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ABSTRACT

Context. Flares in radio-loud active galactic nuclei are thought to be associated with the injection of fresh plasma into the compact
jet base. Such flares are usually strongest and appear earlier at shorter radio wavelengths. Hence, very long baseline interferometry
(VLBI) at millimeter(mm)-wavelengths is the best-suited technique for studying the earliest structural changes of compact jets asso-
ciated with emission flares.
Aims. We study the morphological changes of the parsec-scale jet in the nearby (z = 0.049) γ-ray bright radio galaxy 3C 111 follow-
ing a flare that developed into a major radio outburst in 2007.
Methods. We analyse three successive observations of 3C 111 at 86 GHz with the Global mm-VLBI Array (GMVA) between 2007
and 2008 which yield a very high angular resolution of ∼45 µas. In addition, we make use of single-dish radio flux density measure-
ments from the F-GAMMA and POLAMI programmes, archival single-dish and VLBI data.
Results. We resolve the flare into multiple plasma components with a distinct morphology resembling a bend in an otherwise re-
markably straight jet. The flare-associated features move with apparent velocities of ∼4.0c to ∼4.5c and can be traced also at lower
frequencies in later epochs. Near the base of the jet, we find two bright features with high brightness temperatures up to ∼1011 K,
which we associate with the core and a stationary feature in the jet.
Conclusions. The flare led to multiple new jet components indicative of a dynamic modulation during the ejection. We interpret the
bend-like feature as a direct result of the outburst which makes it possible to trace the transverse structure of the jet. In this scenario,
the components follow different paths in the jet stream consistent with expectations for a spine-sheath structure, which is not seen
during intermediate levels of activity. The possibility of coordinated multiwavelength observations during a future bright radio flare
in 3C 111 makes this source an excellent target for probing the radio-γ-ray connection.

Key words. galaxies: active – galaxies: jets – galaxies: individual: 3C 111 – techniques: high angular resolution

1. Introduction
A common signature of relativistic jets in radio-loud active
galactic nuclei (AGN) is their strong variability in radio emission
(e.g., Lähteenmäki & Valtaoja 1999; Hovatta et al. 2008, 2009;
Richards et al. 2014). This is generally explained by shocks
traveling through the parsec-scale radio jet leading to the appear-
ance of new features in high-resolution images on milliarcsec-
ond (mas) scales (e.g., Marscher & Gear 1985; Valtaoja et al.
1999; Savolainen et al. 2002; Fromm et al. 2013a). Moreover,
combined studies of radio and γ-ray light curves reveal a cor-
relation of flares occurring in both energy regimes with the

? The FITS-files of the GMVA images shown in Fig. 2 and Table A.4
are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/644/A85

radio emission often seen first at millimeter(mm) wavelengths
(e.g., Lähteenmäki & Valtaoja 2003; León-Tavares et al. 2011;
Fuhrmann et al. 2014). In the TeV γ-ray band, extreme vari-
ability on timescales as short as minutes has been observed
(Albert et al. 2007; Aharonian et al. 2007; Aleksić et al. 2014),
which suggests extremely small and compact substructure in
AGN jets. Rapid broadband variability is not exclusive to
blazars, and can also be seen in radio galaxies with small view-
ing angles of the jet to the line of sight (e.g., Jorstad et al. 2001;
Marscher et al. 2010; Agudo et al. 2011; Schinzel et al. 2012;
Karamanavis et al. 2016; Casadio et al. 2015). The favorable ori-
entation and typically small distances allow us to probe substan-
tially smaller linear scales in high-resolution imaging studies of
radio-galaxy jets than in blazars (e.g., Boccardi et al. 2017).

An important open question concerns the physical origins
of high-energy blazar variability. These are likely related to
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changes of particle acceleration and cooling processes in the
most compact regions of the jets. Various propagation effects
likely play a role but cannot be probed by any direct means due to
the limited angular resolution at γ-ray energies. Frequent VLBI
observations of γ-ray-bright radio galaxies at mm wavelengths
as made possible with the Global mm-VLBI Array (GMVA1)
in combination with single-dish flux density monitoring are the
most appropriate method for performing such a study as they
provide angular resolutions down to ∼40 µas, which can corre-
spond to sub-parsec linear deprojected scales for nearby sources.

One prime target for such studies is the nearby radio galaxy
3C 111 at a redshift z = 0.049 (Véron-Cetty & Véron 2010).
The kiloparsec-scale radio morphology (Linfield & Perley 1984)
is consistent with the Fanaroff-Riley class II (Fanaroff & Riley
1974). The parsec-scale jet exhibits apparent superluminal
motion up to speeds of ∼8c and the angle of the jet to the line of
sight has been estimated to between ∼10◦ and ∼20◦ (although
smaller angles have not been entirely excluded; Götz et al.
1987; Jorstad et al. 2005; Lewis et al. 2005; Kadler et al. 2008;
Hogan et al. 2011; Lister et al. 2013; Beuchert et al. 2018).
3C 111 has shown several radio flares in the past with two excep-
tional, long-lasting outbursts of several months above 10 Jy in
flux density in the 3 mm band (Alef et al. 1998; Trippe et al.
2011; Chatterjee et al. 2011). The first one occurred in early
1996 (Alef et al. 1998) and the second was observed in the
middle of 2007 (Chatterjee et al. 2011). Both developed into
complex features in the jet at 15 GHz and 43 GHz that dif-
fered from other components related to lower-activity phases
(Kharb et al. 2003; Jorstad et al. 2005, 2017; Kadler et al. 2008;
Chatterjee et al. 2011; Beuchert et al. 2018). 3C 111 has also
been detected at γ-ray energies and seems to be a rather
faint γ-ray emitter most of the time and becomes bright and
detectable only during short flaring periods (Hartman et al.
2008; Grandi et al. 2012). It has been concluded that the site of
the γ-ray flares of 3C 111 is confined to a compact region smaller
than 0.1 pc inside the unresolved cm-VLBI core at distances of
not more than 0.3 pc from the central black hole.

