneq and Sneq are the nonequilibrium resource’s in-
ternal energy and entropy. The critical point is to identify
which temperature T ′ appears in this formula; we will argue
(see Sec. VI) that it is the “ambient” temperature; i.e., the
temperature that all reservoirs would have if there were no
mechanisms keeping them hot, cold, or out-of-equilibrium.
Section VI discusses concrete examples, along with the equiv-
alent of the free-energy efficiency for refrigerators.

Such free-energy efficiencies have long been discussed for
thermodynamics close to equilibrium (in the linear response
regime) for situations as diverse as biological [29] and meso-
scopic [30] systems. However, the beauty of free energies (and
efficiencies constructed out of them) is that they also apply
arbitrarily far from equilibrium. This makes them ideal for
quantifying the nonequilibrium resources that interest us here.

The class of systems that we study here, shown in Fig. 1,
are chosen to be both simple to model and experimentally
accessible. In this context, we make three important choices.
Firstly, the nonequilibrium distribution used as a resource is
purposefully made by mixing the flow from two equilibrium
reservoirs. While a nonequilibrium distribution could occur
in many different ways, the situation analyzed here should be
easily controllable in an experiment and the calculation of the
entropy production is particularly insightful. Secondly, by tun-
ing reservoir temperature and bias, one can make the device
operate as a N-demon, a usual heat-engine (or refrigerator),
or a combination of the two. Thirdly, we consider a multiter-
minal electronic realization in the quantum Hall regime. This
allows the implementation of complex devices [31–36] such
as that in Fig. 1. They have been well studied for nanoscale
steady-state heat engines [37–40], since they provide excellent
control over the electron flow via spatially-separated chiral

channels [41–50]. This way the energy distribution of elec-
trons injected into the working substance at the magenta circle
in Fig. 1 and of those leaving at the black circle can be
measured [51–54].

The multiterminal system shown in Fig. 1 can be imagined
as consisting in a working substance region, a resource region,
and an interface where these two regions are put in contact. In
the resource region, electrons injected from two or more ter-
minals at possibly different temperatures and electrochemical
potentials are scattered and mixed. As a result, outgoing elec-
trons which are injected into the working substance through
the interface have a nonthermal distribution. This means they
are not described by a Fermi function. The most striking im-
plication of this [25,26] is that power production and cooling
in the working substance is possible even in the absence of
an average particle and energy current between the resource
region and working substance. This is a general statement and
should apply in many systems, including optics [26]. In cases
where energy transfer is done via Coulomb interaction [25,55]
rather than particle exchange, the system can be understood as
a type of autonomous Maxwell demon [56].

Multiterminal steady-state heat engines are thought to be
useful for applications because (i) they can separate the work-
ing substance and resource, thereby limiting heating of the
working substance [57–62], and (ii) they can profit from
having multiple input resources [63,64] and generating mul-
tiple outputs [30,65–67]. In the system we analyze here, the
situation is even better: No heat transport is required and
work production can even be accompanied by a cooling of
the working substance. This makes the device interesting for
applications in which a nonequilibrium state occurs as the
“waste” of another nanoscale device’s operation.

Outline of this paper

This paper is organized as follows. Section II presents the
quantum Hall setup and the scattering approach. Section III
describes the demonic action of the nonequilibrium as a ther-
modynamics resource for power production and cooling. It
shows the inadequacies of the usual definitions of efficiency
for such nonequilibrium systems. It divides such systems
into two classes of demonic action that we call “strict” and
“relaxed.” Crucially, Sec. VI defines free-energy efficiencies,
which properly account for the nonequilibrium resources con-
sumed in the thermodynamic process. It then studies these
efficiencies for our quantum Hall device. In Sec. VII, we
show how these efficiencies change under thermalization of
the resource. Finally, Sec. VIII discusses physical constraints
and explores experimentally relevant parameter regimes. Our
conclusions are given in Sec. IX.

II. SETUP AND THEORETICAL APPROACH

A. Basic setup

The conductor we study is a four-terminal mesoscopic
conductor in the quantum Hall regime, subject to a strong
perpendicular magnetic field. Electronic charge and energy
transport takes place along chiral edge states, indicated by
green lines with arrows in Fig. 1.
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In many cases, electron transport can well be understood
in terms of a single-particle picture, see, e.g., Refs. [2,68,69].
Here, this has the advantage that any hidden presence of au-
tonomous feedback [56,70–74] can be excluded as the origin
of the discussed demonic effect. In this regime, transport in
the conductor can be described by a scattering matrix formal-
ism for noninteracting electrons [41]. Then, transport through
the device is determined by the transmission probabilities of
the scattering regions (represented by white dashed areas in
Fig. 1) and by the occupation of the channels incoming from
the terminals. These occupations are given by Fermi functions

fα (E ) = {1 + exp[(E − μα )/kBTα]}−1, (3)

with electrochemical potentials μα and temperatures Tα ,
which can in principle be different in each of the four consid-
ered terminals. Here, we fix the average potential of terminals
1 and 2 as the zero of energy, namely μ1 = μ0 + �μ/2 ≡
�μ/2 and μ2 = μ0 − �μ/2 ≡ −�μ/2 with μ0 ≡ 0. Let us
discuss the properties of the three different regions as pictured
in Fig. 1(a).

1. Resource region

The aim of the resource region is to create a nonequilib-
rium distribution by mixing different equilibrium ones. This
region can hence be interpreted as a single terminal that is
characterized by a nonequilibrium (or nonthermal) state. To
create the wanted nonequilibrium distribution, an appropriate
scatterer has to be introduced in it. The optimal position of
this scatterer depends on the symmetry breaking from the
quantum Hall effect that makes the electron motion chiral.
Fixing the magnetic field, the minimal requirement to create a
nonequilibrium distribution is positioning a scattering region
as indicated in the upper third of Fig. 1(b). We characterize
this scatterer by the transmission probability τneq(E ). It allows
for the mixing of the nonequilibrium distribution. In general,
an energy dependence of τneq(E ) is not strictly required but
can be useful to increase the output power or to facilitate
the realization of the demonic effect. However, in the linear-
response regime, it can be shown that the energy dependence
of τneq(E ), as well as of the other transmission probabilities
introduced in the following, can under certain circumstances
be a necessary condition to have a “demonic action” of
this setup.

In Secs. III and VIII, we will employ different scatterers as
examples. We will consider a quantum point contact (QPC)
whose transmission is a step of width E1 at the threshold
energy E0 [75]:

τQPC(E , E0, E1) = {1 + exp [−2π (E − E0)/E1]}−1. (4)

For the QPC we will assume two limiting cases; one with large
E1, so that τQPC can be treated as constant, and one with small
E1, so that the transmission probability can be treated as a
sharp step:

τQPC(E , E0) = �(E − E0). (5)

We will furthermore consider a quantum dot (qd) represented
by a resonance at ε0 with broadening 	 [76]:

τqd(E , ε0, 	) = 	2/[4(E − ε0)2 + 	2]. (6)

All parameters can be externally tuned as a control knob by
means of gate voltages [77]. When placed in the resource
region, we will call the characteristic energies E0 = Eneq (for
the QPC) or ε0 = εneq (for the quantum dot).

2. Central region

The central region defines the connection point between the
resource region and the region where work is done. We choose
to place a scatterer with an arbitrary transmission probability
τint in this central region. It allows us to fully separate the
two regions of interest by pinching off its transmission. At the
same time, the presence of a partially open scatterer defines
the point at which the created nonequilibrium distribution is
injected into the working substance. The conceptually most
simple interface region for our purposes is an open (or at
least energy-independent) scatterer. In this way we avoid that
it contributes to an additional mixing of a nonequilibrium
distribution, which is external to the resource, or an addi-
tional power production, which cannot clearly be associated
to the working substance. In most of the discussion below
we will hence consider τint = 1. In Sec. II D, we will replace
this simple central region by a region with energy-resolved
detectors and additional terminals acting as temperature and
voltage probes.

3. Working substance

The injected nonequilibrium distribution is to be used
for work production or cooling in the working substance.
Therefore an additional scattering region with transmission
probability τws, is needed, where the injected nonequilibrium
is exploited, before it can equilibrate in the lower part of
the conductor, see the lower left part of Fig. 1(b). Again,
we fix its position based on the choice of the magnetic-field
direction [38]. Also here, as examples for this transmission
probability we will later choose a QPC or a quantum dot,
given by Eqs. (5) and (6), this time with E0 = Ews or ε0 = εws.
These types of junctions have been known for their thermo-
electric properties since long ago [78–84]. Note however, that
even in the working substance, no broken electron-hole sym-
metry is required for the scatterer in order to allow for power
production, as we will show in Sec. VIII. This is in strong
contrast to thermoelectric devices with usual heat baths.

