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Ecosystem stability is a central question both in theoretical and applied biology. Dynamical systems theory
can be used to analyze how growth rates, carrying capacities, and patterns of species interactions affect the
stability of an ecosystem. The response to increasing complexity has been extensively studied and the general
conclusion is that there is a limit. While there is a complexity limit to stability at which global destabilisation
occurs, the collapse rarely happens suddenly if a system is fully viable (no species is extinct). In fact, when
complexity is successively increased, we find that the generic response is to go through multiple single-species
extinctions before a global collapse. In this paper we demonstrate this finding via both numerical simulations and
elaborations of theoretical predictions. We explore more biological interaction patterns, and, perhaps most impor-
tantly, we show that constrained interaction structures—a constant row sum in the interaction matrix—prevent
extinctions from occurring. This makes an ecosystem more robust in terms of allowed complexity, but it also
means singles-species extinctions do not precede or signal collapse—a drastically different behavior compared
to the generic and commonly assumed case. We further argue that this constrained interaction structure—limiting
the total interactions for each species—is biologically plausible.

DOI: 10.1103/PhysRevE.102.062405

I. INTRODUCTION

In theoretical studies of ecosystem stability, dynamical
systems are often used. These models were initially extended
from a few species [1,2] to whole ecosystems by using ran-
dom matrices to represent the interaction network among
species. In particular, May found that increased complexity
in terms of number of species and/or interactions typically
leads to instability—a surprising result at the time [3]. Since
then, more powerful numerical methods have led to addi-
tional insights into ecosystem stability by using approaches
such as dynamical modeling with higher-order or other forms
of species interactions [4–8] as well as topological stud-
ies [9–12]. Although higher-order interactions and features
such as adaptive foraging have been shown to sometimes
reverse the generic conclusions first found by May [13,14]—
complexity leads to system-wide instabilities—many studies
confirm it [6–8].

The simplest and most widely used dynamical model cap-
turing the interaction complexity, and the most closely related
to May’s result, is the generalized Lotka-Volterra (GLV)
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model,
dxi

dt
= xi fi(x)

= rixi

(
1 − xi

Ki

)
+ σxi

N∑
j=1

Ai jx j, (1)

where the xi are species abundances for species i =
1, 2, . . . , N , and ri and Ki are intrinsic growth rates and car-
rying capacities for each species respectively. A is the N × N
interaction matrix and σ a parameter that regulates the stan-
dard deviation of the interaction strengths. The diagonal of A
is set to zero (Aii = 0), because the first term on the right side
of Eq. (1) already captures the self-interactions.

The fixed points of Eq. (1) are

x∗
i = Ki/ri

(
ri + σ

N∑
j=1

Ai jx
∗
j

)
or x∗

i = 0. (2)

Until recently, a common approach when analyzing stability
of the GLV has been to assume that all species are nonextinct
[2,3,15–18]. This restricts the analysis to the nontrivial fixed
point (called a feasible fixed point) of Eq. (2), and effectively
rules out extinctions. To analyze the stability of the model the
Jacobian evaluated at a fixed point (J∗), including nonfeasible
fixed points, is used. When taking extinctions into account it
can be written as

J∗ = J> + J0, (3)

where J> includes nonextinct (x∗
i > 0) and J0 includes extinct

species (x∗
i = 0), with

J> = X ∗(σA − RK ) and J0 = E (R + σD). (4)
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Here X ∗, K , R, and D are diagonal matrices with x∗
i , ri, 1/Ki,

and (Ax∗)i on the diagonal respectively. E is a diagonal matrix
with ones corresponding to extinct species, Eii = 1 when x∗

i =
0, and zero otherwise. Note that rows corresponding to extinct
species in J> are zero, and equivalently rows for nonextinct
species in J0. This means the spectrum of J∗ has two separate
parts {λ1, . . . , λn, γ1, . . . , γm} where n and m are the numbers
of no-extinct and extinct species respectively.

