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Neutron diffraction is one of the best methods for structural analysis of a complex, layered perovskite material with low symmetry
by accurately detecting the oxygen positions through octahedral tilting. In this research, the crystal structure of NdSrMn2O5+δwas
identified through X-ray diffraction (XRD) and neutron powder diffraction (NPD) at room temperature (RT), which indicated the
formation of a layered structure in orthorhombic symmetry in the Pmmm (no. 47) space group. Rietveld refinement of the
neutron diffraction data has confirmed the orthorhombic symmetry with unit cell parameters (a� 3.8367 (1) Å, b� 3.8643 (2) Å,
and c� 7.7126 (1) Å), atomic positions, and oxygen occupancy.+ermogravimetric analysis revealed the total weight loss of about
0.10% for 20–950°C temperature, which occurred mainly to create oxygen vacancies at high temperatures. Rietveld analyses
concurred with the XRD and neutron data allowing correlation of occupancy factors of the oxygen sites.

1. Introduction

+e perovskite materials are used widely in solid oxide fuel
cells (SOFCs) due to its diversity in chemical compositions.
Ideal cubic symmetrical perovskite oxides have the general
formula ABO3 [1], where A and B indicate A-site and B-site
cations and O is the anion [2]. Perovskite oxides containing
excess oxygen due to interstitial oxygen atoms are unstable
thermodynamically [3, 4]. Since oxygen has a high elec-
tronegativity, it will always attract electrons from heated-site
and B-site cations and make them mixed-valence state for

stability. As a result, research is being concentrated on
perovskite oxides which have oxygen deficiency, and this
deficiency can be created by manipulating the cationic and
anionic stoichiometry of ABO3 [5]. In recent times, the
layered perovskites have attracted researchers because of
their promising properties in energy sectors [6–8]. Rare-
earth perovskites, such as PrBaMn2O5 and NdBaMn2O5,
exhibited excellent redox stability (this implies that more
easily reduced perovskite exhibits higher catalytic activity)
and tolerance to coking and sulfur contamination from fuels
[9]. Besides, some manganese-based layered perovskite can
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be used as oxygen storage materials in solid oxide fuel cells
(SOFCs) [10] and solid oxide electrolyzer cells (SOECs) due
to their electron-conductive nature [11–13]. Some layered-
type perovskites used as electrodes in SOFCs [14–18] fueled
through hydrogen or other syngas [19–22] have also shown
promising results.

+e structural distortion is our core consideration as it
affects the physical and electrochemical properties of the
perovskite-type oxides [23–25]. Neutron diffraction is a
robust technique that can determine complex crystal
structure, oxygen stoichiometry, and oxygen vacancy or-
dering. It is noteworthy that the neutron is scattered from
the nuclei of the atoms allowing for the formation of dif-
ferent isotopes of the same atom and could detect light
atomsmasked by the heavy atoms [26].+e Bragg reflections
of the powder pattern with a long Q-range can easily be
detected. Many efforts have been dedicated to enriching the
performance of layered perovskite by substituting various
cations, especially Mn-doped rare-earth perovskite. As an
anode for SOFCs, (PrBa)0.95(Fe0.9Mo0.1)2O5+δ (PBFM)
demonstrated a high power density of 1.72W·cm−2 at 800°C
(as reported in [27]), whereas the composition
SmBaCo0.5Mn1.5O5+δ demonstrated a power density of
377mW/cm2 and SmBaMn2O5+δ exhibited high power
density of 782mW·cm−2 at 900°C as an electrode [16, 28].

+e synthesis of a novel material was elaborately dis-
cussed, and the results of high-resolution neutron powder
diffraction (NPD) studies were observed on the crystallized
sample in this work. We report the complete structural data
of these materials and describe the thermal properties from
thermogravimetric analysis.

2. Materials and Methods

+e solid-state synthesis technique [18, 29–33] was applied
to developing NdSrMn2O5+δ. Oxide powders of Nd2O3
(≥99.90%, Sigma-Aldrich), SrCO3 (≥99.90%, Aldrich), and
MnO (≥99.50%, Aldrich) were weighed according to their
stoichiometric ratios and ground with the aid of a mortar
and pestle using ethanol as a reagent [34]. +e powders were
calcined at 1000°C for 10 hours after drying. +e powders
were pressed into pellets and sintered at 1200°C for 12 hours
with 5°C·min−1 heating and cooling rate with intermediate
grinding. Subsequently, the pellets were reground and
resintered at 1400°C for another 12 hours. +e whole syn-
thesis process was operated under an Argon (Ar) atmo-
sphere with a gas flow rate of 40ml·min−1. X-ray powder
diffraction (XRD) and neutron powder diffraction (NPD)
were used to analyze the crystal structure of NdSrMn2O5+δ
material.