This paper presents results of very high angular resolution
observations with the GMVA over a period of one year during a
major radio outburst. Schulz et al. (2013) presented preliminary
images, but here we present the final images based on the fully
calibrated data and subsequent results. The following section
describes the radio data and their reduction (Sect. 2). Sections 3
and 4 present our results and a discussion of them, which is fol-
lowed by a summary in Sect. 5.

Throughout this paper, we adopt the ΛCDM cosmology with
the parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and Λ = 0.7
(Freedman et al. 2001). Hence, at the redshift of 3C 111 we
have a projected linear scale of 1 mas≈ 0.96 pc. Assuming an
inclination of the jet of 13◦ (see above), the angular beam of
the GMVA of (40−70) µas can spatially resolve linear depro-
jected scales down to ∼0.17 pc. The linear resolution corre-
sponds to about 9900 Schwarzschild radii assuming a mass of
1.8+0.5
−0.4×108 M� for the central supermassive black hole as deter-

mined by Chatterjee et al. (2011).

2. Observation and data reduction

2.1. GMVA observations

Following the outburst of 3C 111 in 2007, we performed three
successive observations with the GMVA at 86 GHz on 2007

1 http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm/

Oct. 15, 2008 May 11, and 2008 Oct. 14 (experiment code
GK039A,B and GK040). The configuration of the GMVA at
the time of our observations comprised five European and eight
North-American telescopes, which are listed in Table A.1.

The GMVA data were correlated with the VLBI correla-
tor at the Max Planck Institute for Radio Astronomy (MPIfR,
Germany). We used the Astronomical Imaging Processing Sys-
tem (AIPS, Greisen 2003) to perform the a priori amplitude
and phase calibration. For this purpose, we corrected for atmo-
spheric attenuation at each station which is a critical issue for
mm-VLBI because of the increasing opacity of the atmosphere
at high radio frequencies. In addition, measurements of the
antenna’s system temperature and gain factors were applied. The
phases were calibrated using the global fringe-fitting algorithm
(Schwab & Cotton 1983).

The 86 GHz GMVA data were further self-calibrated and
imaged with the software package DIFMAP (Shepherd 1997).
An initial model was created using the CLEAN algorithm
(Högbom 1974) and phase self-calibration combined with flag-
ging of bad data points which was followed by amplitude
self-calibration over the whole observing time. This procedure
was repeated with subsequent smaller time intervals for ampli-
tude self-calibration. The images were produced using the final
CLEAN-model convolved with the CLEAN-beam, which is a
two-dimensional Gaussian approximation of the dirty beam, and
adding the residual noise. The hybrid imaging process was per-
formed with natural weighting of the visibilities. The properties
of the resulting images are listed in Table 1.

We tested the absolute amplitude calibration by comparing
the total flux density with quasi-simultaneous single-dish mea-
surements from the F-GAMMA programme at 86 GHz (2007
Oct. 9: 12.06± 0.22 Jy, 2008 May 2: 4.05± 0.16 Jy, 2008 Oct. 7:
4.06 ± 0.21 Jy). We consistently use F-GAMMA measurements
(see Sect. 2.2) for our amplitude-calibration check and scaling,
which benefit from simultaneous multifrequency measurements
that reduce the risk of systematic gain offsets. We also tested the
independent additional adjacent POLAMI measurements, which
lead to consistent results within the F-GAMMA measurement
uncertainties.

We found a significant difference between the single-dish
and VLBI flux density for the first two observations by a fac-
tor of 1.5 ± 0.2 and 2.1 ± 0.2, respectively. It is unlikely that
this discrepancy stems from missing flux density resolved out
by VLBI because of the high observing frequency. In addi-
tion, the last observation is consistent with the single-dish mea-
surements (1.1 ± 0.2). Hence, we consider uncertainties in the
system temperature measurements and the gain curves of the
telescopes to be the likely origin of the inconsistency between
VLBI and single-dish flux density of the first two observations.
We empirically corrected for this by scaling the CLEAN-model
from the initial imaging by the factors given above. The new
CLEAN-model was used to determine a constant amplitude-
correction factor for each telescope. The scaled visibilities were
then imaged and self-calibrated again. For the initial images,
we estimated an uncertainty of the total flux density of about
15% based on repeating the imaging process several times. This
uncertainty applies to the scaled data and the resultant images.
For the third GMVA observation, we estimated an additional sys-
tematic uncertainty of the flux density, because the 86 GHz light
curve suggests that this VLBI observation occurs during a rise
in flux density. Based on an interpolation between the two adja-
cent F-GAMMA observations, we find that the flux density of
the third observation might be underestimated by about 22%.
Because of uncertainty in the actual light-curve evolution, we
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Table 1. Properties of the 86 GHz images.

Date (a) Date (a) GMVA configuration (b) σnoise
(b) S peak

(c) S total
(d) bmaj

(e) bmin
(e) bPA

(e)

[YYYY-MM-DD] [year] [mJy beam−1] [Jy beam−1] [Jy] [µas] [µas] [◦]

2007-10-15 2007.79 Ef-On-Me-PdB-VLBA 0.32 2.41 ± 0.36 11.8 ± 1.8 148 45 −11
2008-05-11 2008.36 Ef-On-PV-VLBA 0.16 0.93 ± 0.14 4.27 ± 0.64 152 59 −16
2008-10-14 2008.78 Ef-On-VLBA 0.13 1.87 ± 0.28 ( f ) 3.78 ± 0.57 ( f ) 167 67 −18

Notes. (a)Date of observation; (b)GMVA elements with good data after calibration, imgaing and flagging: Effelsberg (Ef), Onsala (On), Metsähovi
(Me), Plateau de Bure (PdB), Very Long Baseline Array (VLBA, the eight stations equipped with 86 GHz receivers) image noise level; (c)peak
flux density of the image; (d)total flux density; (e)major axis, minor axis, and position angle of the restoring beam. ( f )The flux density might be
underestimated by about 22% (see Sect. 2.1).

prefer to use the scaling factors from real flux density measure-
ments. Therefore, we did not scale the third VLBI observation as
discussed above, but we indicate the systematic uncertainty for
the third observation where necessary in this paper.

