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Abstract. Local features e.g . SIFT and its affine and learned vari-
ants provide region-to-region rather than point-to-point correspondences.
This has recently been exploited to create new minimal solvers for clas-
sical problems such as homography, essential and fundamental matrix
estimation. The main advantage of such solvers is that their sample
size is smaller, e.g ., only two instead of four matches are required to
estimate a homography. Works proposing such solvers often claim a sig-
nificant improvement in run-time thanks to fewer RANSAC iterations.
We show that this argument is not valid in practice if the solvers are
used naively. To overcome this, we propose guidelines for effective use
of region-to-region matches in the course of a full model estimation
pipeline. We propose a method for refining the local feature geometries
by symmetric intensity-based matching, combine uncertainty propaga-
tion inside RANSAC with preemptive model verification, show a gen-
eral scheme for computing uncertainty of minimal solvers results, and
adapt the sample cheirality check for homography estimation. Our exper-
iments show that affine solvers can achieve accuracy comparable to point-
based solvers at faster run-times when following our guidelines. We make
code available at https://github.com/danini/affine-correspondences-for-
camera-geometry.

1 Introduction

Estimating the geometric relationship between two images, such as homography
or the epipolar geometry, is a fundamental step in computer vision approaches
such as Structure-from-Motion [50], Multi-View Stereo [51], and SLAM [41].
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58621-8 42) contains supplementary material, which is
available to authorized users.
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Traditionally, geometric relations are estimated from point correspondences
(PCs) between the two images [27,42]. This ignores that correspondences are
often rather established between image regions than between individual points
to which the descriptors are finally often assigned. These regions, i.e. patches
extracted around keypoints found by detectors such as DoG [31] or MSER [34],
are oriented and have a specified size. Thus, they provide an affine transformation
mapping feature regions to each other for each match [31,44].

Many works [3–5,8,16,24,25,29,43,45,48] used this additional information
provided by affine correspondences (ACs), i.e., region-to-region matches, to
design minimal solvers for camera geometry estimation. As each correspondence
carries more information, such solvers require fewer matches than their tradi-
tional point-based counterparts. For example, only three affine correspondences
are required to estimate the fundamental matrix [8] compared to seven point cor-
respondences [27]. This increases the probability of drawing an all-inlier sample,
thus decreasing the required number of RANSAC [17] iterations. Also, ACs are
known to be more robust against view changes than point correspondences [38].

In terms of noise on the measurements, affine solvers are affected differently
than their point-based counterparts. If the points are well-spread in the images,
the amount of noise is small compared to the distances between the points. In
this case, the influence of the noise on the solution computed by a minimal
solver is relatively small. In contrast, the comparatively small regions around
the keypoints that define the affine features are much more affected by the same
level of noise. As such, we observe that affine correspondence-based solvers are
significantly less accurate than point correspondence-based ones if used naively.
Yet, when explicitly modelling the impact of noise, we observe that affine solvers
can achieve a similar level of accuracy as classical approaches while offering faster
run-times. Based on our observations, we provide a practical guide for making
affine correspondences work well in camera geometry computation.

Contribution. (1) We demonstrate how to use affine solvers to obtain accu-
rate results at faster RANSAC run-times than achieved by pure point-based
solvers. (2) We present strategies for all parts of the camera geometry estima-
tion pipeline designed to improve the performance of affine solvers. This includes
the refinement of the affinities defined by the features, rejection of samples based
on cheirality checks, uncertainty propagation to detect and reject models that are
too uncertain, and the importance of local optimization. (3) Through detailed
experiments, we evaluate the impact of each strategy on the overall performance
of affine solvers, both in terms of accuracy and run-time, showing that affine
solvers can achieve a similar or higher accuracy than point-based approaches at
faster run-times. These experiments validate our guidelines. (4) We make various
technical contributions, such as a novel method for refining affine correspondence
based on image intensity; a new minimal solver for fundamental matrix estima-
tion; a strategy for combining the SPRT [11] test with uncertainty propagation
for rejecting models early; the adaptation of the sample cheirality test, which
is often used for point-based homography estimation, to affine features, and a
general scheme for deriving covariance matrices for minimal solvers.
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2 Related Work

Our guide to best use affine correspondences for camera geometry estimation
problems analyzes the individual stages of the pipeline leading from matches to
transformation estimates. The following reviews prior work for each stage.