The Jacobian used by May, JM = (σA − I ), is similar to
J> or the entire Jacobian under the assumption that all species
are nonextinct, when ri = Ki = 1. Assuming feasibility by
using JM , drawing entries of A from a random normal dis-
tribution N (μ = 0, 1) with probability c (connectance), and
using Wigner’s semicircle law [19], May derived a boundary
for fixed-point stability which was interpreted as a boundary
for ecosystem stability in terms of σ , N , and c. The equation
for the boundary is

σM = 1/
√

cN, (5)

i.e., the point when we expect the Jacobian to have an eigen-
value with positive real part. This result has ever since been
extensively debated and its relation to real ecosystems both
questioned and defended [20]. Many studies have used it to
assess stability of real and simulated ecosystems [17,21,22].
It has also been extended, for example, in terms of modularity
in interactions and mean interaction strength [18,23].

The Jacobian introduced by May and its extensions do not
include fixed-point abundances. The Jacobian’s sign struc-
ture (hence the stability) can in some cases be affected by
the X ∗ scaling [24]. However, the main qualitative differ-
ence is the possibility of extinctions in the dynamical model.
Extinctions occurring at lower complexities (smaller values
of σ ) than for destabilization, σM = 1/

√
cN , will shift the

stability boundary to larger σ , a feature that has long been
overlooked. In our previously published work, we showed that
this in fact is the generic behavior of systems with random
interaction structures, we updated the complexity limit for
destabilization/collapse, and we introduced a limit beyond
which systems can no longer be feasible [25]. This picture
substantially changes both the prediction of a system’s re-
sponse to perturbations as well as approach to collapse.

Figure 1 demonstrates the general behavior of the GLV
model with random interactions, as analyzed in [25], when
no restrictions on feasibility are imposed. Although for suf-
ficiently large σ there may be several fixed points that are
qualitatively equivalent, the figure shows a specific but generic
trajectory that is followed when increasing σ . In particular,
systems do not switch between fixed points following pertur-
bations in σ or in species abundances. However, randomly
chosen initial species abundances for the dynamical system
could induce a switch. Taken together, this means that, after
a perturbation in σ , the dynamical system can respond in
two qualitatively different ways: either a single species goes
extinct or the system loses stability.

With the generic behavior of random systems mapped in
[25], in this paper we follow up by answering the question,
are there any biologically relevant conditions for which ex-
tinctions will not occur at lower complexities than the global

FIG. 1. Species abundances vs standard deviation of interaction
strengths. Example simulation of a system with initial biodiversity,
N = 100, connectance c = 0.5, ri = Ki = 1, and μ = 0 in the in-
terspecific interaction strength distribution. The plot shows species
abundances at locally stable fixed-points for varying standard devia-
tion of interaction strengths, σ . The first extinction event and collapse
are indicated by blue lines, and the dashed blue line indicates σM .
Prior to the first extinction, the system has feasible fixed points where
all N = 100 species are nonextinct. The collapse, where no similar
stable fixed point exists, occurs for larger σ and the stability bound-
ary introduced by May is in between. The insets show the spectrum
of May’s Jacobian, JM , at three points of interest: (1) first extinction,
(2) σM , and (3) loss of stability, with the circle indicating the radius
of stability. Note how σM both overestimates the first extinction event
and underestimates collapse.

collapse? To answer this, we begin with an elaboration of our
previous derivation of the extinction boundary.

II. DERIVING THE EXTINCTION BOUNDARY

As seen in Fig. 1 species extinction occur for smaller sigma
than May’s stability boundary. To show that this behavior is
generic we need to calculate the expected value of σ at the
first extinction, σ f , to compare with the stability boundary in
Eq. (5). The boundary σ f is the extinction boundary intro-
duced in [25], then as a first-order approximation. Here, we
go even further and derive an exact expression.