B. Currents and engine output

Having introduced three scattering matrices, we can write
down particle, Iα ≡ I (0)

α , and energy currents, IE
α ≡ I (1)

α , flow-
ing into all reservoirs α,

I (ν)
α = 1

h

∫
dE E ν jα (E ), (7a)

with

j1(E ) = τws(E )[ f̃ (E ) − f1(E )] (7b)

j2(E ) = f1(E ) − f2(E ) + [1 − τws(E )][ f̃ (E ) − f1(E )] (7c)

j3(E ) = τint(E ) f2(E ) − {[1 − τint(E )] − τneq} f3(E )

+ [1 − τint(E )]τneq(E ) f4(E ) (7d)

j4(E ) = τneq(E )[ f3(E ) − f4(E )]. (7e)
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Here, the superscript ν indicates the power with which
the energy E enters the integrals. We have introduced the
nonequilibrium distribution function injected into the working
substance from the central scatterer [i.e., at the magenta circle
in Fig. 1(b)],

f̃ (E ) = τint(E )τneq(E ) f4(E ) + τint(E )[1 − τneq(E )] f3(E )

+ [1 − τint(E )] f2(E ). (8)

Already at this general level, we can make some important
observations. (i) Only in the special case τint(E ) ≡ 1 is the
nonequilibrium distribution exclusively composed by distri-
butions from the upper resource region. While in principle,
the effects to be discussed here do not rely on where the
nonequilibrium distribution is created (this will be shown in
Sec. VIII), we will often choose this special case τint(E ) ≡ 1
to get a clear, intuitive understanding of the role of the dif-
ferent subparts of the system. When fixing τint(E ) ≡ 1, we
furthermore also notice that the nonequilibrium distribution
can fully be exploited for work production or cooling. Other-
wise, a part of it would be dumped into reservoir 3 without
being exploited. (ii) The charge or heat flow expected from
possible voltage and temperature biases in reservoir 2 [see
first contributions to Eq. (7c)] can be reversed when appro-
priately choosing the created nonequilibrium distribution and
the transmission probability τws(E ) at the lower scatterer [see
the last contribution to Eq. (7c)].

With the particle and energy currents written above, we
write the heat currents Jα as

Jα = IE
α − μαIα. (9)

These currents constitute the main observables quantifying the
output of the steady-state engines implemented here. Parti-
cle and energy conservation ensure that 0 = ∑

α Iα = ∑
α IE

α ,
where the sums are over all reservoirs. This gives the first law
of thermodynamics∑

α

Jα +
∑

α

μαIα = 0, (10)

where the first sum is the heat flow into reservoirs and the
second is the power generated (work done per unit time) by
pushing a current against an electrochemical potential. These
currents also always obey the second law of thermodynamics,
see, e.g., Sec. 6.4 of Ref. [2].

When we are interested in electrical power generated in the
working substance, we define it as

P = (μ1 − μ2)I1. (11)

Reference [85] gave a simple upper bound for the power
generated in a usual (thermoelectric) system with hot and cold
heat baths, with temperatures Thot and Tcold. A less simple but
tighter upper bound is [86,87]

Pqb = A0π
2k2

B

h
(Thot − Tcold)2, (12)

where A0 � 0.0321. On the other hand, when the device is op-
erated as a refrigerator, we are interested in the cooling power
Jcold, given by the heat current flowing out of the reservoir
to be cooled. If one is cooling reservoir 1 then Jcold = −J1,
however if one is cooling reservoir 2 then Jcold = −J2. In a

standard refrigerator, the bound on the cooling power, similar
to Eq. (12), is given by [88]

Jqb = π2k2
B

6h
T 2

cold. (13)

Results on cooling and power production in the working sub-
stance exploiting the injected nonequilibrium distribution will
be presented in detail in Sec. III.

C. Conventional efficiencies of power production and cooling

In this section we introduce the three conventional efficien-
cies for three thermodynamic devices; heat engines, standard
refrigerators, and absorption refrigerators. In all cases the
conventional efficiency is a dimensionless ratio of the device’s
desired output to the resource expended by the device. For ex-
ample, if the device is a usual heat engine, the desired output is
work (in our case electrical power), and the resource expended
is the heat in a hot reservoir. The laws of thermodynamics
set upper bounds on these efficiencies. Let us now treat them
one by one, in the context of our four-terminal mesoscopic
conductor.

In a usual heat engine, the performance can be quantified
via a conventional efficiency, given by the ratio between pro-
duced power and heat currents extracted from the resource.
In this case, the resource is assumed to provide no electrical
power, so we ensure that electrical currents flowing from
the top to the bottom region are zero, I3 + I4≡0. Then the
efficiency would correspond to

ηJ = P

−(J3 + J4)
, (14)

see Sec. III A. However, an important remark needs to be
made here. For a nonequilibrium distribution induced by the
resource due to a potential bias, μ3 − μ4, the electronic heat
currents into or out of the terminals contains a Joule heat-
ing contribution, despite I3 + I4 = 0. Consequently, the heat
current through the interface differs from energy current—
something that is not the case if the energy flow is entirely
due to temperature differences. Therefore, the correct defini-
tion for the efficiency in voltage biased devices with particle
exchange is

ηE = P

−(
IE
3 + IE

4

) . (15)

Otherwise, when comparing our device with an engine op-
erated with a usual heat bath, the heat current, J3 + J4,
(including Joule heating) would correspond to an effective
bath with a lower temperature. We will discuss the difference
between these definitions for the conventional efficiency in
Sec. III A.

The well-known bound on the conventional efficiency of
a heat engine in contact with a hot and a cold bath (with
temperatures Thot and Tcold) is the Carnot efficiency, relying
on the laws of thermodynamics,

ηCarnot = 1 − Tcold

Thot
. (16)

However, one cannot straightforwardly associate a temper-
ature with the nonequilibrium resource region. Section II D
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shows how to do this, by measuring the nonequilibrium distri-
bution with a temperature probe.

For a refrigerator, the conventional efficiency is called the
coefficient of performance (COP) and is given by the cooling
power divided by the resource absorbed. A refrigerator can
either use electrical power as a resource (standard refrigerator)
or use heat (absorption refrigerator). We will compare our
device to both of these.

In a standard refrigerator the resource injects electrical
power Pin but supplies no heat, from which the first law of
thermodynamics tells us that the heat flow out of the working
substance equals the power injected, so we have J1 + J2 = Pin.
If the refrigerator extracts a heat Jcold from the cold reservoir
(so if this is reservoir 2, then J2 = −Jcold), then the COP is
given by

COP ≡ Jcold

Pin
= Jcold

−(I3 + I4)δμ
. (17)

The potential difference δμ = μp − μ0 is between the re-
source region and the working substance at μ0. However, μp

is not straightforwardly defined for a nonequilibrium resource.
We define it as that measured by a voltage probe, as discussed
in Sec. II D. The Carnot upper bound on this COP for cooling
induced by electrical work is

COPCarnot = Tcold

Thot − Tcold
. (18)

In contrast, an absorption refrigerator extracts heat Jcold

from one cold terminal by using heat from a hot reservoir; this
is sometimes called cooling by heating. The heat from these
reservoirs is dumped into a reservoir at ambient temperature.
Hence there is no charge current into (or out of) the resource,
meaning that charge is conserved in the working substance;
I1 + I2 ≡ −(I3 + I4) = 0. Then heat flow into the working
substance from the resource equals −(IE

3 + IE
4 ), and the

COP is

COPabs = Jcold

−IE
3 − IE

4

. (19)

For ambient temperature Tamb, its Carnot bound is

COPabs;Carnot = 1 − Tamb/Thot

Tamb/Tcold − 1
. (20)

D. Detectors and probes

To observe the properties of the nonequilibrium distribu-
tion, we now complement the setup in Fig. 1 by two types
of elements. First, we add detectors to read out incoming and
outgoing distributions at the central scatterer, see Fig. 2(a).
With this, we concretely suggest how an experimental test
of the nonequilibrium character of distributions could be
implemented. Second, we add a floating probe contact, see
Fig. 2(b). Such a probe can measure an effective temperature
and electrochemical potential of the incoming nonequilibrium
distribution. We concretely use this model setup to extract the
effective temperatures and electrochemical potentials entering
efficiency definitions. Furthermore, if desired, the probe can
be used to (partially or fully) equilibrate this nonequilibrium
distribution. The elements in Fig. 2 are to be added to the
central region of Fig. 1.

(a) (b)

PL R

FIG. 2. (a) Side-coupled quantum dots as detectors for incom-
ing and outgoing distributions. (b) Floating voltage and temperature
probe, allowing us to (partially) equilibrate the incoming distribution.

1. Side-coupled detector dots

To read out the full distribution functions in the central
region—both that flowing from top to bottom and that flowing
from bottom to top—one can add two side-coupled detector
quantum dots to the setup [51,52] as in Fig. 2(a). The trans-
mission between the side reservoirs and the main conductor
via the quantum dots is taken to have the form τα (E , ε0, 	)
(for α = L,R) as in Eq. (6).

For the particle current in reservoir L we have

IL(ε0) = 1

h

∫
dE τL(E , ε0, 	) [ f̃ (E ) − fL(E )]. (21)

If the transmission through the dot is given by a single sharp
peak in energy centered at energy ε0 (which can be varied with
a gate) with narrow width 	, then

f̃ (ε0) − fL(ε0) � hIL(ε0)

	
. (22)

If the detector’s Fermi distribution fL(E ) is known, one can
get the nonequilibrium distribution f̃ (ε0) by measuring the
current IL(ε0) as a function of ε0. Note that energy resolution
with which one can measure the nonequilibrium distribution
will be limited by 	. The distribution of the upwards propa-
gating edge of the conductor [at the black circle in Fig. 1(b)],
is measured in the same way by the right side reservoir.