Affine features are described by a point correspondence and a 2 × 2 linear
transformation. For obtaining them, one can apply one of the traditional affine-
covariant feature detectors, thoroughly surveyed in [37], such as MSER, Hessian-
Affine, or Harris-Affine detectors. An alternative way to acquiring affine features
is via view-synthesizing, as done, e.g ., by Affine-SIFT [40], and MODS [39] or
by learning-based approaches, e.g ., Hes-Aff-Net [38], which obtains affine regions
by running CNN-based shape regression on Hessian keypoints.

Matching Affine Regions. Given the noise in the parameters of the regions
around affine matches, a natural approach to good estimation is to use high pre-
cision least squares matching (LSM) for refining affine correspondences [1,18,33].
Similar to template matching via cross correlation, a small patch from one image
is located within a larger region in a second image. While arbitrary geometric
and radiometric models are possible, practical approaches mostly consider affine
transformations. As a maximum likelihood estimator, LSM provides the covari-
ance matrix of the estimated parameters, the Cramer-Rao bound, reaching stan-
dard deviations for parallaxes down to below 1/100 pixel [26]. Intensity-based
refinement has been used [16,48] for pose estimation. Yet, no analysis on the
accuracy of the derived uncertainty is known and a symmetric formulation of
the problem is missing so far. In this paper, we close this gap by providing both.

Affine solvers use ACs for geometric model estimation. Bentolila and
Francos [8] proposed a method for estimating the epipolar geometry between
two views using three ACs by interpreting the problem via conic constraints.
Perdoch et al. [43] proposed two techniques for approximating the pose based on
two and three matches by converting each AC to three PCs and applying stan-
dard estimation techniques. Raposo et al. [48] proposed a solution for essential
matrix estimation from two ACs. Baráth et al. [3,5] showed that the relationship
between ACs and epipolar geometry is linear and geometrically interpretable.
Eichhardt et al. [16] proposed a method that uses two ACs for relative pose
estimation based on general central-projective views. Similarly, [24,25] proposed
minimal solutions for relative pose from a single affine correspondence when the
camera is mounted to a moving vehicle. Homographies can also be estimated from
two ACs as first shown by Köser [4,29]. Pritts et al. [45] used affine features for
simultaneous estimation of affine image rectification and lens distortion.

Uncertainty analysis of image data provides several approaches useful
for our task. Variances or covariance matrices are often used to model the uncer-
tainty of the input parameters, i.e., image intensities, coordinates of keypoints,
and affine parameters. Assuming an ideal camera with a linear transfer function,
the variance of the image noise increases linearly with the intensity [15,54]. In
practice, the complexity of the internal camera processing requires an estimate of
the variance function σ2

n(I) from the given images [19]. The accuracy of keypoint
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coordinates usually lies in the order of the rounding error, i.e., 1/
√

12 ≈ 0.3 pix-
els. We exploit here the uncertainty of the image intensities and keypoints for
deriving realistic covariance matrices of the affine correspondences.

Algorithm 1. Robust model estimation pipeline with ACs
Require: I1, I2 – images
1: A ← DetectACs(I1, I2)� Sect. 4.1, default : SIFT desc. [32], DoG shape adapt. [31]

2: ̂A ← RefineACs(A) � Sec. 3.2, default : symmetric LSM refinement
3: θ∗, q∗ ← 0, 0 � Best model and its quality
4: while ¬Terminate do � Robust estimation, default : GC-RANSAC [6]

5: S ← Sample( ̂A) � default : PROSAC sampler [10]
6: if ¬ TestSample(S) then � Sample degeneracy and cheirality tests, Sec. 3.4
7: continue

8: θ ← ModelEstimation(S) � default : F – Sec. 3.3, E – [5], H – [4]
9: if ¬ TestModel(θ) then � default : tests from USAC [46]

10: continue

11: if ¬ Preemption(θ) then � Sec. 3.5, default : SPRT [11] + uncertainty test
12: continue