The self-calibrated data were modeled with two-dimensional
circular Gaussian components using the fit routine implemented
in DIFMAP. The aim of this process is to find a consistent
description of the evolving brightness distribution of the jet
throughout the three observations. The uncertainties on the
parameters for each component were first calculated with a
purely statistical approach based on Fomalont (1999) which
may underestimate the true uncertainties because this approach
does not account for systematic errors introduced during the
aperture-synthesis processing, that is, by data editing, deconvo-
lution, and (self-)calibration. Hence, we conservatively alter the
uncertainties for the flux density of the components to the 15%
level adopted from amplitude calibration. Similarly, we alter the
uncertainties for the positions of the components to 50% of their
major axis. The best-fit parameters of all components are listed
in Table A.2.

2.2. Ancillary data

The F-GAMMA (Fermi-GST AGN Multi-frequency Monitor-
ing Alliance) programme2 monitored a sample of γ-ray-bright
blazars with the Effelsberg 100 m and the Pico Veleta 30 m radio
telescopes over a broad range of radio frequencies from Jan-
uary 2007 till January 2015 (Angelakis et al. 2010, 2012, 2019;
Fuhrmann et al. 2014, 2016). Here, we focus on measurements
at 86 GHz obtained with the Pico Veleta telescope between 2007
and 2009 (see Table A.4).

Additional flux density measurements of the source at
86 GHz (see Table A.4), published in Agudo et al. (2014), are
provided by the POLAMI (Polarimetric Monitoring of AGN
at Millimeter Wavelengths) programme3 (Agudo et al. 2018a,b;
Thum et al. 2018). The data were also taken with the IRAM 30 m
telescope at the Pico Veleta Observatory in the same time frame
as the F-GAMMA programme. The observing strategy and data
reduction of the POLAMI programme is described in detail in
Agudo et al. (2018a).

We further make use of selected VLBA data at 43 GHz that
are available in a fully calibrated state from the VLBA-BU-
BLAZAR monitoring programme4 (e.g., Marscher et al. 2011;
Jorstad et al. 2017). These data were previously discussed by
Chatterjee et al. (2011) and Jorstad et al. (2017). Similar to the

2 https://www3.mpifr-bonn.mpg.de/div/vlbi/fgamma/
fgamma.html
3 http://polami.iaa.es
4 https://www.bu.edu/blazars/VLBAproject.html

GMVA data, we fit two-dimensional Gaussian components to
the visibilities to represent the brightness distribution of the jet.
We selected observations which were close in time to the GMVA
data. We also make use of previously published SMA flux den-
sity measurements at 230 GHz over a similar time range to the
F-GAMMA data (Chatterjee et al. 2011).

3. Results

3.1. Single-dish light curve

The 86 GHz and 230 GHz light curves between 01 July 2006
and 01 July 2009 are shown in the bottom panel of Fig. 1. The
peak of the major outburst occurred around August 2007 and
was followed by a smaller flare in late 2008 before returning to
a more typical lower state.

The first GMVA observation was conducted only two months
after the peak in the light curve at which time 3C 111 was
clearly still in a very high state. The second GMVA observa-
tion was performed in a state when the single-dish light curve
had already dropped to about half the peak value. The third
GMVA observation took place close to the peak of the secondary
smaller flare in late 2008 and the single-dish flux density mea-
surement reached the same value as around the second GMVA
epoch.

3.2. Morphology and time evolution of the 86 GHz jet

Figure 2 shows the three images obtained by the GMVA obser-
vations. These are centered on the brightest feature and reveal a
single-sided jet starting in the east–northeast direction. The first
and second observations show an unusual change in the position
angle of the jet at a distance of ∼0.5 mas and ∼1 mas, respec-
tively. The jet seems to form a bend which increases in scale
between both observations. By the time of the third observa-
tion the bend has evolved into a larger and more diffuse complex
emission region. We also find faint diffuse emission at a distance
of around 4 mas, which lies outside of the chosen plot range of
Fig. 2 as it is not relevant for this study.

In order to better quantify the morphology of the jet and its
changes over time, we use the fit parameters of the Gaussian
modelfit components. The large time-span of the GMVA obser-
vations, the fast evolution of the jet, and the limited number
of observations make it difficult to robustly cross-identify the
Gaussian modelfit components fitted to the three observations.
The cross identification of the components is mainly done using
morphological similarities and through comparison with near-in-
time VLBI images at 43 GHz which exhibit similar jet features.
The resulting time evolution is shown in Fig. 3.
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Fig. 1. Upper panel: distance of jet features to the central region
over time. Highlighted in color are the associated components and in
gray unassociated modelfit components. The solid lines were calcu-
lated from the vector fit of the apparent transverse velocity. The colored
dashed lines represent extrapolations to the estimated ejection times in
the distance-time-domain. Bottom panel: radio light curve at 86 GHz
(F-GAMMA, POLAMI) and 230 GHz (Chatterjee et al. 2011) between
01 July 2006 and 01 July 2009. The ejection times of the components
are highlighted as vertical, colored, dashed lines in both panels. The
wide colored bands indicate the uncertainty in the ejection time of the
components.

In all three 86 GHz observations, we find that the most west-
ern component which we label as “C1” does not correspond to
the brightest feature of the jet. We consider it to be the station-
ary VLBI core and not a sign of a possible counter-jet (see dis-
cussion in Sect. 4.3). Therefore, it is used to align the modelfit
components at 86 GHz in the subsequent analysis. We label the
brightest feature of the jet as component “C2”. In the first and
last GMVA observations, it is modeled with two, nearby Gaus-
sian model components which are both necessary to represent
the associated visibility data, and therefore we treat them as a
single entity. For the remaining components of the jet, we assign
a “J” plus an integer that increases with the (back-extrapolated)
ejection time (see Fig. 1, top panel). In the first epoch, J2 consists
of two Gaussian model components which we consider to trace
the same emission region due to their proximity to each other.