2. Floating voltage and temperature probe

In the previous section, we propose experiments to detect
the incoming and outgoing (nonequilibrium) distributions in
the considered conductor. To examine the relevance of the
nonequilibrium distribution to the physics, it is useful to be
able to (partially) force this distribution to equilibrate, without
changing its energy or particle number. This can be done
by attaching a floating voltage and temperature probe to the
conductor, as shown in Fig. 2(b). The probe establishes it-
self at an electrochemical potential μp and temperature Tp

which guarantees that no heat and charge currents are flowing
into/out of the probe contact (p), i.e.,

I (ν)
p = τp

h

∫
dE E ν[ f̃ (E ) − fp(E )] = 0. (23)

Such probes have been used to describe decoherence [89–94];
here we use them to describe the thermalization process. We
have assumed the transmission probability τp is energy in-
dependent to avoid additional thermoelectric effects. When
τp = 1, the probe contact injects an equilibrium distribution
function fp(E ) which carries the same amount of charge and
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energy as the nonequilibrium distribution f̃ (E ). Hence, the
distribution is the same as if interactions between the electrons
in the edge state had redistributed their energy, turning their
nonequilibrium distribution into a thermal one. For 0 < τp <

1, a partial equilibration of the injected distribution takes
place, and it becomes

f̃ (E ) → τp fp(E ) + (1 − τp) f̃ (E ) . (24)

Thus one can experimentally extract the role played by the
nonequilibriumness by tuning τp, see Sec. IV.

Furthermore, this voltage and temperature probe also
measures the effective temperature Tp and electrochemi-
cal potential μp, which one can associate to the incoming
nonequilibrium distribution. We concretely use this to eval-
uate both the conventional efficiencies and their bounds, as
well as the proper free-energy efficiencies, which are deter-
mined by the temperatures and potentials of resource region
and working substance. Such tunnel contacts can also be
used as detectors for the local distribution via noise measure-
ments [95–99].

III. DEMONIC ACTION OF A
NONEQUILIBRIUM RESOURCE

In this section, we demonstrate how a nonequilibrium dis-
tribution, injected from the resource region into the working
substance, can be exploited to produce electrical power or
to cool. We emphasize its properties by first interpreting its
performance in terms of conventional thermodynamic effi-
ciencies for systems driven by power or thermal flows, as
introduced in Sec. II C. This way, we identify two types of
regimes, in which the performance of the engine seemingly
exceeds fundamental bounds. We will later name them the
“strict N-demon” and the “relaxed N-demon.” We refer to
these systems as N-demons for their analogies to Maxwell’s
demon that can apparently violate the second law, when cou-
pled to a working substance.

Since we aim to show the principles of the operation in
this section, we focus on one simple realization of the four-
terminal setup, where both the scatterers in the resource region
and the working substance are given by QPCs with sharp
steplike transmission probabilities, see Eq. (5), as these are
expected to give good energy resolution and at the same time
to provide large currents [100]. Analytical expressions for this
choice of transmission probabilities are given in Appendix A.

To analyze an experimentally feasible setting, we assume
below that the nonequilibrium distribution in the resource
region is created at fixed temperatures T3 and T4. Then, the
chemical potentials μ3 and μ4 can be tuned or can be adjusted
to satisfy conditions on the particle and/or energy currents,
see for example Eqs. (25), (26a), and (26b) below. Note that
this is a choice; another choice would be, e.g., to fix the
chemical potential and temperature of one terminal and tune
those of the other.

A. Steady state power production

We study steady-state electrical power production, in anal-
ogy to a heat engine, by imposing the condition

I3 + I4 = 0. (25)

FIG. 3. Power production in the absence of a charge flow
from the resource region, I3 + I4 = I1 + I2 = 0. (a) Produced power,
(b) total heat current flowing out of the resource region, J3 + J4, and
(c) total heat current flowing out of the working substance, J1 + J2.
For all three panels, we fix T1 = T2 = T3 = T0, but T4 = 1.2T0, as
well as μ4 = −0.4kBT0 �=μ3. (d)–(f) Equivalent to left column with
μ3 = μ4, temperatures T1 = T2 = T0, T3 = 0.9T0, and T4 = 1.2T3. In
all figure panels, we choose Ews = 0 and fix Eneq to fulfill Eq. (25).
The red solid lines indicate where we additionally have IE

3 + IE
4 =

IE
1 + IE

2 = 0 [later identified as a “strict N-demon” condition, see
Eq. (27)]. As a guide for the eye, we show J1 + J2 = 0 (dashed
red line), J3 + J4 = 0 (dashed-dotted red line), and the power P = 0
(dashed black lines).

This condition excludes situations where electrical power is
injected from the resource region, in order to make the con-
figuration as close to a usual heat engine as possible, see the
discussion in Sec. II C.

The produced power is given by Eq. (11) and the results
are shown in Figs. 3(a) and 3(d) as a function of μ1 − μ2

and μ3. Here, μ1 − μ2 is the potential drop against which
a particle current is transported in the working substance.
Tuning the potential in the resource region, μ3, influences the
nonequilibrium distribution that is injected into the working
substance. To eliminate additional thermoelectric contribu-
tions within the working substance, in which we are not
interested here, we fix the temperatures T1 = T2 = T0. We
consider both cases where the variation of μ3 leads to a
potential drop in the resource region (left column) and where
μ3 = μ4 (right column). Furthermore, we fix the step en-
ergy of the QPC transmission of the working substance to
Ews ≡ 0, while Eneq is adjusted for each value of electro-
chemical potentials in order to fulfill condition Eq. (25). We
find extended regions, where positive power is produced in
the working substance. These regions are those between the
two dashed black lines in each panel of Fig. 3. One of the
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dashed black lines trivially corresponds to μ1 = μ2, so the
electronic current does no work, and P = 0. The other dashed
black line marks where the current induced by the work-
ing substance internal chemical potential bias compensates
for the one generated by the nonequilibrium resource. The
power output hence changes sign when crossing that line,
similarly to what occurs at the stall voltage in conventional
thermoelectrics.

Importantly, power can even be produced if the energy
current across the interface between resource region and
working substance equals zero, IE

3 + IE
4 = IE

1 + IE
2 = 0, i.e.,

when both particles and energy are conserved in the working
substance. This is the effect that was previously predicted
in Ref. [26], and which we call the strict N-demon below
(indicated by the solid red lines in all panels of this and
the following figures). Furthermore, we plot the total heat
currents flowing out of the resource region and out of the
working substance, in panels (b),(c) and (e),(f). Indeed these
panels show that the heat currents change sign within the
region of finite power production. Note that this sign change
of energy/heat currents means that the present engine can
do work either by absorbing heat/energy or by releasing it,
while the temperature of the terminals is fixed. This is very
different from usual engines, where heat is absorbed from
a hot bath to do work (or alternatively a cold bath is used
as a resource which is heated up to do work). The origin of
this difference lies in the fact that no meaningful temperature
can be associated to the nonequilibrium resource, which we
exploit here.

However, only in the case without internal bias in the
resource region, μ3 = μ4 (respectively in the working sub-
stance, μ1 = μ2), does zero energy current correspond to
zero heat current. The reason for this is that—even though
the particle current across the interface is fixed to zero by
Eq. (25)—the chemical-work contribution to the heat current,∑

α μαIα , does not vanish, if electrochemical potentials differ
from each other. In the regions between the solid and the
dashed red lines in panels (b) [respectively, between the solid
and the dashed-dotted red lines in panel (c)], the energy cur-
rents and heat currents out of the resource region (respectively
out of the working substance) have opposite signs. The inter-
nal bias in the resource region can lead to Joule heating which
means that heat is not conserved in the resource region. Thus
we cannot assume that the heat flow through the interface is
equal to −(J3 + J4). Instead we can argue that, in analogy
to Eq. (9), the heat flow through the interface is given by
−[IE

3 + IE
4 − μp(I3 + I4)], where μp is the effective potential

of the resource region (as measured by a voltage probe, as
explained in Sec. II D). However as we take I3 + I4 = 0, this
means that the heat flow through the interface into the working
substance is −(IE

3 + IE
4 ).

Comparing the produced power to the energy absorbed
from the resource, yields the conventional efficiency defined
in Eq. (15). The efficiency, compared to the Carnot limit, see
Eq. (16), is displayed in Figs. 4(a) and 4(d). Note that in order
to define the Carnot bound for the conventional efficiency, a
temperature has to be assigned to the distribution incoming
from the resource region. This can be extracted from a probe
(see Sec. II D), leading to ηCarnot = 1 − T0/Tp with the probe
temperature Tp.

FIG. 4. Conventional efficiencies ηE [see Eq. (15)] and ηJ [see
Eq. (14)] with respect to the Carnot bound of the setup producing
power at I3 + I4 = I1 + I2 = 0. A dashed green line shows the region
within which the efficiencies exceed the Carnot limit. The solid red
line indicates where the additional condition IE

3 + IE
4 = IE

1 + IE
2 = 0

is fulfilled. The dashed red line indicates where J3 + J4 = 0. For
panels (a) and (b) we fix T1 = T2 = T3 = T0, but T4 = 1.2T3 and
take μ4 �= μ3 with μ4/(kBT0) = −0.4. For panels (d) and (e) we
take μ3 = μ4, and temperatures T1 = T2 = T0, T3/T0 = 0.9, and T4 =
1.2T3. For the line plots in panels (c) and (f) we take the same
parameter as in the columns above but fix (μ1 − μ2)/kBT0 = −0.02.
The gray region indicates the region in which no power is produced.