13: q ← Validate(θ, ̂A) � Model quality calculation, default : MSAC score [55]
14: if q > q∗ then
15: q∗, θ∗ ← q, θ
16: θ′ ← LocalOptimization(θ, ̂A) � note: only PCs are used from the ACs
17: if ¬ TestModel(θ′) then � default : tests from USAC [46]
18: continue

19: q′ ← Validate(θ′, ̂A)� Model quality calculation, default : MSAC score [55]
20: if q′ > q∗ then
21: q∗, θ∗ ← q′, θ′

Propagation of input uncertainty to model parameters through the estima-
tion depends on the model being estimated. The uncertainty of a homography
estimated from four or more points has been based on the SVD [13,47] and Lie
groups [7]. The uncertainty of an estimated fundamental matrix has been also
based on the SVD [53], but also on minimal representations [14]. Finally, the
uncertainty for essential matrices has been derived using a minimal represen-
tation [21]. As far as we know, the propagation for affine solvers has not been
presented before, and there was no general scheme for deriving covariance matri-
ces for the solutions of minimal solvers. In this paper, we provide an efficient and
general scheme and the uncertainty propagation for all minimal solvers used.

3 A Practical Guide to Using Affine Features

As argued in Sect. 1, and shown experimentally in Sect. 4.1, using ACs instead
of point correspondences (PCs) leads to minimal solvers with smaller sample
sizes but also to less accurate results. In the following, we analyze the individual
stages of a classical matching pipeline and discuss how state-of-the-art results
can be obtained with ACs. The pipeline is summarized in Algorithm 1.
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3.1 Definition of Affine Correspondences

Affine correspondences are defined in this paper as

AC : {y0,z0,
hA} with hA =

[
A c
0T 1

]
(1)

where the keypoint coordinates in the left and the right image are y0, and
z0, and the local affinity is A = A2A

−1
1 , e.g . derived from the affine frames

A1 and A2 representing the affine shape of the underlying image region. The
matching and refinement of the affine region correspondences, presented in the
next section, refers to the homogeneous matrix hA, specifically the translation
vector c, initially 0, and the affinity matrix A in (1).

Fig. 1. Left: Relations between two image patches g(y) (blue) and h(h) (green) and
the mean patch f(x) (which is the black within the red region). The two patches g
and h are related by geometric B and a radiometric S affinities. The correspondence is
established by patch f , lying in the middle between g and h. We choose the maximum
square (black), i.e. all the pixels in g and h which map into the black square of the
reference image f . Right: The inlier ratio (vertical) of 100k homographies from real
scenes as a function of the trace of their covariance matrices (horizontal). This shows
that uncertain models (on right) generate small numbers of inliers. We use this to reject
uncertain models.

3.2 Matching and Refining Affine Correspondences

For refining the ACs, we propose an intensity-based matching procedure which
(i) is symmetric and provides (ii) a statistic for the coherence between the data
and the model and (iii) a covariance matrix for the estimates of the parameters.
Let the two image windows in the two images be g(y) and h(z). We assume,
both windows are noisy observations of an unknown underlying signal f(x), with
individual geometric distortion, brightness, and contrast. We want to find the
geometric distortion z = A(y) and the radiometric distortion h = R(g) = pg+q.
Classical matching methods assume the geometric and radiometric distortion
of one of the two windows is zero, e.g . g(y) = f(x), with y = x. We break
this asymmetry by placing the unknown signal f(x) in the middle between the
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observed signals g and h: g(y)
S,B−→ f(x)

S,B−→ h(z) leading to R = S2 and
A = B2. Assuming affinities for the geometric and radiometric distortions, the
model is shown in Fig. 1(left).

The geometric and the radiometric models are

x = By + b , z = Bx + b and f = sg + t , h = sf + t. (2)

In the following, we collect the eight unknown parameters of the two affinities
in a single vector θ = [b11, b21, b12, b22, b1, b2, s, t]T.