+e phase structure was first determined by XRD using a
Bruker axs-D8 Advance diffractometer. Data were collected
in the 2θ range from 10° to 79.995° with increments of 0.02°
per second. +e Rietveld refinement procedure was used to
analyze the XRD data [35] using the Fullprof software [36].
A polynomial function (6-coefficient) was set for the
background, and the pseudo-Voigt function was used to
model the peak shapes.

Neutron powder diffraction data were collected at room
temperature (RT) with the Polaris diffractometer (medium-
resolution powder diffractometer at a high intensity) at the
ISIS Neutron & Muon Source, UK [37, 38]. +e time-of-
flight (TOF) powder diffraction data were analyzed using
GSAS-II [39] software. +is material is debuted under the
Pmmm space group through the Rietveld analysis of the
high-resolution NPD data; a layered perovskite structure
was formed. +e Rietveld analysis used standard parameters
for the refinement: a shifted Chebyshev series as background
as instigated in GSAS software, zero shift, scale factor, profile
parameters (type 3 in GSAS), cell parameters, atomic co-
ordinates, site-occupancy factor (SOF), and atomic dis-
placement factors (ADP).

To perform thermogravimetric analysis (TGA), a
Netzsch-Gerätebau GmbH-STA 409 PC Luxx Simultaneous
+ermal Analyzer was used to perceive the weight change
with increasing temperature under flowing nitrogen.
99.51mg of NdSrMn2O5+δ powder was placed in a ceramic
crucible (Al2O3 DSC/TG pan) and heated from 20 to 950°C
at a rate of 5°C·min−1 under 20ml·min−1 of N2 flow. An
isothermal hold for 1 hour removed absorbed species before
cooling. +e process was then repeated to ensure complete
desorption of any contaminants. Upon complete desorption,
N2 flow was substituted for airflow, and the mass change
were recorded until equilibrium was reached.

3. Results and Discussion

Solid-state reaction methods have been used to prepare the
layered perovskite NdSrMn2O5+δ. +is layered perovskite is
challenging to develop in a pure form, but the single-phase
was obtained. Our synthesis method was also different from
the method used to obtain NdBaMn2O5+δ [40] but similar to
the synthesis process for PrSrMn2O5+δ [30]. Figure 1 shows
the XRD pattern for NdSrMn2O5+δ sintered at 1400°C under
Ar atmosphere. Some extra small peaks could not be indexed
with the basic unit cell pattern. But, most of the peaks in
Figure 1 can be indexed to an orthorhombic unit cell. +e
crystalline structure of this material was determined as
ceramic through the XRD pattern. +e XRD for the sample
was measured at room temperature.

Fundamental understanding of the structure of the
NdSrMn2O5+δ sample was investigated by neutron powder
diffraction at room temperature. Oxygen vacancies are
created in the material, which can balance the total charge.
+e single-phase orthorhombic structure was obtained from
neutron diffraction with the space group, Pmmm. Rietveld
refinement of room-temperature NPD data (Figure 2)
revealed that NdSrMn2O5+δ achieved cell parameters
a� 3.8367 (1) Å, b� 3.8643 (2) Å, and c� 7.7126 (1) Å with
dimensions ap × ap × 2ap as observed in NdBaCo2−xMnxO5+δ
[12]. Bank 2 (up to 7 Å) NPD data were analyzed via Rietveld
refinement.+e space groups, refinement factors (R-factors),
and cell parameters are listed in Table 1, and atomic posi-
tions, Wyckoff positions, and isotropic temperature factors
are listed Table 2, respectively. In Table 1, the other layered
perovskite structures were compared with the present work.
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+e oxygen occupation was fixed at 1 at three oxygen
sites for the space group Pmmm, O1, O2, and O3, repec-
tively. +ese three sites remained locked in the Rietveld
model refinement to detect the significant eccentricity from
unity. No significant changes were found for three sites. Uiso
as the thermal vibration parameters for Nd, Sr, and Mn were
refined isotropically.+ese sites were set isotropically to get a

standard deviation. Atomic displacement parameters (ADP)
and the site-occupancy factors (SOF) correlated with each
other. As a result, they were unable to be refined simulta-
neously. DIFA (a small correction in GSAS software to allow
a reflection in the expected time-of-flight peak shifts due to
sampling absorption), absorption, and scaling parameters
were constrained in this case. +e isotropic thermal
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Figure 2: Rietveld refinement profile of NdSrMn2O5+δ at room temperature with 3D polyhedral representation. +e red line depicts the
original data, the continuous green line depicts the calculated profile data, and the purple bottom line depicts the difference.
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Figure 1: Rietveld refinement pattern of NdSrMn2O5+δ for XRD.

Table 1: Comparison of the results obtained from the Rietveld analysis of NPD data for NdSrMn2O5+δ at RT (space group, Pmmm) with
other data from the literature.