Assuming no extinction has occurred, the fixed-point equa-
tion is linear:

x∗ = (I − σA)−11, (6)

where we set ri = Ki = 1 for simplicity (ri �= 1 and Ki �= 1,
demonstrated in [25]). Reexpressing the inverse (I − σA)−1

as a von Neumann series expansion gives

x∗ =
( ∞∑

p=0

σ pAp

)
1. (7)

For guaranteed convergence of the von Neumann expansion
||σA||∞ < 1 (or equivalent norm). This strict condition does
not hold for σA in the σ ranges of interest here, although there
are less strict criteria of convergence and rigorous numerical
investigations confirm the sum typically converges until in the
vicinity of the stability boundary, σM .

From Eq. (7) it follows that x∗
i are sums of products of

the random variables Ai j , and from now on we treat them as
stochastic variables, X ∗

i . For simplicity we start by assuming

062405-2



STABILITY OF ECOSYSTEMS ENHANCED BY … PHYSICAL REVIEW E 102, 062405 (2020)

that the mean of interaction strengths, μ, is zero. The general
case with μ �= 0 is treated below.

Assuming independence between the terms in the outer
sum (scalar product with the vector 1) in Eq. (7), the X ∗

i
will converge to the normal distribution for sufficiently large
cN in accordance with the central limit theorem. Then the
variance of the X ∗

i can be found using the rules for mean
and variance of product and sum distributions for inde-
pendent stochastic variables, for example Var [

∏N
i=1 Yi] =∏N

i=1 (Var [Yi] + E [Yi]2) − E [
∏N

i=1 Yi]
2
.

Especially, we use that E [
∏N

i=1 Yi] = 0 and
Var [

∏N
i=1 Yi] = ∏N

i=1 Var [Yi] when E [Yi] = μ = 0. An
element of A2 will be a sum of approximately c2N random
variables with mean 0 (E [Ai j]E [Ajk]) and variance 1
(Var[Ai j] Var[Ajk]), therefore we have E [(A2)i j] = 0 and
Var[(A2)i j] = c2N . Similarly, for A3, E [(A3)i j] = 0 and
Var[(A3)i j] = c3N2, etc. Finally the outer sum in Eq. (7) gives
the total variance of X ∗

i ,

σ 2
+ =

∞∑
p=1

(cNσ 2)p = cNσ 2

1 − cNσ 2
, (8)

i.e., X ∗
i ∼ N (μ+ = 1, σ+ =

√
cNσ 2

1−cNσ 2 ).
It follows that for μ = 0 the species abundances have a

normal distribution with mean 1, variance 0 at σ = 0, and
diverging variance at May’s stability limit Eq. (5). The di-
vergence is however artificial since when increasing σ one of
the x∗

i will become zero, breaking the assumptions in Eq. (6),
marking the first extinction event. Statistically we can express
this event in terms of order statistics where the distribution of
the qth smallest species abundance of X ∗

i [with distributions
f (x)] can be expressed as

fZq (x) = N!

(q − 1)!(N − q)!
(1 − F (x))N−qF (x)q−1 f (x), (9)

where F (x) is the cumulative distribution function of f (x).
The explicit minimum distribution fZq=1 (x) is then

fZ1 (x) = N (1 − F (x))N−1 f (x)w

= Ne−(x−μ+ )2/2σ 2
+

σ+
√

2π

(
1

2
− 1√

π

∫ x−μ+
σ+

√
2

0
e−t2

dt

)N−1

.

(10)

The first extinction boundary, σ f , is the σ for which Eq. (10)
has mean zero.

To account for systems with nonzero mean interaction
strengths, μ �= 0, the interaction matrix can be written as
A = Aμ=0 + M where Aμ=0 ∼ N (0, 1), A ∼ N (μ, 1), and M
is a matrix with μ at the same positions as the nonzero entries
of A. Then for (I − σAμ=0 + σM )x∗ = 1 and c = 1, Mx∗ is
approximately a constant vector xT OT 1. Each of these sums
exclude the diagonal element but is approximately correct
when the variance of the species abundances is small. There-
fore

x∗ = (σμxT OT + 1)(I − σAμ=0)−11, (11)