Now, we assume the intensities g and h to be noisy with variances σn(g)
and σm(h) depending on g and h. Hence, in an ML-approach, we minimize the
weighted sum Ω(θ, f) =

∑
j n2

j (θ, f)/σ2
nj

+
∑

k m2
k(θ, f)/σ2

mk
w.r.t. the unknown

parameters θ and f , where the residuals are nj(θ, f) = gj−s−1
(
f

(
Byj + b

) − t
)

and mk(θ, f) = hk − (
sf

(
B−1(zk − b)

)
+ t

)
. Since the number of intensities in

the unknown signal f is quite large, we solve this problem by fixing one group of
parameters of f and θ, and solving for the other. The estimated unknown func-
tion is the weighted mean of functions g and h transformed into the coordinate
system x of f . The covariance matrix Σ̂α̂α̂ of the sought affinity is finally derived
by variance propagation from A = B2. The standard deviations of the estimated
affinity Â and shift ĉ are below 1% and 0.1 pixels, except for very small scales.
Moreover, for the window size M × M , the standard deviations decrease with
on average with M2 and M , respectively (see Supplementary Material).

3.3 Solvers Using Affine Correspondences

In this paper we consider three important camera geometry problems: estimating
planar homography, and two cases of estimating relative pose of two cameras:
uncalibrated and calibrated cameras. We also include the semi-calibrated case,
i.e. unknown focal length, in the supplementary material.

Homography from 1AC + 1PC: The problem of estimating a planar homog-
raphy H ∈ R

3×3 is well-studied with simple linear solutions from point and/or
affine correspondences. The homography H has eight degrees of freedom. Since
each PC gives two linear constraints on H and each AC gives six linear constraints
on H, the minimal number of correspondences necessary to estimate the unknown
homography is either 4PC or 1AC+1PC. Both the well-known 4PC [27] and the
1AC+1PC [4,29] solvers are solving a system of eight linear equations in nine
unknowns and are therefore equivalent in terms of efficiency.

Fundamental Matrix from 2AC + 1PC: The problem of estimating the rel-
ative pose of two uncalibrated cameras, i.e., estimating the fundamental matrix
F ∈ R

3×3, has a well-known 7PC solver [27]. The fundamental matrix F has
seven degrees of freedom, since it is a 3 × 3 singular matrix, i.e., det(F) = 0.
The well-known epipolar constraint gives one linear constraint on F for each PC.
We propose a solver for estimating the unknown F using the linear constraints
proposed in [3]. Here, we briefly describe this new 2AC+1PC solver.
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Each AC gives three linear constraints on the epipolar geometry [3]. There-
fore, the minimal number of correspondences necessary to estimate the unknown
F is 2AC+1PC. The solver first uses seven linear constraints, i.e., six from two
ACs and one from a PC, rewritten in a matrix form as Mf = 0, where f = vec(F),
to find a 2-dimensional null-space of the matrix M. The unknown fundamental
matrix is parameterized as F = xF1 + F2, where F1 and F2 are matrices created
from the 2-dimensional null-space of M and x is a new unknown. This parame-
terization is substituted into the constraint det(F) = 0, resulting in a polynomial
of degree three in one unknown. The final 2AC+1PC solver is performing the
same operations as the 7PC solver, i.e., the computation of the null-space of a
7 × 9 matrix and finding the roots of a univariate polynomial of degree three.

Essential Matrix from 2ACs: The problem of estimating the relative pose of
two calibrated cameras, i.e., estimating the unknown essential matrix E ∈ R

3×3,
has five degrees of freedom (three for rotation and two for translation) and there
exists the well-known 5PC solver [42]. This problem has recently been solved
from two ACs [5,16]. Each AC gives three linear constraints on E [5]. Thus, two
ACs provide more constraints than degrees of freedom. One approach to solve
for E from two ACs is to use just five out of six constraints, which results in the
same operations as the well-known 5PC solver [42] does. Another one is to solve
an over-constrained system as suggested in [5]. In the experiments, we used the
solver of [5] since it has lower computational complexity and similar accuracy.