Figure 4 shows the resulting flux density evolution of C1, C2,
and the jet components. There are significant changes in the flux-
density distribution over time. In the first observation, ∼48% of
the total flux density is associated with C1 and C2. This frac-
tion decreases slightly in the second observation to ∼37% before
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Fig. 2. Images from the three GMVA observations of 3C 111 (image
parameters given in Table 1). Contour lines start at three times the indi-
vidual 1σ noise level and increase logarithmically by factors of two.
Negative fluctuations at the −3σ level are indicated by dashed, gray
contour lines. The gray shaded ellipse in the lower left corner repre-
sents the synthesized beam.

increasing to ∼74% in the third epoch. This behavior is consis-
tent with the evolution of the single-dish light curve (Fig. 1),
which indicates that the third GMVA observation coincides with
the onset of the secondary smaller flare in late 2008. This flare
seems to be localized to C1 and C2. The brightness temperatures
of C1 and C2 are of the order of 1011 K in all three epochs (see
Table A.2).

We fit the two-dimensional position of the components over
time with linear regression in order to determine the angular
velocities vx and vy. Based on this, we calculated the apparent
angular velocities vapp. The ejection time was determined from
the linear regression in the distance-time domain. The results are
listed in Table 2. Care has to be taken in the interpretation of
these estimates, considering the limited number of observations
at 86 GHz.

The results suggest that C2 is a stationary component con-
sistent with the interpretation of Jorstad et al. (2017) which
has strong implications for the jet properties at 15 GHz
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tion of C1. The gray dashed contour lines show 43 GHz images from
the Boston-University blazar group monitoring programme aligned to
the position of the core based on model fitting. The colored, dashed
lines were calculated from the kinematic fit to the GMVA components
and extrapolated to the first and last 43 GHz observation shown here.
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Fig. 4. Flux-density light curves of 3C 111 based on the GMVA data
separated into C1, C2, J4, J5, and the sum of the components associated
with the bend (J1, J2, J3) and the sum of all components representing the
jet, that is, all components except C1 and C2. For the third VLBI obser-
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interpolated scaling factor (see Sect. 2.1) as a systematic uncertainty, is
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Table 2. Kinematic properties of the jet.

ID vapp,est βapp,est t0,est
[mas yr−1] [c] [yr]

C2 −0.03 ± 0.02 −0.09 ± 0.06
J1 1.2 ± 0.1 4.0 ± 0.3 2007.3 ± 0.1
J2 1.3 ± 0.1 4.2 ± 0.4 2007.5 ± 0.1
J3 1.36 ± 0.06 4.5 ± 0.2 2007.67 ± 0.04
J4 1.4 ± 0.1 4.5 ± 0.4 2007.90 ± 0.06
J5 1.4 ± 0.1 4.5 ± 0.5 2008.22 ± 0.05

(Beuchert et al. 2018). We are able to trace the bend in the jet
with two distinct components, J2 and J3, which move with an
apparent velocity of ∼4.2c and ∼4.5c, respectively. Similar val-
ues are also estimated for the other components. We estimate
the critical angle θLOS,crit of the jet to the line of sight (e.g.,
Cohen et al. 2007), which corresponds to the maximum of βapp

with cos θLOS,crit = βapp/
√

1 + β2
app, to be θLOS,crit ∼ 13◦, consis-

tent with previous estimates at lower frequencies. This leads to a
critical Doppler factor δcrit = γmin ∼ 4.5.

The position angle (PA) of J2 and J3 differs by ∼10◦ and J1
shows a change in PA of ∼10◦ over time (see Table A.2). The
median PA for all components excluding C1 and C2 is about
65◦ which is consistent with observations at 15 GHz and 43 GHz
(Beuchert et al. 2018; Jorstad et al. 2017).

4. Discussion

4.1. Jet evolution and parameters

The radio light curve at 230 GHz (Fig. 1) reveals that the large
outburst began in late 2006 with a small precursor flare occur-
ring shortly before the main flux rise. The top panel of Fig. 1
shows the time evolution of the component distances with time
and the back-extrapolated times when they emerged from the
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core. These ejection times coincide well with the characteristic
evolution of the light curve at both frequencies. J1, J2, and J3
are the innermost jet components seen in our 2007 GMVA image
(and also, at larger distances from the core in later images). Their
ejection seems related to the rise and peak of the light curve. The
J1 ejection time falls close to a minor flare seen in the 230 GHz
light curve (65 d±37 d)5, while J2 and J3 are ejected close to the
absolute maximum of the outburst (−49 d±37 d and −13 d±14 d
for J2 and J3, respectively at 86 GHz)6. Here, the 230 GHz light
curve again reveals the presence of short-timescale substructure.
The ejections of J4 and J5 coincide with the decaying phase of
the light curve in late 2007 and early 2008. While the 86 GHz
light curve does not show any specific event here, due to the lim-
ited sampling, the 230 GHz data indicate local maxima which
correspond well with the ejection times of these two compo-
nents, in particular with J4.

The apparent velocities are consistent with the fastest
motions seen in previous observations at lower frequencies
(Jorstad et al. 2005, 2017; Kadler et al. 2008; Chatterjee et al.
2011; Lister et al. 2013; Beuchert et al. 2018). These studies at
15 GHz and 43 GHz show a broader distribution of βapp between
∼2c and ∼8c while all our 86 GHz components fall into a narrow
range in apparent velocities between (4.0±0.3)c and (4.5±0.5)c
(see Table 2). This might be related to the short time range of
our observations which might miss the full extent of activity in
3C 111. Chatterjee et al. (2011) analyzed the 43 GHz observa-
tions shown here plus additional ones obtained over a period of
5.4 years, which include the time frame of the flare in 2007 and
our GMVA observations. Our results are consistent with those
of Chatterjee et al. (2011), except for the association of their
component K5 and the bend (J2, J3, in our model) which were
not separated into individual components by Chatterjee et al.
(2011).