The conventional efficiency ηE is larger than the Carnot
efficiency ηCarnot in a large parameter regime (encircled by
the dashed green line). This shows that the engine is not
operated with heat as the only resource, but that the nonequi-
librium character of the incoming distribution is another
resource.

What is more, the efficiency even diverges in some pa-
rameter intervals (on the solid red line between the two
dashed black), because the sum of energy currents vanishes
in the denominator. However this is only part of the reason
for the divergence seen on the solid red line in Figs. 4(a)
and 4(d). The second reason is that a probe will measure the
temperature Tp = T0 in this regime (because the probe must
have the same distribution as terminal 2 if the distributions
at the magenta and black circles in Fig. 1(b) carry equal
particle and energy currents). Thus the Carnot efficiency is
zero on the solid red line. This divergence of ηE combined
with the vanishing of ηCarnot can be seen in the line plots
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in panels (c) and (f) and leads to ηE/ηCarnot → ∞. It means
that our nonequilibrium device produces power even when no
usual heat engine—coupled to equilibrium baths at different
temperatures—would be able to do so.

Finally, we compare to a hypothetical efficiency defined
via heat currents as a resource, see Eq. (14). The results
for ηJ/ηCarnot, as shown in Figs. 4(b) and 4(e), differ from
ηE/ηCarnot when there is an internal potential difference in the
resource. Panel (b) shows that the efficiency ηJ/ηCarnot can
then both be positive and negative in regions, where power is
produced in the working substance. The reason for this is that
the engine does useful work when heat is flowing either out of
or into the resource region, but that heat and energy currents
do not have the same sign. In the region of negative effi-
ciencies ηJ/ηCarnot (blue-green part of the density plot), ηJ is
negative, while ηCarnot is positive. There the resource region is
heated up due to Joule heating (J3 + J4 > 0), while the energy
current is flowing out of it (IE

3 + IE
4 < 0). The heat flow thus

indicates that power production seemingly results from doing
work with a cold bath. Instead, the flow of energy (and the
resulting Carnot efficiency) indicate the opposite. These issues
show that in a nonequilibrium device, it is a delicate task to
identify meaningful resources and the resulting efficiencies.

B. Cooling

We now demonstrate that unexpected effects also appear
when a nonequilibrium distribution is used to enable refrigera-
tion. Here, we consider analogies to two types of refrigerators.
This can be either a standard refrigerator exploiting electrical
power to cool down a cold reservoir, or an absorption refrig-
erator, in which heat is used as a resource for cooling (cooling
by heating). In order to be able to compare to usual machines,
we therefore fix

standard refrigerator: 0 = Pin − (J1 + J2), (26a)

absorption refrigerator: 0 = I3 + I4. (26b)

The origins of these two equalities are explained above
Eqs. (17) and (19), respectively. The first law of thermody-
namics means the first equality is equivalent to saying that
there is no heat flow into (or out of) the nonequilibrium re-
source; Jneq = 0.

We start by analyzing the analog to a standard refrigera-
tor, where we exploit the nonequilibrium distribution injected
from the resource region to cool down reservoir 2, Jcold =
−J2. Figure 5 shows the cooling power, as a function of the
temperature bias between reservoir 1 and 2, and the electro-
chemical potential of reservoir 3. The same principle could be
used to cool terminal 1, instead; see the example of the ab-
sorption refrigerator below. We consider both the case where
the nonequilibrium distribution is created by a potential bias,
μ3 �= μ4 (left column of Fig. 5), or by a temperature bias,
T3 �= T4 (right column of Fig. 5), within the resource region. In
both cases the system is able to cool down the cold reservoir,
reservoir 2, in large parameter intervals, limited by the dashed
line and the condition T1 − T2 = 0. This is even possible in the
absence of an overall charge current from the resource region,
I3 + I4 = 0, which we call a strict N-demon below (indicated
by the solid red line).

FIG. 5. Standard refrigerator: cooling power, Jcold = −J2 and
conventional coefficient of performance with respect to its Carnot
bound, see Eqs. (17) and (18), under the condition given in Eq. (26a)
and at μ1 = μ2 = 0 and T1 = T0. We fix Ews = 0 and adjust Eneq

such that Eq. (26a) is fulfilled. Furthermore we fix in panels (a) and
(b) T3 = T4 = 1.2T0 and μ4/(kBT0) = −0.4 and in panels (c) and
(d) μ3 = μ4 as well as T3 = 0.9T0 and T4 = 1.2T0. The solid red
line marks where the strict demon condition is fulfilled, IE

3 + IE
4 =

I3 + I4 = 0; the black dashed line shows where Jcold = 0; the dashed
green line limits the region where COP � COPCarnot.

The COP of the cooling process, see Eq. (17), contains
an electrochemical potential difference, which takes the form
δμ = μ0 − μp. The effective potential of the resource region,
μp, is extracted from the measurement of a voltage probe, as
explained in Sec. II D.

Panels (b) and (d) of Fig. 5 show that the COP can be larger
than the Carnot bound to the conventional efficiency, given
by Eq. (19). Also here, we even find cases of diverging COP,
which is due to two reasons (similarly to the discussion of the
divergences in the heat engine case). Along the solid red line,
the COP diverges, because the total charge current from the
resource region is zero; at the same time, the electrochemical
potential bias between working substance and resource region
is zero at vanishing charge and energy flow, δμ = μ0 − μp =
0. In this case, the Carnot bound is independent of the effec-
tive temperature of the resource region and is therefore never
suppressed to zero, as long as Tcold = T2 �= 0.

In order to compare to an absorption refrigerator, we fix
the total particle current between resource region and working
substance to zero and use the nonequilibrium distribution to
cool terminal 1. The result for the cooling power Jabs

cold = −J1

is shown in Fig. 6. It shows that also the analog of an ab-
sorption refrigerator can be realized with our nonequilibrium
device, leading to cooling at COPs above the conventional
Carnot bound, see Eqs. (19) and (20). The divergence of the
COP along the solid red line is again due to having IE

3 + IE
4 ≡

0, as well as a vanishing Carnot bound, since Thot ≡ Tp → T0.
Note that the red line, at which both charge and energy cur-
rents through the interface region are zero, is independent of
the temperature bias in the working substance, since we have
here chosen to fix T2 ≡ T0.
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FIG. 6. Absorption refrigerator in the absence of charge currents
from the resource, I3 + I4 = I1 + I2 = 0, and for μ1 = μ2 = 0 and
T2 = T0. We take Ews = 0 and fix Eneq by the condition of vanishing
charge currents. We show the cooling power Jabs

cold = −J1 and the
conventional efficiency with respect to the Carnot bound as defined
in Eqs. (19) and (20). In panels (a) and (b), we fix T3 = T4 = 1.2T0

as well as μ4/(kBT0 ) = −0.8. In panels (c) and (d) we fix T3 =
1.15T0 and T4 = 0.8T0 as well as μ4 = μ3. At the solid red line the
additional condition IE

3 + IE
4 = IE

1 + IE
2 = 0 is fulfilled. The black

dashed line indicates where Jcold = 0; the COP exceeds the Carnot
bound within the dashed green limited region.

IV. TWO CLASSES OF DEMONIC ACTION

The devices discussed in the previous sections exploit a
nonequilibrium distribution to produce power or to cool a
cold reservoir. As a result, the performance of the device as a
heat engine or refrigerator seemingly violates thermodynamic
bounds on efficiency; exceeding the Carnot efficiency and
even diverging (often when the Carnot efficiency itself van-
ishes). These N-demons [26] exploit nonequilibriumness as a
resource, and so they function without or with a reduced in-
flow of power, heat, or energy. Based on the results of Sec. III,
we now identify two different classes of such N-demons: strict
and relaxed.

A. Strict N-demon

We first discuss the strict conditions, introduced for the N-
demon in Ref. [26]. Namely, the device functions even though
the energy and charge currents from the resource region to the
working substance vanish:

Strict N-demon: I3 + I4 = IE
3 + IE

4 ≡ 0. (27)

Part of the puzzle of this N-demon is resolved by noting that
energy currents are conserved separately within the resource
region and the working substance; hence the first law is not
violated. Furthermore, entropy production in the resource re-
gion is different from zero even when heat currents vanish,
thanks to its nonequilibrium character; hence the second law
is not violated either.

The absence of charge and energy currents through the
interface between resource region and working substance

means that usual resources—namely energy and electrical
power—are absent, while the produced power is still finite.
Consequently, the efficiencies of the strict N-demon working
as a heat engine or refrigerator diverge,

ηE , COP, COPabs → ∞. (28)

Charge and energy currents vanish when the effective elec-
trochemical potential and temperature of the resource region
(as measured by the probe) equal μ2 and T2. Interestingly,
the divergence of efficiencies is accompanied by a vanishing
Carnot bound for two devices,

ηCarnot, COPabs;Carnot → 0. (29)

In contrast, the standard refrigerator’s Carnot bound remains
finite for being independent of the resource region.

Note that the strict N-demon, when operating as a heat
engine, also maximally violates the quantum bound on power
production in Eq. (12). This bound equals zero when the
effective temperature of the resource region equals T2 = Tcold,
yet finite power production can occur, see Fig. 3. In contrast,
the bound on cooling, see Eq. (13), is never violated, since it
is independent of the resource region. See also Figs. 5 and 6,
where the cooling power is normalized with respect to the
bound.