3.4 Sample Rejection via Cheirality Checks

It is well-known for homography fitting that some minimal samples can be
rejected without estimating the implied homography as they would lead to
impossible configurations. Such a configuration occurs when the plane flips
between the two views, i.e., the second camera sees it from the back. This
cheirality constraint is implemented in the most popular robust approaches,
e.g ., USAC [46] and OpenCV’s RANSAC. We thus adapt this constraint via a
simple strategy by converting each AC to three PCs. Given affine correspon-
dence {y0,z0, A}, where y0 = [y01, y02]T and z0 = [z01, z02]T are the keypoint
coordinates in the left, respectively the right images, the generated point corre-
spondences are (y0 +

[
1, 0

]T
,z0 + A

[
1, 0

]T) and (y0 +
[
0, 1

]T
,z0 + A

[
0, 1

]T).
When estimating the homography using the 1AC+1PC solver, the affine matrix
is converted to these point correspondences and the cheirality check is applied
to the four PCs.

Note that any direct conversion of ACs to (non-colinear) PCs is theoretically
incorrect since the AC is a local approximation of the underlying homography [4].
However, it is a sufficiently good approximation for the cheirality check.

3.5 Uncertainty-Based Model Rejection

Before evaluating the consensus of a model, it is reasonable to check its quality,
especially to eliminate configurations close to a singularity, see [22]. We can use
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the covariance matrix Σθθ of each solution to decide on its further suitability. To
do so, we propose a new general way of deriving the Σθθ for minimal problems.

All problems we address here are based on a set of constraints g(y,θ) = 0
on some observations y, and parameters θ, e.g . the F estimation constraint
gi(yi,θ) is of the form xT

i Fyi = 0, hence (y,θ) = ([x;y], vec(F)). We want to
use classical variance propagation for implicit functions [21], Sect. 2.7.5. If Σyy

is given, the determination of Σθθ is based on linearizing g at a point (y,θ) and
using the Jacobians A = ∂g/∂y and B = ∂g/∂θ leading to covariance matrix
Σθθ = B−1AΣyyATB−T, provided B can be inverted. Using constraints g we derive
Jacobians A, B algebraically. Further, given the kth solution of a minimal problem
(a system of equations defining a minimal problem has, in general, more than
one solution), i.e. a pair (y,θk), we can compute Σθkθk

without needing to know
how the problem was solved and how this specific solution has been selected.

However, the number of constraints in g in most of the minimal problems is
smaller than the number of parameters θ, e.g . 7 constraints vs. 9 elements of
F. Then the matrix B cannot be inverted. We propose to append the minimum
number of constraints h(θ) = 0 (between the parameters only, e.g . det(F) and
||F|| = 1) such that the number of all constraints (g;h) is identical to the number
of parameters. This leads to a regular matrix B, except for critical configurations.

Such algebraic derivations should be checked to ensure the equivalence of the
algebraic and numerical solution, best by Monte Carlo simulations. However,
the empirically obtained covariance matrix Σ̂θθ is regular and cannot be directly
compared to the algebraically derived Σθθ if it is singular (e.g . for θ = vec(F)).
We propose to project both matrices on the tangent space of the manifold of
θ, leading to regular covariance matrices as follows: let J(Σ) be an orthonormal
base of the column space of some covariance matrix Σ, then Σr = JTΣJ is regular;
e.g . using J = null(null(Σ)T) where null(Σ) is the nullspace of Σ. Hence, with
J = J(Σθθ) the two covariance matrices Σθθ,r = JTΣθθJ and Σ̂θθ,r = JTΣ̂θθJ are
regular. They can be compared and an identity test can be performed checking
the hypothesis IE(Σ̂θθ,r) = Σθθ,r, see [21], p. 71. The used constraints and detailed
discussion for all listed minimal problems are in the supplementary material.

The covariance matrix Σθθ can be used in following way. Since we do not
have a reference configuration, we eliminate models where the condition number
c = cond(Σθθ) is too large, since configurations close to singularity show large
condition numbers in practice. For reasons of speed, it is useful to compute an
approximation for the condition number, e.g . cs = tr(Σθθ)tr(Σ−1

θθ ), if the inverse
covariance matrix can be obtained efficiently, which is the case in our context
since Σ−1

θθ = B(AΣyyAT)−1BT.1 A weaker measure is tr(Σθθ), which is more efficient
to calculate than the previous ones. It essentially measures the average variance
of the parameters θ. Thus, it can identify configurations where parameters are
very uncertain. We use this measure in the following for deriving a prior for
preemptive model verification by the Sequential Probability Ratio Test [11].