The critical angle of ∼13◦ is slightly lower than the aver-
age value determined by Jorstad et al. (2017) of 16.3◦ ± 2.3◦
based on variability, and is consistent with the upper limit from
Kadler et al. (2008) of ≤21◦ based on 15 GHz VLBA images.
It was noted by Kadler et al. (2008) that these estimates of the
angle are in contradiction with the lower limit of 21◦ determined
for the kiloparsec-scale jet by Lewis et al. (2005). Intriguingly,
Hogan et al. (2011) estimated the angle of the large-scale jet
to be ∼8.1◦ based on analysis of the X-ray jet in combination
with the parsec-scale jet properties and assuming no decelera-
tion. This is slightly lower than the previous estimates. How-
ever, the minimum Lorentz factor determined by Hogan et al.
(2011) considering deceleration and bending fits our results, but
is below the average value obtained by Jorstad et al. (2017) of
7.7 ± 0.7.

Based on 15 GHz VLBI data, Beuchert et al. (2018) report
the appearance of a complex feature labeled “B” as the result
of the 2007 outburst which is first detected about 1 mas from
the 15 GHz core in their 15 GHz VLBA analysis. It is shown to
evolve into multiple components, B1, B2, B3, and B4, which
seem to correspond to J1, J2, J3, and J4 at 86 GHz as shown in
Fig. 5. The 15 GHz modelfit components are well aligned with
the 43 GHz components (see also Table A.3) with small differ-
ences being most likely the result of the different resolution. The
difference in position between 43 GHz and 86 GHz components
(see Table A.3) can be explained best by the movement of the jet

5 Based on the estimated ejection date and the flux density measure-
ment at 230 GHz on 2007 Feb. 15.
6 Based on the estimated ejection date and the flux measurement at
86 GHz on 2007 Aug. 02.

Fig. 5. Multifrequency images of 3C 111 at 15 GHz (VLBA, from the
MOJAVE programme), 43 GHz (VLBA, from the Boston-Blazar-Group
programme) and 86 GHz (GMVA) to highlight the association of J1, J2,
J3 and J4 with the 15 GHz counterparts (B1, B2, B3, B4) reported in
Beuchert et al. (2018). In this image, we corrected for the core shift
between 15 GHz and 43 GHz by applying a shift to the 15 GHz image
(∆RA = −0.22 mas, ∆Dec = −0.09, Beuchert et al. 2018). The coordi-
nates of the components are listed in Table A.3.
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Fig. 6. Modelfit components J2 and J3 at 86 GHz, and B2 and B4 at
15 GHz from Beuchert et al. (2018) after rotation by the median posi-
tion angle of the jet of 65◦. B2 and B4 are corrected for the core shift
between 15 GHz and 43 GHz.

features as show in Fig. 3. This consistency makes it possible to
trace the future evolution of components J2 and J3 to larger dis-
tances than would have been possible at 86 GHz alone. This is
illustrated in Fig. 6 (see also Beuchert et al. 2018), which shows
the components J2 and J3 in combination with B2 and B4 from
Beuchert et al. (2018) rotated by the median jet position angle of
65◦ and corrected for the core shift between 15 GHz and 43 GHz.
The core shift between 43 GHz and 86 GHz is very likely much
smaller than the one from 15 GHz to 43 GHz as has been shown
by other studies of AGNs (e.g., Lobanov 1998; Hada et al. 2011;
Fromm et al. 2013b).

Based on Fig. 6 it seems likely that J2/J3 at 86 GHz and
B2/B4 at 15 GHz can be associated with each other. This asso-
ciation has significant implications for the evolution of this jet
structure which is discussed in Sect. 4.4.
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4.2. Comparison with the outburst in 1996

As mentioned in Sect. 1, a major outburst was recorded in early
1996 similar to the one in 2007 in magnitude (Alef et al. 1998).
Alef et al. (1998) and Kharb et al. (2003) presented 43 GHz
VLBA images taken in 1996 July and 1996 Sep. The morphol-
ogy indicates a small bend in the jet similar to the 43 GHz images
in 2008.04 shown in Fig. 3. In the 43 GHz images obtained
in 1998, Jorstad et al. (2005) detected a large diffuse structure
located beyond ∼2 mas from the core. The study concludes that
this structure might represent the remnant of the 1996 out-
burst and measured βapp ≈ 6c for its propagation. In addition,
Jorstad et al. (2005) reported significant polarization in this fea-
ture at 43 GHz.

The 43 GHz images presented by Chatterjee et al. (2011)
suggest that the feature related to the 2007 outburst has traveled
a similar distance in a similar time range becoming increasingly
diffuse and extended. At 15 GHz, Beuchert et al. (2018) show
that feature B likewise becomes increasingly complex with time,
eventually dominating the polarization of the entire jet.

These are all indications that the major outbursts in 1996
and 2007 represent similar events that differ from intermediate,
minor flares from this radio source. Based on this, it seems prob-
able that a similar event will occur in the future. If the γ-ray
emission in 3C 111 is correlated to the radio activity as has been
seen in other sources, then a future large radio outburst would
represent a prime opportunity to study the radio–γ-ray connec-
tion. Grandi et al. (2012) associated the γ-ray emission detected
in 3C 111 in 2008 Oct./Nov. with a TS-value of 9.7 with a small
flare in late 2008 (see Fig. 1). If this connection holds, then a
larger radio outburst may coincide with a larger γ-ray event.