B. Relaxed N-demon

The action of the multiterminal device presented in this
paper can be considered “demonic” even when the strict de-
mon conditions of Eq. (27) are relaxed. Indeed, whenever the
performance of the multiterminal device exceeds the Carnot
limit, the second law of thermodynamics might seem to be
broken. The apparent violation is due to the nonequilibrium
character of the resource.

We define the conditions for a relaxed N-demon as

Relaxed
N-demon:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηE

ηCarnot > 1 heat engine

COP
COPCarnot > 1

standard
refrigerator

COPabs

COPabs;Carnot > 1
absorption
refrigerator

. (30)

The breaking of these usual thermodynamic bounds occurs
for the following reasons. (i) The effective temperature and
electrochemical potential (as measured by the probe) are not
a true thermodynamic temperature and potential, because a
nonequilibrium system has no true thermodynamic tempera-
ture and electrochemical potential. This leads to a breakdown
of the Carnot expression for maximum efficiencies. (ii) In the
conventional efficiencies, heat and electrical work figure as
the resources for the engine operation. We have however seen
that here the nonequilibrium state can also serve as a resource,
with a nonvanishing entropy production.

In the following two sections, we will therefore introduce
efficiencies which are more meaningful for the operation of
the studied devices. We will furthermore show how thermal-
ization of the resource suppresses the effect.

155405-9



FATEMEH HAJILOO et al. PHYSICAL REVIEW B 102, 155405 (2020)

V. ENTROPY COEFFICIENT

To capture the entropy change associated with the nonequi-
librium resource (which the conventional efficiencies over-
look) we can define an entropy coefficient χ . It compares
the entropy reduction in the working substance, −Ṡws to the
entropy production in the resource region, Ṡneq, due to the
action of the N-demon, as

χ = − Ṡws

Ṡneq
. (31)

This merits study because it reveals insight into the entropy
balance in the device. However, it neglects the heat or work
supplied by the nonequilibrium resource, so it is not a good
measure of overall efficiency (for that, one should jump to
Sec. VI).

The second law requires for any system that the total en-
tropy production has to be positive, so [101]

Ṡneq + Ṡws � 0. (32)

This sets a bound on the coefficient χ � 1. The coefficient
χ is always positive when the nonequilibrium resource is
consumed (Ṡneq � 0), while power production or cooling of
the cold terminal goes along with Ṡws � 0.

Our simple choice for a nonequilibrium system allows us to
write simple expressions for Ṡneq and Ṡws. We use the Clausius
relations to connect entropy production to heat flows, by using
the fact that all terminals are at equilibrium. We find

χ = −J1/T1 + J2/T2

J3/T3 + J4/T4
. (33)

Figure 7 plots this for the three types of machines. This clearly
demonstrates that power production and cooling of the cold
reservoir do not require a positive entropy coefficient. Only
the strict N-demon always exhibits positive χ because it re-
quires entropy production in the resource region and entropy
reduction in the working substance, even though χ is often
small (see insets in Fig. 7).

In Figs. 7(a), 7(b), 7(e), and 7(f), one can violate the Carnot
bound with negative χ . This corresponds to power production,
while a small amount of entropy is generated in the work-
ing substance (negative numerator in χ ). In contrast, for the
analog of the standard refrigerator in Figs. 7(c) and 7(d), the
violation of the Carnot limit coincides with χ being positive.
We can easily see that this is because the standard refrigera-
tor conditions on heat currents impose that the numerator of
Eq. (33) vanishes at the points where Pin = (1 − T1/T2)J2.

VI. FREE-ENERGY EFFICIENCY

The conventional efficiencies bring out the unusual char-
acter of the nonequilibrium resource compared to well-known
heat engines and refrigerators. At the same time, χ gives in-
sight into the entropy balance. However neither characterizes
the device’s true performance. For this we propose alterna-
tive efficiencies that account for the nonequilibrium resource
that is consumed by the device, in terms of changes in that
nonequilibrium resource’s free energy.

The coefficient χ contained the whole entropy production
in the two device parts. However, to quantify the performance

FIG. 7. Entropy coefficient χ for the heat engine and refriger-
ators, see Eq. (33). The solid red line indicates where the strict
demon condition is fulfilled, IE

3 + IE
4 = I3 + I4 = 0. Panels (a) and

(b) show results for the analog to a heat engine and all parameters are
chosen as in Fig. 3. Panels (c) and (d) show results for the standard
refrigerator and all parameters are chosen as in Fig. 5. Panels (e)
and (f) show results for the absorption refrigerator and all parameters
are chosen as in Fig. 6. Gray indicates that the entropy coefficient is
negative.

of steady-state power production, we are only interested in
the part of the entropy deriving from the chemical work
Ṡpower = μ1I1/T1 + μ2I2/T2. We consider the case where
there is no temperature difference within the working sub-
stance, T1 = T2 ≡ T0, so Ṡpower = (μ1I1 + μ2I2)/T0 = P/T0.
Assume furthermore that the nonequilibrium resource sup-
plies no particles but supplies an energy −(IE

3 + IE
4 ). This is

pure heat and is gauge invariant because [102] I3 + I4 = 0.
Then we can use the second law in Eq. (32), to write

P � T0Ṡneq − (
IE
3 + IE

4

)
. (34)

Now we recall that the Helmholtz free energy (also called the
Helmholtz potential, see, e.g., Secs. 6-1 and 6-2 of Ref. [28])
of the nonequilibrium resource is [103] Fneq = Uneq − T0Sneq,
where Uneq is the total energy of the nonequilibrium resource.
Noting that U̇neq = (IE

3 + IE
4 ), we see that Eq. (34) reduces to

the statement that the upper bound on the power output is the
rate of reduction of this free energy;

P � −Ḟneq. (35)
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As we are only interested in this inequality when the power
output P > 0, we know the right-hand side will be positive,
so we can define a free-energy efficiency

ηfree ≡ P

−Ḟneq
= P

T0Ṡneq − (
IE
3 + IE

4

) � 1. (36)

For P > 0, we can be sure that 0 < ηfree � 1, giving it the
usual properties of an efficiency. Note that energy conser-
vation means that one can replace −(IE

3 + IE
4 ) by (IE

1 + IE
2 )

in this formula, whenever that is more convenient. Let us
now examine this free-energy efficiency, ηfree, in two limiting
cases. Firstly, consider the nonequilibrium resource is a strict
N-demon (supplying no energy and no particles), then ηfree =
P/(T0Ṡneq) = χ , and the inequality tells us that P � T0Ṡneq,
as given below Eq. (1) of Ref. [26]. Secondly, consider the
nonequilibrium resource is hot but not out of equilibrium,
so we have a conventional heat engine. For this T3 = T4 =
Thot > T0, and μ3 = μ4 is chosen to ensure no particle current
through the interface. The resource gives energy −(IE

3 + IE
4 )

(this energy is heat, because the reservoir provides no work)
to the working substance; then Ṡneq = (IE

3 + IE
4 )/Thot. This

means ηfree = P/[−(IE
3 + IE

4 )(1 − T0/Thot)], and the inequal-
ity in Eq. (36) gives the usual Carnot limit on a heat-engine’s
efficiency, cf. Eqs. (15) and (16).

For the refrigerators, the aim is to reduce the entropy
in the cold reservoir, Ṡcooling = Jcold/Tcold. There is no bias
between reservoirs 1 and 2 (μ1 = μ2 = μ0), and heat
is removed from the colder of these two reservoirs at a
rate Jcold and (partially) pushed into the hotter reservoir
of the working substance at rate Jhot. Remember our
sign convention: If reservoir l is being cooled, then we
define Jcold = −Jl . The nonequilibrium resource drives a
current −(I3 + I4) through the interface, thereby injecting an
electrical power Pin = −(μp − μ1)(I3 + I4) into the working
substance. Defining the heat flow into the nonequilibrium
resource as Jneq = (IE

3 + IE
4 ) − μp(I3 + I4), the first law reads

Jhot − Jcold + Jneq = Pin. The second law gives

Jcold

(
Thot

Tcold
− 1

)
� ThotṠneq − Jneq + Pin. (37)

The Helmholtz free energy of the nonequilibrium system
is [104] Fneq = Uneq − ThotSneq. Noting that U̇neq = Jneq − Pin,
we see that Eq. (37) reduces to the statement that the upper
bound on the cooling is given by the rate of reduction of this
free energy;

Jcold

(
Thot

Tcold
− 1

)
� −Ḟneq. (38)

As we are only interested in a situation in which the cold
reservoir is being cooled, Jcold will be positive, and so the
right-hand side of the inequality must be positive as well.
Dividing through by the right-hand side enables us to define
a free-energy coefficient of performance

COPfree ≡ Jcold

−Ḟneq
= Jcold

ThotṠneq − Jneq + Pin
� Tcold

Thot − Tcold
.

(39)

At the same time COPfree is never negative for cooling
(positive Jcold), giving it the usual properties of a COP.

An intriguing alternative formula for COPfree can be found
by eliminating Jneq and Pin using the first law, which reads
Jhot − Jcold + Jneq = Pin. Then

COPfree = Jcold

ThotṠneq + Jhot − Jcold
. (40)

This is harder to interpret than Eq. (39), because it has the
cooling power, Jcold, in both the numerator and denominator,
however it will be useful in experimental situations in which
Jneq is hard to measure.