1 For Σ = Diag([a,b]), with a > b, the condition number is c = a/b, while the approx-
imation is cs = (a + b)2/(ab), which for a � b converges to the condition number.



Making Affine Correspondences Work in Camera Geometry Computation 731

We experimentally found, for each problem, the parameters of exponential
(for points solvers) and log-normal (for affine solvers) distributions for the trace.
These parameters are used to measure the likelihood of the model being too
uncertain to lead to a large number of inliers. In our experiments, for the sake
of simplicity, we model the trace values by normal distributions for all solvers.
Thus, we used the a-priori determined parameters to initialize the mean and
standard deviation from all tested image pairs. Finally, we get a probability
for each model being acceptable or not. Note that the selection of the provably
correct probabilistic kernel for a particular problem and scene is a direction for
future research. However, it is not a crucial issue due to being used only for
rejecting too uncertain models early to avoid unnecessary calculations.

As a final step, we feed the determined probability to the Sequential Prob-
ability Ratio Test (SPRT) [11,35] as a prior knowledge about the model to be
verified. This is done by initializing the model probability, which is sequentially
updated in SPRT, to the a priori estimated one.

3.6 Local Optimization

Minimal solvers do not take noise in their input measurements into account
during the estimation process. However, noise affects the estimated models. As
such, not every all-inlier sample leads to the best possible transformation [12].
As shown in [20,49], starting from the algebraic solution and performing only
a single iteration of ML estimation is often sufficient to obtain a significantly
better estimate. They show that this strategy approaches the optimal result
with an error below 10%–40% of the parameters’ standard deviations while only
increasing the computation time by a factor of ∼2. A strongly recommended
approach is thus to use local optimization [6,12,30] inside RANSAC: every time a
new best model is found, ML-based refinement on its inliers is used to account for
noise in the input parameters. While this adds a computational overhead, it can
be shown that this overhead is small and is compensated by the observation that
local optimization (LO) typically helps RANSAC to terminate early. Moreover
LO is usually applied rarely [12]. As we show in Sect. 4.5, local optimization is
crucial to obtain accurate geometry estimates when using ACs.

4 Experiments

In this section, different algorithmic choices are tested on homography, funda-
mental and essential matrix fitting problems to provide a pipeline which leads
to results superior to point-based methods.

Experimental Setup. Tests for epipolar geometry estimation were performed
on the benchmark of [9]. The used datasets are the TUM dataset [52] consisting
of videos, of resolution 640× 480, of indoor scenes. The KITTI dataset [23] con-
sists of consecutive frames of a camera mounted to a vehicle. The images are of
resolution 1226 × 370. Both KITTI and TUM have image pairs with short base-
lines. The Tanks and Temples dataset [28] provides images of real-world objects
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for image-based reconstruction and, thus, contains mostly wide-baseline pairs.
The images are of sizes between 1080 × 1920 and 1080 × 2048. The benchmark
provides 1 000 image pairs for each dataset with ground truth epipolar geometry.
Homography estimation was tested on the scenes of the HPatches dataset [2].
RANSAC’s inlier-outlier threshold is set to 1.0 px (F), 1.0 px (E) and 5 px (H).

When evaluating F and E matrices, we calculate the normalized symmetric
geometry errors (NSGD). The symmetric geometry error (SGD) was proposed in
[58]. It generates virtual correspondences using the ground-truth F and computes
the epipolar distance to the estimated F. It then reverts their roles to compute
symmetric distance. The SGD error (in pixels) causes comparability issues for
images of different resolutions. Therefore, it is normalized into the range of [0, 1]
by regularizing by factor f = 1√

h2+w2 , where h and w are the height and width
of the image, respectively.

The error of the estimated homographies is measured by, first, projecting
the first image to the second one and back to get the commonly visible area.
Each pixel in the visible area is projected by the ground truth and estimated
homographies and the error is calculated as the L2 distance of the projected
points. Finally, the error is averaged over all pixels of the visible area.