Interestingly, components J4 and J5, which are trailing
J1−J3, have a much lower flux density than the sum of bend-
related components J1, J2, and J3 (Fig. 4). This behavior is in
agreement with the modeling of the 1996 flare in Kadler et al.
(2008) and Perucho et al. (2008). In those works, the authors
suggested that the major flares are followed by drops in the
mass flux being injected into the jet, resulting in a decrease in
brightness. Figure 4 also indicates a steeper drop in flux density
from the second to third epoch compared to the drop from the
first to second epoch. This steeper drop cannot be explained by
the flux density normalization of epoch 3 even if the systematic
uncertainty is taken into account. However, because of the lim-
ited number of observations over the long time frame, we cannot
undertake a detailed physical interpretation.

4.3. The nature of C1

Traditionally, the brightest feature in the jet of 3C 111 corre-
sponded to the westernmost component. Here, we find an addi-
tional component upstream of the brightest emission region.
Such a component was reported by Grandi et al. (2012) based
on super-resolved 43 GHz VLBA images. The study interpreted
the brightest feature as the core of the jet and the component
upstream of the core as the counter-jet based on the stationary
behavior, but no detailed analysis was performed.

Various arguments seem to disfavor this scenario. In particu-
lar, using the ratio R of the flux density of the jet and counter-jet,
it is possible to estimate θLOS for a given intrinsic speed β and
a continuous, intrinsically symmetric jet (e.g., Urry & Padovani
1995) via

R =

(
1 + β cos θLOS

1 − β cos θLOS

)2+α

, (1)
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Fig. 7. Angle between the jet and the line of sight θLOS for a given
intrinsic speed β, for the flux density ratio of the C1 and C2 components
(blue) and the range of measured apparent velocities (red) of 3C 111.
The gray shaded areas represent the parameter space for θLOS and β for
both cases. The gray dashed line is a lower limit of the large-scale θLOS
from Hogan et al. (2011).

where α is the spectral index. Assuming C2 and C1 are actually
the VLBI cores of the jet and counter-jet, the corresponding flux
densities in the first epoch yield R ∼ 2.8. The gray-shaded area
marked by the blue lines in Fig. 7 shows the resulting possible
parameter space of θLOS and β accounting for the uncertainty
of the flux-density calibration and the lower limit on θLOS esti-
mated by Hogan et al. (2011). An independent way of constrain-
ing both parameters is using βapp from the previous section:

βapp =
β sin θLOS

1 − β cos θLOS
· (2)

This yields the gray-shaded area between the red lines in Fig. 7
which shows no intersection with the gray-shaded area repre-
senting the allowed parameter space from Eq. (1). Solving this
discrepancy would require a large change in θLOS on scales
below the resolution capabilities of the GMVA, which seems
unlikely given that the parsec- and kiloparsec-scale jet are well
aligned and remarkably straight. Alternatively, the scenario sug-
gested by Grandi et al. (2012) would require unusually large
intrinsic acceleration over the observed short distance. The
reported angles and Doppler factors for 3C 111 show that the
radio emission is significantly boosted with S int = δ3+αS obs, and
any counter-jet emission is expected to be de-boosted by 1/δ3+α.
For α = 0, this would require δ ∼ 1.2 to account for the given
R which is significantly below estimates from the kinematics of
the jet. While we cannot entirely exclude the possibility of high
intrinsic acceleration, we do not consider it to be the case here
based on the arguments above. Therefore, we favor the interpre-
tation that C2 represents a stationary component close to the core
(C1) based on these arguments which is consistent with conclu-
sions of Jorstad et al. (2017) This means that all modelfit com-
ponents belong to the jet and no counter is visible which would
correspond to much higher R value and a lower θLOS.

In the canonical jet model (Blandford & Königl 1979;
Königl 1981), the core corresponds to the transition region of
the jet from synchrotron self-absorbed to optically thin emission
where the opacity reaches τ = 1. Another possibility is that it
represents a recollimation shock (e.g., Daly & Marscher 1988;
Gómez et al. 1995, 1997; Fromm et al. 2011, 2013b; Marscher
2014). In the case of components C1 and C2, a core-shift analy-
sis is necessary in order to clarify whether C1 is a recollimation
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shock or not. In case of a recollimation shock, the core shift
would not decrease with increasing frequency (Fromm et al.
2018). Future quasi-simultaneous multi-frequency VLBI obser-
vations up to 1 mm wavelength might be able to test this.

It is important to point out that our kinematic results only
marginally depend on whether C1 or C2 is used for alignment as
they are both kinematically stationary. Given the small distance
between both components, we can use C1 as the reference point.

4.4. The transversal structure of the jet

Figure 6 shows the distinct trajectory of component J2/B4 with
respect to component J3/B2 and the link to other 15 GHz com-
ponents from Beuchert et al. (2018). There is a clear connec-
tion between the components: (1) the 15 GHz jet represents a
smooth continuation of the 86 GHz jet on larger scales, and (2)
the long-term kinematics of the components are different when
the 15 GHz evolution is considered, depending on the direction
of propagation. Although components J2 and J3 show similar
velocities at the observed 86 GHz epochs, J2 decelerates with
respect to J3 farther downstream. In relation with the originating
flare, this process shows that the flare has substructure in space
and time.

The growth of the observed jet bend might be interpreted
as the development of a kink instability along the jet because
of the flare (Tchekhovskoy & Bromberg 2016). The structure is
observed to grow out to a distance of r ' 3.5 mas at 15 GHz,
with a maximum amplitude of 0.5 mas. However, the 15 GHz
kinematics show that this large amplitude does not trigger jet
deceleration which would be expected following the disruption
in the jet stream. In addition, the overall jet remains remarkably
collimated on larger scales. Therefore, unless the instability and
disruption develop at the boundary between the jet spine and
the surrounding sheath, we regard the kink-instability option as
improbable.

The 230 GHz light-curve shown in Fig. 1 shows that the
global evolution is modulated by short-scale spikes and drops.
The five local maxima observed along the outburst can be
related, within errors, to the ejection of the different modeled
components. Components J1/B1 and J3/B2 propagate along the
spine, whereas component J2/B4 moves along a different PA (see
Fig. 6). Components J4 and J5 also propagate along the spine (at
least out to a distance of 1.5 mas covered by our GMVA data).