As for a textbook refrigerator, we take a situation where
the nonequilibrium resource supplies electrical power Pin

but supplies no heat, Jneq = 0. However, it also supplies its
nonequilibriumness as a resource to perform cooling. We take
μ1 = μ2, so no work or cooling is done by the working
substance in the absence of the nonequilibrium resource. Due
to Jneq = 0, the first law gives Jhot = Jcold + Pin, as in a text-
book refrigerator, where Pin = (μp − μ0)(I1 + I2), meaning
that IE

1 + IE
2 − μp(I1 + I2) = 0. Then Eq. (39) reduces to

COPfree = Jcold

ThotṠneq + Pin
� Tcold

Thot − Tcold
. (41)

Let us now examine two limiting cases. Firstly, the nonequi-
librium resource is a strict N-demon (supplying no energy and
no particles), so the only thing it supplies is its nonequilib-
riumness. Then Pin = 0, so COPfree = Jcold/(ThotṠneq), whose
upper bound is (Thot/Tcold − 1)−1. Secondly, the resource is
not out of equilibrium (T3 = T4 = Tp), so Ṡneq = Jneq/Tp = 0
because Jneq = 0. Then COPfree = −Jcold/Pin coinciding with
the usual COP; cf. Eqs. (17) and (18).

Now we turn to absorption refrigerators, where the
nonequilibrium resource supplies no electrical power Pin = 0,
because it supplies no particles I3 + I4 = 0. Instead, it sup-
plies heat −Jneq = −(IE

3 + IE
4 ). We consider cooling reservoir

1 (so J1 = −Jcold) moving the heat to reservoir 2 which is
usually called “ambient” in such case (so T2 = Tamb). The rate
of change of free energy is Ḟneq = IE

3 + IE
4 − TambṠneq. Then

Eq. (39) gives

COPabs;free = Jcold

TambṠneq − (
IE
3 + IE

4

) � Tcold

Tamb − Tcold
, (42)

with COPabs;free always being positive for cooling (posi-
tive Jcold). In the limit of a strict N-demon, COPabs;free =
−Jcold/(TambṠneq). In the opposite limit, where the resource
is not out of equilibrium (μ3 = μ4 and Tp = T3 = T4),
but does supply heat (Tp>Tamb), we have Ṡneq = (IE

3 +
IE
4 )/Tp. Then COPabs;free = Jcold/[ − (IE

3 + IE
4 )(1 − Tamb/Tp)]

coincides with the usual COP for an absorption refrigerator,
cf. Eqs. (19) and (20).

The results for these different free-energy efficiencies are
shown in Fig. 8. The free-energy efficiencies are positive and
can hence serve as useful efficiencies in the whole range of
power production or cooling. Having shown that the free-
energy efficiencies are useful quantities to characterize the
performance of the multiterminal device, we will in the fol-
lowing section propose it to optimize the device with respect
to the choice of scattering probabilities τneq and τws.

In the future, it will be interesting to see if these free-energy
efficiencies are useful for describing Otto engines that achieve
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FIG. 8. Free-energy efficiencies for the heat engine ηfree and
refrigerators COPfree [see Eqs. (36) and (41)]. The solid red line
indicates where the strict demon condition is fulfilled, IE

3 + IE
4 =

I3 + I4 = 0. For panels (a) and (b) all parameters are chosen as in
Fig. 3. For panels (c) and (d), all parameters are chosen as in Fig. 5.
For panels (e) and (f) all parameters are chosen as in Fig. 6.

large efficiencies by exploiting a nonequilibrium reservoir of
squeezed states [21,22].

VII. THERMALIZATION

Here we show that (partial) thermalization of this nonequi-
librium state deteriorates the device operation. We consider
this to be an elegant proof that the effects that we discuss
are due to the nonequilibriumness of the resource. It also
mimics the sort of experiment one would do to separate out
the effects of nonequilibriumness on the operation of a device.
One experimental way to do this would be to make the edge
state between the nonequilibrium resource and the working
substance long enough that the nonequilibrium distribution
thermalizes before it gets to the working substance. Another
experimental possibility would be to use the voltage and tem-
perature probe as introduced in Sec. II D. In either case, we
model the thermalization using the voltage and temperature
probe in Sec. II D.

Consider a probe that completely thermalizes the distribu-
tion, τp = 1. We express I (ν)

3 + I (ν)
4 in terms of the injected

nonequilibrium function, as

I (ν)
3 + I (ν)

4 = 1

h

∫
dEE ν ( f2(E ) − f̃ (E ))

= 1

h

∫
dEE ν ( f2(E ) − fp(E )), (43)

FIG. 9. Power production, conventional efficiency, and free-
energy efficiency for the device working as a heat engine, at I3+I4 =
I1+I2 = 0. Here, a voltage and temperature probe is contacted to the
conductor edge along which the nonequilibrium distribution is sent
from the resource region to the working substance, with different
coupling strengths τp. All other parameters are chosen as in Fig. 3(a).
Black dashed lines indicate the (shrinking) region of finite power
production; dashed green lines indicate the (shrinking) region of
power production under relaxed demon conditions.

where in the second step, we have used the fact that the
nonequilibrium distribution gets replaced by the probe dis-
tribution, f̃ (E ) → fp(E ), which carries the same amount of
charge and energy. Importantly, the demon conditions I (ν)

3 +
I (ν)
4 ≡ 0 can then only be fulfilled for both energy and charge

currents, if f2(E ) = f̃ (E ). This means that I (ν)
2 = −I (ν)

1 al-
ways flows in the direction prescribed by the voltage and/or
temperature difference in the working substance. Hence ther-
malization completely stops the strict N-demon from working;
in this case the N-demon’s only possible effect is to induce
decoherence in the working substance.

Figure 9 shows that a partial thermalization by an incom-
plete coupling to the probe reduces the performance of the
device. We focus on power production in analogy to a heat
engine, showing the produced power, the conventional effi-
ciency, and the free-energy efficiency for the example already
shown in Figs. 3(a) and 4(a). With increasing thermaliza-
tion (increasing coupling to the probe), the region in which
power is produced shrinks, and the produced power is much
smaller. At τp = 1, there is no power production under strict
demon conditions, I3 + I4 = IE

3 + IE
4 ≡ 0. The second row of

Fig. 9 shows that the region in which the relaxed N-demon
produces power shrinks with increasing thermalization. The
conventional efficiency and free-energy efficiency are strongly
suppressed but remain finite in the small region of finite
power production. This clearly shows that the partial thermal-
ization of the incoming nonequilibrium distribution strongly
suppresses both the strict and relaxed demonic effects. When
the nonequilibrium resource is fully thermalized by the
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probe, the device behaves as a three-terminal thermoelec-
tric device with the third terminal in internal equilibrium at
temperature Tp [38].

VIII. EXPLORING THE PARAMETER SPACE OF STRICT
N-DEMON DEVICES

After having shown the general operation of the four-
terminal setup in the previous section, we now analyze in
detail the performance of the device acting as a “strict N-
demon.” We focus in particular on an analysis of how the
properties of the three scattering regions, τws, τneq, and τint,
influence the demonic action.

A. Constraints on transmission probabilities in the
linear-response regime

In the linear-response regime, chemical potential and tem-
perature differences are small compared to kBT . We focus
on the linear-response regime for two reasons. Firstly, it is
possible to achieve analytical results that shed light on the role
of the three scatterers. Secondly, in this regime, one might ex-
pect close similarities to a usual thermoelectric device, since
the nonequilibrium distribution in the resource region only
weakly deviates from a thermal distribution. The response
of conventional three-terminal thermoelectrics relies on the
breaking of electron-hole symmetry by energy-dependent
scatterers; hence we start by checking if this is required in
our four-terminal setup under strict demon conditions.

In the linear-response regime, one can expand the charge
and heat currents in terms of the electric and thermal affinities
Aμ

α = μα/kBT0 with respect to a reference potential μ0 ≡ 0
and AT

α = (Tα − T0)/kBT 2
0 . It is useful to define the following

integrals:

g(ν)
i =

∫
dEE ντi(E )ξ (E ), (44a)

h(ν)
i =

∫
dEE ντint (E )τi(E )ξ (E ), (44b)

q(ν) =
∫

dEE ντws(E )τint (E )τneq(E )ξ (E ), (44c)

where ν = 0, 1, 2 and i ∈ {int,neq,ws}. Here, we have de-
fined ξ (E ) = −kBT0df0(E )/dE , with the Fermi function
f0(E ) with temperature T0 and Fermi energy μ0 = 0.
The coefficients g(1)

i of each scattering region give the
Seebeck and Peltier coefficients of its linear thermoelectric
response [105,106]. With these, we write the expressions for
all particle and energy currents. In the resource region,

I (ν)
3 = 1

h

[
g(ν)

intA
μ
23 + (

g(ν)
neq − h(ν)

neq

)
Aμ

43

+ g(ν+1)
int AT

23 + (
g(ν+1)

neq − h(ν+1)
neq

)
AT

43

]
(45a)