FIG. 2. Extinctions or destabilization first? The top plot shows
simulation averages of the mean value (with one-standard-deviation
error bars) of the variation in interaction strength, σ , at which first
extinction occurs. The simulation averages are from “Random” sys-
tems with interaction strengths from a normal distribution Ai j ∼
N (0, 1), predator/prey systems where sgn(Ai j ) = − sgn(Aji ) (ρ =
−2/π ), mutualistic/competitive systems with sgn(Ai j ) = sgn(Aji )
(ρ = 2/π ), and random systems with different means of the normal
distribution Ai j ∼ N (μ = ±0.1, 1). All simulations were imple-
mented with ri = ki = 1. The dashed lines are theoretical first
extinction boundaries, σ f . The dash-dotted lines are May’s stability
boundaries, σM , color-coded according to the legend (some colors are
“missing” since they coincide; for example all first extinction bound-
aries coincide and collapse boundaries for systems with varying
interaction strength mean, for these only “Random” is visible). May’s
stability boundary is given by σM;μ,ρ = 1/{

√
cN[1 + (1 − c)μ2](1 +

ρ ) − cμ} [11]. Note the spread in σM compared to σ f , which is equal
for all systems. The bottom panels show an example simulation of
each type, with the same color coding. The vertical lines indicate
σ f , σM , and the actual loss of stability σc (operational collapse def-
inition), in order of increasing σ . Three phases are marked by the
different shades: strict stability (SS) before σ f , extinction continuum
(EC), a phase of single-species extinctions, and collapse (C) where
no stable nearby fixed-point exists. Note that σM always falls in the
extinction continuum for every type of system.

and we conclude that μ �= 0 only adds to a multiplicative
scaling factor, that does not affect the first extinction event.
This result is verified in Fig. 2.

The above analysis can be extended to interaction-webs
that capture more biologically inspired interaction structures
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found in the literature, for example predator/prey, sgn(Ai j ) =
− sgn(Aji ) [15] and mutualistic/competitive, sgn(Ai j ) =
sgn(Aji ) [11]. The symmetric or antisymmetric property of
the interaction matrix can be modeled by a parameter ρ, where
ρ = 1 gives a symmetric matrix and ρ = −1 an antisymmet-
ric one. The above predator/prey and mutualistic/competitive
interaction structures then correspond to values of ρ = −2/π

and ρ = 2/π respectively [15]. Even for these structures,
entries generally do not match when producing elements of
Ap in Eq. (7). Thus, the outer sum can be assumed to be a sum
of independent variables. This implies no substantial change
in the species abundance distributions, so we expect the first
extinction event, as in the case with μ �= 0, to be little affected
by these structures. A comparison between first extinction and
the stability boundary shown in Fig. 2 confirms this and our
assumption of independence.

III. DO EXTINCTIONS HAPPEN BEFORE COLLAPSE?

From our analysis and Fig. 2 we reconfirm that extinctions
are generic in the GLV with random interactions, as well
as for more biologically inspired systems. Thus, in contrast
to previous studies that assume only one boundary between
stable and unstable, we find two boundaries: one marking the
first extinction event, σ f , and a second, σc, beyond which there
are no stable fixed points for a system without a substantial
loss of species. Our operational collapse definition in present
simulations is the absence of any stable solution unless there
is an average loss of ten species or more, with the averaging
and rounding being across multiple initial conditions (σc in
the figures). A rigorous explanation of the splitting of the
σ -parameter space of ecological systems into three stability
phases strict stability (SS), extinction continuum (EC), and
collapse (C), as seen in Fig. 1, can be found in [25]. Our
previous analysis in [25], however, lacks the exact expression
for the variance of species abundances [Eq. (8)].

The extinction continuum—-a phase between the first-
species extinction and collapse that encompasses May’s
prediction for collapse—is a region where a system can re-
main stable if perturbed through single-species extinctions.
Thus, the EC shows how ecosystems can respond to perturba-
tions without collapsing. The new collapse boundary—after
the succession of extinctions—cannot be obtained directly
from order statistics as σ f . Although, we can use order statis-
tics to estimate the number of viable species, n, for a certain σ ,
and thus in combination with σM (n) (which is accurate when
all species are assumed nonextinct [23]), the collapse of the
system can be predicted, as outlined in [25]. Consequently, an
estimation for actual collapse is at the σ where the predicted
amount of nonextinct species n reaches σ = 1/

√
cn.