4.1 Matchers and Descriptors

To estimate ACs in real images, we applied the VLFeat library [56] since it is
available for multiple programming languages and, thus, we considered it a prac-
tical choice. VLFeat provides several options either for the feature descriptor or
the affine shape adaptation technique. To select the best-performing combina-
tion, first, we detected ACs using all of the possible combinations. Note that
we excluded the multi-scale versions of Harris-Laplace and Hessian-Laplace [36]
affine shape adaptations since they were computationally expensive. Correspon-
dences are filtered by the standard second nearest neighbor ratio test [32]. Next,
we estimated fundamental matrices using affine and point-based solvers and
vanilla RANSAC [17]. Figure 2 reports the cumulative distribution function
(CDF) of the NSGD errors calculated from the estimated fundamental matrices.

Curves showing affine solvers have circles as markers. We applied PC-based
methods (crosses) considering only the locations of the correspondences and
ignoring the affinities. The line style denotes the feature descriptor: straight
line – SIFT [32], dotted – LIOP [57]. Affine shape adaption techniques (DoG,
Hessian [37], Harris- and Hessian-Leplace [36]) are shown by color. Applying
VLFeat with any affine shape adaptation increases the extraction time by ≈10%.

The first and most dominant trend visible from the plots is that methods
exploiting ACs are significantly less accurate then point-based approaches when
the naive approach is used: vanilla RANSAC. The SIFT descriptor [32] and DoG
affine shape adaptation lead to the most accurate results. Consequently, we use
this combination in the experiments. In the next sections we will show ways of
making the affine solvers similarly or more accurate than point-based methods.
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Fig. 2. Fundamental matrix estimation on datasets TUM, KITTI and Tanks and Tem-
ples (from benchmark [9]; 1000 image pairs each) using ACs detected by different
descriptors and detectors. The CDFs of NSGD errors are shown. Vanilla RANSAC
was applied followed by a LS fitting on all inliers.

4.2 Match Refinement

We demonstrate how the proposed refinement affects the accuracy of the affine
matches by analysing the fulfillment of the constraints in the case of calibrated
cameras. For each AC, the three constraints consist of the epipolar constraint
cp = cTp e = 0 for the image coordinates, and the two constraints ca = CTae = 0 for
the affinity A. Assuming the pose, i.e. the essential matrix, is known we determine
a test statistics for the residuals cp and ca as dp = ||cp||σ2

cp
and da = ||ca||Σcaca

.
For the ACs of five image pairs, we used the Lowe keypoint coordinates and
the scale and direction differences for deriving approximate affinities and refined
them using the proposed LSM refinement technique (see Sect. 3.2).

Figure 3, left shows the CDF of the improvement caused by the proposed
technique in the point coordinates (rp) and in the affine parameters (ra); a
bigger value is better. The method improves both the affine parameters and
point coordinates significantly. In Fig. 3, right the inconsistency with the epipolar
constraints are shown; smaller values are better. The refined ACs are better, in
terms of fulfilling the epipolar constraints, than the input ACs.

Fig. 3. Left: Improvement of the points (rp) and affine parameters (ra) after the
proposed refinement, larger values are better. Right: Inconsistency with the epipolar
constraints before (blue) and after (red) the refinement, smaller values are better. The
CDFs are calculated from five images. (Color figure online)
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4.3 Sample Rejection via Cheirality Checks

The widely used technique for rejecting minimal samples early (i.e. without
estimating the model parameters) when fitting homographies is the ordering
check of the point correspondences as described earlier. Its effect when adapting
it to affine correspondences is shown in Fig. 4.

In the left plot of Fig. 4, the cumulative distribution functions of the process-
ing times (in seconds) are shown. It can be seen that this test has a huge effect
on point-based homography estimation as it speeds up the procedure signifi-
cantly. The adapted criterion speeds up affine-based estimation as well, however,
not that dramatically. Note, that affine-based estimation is already an order of
magnitude faster than point-based methods and for AC-based homography esti-
mation the cumulative distribution curve of the processing time is already very
steep, Fig. 4 (left). This means that affine-based estimators do not perform many
iterations and skipping model verification for even the half of the cases would
not affect the time curve significantly. The avg. processing time of affine-based
estimation is dropped from 8.6 to 7.7 ms. The right plot shows the log10 iter-
ation numbers of the methods. The test does not affect the iteration number
significantly. It sometimes leads to more iterations due to not checking samples
of impossible configurations, however, this is expected and does not negatively
affect the time.