I (ν)
4 = −1

h

[
g(ν)

neqA
μ
43 + g(ν+1)

neq AT
43

]
, (45b)

where Aμ
αβ = Aμ

α − Aμ
β and AT

αβ = AT
α − AT

β . Importantly,

the coefficients g(1)
i = 0, h(1)

i = 0, and q(1) = 0 vanish, if the
transmission probabilities in the respective integrals are en-
ergy independent or if they or their product are electron-hole

symmetric. In particular, this means that if both scattering
regions, with τint and τneq, are either energy-independent or
electron-hole symmetric, the particle currents become de-
coupled from the temperature bias and the energy currents
become decoupled from the potential bias. Hence, the strict
demon conditions, Eq. (27), for electron-hole symmetric τint

and τneq are

g(0)
intA

μ
23 + h(0)

neqA
μ
34 ≡ 0 (46a)

g(2)
intA

T
23 + h(2)

neqAT
34 ≡ 0 (46b)

which come, respectively, from the charge and energy cur-
rents out of the demon region. This shows that when the
electrochemical potentials are tuned to fulfill the demon con-
ditions for given T3 and T4, then either τint or τneq must break
electron-hole symmetry. Otherwise, as Eqs. (46) show, the
demon conditions cannot be adjusted in linear response by
uniquely tuning the electrochemical potentials μ3 and μ4.
See a discussion of the requirements for this specific case in
Appendix B. For the rest of this section, we only require that
h(0)

neq and h(2)
neq are finite in order to obtain sufficient tunability

of the current flows to fulfill the strict demon conditions.
We now focus on a strict N-demon producing power and

therefore assume T1 = T2. Then I1 = −I2, and we find

I2 = 1

h
g(0)

wsA
μ
12 + I2,nonloc (47)

divides into the usual contribution and a term, nonlocally
induced by the nonequilibrium distribution from the resource
region. For electron-hole symmetric transmissions τint and
τneq, the nonlocal part reads:

I2,nonloc = 1

h

(
C00Aμ

32 + C12AT
3

)
, (48)

with Cνν ′ = (q(ν)g(ν ′ )
int − h(ν)

ws h(ν ′ )
neq )/h(ν ′ )

neq . This means that
I2,nonloc = 0 if either τint and τneq, or τint and τws are
simultaneously energy independent. However, there is no
requirement for electron-hole symmetry breaking, in contrast
with a usual thermoelectric device. For the special case of
τint ≡ 1, this has as an implication that both τws and τneq

need to be energy-dependent in the linear-response regime.
In nonlinear response, these constraints are partially lifted as
seen in Secs. VIII B and VIII C.

B. Minimal energy dependence in the nonlinear regime

In the nonlinear regime, for any type of device, the de-
monic effect also requires a minimal energy dependence of
the transmission probabilities. The strict demon conditions,
I (ν)
3 + I (ν)

4 = 0, lead to∫
dEE ντint(E )[ f2(E ) − f3(E )]

=
∫

dEE ντneq(E )τint(E )[ f4(E ) − f3(E )]. (49)

This means that the strict demon conditions can be nontriv-
ially fulfilled, even if the transmission probabilities τneq, τint

are energy independent. However, if the transmission prob-
ability of the working substance is energy independent—for
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arbitrary transmission probabilities τneq, τint—we find the fol-
lowing. Plugging the expressions obtained from the strict
demon condition, Eq. (49), and for f̃ (E ), Eq. (8), into
Eq. (7b), gives

I (ν)
1 = τws

h

∫
dEE ν[ f2(E ) − f1(E )] . (50)

These charge and energy currents always flow into the di-
rection imposed by the voltage and temperature bias in the
working substance. This means that to perform work with
a nonequilibrium distribution under strict demon conditions,
one requires the transmission probability of the scatterer in
the working substance to be energy dependent. However, it is
not required that this breaks the electron-hole symmetry of the
transmission.

C. Different device realizations

Now we turn to specific implementations of the scatterers
using QPCs or quantum dots. We focus on the device pro-
ducing electrical power under strict demon conditions. We
consider the most easily accessible experimental regime, in
which all reservoirs except one are at the same temperature,
T1 = T2 = T3 �= T4, as in Figs. 3(a), 4(a), and 8(a). The bias
in the resource region μ3 �= μ4 then ensures the strict demon
conditions.

We analyze the produced power, as well as the free-energy
efficiency defined in Eq. (36). We note that under strict de-
mon conditions and for T1 = T2, so ηfree equals the entropy
coefficient χ .

1. Both scatterers defined by QPCs

We start with both scatterers, that in the resource region
and that in the working substance, being QPCs. The analysis
in Sec. III fixed Ews = 0 and adapted Eneq in order to fulfill
the heat engine condition of zero energy currents between
resource region and working substance. Here, instead, we
adapt μ3 and μ4 to fulfill the strict demon conditions and
analyze the device’s performance as a function of the scatterer
characteristics.

The results are shown in Figs. 10(a) and 10(b) for the
QPC transmissions assumed to be described by sharp steps,
cf. Eq. (5). The power production is optimal when both
characteristic energies are chosen to be approximately equal,
Eneq � Ews. This optimal case is similar to a trivial realization
of the demon situation, where the part of the distribution
injected from terminal 3 ends up in terminal 2, while the
part of the nonequilibrium distribution injected from terminal
4 ends up in 1. However, this is not a requirement for the
device to function. The power production is largest when the
step energies are low with respect to the mean potential in
the working substance (as long as the strict demon conditions
can be fulfilled). Similar to what is expected from usual heat
engines, the efficiency gets larger with suppressed power pro-
duction. The efficiency also has its maximum in the vicinity
of Eneq � Ews, but for Eneq, Ews � 0.

The device still functions when the transmission of the
QPC in the resource region is so smooth that its energy depen-
dence can be fully neglected, see Figs. 10(c) and 10(d). In this
case the intuitive picture of dividing a distribution into parts

FIG. 10. Power production under strict demon conditions when
both scatterers are QPCs. In the gray region no power is pro-
duced; in the white region the demon conditions cannot be satisfied.
(a),(b) Power production and free-energy efficiency for τneq(E ) =
τQPC(E , Eneq) and τws(E ) = τQPC(E , Ews); we fix T1 = T2 = T3 = T0.
The same quantities are shown in (c) and (d) for τneq(E ) → τneq and
τws = τQPC(E , Ews); we fix T1 = T2 = T0, T3 = 0.9T0 and T4 = 1.2T0.
For all plots (μ1 − μ2)/(kBT0) = −0.05 to ensure large power pro-
duction, and μ3 �= μ4 are fixed by the strict demon conditions.

does not hold any longer, as mentioned above. Interestingly,
the regimes of large power production and free-energy effi-
ciency do then coincide at very weak transmissions τneq 	 1.
Note that the maximum efficiencies that can be reached here
are by an order of magnitude smaller compared to the QPC
with a sharp transmission step in the resource region. In other
words, a larger amount of entropy is produced in the resource
region if the mixing is not energy-selective.

Overall, the plots in Fig. 10 show that both the power pro-
duction and the free-energy efficiencies are generally rather
low under strict demon conditions. The main advantage from
a device point of view rather lies in the fact that power pro-
duction goes along with an entropy reduction in the working
substance. The entropy production, localized in the resource
region, is well separated from the part of the device where the
work is done.

2. Both scatterers defined by quantum dots

Here we consider that both scatterers are quantum dots
with Lorentzian-shaped transmissions, as given by Eq. (6).
To limit the parameter space’s size, we take both quantum
dots to have tunnel coupling 	, and Fig. 11 shows the ef-
fect of varying 	. The strict demon conditions restrict power
production to specific parameter regions, and the plots show
how intricately the shape of these regions depends on the
parameters of the scatterers.

Similar to quantum dot thermoelectrics [107], the effi-
ciency is largest when the transmission probability is given
by a sharp resonance. In contrast, the power production in-
creases with increasing broadening of the resonance. The
regions of power production under strict demon conditions are
very limited for sharp resonances and become more extended
when the resonances broaden. There is however one important
difference from usual thermoelectric devices: Here, power
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FIG. 11. (a)–(c) Power production and (d)–(f) free-energy effi-
ciency under strict demon conditions when both scatterers are quan-
tum dots with τneq(E ) = τqd(E , εneq, 	) and τws(E ) = τqd(E , εws, 	),
for different 	s. In the gray region no power is produced; in the white
region the demon conditions cannot be satisfied. We fix T1 = T2 =
T3 = T0, T4 = 1.2T0, and tune (μ1 − μ2 )/(kBT0) = −0.05 to ensure
large power production, with μ3 �= μ4 fixed by the strict demon
conditions.

production is possible, even if the level position of the dot in
the working substance is at the electron-hole symmetric point,
εws = 0, see also the discussion in Secs. VIII A and VIII B.

In Fig. 11, we have μ1 − μ2 = −0.05kBT0. However, the
power production is the same if one simultaneously changes
the sign of εws, εneq and μ1 − μ2.

3. Device with quantum dot and QPC

Obviously, the type of scatterer used in the resource region
for mixing the nonequilibrium does not have to be the same
as the one used in the working substance. In possible device
applications, one might even simply get a nonequilibrium
distribution as a “waste” from some other operation. In this
case only the working substance can be designed to optimize
the power production.

Here we take one of the scatterers to be a QPC with a sharp
steplike transmission while the other one is a quantum dot
with a finite broadening 	 = 0.5kBT0. The goal is to determine
which one is best for the resource region and which is best for
the working substance.

Figures 12(a) and 12(b) show the case with a quantum dot
in the resource region and a sharp-step QPC in the work-
ing substance. If the level of the quantum dot is above the
average electrochemical potential of the working substance,
then power production is possible only if the step in the QPC
transmission lies above εneq. The opposite applies for nega-
tive characteristic energies. Both the power production and
efficiency are very small, however the regions of maximum
power production and maximum efficiencies can now be made
to overlap in large regions.