Therefore, the ejection of bright components seems to hap-
pen in a discrete way when the launching region becomes active.
It is already known that the modeled radio components associ-
ated to bright regions propagating down the jet are ejected with
different PAs (Beuchert et al. 2018; Lister et al. 2013) and that
only stacked images combining a number of VLBI observations
can reveal the whole time-averaged volume covered by the radio
jet. Our observations probably reveal such behavior within a sin-
gle flare.

The cross-identification of components from the 86 GHz and
the 15 GHz images (see Fig. 6) allows us to follow the trajectory
and kinematics of these components farther downstream of the
86 GHz jet. We observe that component J2/B4 not only follows
a trajectory along the bottom of the jet, but is also decelerated
with respect to the components moving along the spine of the
jet. It therefore seems that J2/B4 is decelerating due to direct
interaction with the ambient medium.

We can use the distance of J2 and J3 rJ2,J3 in the last GMVA
epoch as shown in Fig. 6, including the size of the compo-
nents, to estimate the deprojected opening angle ψ following
tanψ = rJ2,J3/dproj,J3 × sin θLOS, where dproj,J3 corresponds to the

projected distance of J3. With 8◦ . θLOS . 30◦, this yields
3.8◦ . ψ . 13◦, but the actual value may be larger due to
possible further extended emission below the sensitivity limit.
The range of ψ is consistent with average values determined at
43 GHz by Jorstad et al. (2017) using two different methods, that
is, 4.6◦ ± 1.2◦ and 8.8◦ ± 6.2◦.

In summary, the role that such peripheral components such
as J2/B4 play is two-fold. On the one hand, they carve the chan-
nel boundaries that allow the faster propagation along the jet
spine. Additionally, they may be the origin of the jet transver-
sal structure, that is, of a spine-sheath structure within the radio
jet. We want to stress that such layers increase the jet stability
(e.g., Perucho et al. 2005; Perucho & Lobanov 2007; Martí et al.
2016; Perucho 2019).

5. Summary and conclusions

In this paper, we present three GMVA observations at 86 GHz
of the γ-ray-loud radio galaxy 3C 111 that were obtained over
a period of one year shortly after a major outburst above 10 Jy
in 2007. The mm-wavelength light curves show that the whole
flare covered a time range of more than a year starting in late
2006 and decaying well into 2008 with minor flares before and
after the peak.

The high dynamic range of the GMVA images reveals a com-
plex morphology with a distinct feature in the form of a bend
in the otherwise well-collimated jet. The images and Gaussian
components fitted to the data reveal an emission region upstream
of the brightest feature of the jet. We consider the upstream emis-
sion as the core of the jet and not part of the counter jet. Both
features are stationary and have high brightness temperatures of
up to 3 × 1011 K. One of them may be interpreted as part of a
recollimation shock, but further multi-frequency VLBI observa-
tions at 86 GHz and above are necessary.

We combine the GMVA data with 43 GHz VLBA images to
constrain the time evolution of the jet at 86 GHz, which suggests
that all features of the jet move with apparent velocities between
∼4.0c and ∼4.5c. The maximum speed corresponds to a critical
angle of the jet to the line of sight of ∼13◦ and a critical Doppler
factor of ∼4.5, consistent with previous studies. The high angular
resolution of the GMVA observations enables us to separate the
observed bend into two distinct features, J2 and J3, which have
estimated ejection times that correspond well to the maximum
of the flare. Our results show that a kinematic study is possible
even with the two observation windows per year of the GMVA
for such a fast-evolving jet as 3C 111 if the GMVA observations
are supported with interleaved 43 GHz monitoring.

We can associate the features of the bend down to 15 GHz
allowing us to track them over a larger distance. The VLBI data
in combination with the radio light curves suggest that these lat-
ter features originated from distinct ejections into the jet stream
throughout the increased activity cycle of the AGN. The evolu-
tion of the bend indicates that we trace the transversal structure
of the jet in terms of a spine and sheath as a result of the outburst.

To date, 3C 111 has exhibited only one other major radio
flare (in 1996) that matches the scale of this radio outburst in
2007. Only a much smaller radio outburst occurred in-between
these two events. It is therefore plausible that a similar major
event will take place in the future. Since a connection between a
minor radio flare and the γ-ray activity has been proposed in the
literature (Grandi et al. 2012), it is interesting to consider that a
future outburst similar to the one in 2007 could lead to increased
high-energy activity. Hence, 3C 111 has the potential to be a key
target source for studies that probe the origin and development of

A85, page 8 of 11



R. Schulz et al.: Sub-milliarcsecond imaging of a bright flare and ejection event in the extragalactic jet 3C 111

the smallest substructures in AGN jets that lead to the enigmatic
short-term variability observed in some blazar jets. At an inter-
mediate angle between classical blazars and radio galaxies and
with its bright mm-band, compact jet emission at small redshift,
3C 111 offers the possibility for high-resolution multiwavelength
studies of AGN-jet variability during high-energy flares.
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Appendix A: Additional tables

Table A.1. GMVA stations that participated in our observations in 2007 and 2008.

Station Diameter SEFD Epoch 1 Epoch 2 Epoch 3
[m] [Jy] 2007-10-13 2008-05-11 2008-10-14

Metsähovi 14 17647 X X (d) X
Onsala 20 6122 X X X
Effelsberg 100 929 X X X
Plateau de Bure 35 (a) 409 X X (d) X
Pico Veleta 30 643 X (c) X X (e)

8×VLBA (b) 25 2941 X X X ( f )

Notes. (a)Equivalent diameter of a phased interferometric array with 6× 15 m telescopes. (b)The eight VLBA stations are North Liberty, Fort Davis,
Los Alamos, Pie Town, Kit Peak, Owens Valley, Brewster, Mauna Kea. (c)No fringes after correlation. (d)Flagged during a-priori calibration. (e)Data
were lost due to bad weather. ( f )Data of North Liberty and Fort Davis were flagged during hybrid imaging.