Fig. 4. Effect of cheirality test on point and affine-based homography estimators.

4.4 Uncertainty-Based Preemptive Verification

As it is described earlier, we combined the SPRT test [11,35] (parameters are
set similarly as in the USAC [46] implementation) with model uncertainty cal-
culation to avoid the expensive validation of models which are likely to be worse
than the current best one. Figure 5 reports the CDFs of the processing time for
(a) homography, (b) fundamental and (c) essential matrix fitting. Note that we
excluded uncertainty-based verification for essential matrices since the solvers
became too complex and, thus, the uncertainty calculation was slow for being
applied to every estimated model.
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Fig. 5. Evaluating pre-emptive model verification strategies for affine (AC) and point-
based (PC) robust estimation. The CDFs of the processing times (in seconds) are
shown. Being fast is interpreted as a curve close to the top-left corner.

It can clearly be seen that the proposed combination of the SPRT and the
uncertainty check leads to the fastest robust estimation both for H and F fitting.
For E estimation from ACs, using the SPRT test is also important, leading to
faster termination. Most importantly, using affine correspondences, compared to
point-based solvers, leads to a significant speed-up for all problems.

4.5 The Importance of Local Optimization

While the speed-up caused by using ACs has clearly been demonstrated, the
other most important aspect is to get accurate results. As it is shown in Fig. 2,
including AC-based solvers in vanilla RANSAC leads to significantly less accu-
rate results than using PCs. A way of making the estimation by ACs accurate
is to use a locally optimized RANSAC, where the initial model is estimated
by an AC-based minimal solver and the local optimization performs the model
polishing solely on the inlier PCs. We tested state-of-the-art local optimiza-
tion techniques, i.e., LO-RANSAC [12], LO’-RANSAC [30], GC-RANSAC [6].
The results are reported in Fig. 6. It can be seen that affine-based estimation

Fig. 6. Evaluating local optimization techniques for affine (AC) and point-based (PC)
robust model estimation. The CDFs of the geometric errors are shown. Being accurate
is interpreted as a curve close to the top-left corner.
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with GC-RANSAC is always among the top-performing methods. In (a), it is
marginally more accurate than considering only point correspondences. In (b),
using point correspondences is slighly more accurate. Compared to the results of
vanilla RANSAC, the results of affine-based robust estimation improved notably.

5 Discussion

In summary of the investigated approaches, the best practices to accurately and
efficiently use affine solvers are the following. Affinity-based model estimation has
an accuracy similar or better to point-based solvers if (i) the detector and affine
shape refining method is carefully selected; and (ii), most importantly, if a locally
optimized RANSAC is applied to polish every new so-far-the-best model using
only the point locations from the inlier correspondences. Consequently, affine
features are used for estimating models from minimal samples, while their point
counterparts are used to obtain accurate results. Efficiency is achieved by (iii)
adapting strategies well-established for point correspondences, e.g ., cheirality
check for homography estimation. (iv) Also, uncertainty-based model rejection
and other preemptive verification techniques have a significant impact when
speeding up the robust estimation procedure.

6 Conclusions

In this paper, we have considered the problem of using affine correspondences
(ACs) for camera geometry estimation, i.e., homography and epipolar geometry
computation. Compared to classical approaches based on point correspondences
(PCs), minimal solvers based on ACs offer the advantage of smaller sample sizes
and, thus, the possibility to significantly accelerate RANSAC-based randomized
robust estimation. However, noise has a larger negative impact on affine solvers
as their input measurements typically originate from a smaller image region
compared to point solvers. As we have shown, this significantly decreases the
accuracy of the affine solvers. In this work, we have thus collected a set of “best
practices”, including novel contributions such as refining the local feature geome-
try and uncertainty-based model rejection techniques, for using ACs in practice.
Through extensive experiments, we have shown that following our guidelines
enables affine solvers to be used effectively, resulting in similar accuracy but
faster run-times compared to point-based solvers. We believe that our guide will
be valuable for both practitioners aiming to improve the performance of their
pipelines as well as researchers working on ACs as it covers a topic previously
unexplored in the literature.
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