Figures 12(c) and 12(d) show the results for a QPC placed
in the resource region and a quantum dot in the working
substance. In this case, the dot level εws always needs to be
below the step energy of the QPC, Eneq. The situation looks
otherwise rather similar to the case of QPCs only, where large
power and large efficiencies are realized in opposing parame-
ter regimes close to εws � Eneq. While the power production is

FIG. 12. Power production and free-energy efficiency under
strict demon conditions where scatterers are a quantum dot or a
QPC. (a),(b) τneq(E ) = τqd(E , εneq, 	) and τws(E ) = τQPC(E , Ews).
(c),(d) τneq(E ) = τQPC(E , Eneq) and τws(E ) = τqd(E , εws, 	). In the
gray region, no power is produced; in the white region the strict de-
mon conditions cannot be satisfied. We fix T1 = T2 = T3 = T0, T4 =
1.2T0 and 	/(kBT0 ) = 0.5. We tune (μ1 − μ2)/(kBT0 ) = −0.01 to
ensure large power production, with μ3 �= μ4 fixed by the strict
demon conditions.

of similar size compared to the “swapped” case, the efficiency
is increased by more than a factor of 2 compared to panel (b).

IX. CONCLUSIONS

We have analyzed a multiterminal quantum Hall setup,
which exploits the nonequilibrium distribution created in one
part of the device (the resource region) to produce power
or to cool a reservoir in another part of the device (the
working substance). We go beyond the N-demon proposed in
our Ref. [26], which operated in the absence of charge and
energy currents between the resource region and the work-
ing substance (we now call this a “strict N-demon”). Here,
we consider situations in which the resource and working
substance can exchange energy or particles, calling this a
“relaxed N-demon”. There we find the nonequilibrium char-
acter of the resource induces conventional efficiencies beyond
the Carnot limit. The reason for this is that the nonequilibri-
umness (neglected in conventional definitions of efficiency)
should be considered as a resource. Thus here we propose
and investigate “free-energy efficiencies,” based on the idea
that a free energy change for the nonequilibrium resource
is a comprehensive method of characterizing all resources
consumed (heat, power, and nonequilibriumness).

We have studied this physics theoretically in a four-
terminal setup, for a broad range of parameters. We have
shown that adding processes that destroy the nonequilibrium
character of the injected distribution (such as thermalization
by a voltage and temperature probe) destroys the demonic
effects. The free-energy efficiencies have allowed us to an-
alyze the performance of the device in a broad range of
parameter regimes that are relevant for future experiments
in quantum Hall devices. At the same time, we anticipate
that our free-energy efficiencies could equally describe other
nonequilibrium electronic and optical devices.
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Over recent years, works on three-terminal systems (in-
troduced in Refs. [57,108,109] and explored experimentally
in Refs. [58,60,110]) have addressed definitions of effi-
ciencies. The correct choice of definition is difficult in
situations where there are either multiple inputs (e.g., mul-
tiple heat sources) [63,64] or multiple outputs (a combination
of power production and cooling [65], multiple power
outputs [30,66,67]), or more general hybrid thermal ma-
chines [111]. We suspect that the free energy efficiency used
in the present work could be adapted to be a good measure of
efficiencies in such situations as well.

Note added. Recently, we became aware of a work [112]
which addressed a similar model and introduced efficiencies
like in our Sec. VI. Shortly after this work was submitted,
Ref. [113] appeared discussing the same physics but in a four-
terminal phonon-electron system.
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APPENDIX A: USEFUL INTEGRALS

In the case where the scatterer is realized by a QPC and the
transmission coefficients are given by a sharp step functions,
τQPC = �(E − E0), the charge and heat currents are linear
combinations of integrals of the form

I (ν)
α,β (E0) =

∫ ∞

E0

dEE ν
(

fα (E ) − fβ (E )
)
. (A1)

Evaluated analytically, the result can be written as two terms:
I (ν)

α,β (E0) = I (ν)
α (E0) − I (ν)

β (E0), where

I (0)
α (E0) = I (0)

α,open + kBTα ln(1 + exα−yα )

I (1)
α (E0) = I (1)

α,open + (kBTα )2[xα ln(1 + exα−yα )

+ Li2(−exα−yα )],

with xα = E0/kBTα and yα = μα/kBTα , and the dilogarithm
Li2(x) = ∑∞

k=1 xk/k2. Here, I (ν)
α (E0) and I (ν)

β (E0) are just
convenient abbreviations for expressions found when eval-
uating the full Eq. (A1); they are not to be understood as
the result of Eq. (A1) with one Fermi function only, which
would possibly not converge. If the channel is fully open (if

E0 → −∞), one recovers:

I (0)
α,open = μαI (1)

α,open = −(kBTα )2[Li2(−eyα ) + Li2(−e−yα )].

These analytical expressions have been employed to produce
the data for plots shown in Figs. 3–10.

APPENDIX B: LINEAR RESPONSE FOR FIXED
TEMPERATURES

Section VIII A showed that if τint or τneq are both electron-
hole symmetric, then the demon conditions can generally not
be fulfilled by tuning the electrochemical potentials of the re-
source region, μ3 and μ4, only. Thus we study the constraints
on the scatterers in a situation where tuning of μ3 and μ4

allows us to fulfill the demon conditions in this Appendix.

1. Three independent scatterers

Hence, assuming that either τint or τneq are not electron-
hole symmetric, we solve Eq. (27) and replace the obtained
chemical potential affinities Aμ

3 and Aμ
4 in the expression

for the current in terminal 2. We then get for the nonlocal
contribution to the current

I2,nonloc = 1

h

[
(Y (1) − Z (1) )AT

3 + Z (1)AT
4

]

+ 1

h

{[
Y (0)

(
h(1)

neqX (1)
neq − X (2)

neqh(0)
neq

)

− Z (0)
(
g(1)

int X
(1)
neq − X (2)

neqg(0)
int

)]
AT

3

+ [
Y (0)

((
h(1)

neq

)2 − h(2)
neqh(0)

neq

)

− Z (0)(g(1)
int h

(1)
neq − h(2)

neqg(0)
int

)]
AT

4

} 1

g(1)
int h

(0)
neq − g(0)

int h
(1)
neq

.

(B1)

This only depends on the temperature bias in the resource
region. The first term on the right-hand side of Eq. (B1) is
the direct response due to the temperature differences in the
resource region. The second one derives from the chemical
potential contribution under strict demon conditions. Here
we have defined X (ν)

i = g(ν)
int − h(ν)

i , Y (ν) = g(ν)
int − h(ν)

ws , and
Z (ν) = h(ν)

neq − q(ν). Despite its lengthy expression, we see the
requirements for a demonic effect. At least τws or τint must be
energy dependent. Otherwise, I2,nonloc = 0. This is surprising;
it means that the working substance needs not be a ther-
moelectric conductor, so long as the interface is. Hence, the
minimal requirement is that electron-hole symmetry is broken
at the interface, even if τneq and τws are constant. In that case,
we get

I2,nonloc = 1 − τws

h
g(1)

int

[
(1 − τneq)AT

3 + τneqAT
4

]
. (B2)

Therefore terminal 4 can be disconnected, with the nonequi-
librium distribution being composed by the mixing of f2 and
f3 at the interface only. This allows for a simpler experimental
setup with only three terminals. However, it is of less interest,
because the resource includes part of the working substance.

155405-16



QUANTIFYING NONEQUILIBRIUM THERMODYNAMIC … PHYSICAL REVIEW B 102, 155405 (2020)

2. Transparent interface

Let us now consider the case where τint = 1 such that f̃ (E )
only depends on the resource reservoirs. Then the strict demon
conditions read:

g(0)
0 Aμ

23 + g(0)
neqA

μ
34 = g(1)

neq

(
AT

4 − AT
3

)
(B3)

g(1)
neqA

μ
34 = g(2)

0 AT
3 + g(2)

neq

(
AT

4 − AT
3

)
, (B4)

where g(ν)
0 are obtained from Eq. (44a) with τi ≡ 1. A thermo-

electric response of τneq (i.e., having g(1)
neq �= 0) allows there

to be values of μ3 and μ4 that satisfy the demon conditions
for a given set of temperatures. This emphasizes the need for
the nonequilibrium distribution to break electron-hole sym-
metry. This applies in the linear regime due to the symmetry
of the energy derivative of the Fermi function in Eq. (44b).
As shown in Sec. VIII C, the energy dependence of τneq is
not required in the nonlinear regime. The current can be

written as

I2,nonloc = 1

h
Z (1)AT

43

− 1/h

g(0)
0 g(1)

neq

{[(
g(1)

neq

)2
Y (0) + g(2)

neqR
]
AT

43 + g(2)
0 RAT

3

}
,

(B5)

where R = g(0)
wsg(0)

neq − g(0)
0 q(0). Here a constant τws makes R =

0, Y (0) = (1 − τws)g(0)
0 , and Z (1) = (1 − τws)g(1)

neq, resulting in
I2,nonloc = 0. This means that when the interface is transparent,
the resource and the working substance must be thermoelec-
tric systems separately.

Note that the opposite is not true: A τws that is energy
dependent but does not break electron-hole symmetry gives
a finite “demonic” response, in general—but no conventional
thermoelectric effect. This is the case, for instance, of a quan-
tum dot whose resonance is aligned with μ1, as discussed in
Sec. VIII C.
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