Parameters NdSrMn2O5+δ at RT NdBaMn2O5+δ at 25°C∗ YBaMn2O5 at 25°C∗∗ PrSrMn2O5+δ at RT∗∗∗

Structure model Orthorhombic Tetragonal Tetragonal Orthorhombic
Space group Pmmm P4/nmm P4/mmm Pmmm
Volume (Å3) 416.8110 — — 480.9290
R-factors
Rf (%) 5.50 — — —
Rp (%) 4.87 2.21 — —
Rwp (%) 6.86 — 6.00 —
Cell parameters
a (Å) 3.8367 (1) 5.6140 (1) 3.9186 (2) 3.8906 (1)
b (Å) 3.8643 (2) 5.6140 (1) 3.9186 (2) 3.8227 (1)
c (Å) 7.7126 (1) 7.7430 (2) 7.6540 (5) 7.6846 (2)
∗NdBaMn2O5+δ [41], ∗∗YBaMn2O5 [42], ∗∗∗PrSrMn2O5+δ [30].
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vibration parameters (Uiso) also remained constrained in
each phase. +e average B-O bond lengths at room tem-
perature can be compared to the calculated ionic radii by
Shannon [43], where <Mn-O> is 1.9218 (6) Å (calc. 2.08 Å).
Main bond distances and their average distances are tabu-
lated in Table 3.

+e surface morphology exhibits well-connected, large
grains showing visible grain growth with an orthorhombic
form. +ere were no secondary phases found at the grain
boundary region in the NdSrMn2O5+δ sample. +e grains
were approximately 10 μm in size for the sample.+e porous
morphology (Figure 3) depicted that this material can be
used as an electrode for fuel cells, the pores will assist the
conduction of electrons, as well as allow fuel to pass easily
through the structure [44].

An inert atmosphere is needed during the thermogra-
vimetric experiment to prevent oxidation of the sample
during thermal treatment. A vacuum environment was
created inside the TGA-differential scanning calorimetry
(DSC) chamber to ensure an utterly anoxic environment for
the analysis. A small amount of the sample NdSrMn2O5+δ
was taken for thermogravimetric analysis- (TGA-) differ-
ential scanning calorimetry (DSC) under a nitrogen envi-
ronment. TGA showed that oxidation occurred at 200°C
while heating in a single gradation (Figure 3) including
weight loss with 1 oxygen atom in the formula unit. A small
amount of weight loss was observed from 20°C to 950°C in
the TGA-DSC curve in N2 atmosphere. But, there no phase
transition occurred which is seen in the DSC curve as there is
no exo- or endothermic peaks observed in Figure 3 [45]. +e
weight loss occurred due to evaporation of themoisture [46],
formation of oxygen vacancy, and valence state of cations
[3]. In the first step (200°C–500°C), the weight loss was high
due to the moisture evaporation [47], and the decline in this
region was about 0.084%. Above 500°C, the weight loss was
less because all the organic compounds and all other ele-
ments end up in this step and the sample behaves as a
thermally stable material [48–53]; from 500°C to 950°C, the
weight loss was approximately 0.016%. +e total weight loss
observed was about 0.10% for a temperature range between
20 and 950°C which is comparable with other perovskite
materials; SmBaMn2O5+δ (0.036%) [54] and PrSrMn2O5+δ
[30]. +e oxygen content of the equilibrium stage decreases
with temperature leading to oxygen vacancy formation
during TGA-DSC. Table 4 shows that the calculated oxygen
occupancy values from TGA are very close to the calculated
values from Rietveld refinement. From Table 4, we can see

that due to the fewer changes in oxygen occupancy in the
NdSrMn2O5+δ crystal powder, a minimal weight loss has
been observed which is close to or less than other layered
structures from the literature that are comparable.

+e crystal structure of NdSrMn2O5+δ is an example of
layered orthorhombic symmetry, where both B-cations
occupy the perovskite-like corner-shared octahedral (MnO1
and MnO2) sites. In this study, we evaluated the structural
and thermal characteristics. According to these character-
izations, we obtained a good result due to its high porosity,
stable structure, and sufficient oxygen deficiency in com-
parison to similar types of layered perovskites. For
NdSrMn2O5+δ, the Rietveld analysis indicates that all oxygen
vacancies occur in the O1 and O2 sites. +e volume of this
NdSrMn2O5+ δ material is not so large without any long-
range ordering in B-site which indicates an oxygen-deficient
layered perovskite oxide. During TGA-DSC, when the
heating starts, the weight loss was mainly observed from 200
to 950°C on account of increasing oxygen deficiency and
thermally stable [55] due to its minimal amount of weight
loss. Also, similar rare-earth layered perovskite has already
given a promising result with the same space group for IT-

Table 2: List of Wyckoff positions, atomic positions, and isotropic
temperature factors for NdSrMn2O5+δ (space group, Pmmm) from
neutron diffraction data at RT.