Table A.2. Parameters of the GMVA jet components prior to positional
alignment.

ID (a) S ν
(b) d (c) φ (d) bmaj

(e) log Tb
( f )

[Jy] [mas] [◦] [mas]

2007-10-15 (2007.79)
C1 1.51 0.070 −128.6 0.044 11.14
C2a 2.47 0.015 −138.1 0.037 11.50
C2b 1.80 0.039 42.9 0.046 11.18
J3 1.87 0.089 67.6 0.081 10.70
J2a 1.77 0.256 75.8 0.067 10.84
J2b 1.09 0.359 85.7 0.074 10.54
J1 1.53 0.590 76.8 0.120 10.27

2008-05-11 (2008.36)
C1 0.47 0.104 −117.9 0.049 10.54
C2 1.16 0.003 −145.9 0.049 10.94
J5 0.55 0.089 59.4 0.089 10.08

0.33 0.357 59.9 0.150 9.41
J4 0.26 0.516 57.4 0.059 10.12
J3 0.88 0.778 64.9 0.152 9.82
J2 0.52 1.003 77.6 0.197 9.37
J1 0.14 1.297 67.4 0.250 8.61

0.06 4.108 65.9 0.166 8.60
2008-10-14 (2008.78)

C1 0.66 (g) 0.101 −117.1 0.039 10.88
C2 0.74 (g) 0.030 −142.4 0.037 10.98
C2 1.44 (g) 0.009 33.6 0.024 11.65

0.38 (g) 0.059 53.5 0.061 10.26
0.11 (g) 0.385 57.1 0.148 8.96

J5 0.10 (g) 0.680 59.4 0.107 9.18
J4 0.06 (g) 1.099 64.8 0.082 9.19
J3 0.10 (g) 1.418 63.8 0.110 9.14
J2 0.17 (g) 1.509 76.5 0.306 8.51
J1 0.05 (g) 1.750 65.4 0.201 8.31

0.06 (g) 4.739 66.1 0.496 7.60

Notes. (a)ID of kinematic component. (b)Flux density of the component.
(c)Distance of the component to center of the map. (d)Position angle
of the component relative to the center of the map. (e)Major axis of
the Gaussian component. ( f )Logarithmic value of the brightness Tem-
perature. (g)As noted in Sect. 2.1, the flux density values obtained for
the third VLBI measuremnt might be systematically underestimated by
22%.

Table A.3. Coordinates of components at 15 GHz (shift applied),
43 GHz, and 86 GHz used for Fig. 5.

ID (a) ν (b) Rel. RA (c) Rel. Dec (d)

[GHz] [mas] [mas]

B1 15 1.51 0.65
43 1.56 0.75

J1 86 1.68 0.78
B4 15 1.29 0.20

43 1.41 0.37
J2 86 1.56 0.40
B2 15 1.23 0.47

43 1.20 0.57
J3 86 1.36 0.67
B3 15 0.93 0.40

43 0.84 0.42
J4 86 1.08 0.51

Notes. (a)ID of kinematic component. (b)Frequency of the VLBI obser-
vation. (c)Relative Right Ascension of the component. (d)Relative Decli-
nation of the component.
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Table A.4. 86 GHz flux density measurement from F-GAMMA and
POLAMI.

Date (a) Flux (b) Flux error (c) Project (d)

[MJD] [Jy] [Jy]

54022.014 3.92 0.2 POLAMI
54113.504 4.11 0.07 F-GAMMA
54229.991 7.0 0.36 POLAMI
54236.013 7.38 0.38 POLAMI
54261.200 10.033 0.71 F-GAMMA
54312.617 12.444 0.258 F-GAMMA
54323.149 13.374 0.988 F-GAMMA
54332.994 13.46 0.7 POLAMI
54357.996 10.96 0.57 POLAMI
54359.018 12.83 0.66 POLAMI
54360.745 12.613 0.249 F-GAMMA
54382.479 12.057 0.224 F-GAMMA
54384.021 11.6 0.6 POLAMI
54447.249 10.482 0.51 F-GAMMA
54479.560 7.561 0.11 F-GAMMA
54507.508 6.898 0.199 F-GAMMA
54528.401 5.806 0.08 F-GAMMA
54588.072 4.055 0.158 F-GAMMA
54593.002 3.91 0.2 POLAMI
54616.812 3.903 0.066 F-GAMMA
54618.000 4.03 0.21 POLAMI
54627.992 4.08 0.21 POLAMI
54636.995 3.65 0.19 POLAMI
54642.977 3.373 0.206 F-GAMMA
54649.000 3.57 0.18 POLAMI
54675.730 3.619 0.137 F-GAMMA
54703.592 2.888 0.16 F-GAMMA
54720.004 3.21 0.17 POLAMI
54724.800 3.718 0.148 F-GAMMA
54746.537 4.061 0.215 F-GAMMA
54747.015 4.37 0.23 POLAMI
54777.355 6.71 0.757 F-GAMMA
54806.356 5.135 0.219 F-GAMMA
54830.024 4.02 0.21 POLAMI
54837.555 4.363 0.171 F-GAMMA
54882.005 3.84 0.2 POLAMI
54898.013 3.453 0.114 F-GAMMA
54963.848 2.171 0.109 F-GAMMA
55004.778 2.135 0.196 F-GAMMA

Notes. (a)Date of flux density measurement. (b)Flux density measure-
ment. (c)Uncertainty of flux density measurement. (d)Flux density mon-
itoring programme which obtained the measurement.

A85, page 11 of 11


	Introduction
	Observation and data reduction
	GMVA observations
	Ancillary data

	Results
	Single-dish light curve
	Morphology and time evolution of the 86GHz jet

	Discussion
	Jet evolution and parameters
	Comparison with the outburst in 1996
	The nature of C1
	The transversal structure of the jet

	Summary and conclusions
	References
	Additional tables