Atoms Wyckoff positions x y z Uiso

Nd 1f 0.5000 0.5000 0.0000 0.0231 (1)
Sr 1h 0.5000 0.5000 0.5000 0.0172 (1)
Mn 2q 0.0000 0.0000 0.7556 0.0025 (2)
O1 2r 0.0000 0.5000 0.2438 0.0417 (1)
O2 2s 0.5000 0.0000 0.2478 0.0350 (3)
O3 1c 0.0000 0.0000 0.5000 0.0166 (1)

Table 3: Leading bond distances (Å) (d≤ 6 Å) for orthorhombic
NdSrMn2O5+δ determined from NPD data at room temperature
(RT).

Parameters Bond length (Å)
Nd-O1 (×4) 2.6943 (4)
Nd-O2 (×4) 2.7044 (4)
<Nd-O> 2.6993 (5)
Sr-O1 (×4) 2.7614 (5)
Sr-O2 (×4) 2.7322 (4)
Sr-O3 (×4) 2.7233 (4)
<Sr-O> 2.7389 (6)
Mn-O1 (×4) 1.9200 (4)
Mn-O2 (×4) 1.9325 (4)
Mn-O3 (×4) 1.9131 (5)
<Mn-O> 1.9218 (6)
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Figure 3: TGA plot of NdSrMn2O5+δ on heating from 20°C to
950°C. Single-phase SEM morphology of NdSrMn2O5+δ inserted.
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SOFC [56]. +ese types of layered perovskites have recently
gained a great deal of attention for SOFC anode materials
because of their unusually high oxygen transport kinetics
rate [57, 58]. It is established that the layered perovskite
performs well for fuel cells reported by Abdalla et al. [40, 54].

4. Conclusions

Terminally, the solid-state synthesis method was used to
prepare this single-phase novel, layered perovskite
NdSrMn2O5+δ. XRD, NPD, and TGA-DSC analyses were
used to determine structural and thermal properties. Both
XRD and NPD data confirmed that the sample crystallizes in
orthorhombic symmetry with the space group, Pmmm via
Rietveld analysis. +e structural features of this ortho-
rhombic structure were measured by the action of flowing
nitrogen (N2) with temperature and time, evidenced by a
minimal weight loss (0.1%), which may be the weight loss
attributed to the oxygen vacancy formation or a decrease in
oxygen content. +e minimal weight loss occurred in the
TGA-DSC results, mainly for the fewer variations in oxygen
occupancy in the NdSrMn2O5+δ crystal, whose value is
closer to the results of oxygen occupancy in neutron re-
finement analysis. +e development of layered perovskite
remains an appealing research topic, and promising tech-
nology has emerged to improve SOFCs with further elec-
trochemical experiments.

Nomenclature

δ: Oxygen nonstoichiometry
Uiso: +ermal vibrational parameters
Rp, Rwp, and Rf: Residual factors or R-factors
SOFC: Solid oxide fuel cell
SOEC: Solid oxide electrolyzer cell
XRD: X-ray powder diffraction
NPD: Neutron powder diffraction
RT: Room temperature
TOF: Time of flight
SOF: Site-occupancy factor
ADP: Atomic displacement factors
TGA: +ermogravimetric analysis
DSC: Differential scanning calorimetry.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare that they do not have any conflicts of
interest.

Acknowledgments

+e author Shammya Afroze is grateful to Universiti Brunei
Darussalam for awarding her by UBD Graduate Scholarship
(UGS). +e author is especially indebted to late Professor
Sten G. Eriksson from Chalmers University of Technology,
Sweden. +e ISIS Neutron and Muon Facility, UK, is greatly
acknowledged for its scheduled beam-time (RB1810638,
DOI: https://doi.org/10.5286/ISIS.E.RB1810638).

References

[1] N. Tien +ao and L. T. Son, “Production of cobalt-copper
from partial reduction of La(Co, Cu)O3 perovskites for CO
hydrogenation,” Journal of Science: Advanced Materials and
Devices, vol. 1, no. 3, pp. 337–342, 2016.

[2] S. Feraru, P. Samoila, A. I. Borhan, M. Ignat, A. R. Iordan, and
M. N. Palamaru, “Synthesis, characterization of double pe-
rovskite Ca2MSbO6 (M�Dy, Fe, Cr, Al) materials via sol-gel
auto-combustion and their catalytic properties,” Materials
Characterization, vol. 84, pp. 112–119, 2013.

[3] M. A. Peña and J. L. G. Fierro, “Chemical structures and
performance of perovskite oxides,” Chemical Reviews,
vol. 101, no. 7, pp. 1981–2018, 2001.

[4] A. V. Kovalevsky, S. Populoh, S. G. Patŕıcio et al., “Design of
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