Having now developed a comprehensive framework for
assessing stability of these complex systems, we are ready
to answer the main question of this paper: Are there biolog-
ically relevant structures that substantially shift the stability
boundaries explained above, possibly in such a way that σM <

σ f , meaning single-species extinctions do not occur before
collapse? As seen in Fig. 2 and noted in previous studies
[15,23], sign symmetry (ρ = 2/π ) shifts σM to smaller values
of σ . Although some previous studies have found that more

symmetric interaction matrices can be stabilizing, we find that
symmetry acts to destabilize GLV-type models [26].

Despite the shift in σM for sign-symmetric matrices, since
σ f is almost unchanged (seen in Fig. 2) the boundaries do not
cross. In the case of symmetric matrices (ρ = 1), which have
the smallest σM , symmetry will violate the assumption of in-
dependence in the outer sum in Eq. (7), shifting σ f . However,
this shift of σ f is in the same direction as σM , thus keeping
separation between the boundaries. A shift of boundaries in
the same direction also occurs for large values of |μ|.

IV. THE ROW-SUM CONSTRAINT

From our discussion so far we can glean two intriguing
features. First, different aspects of the interaction matrix are
involved in the two boundaries. The first extinction bound-
ary is dependent on sums and multiplications of the entries
of A, while the stability boundary depends on its spectrum.
These aspects can interact but need not. Second, the way to
significantly shift the first extinction boundary is to correlate
the entries of the outer sum in Eq. (7), thereby decreasing
the variance in Eq. (8) of the minimum distribution Eq. (10).
Based on these insights, our strategy to answer the question
of whether there are biologically relevant structures that sig-
nificantly alter the EC is to search for features that correlate
the entries of the sum in Eq. (7) but that leave the spectrum
unaffected or with less negative real parts for smaller values
of σ .

From Eq. (7) the most obvious departure from indepen-
dence is to constrain the row sums of the interaction matrix
to some constant. Such a constraint leaves the spectrum un-
affected. A global constraint of this kind, akin to energy
or momentum constraints in physics, is indeed biologically
reasonable. Physical resources, energy, time, and space are
all degrees of freedom that constrain biological systems and
affect the interaction patterns of species. Anyone of these may
result in a row-sum constraint, where species balance negative
and positive interactions with their ecosystem neighbors. This
connection is further discussed below.

To investigate row-sum constraints and their dynamical
consequences, we use an interaction matrix constructed as
A = (1 − ξ )Ac + ξA0, with Ac a random matrix with rows
shifted to make the sums constant

∑
j Ac;i j = B according to

Ac;i j = Ai j − 1

ni

(
B −

N∑
j=1

Ai j

)
. (12)

Here Ac;i j is an entry of the matrix Ac and ni the number of
nonzero entries in row i. A0 is a random matrix A0 ∼ N (0, 1)
with entries at the same positions as Ac (only disturbing the
existing interactions), and we set B = 0 for simplicity. The
parameter ξ regulates the row-sum variance of A. Written in
this form, the row-sum constraint can be enforced to different
degrees by varying ξ .

The distribution of the nonzero entries of A will
slightly change with this construction N (0, 1) →
N (0,

√
(1 − ξ )2 + ξ 2). This in turn shifts the stability

boundary to σM = 1/
√

cN (1 − ξ )2 + cNξ 2.
This construction of A together with the conclusion that

μ �= 0 does not affect σ f , allows us to handle these types of
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FIG. 3. Variability of the extinction continuum. The left plot shows averages from simulations for first extinction event, with one standard
deviation error bars, when increasing row-sum constraint (1 − ξ ). Theoretical predictions of first extinction, σ f , are shown as solid lines and
σM as dashed lines for systems of size N = 100 and N = 160. The decreasing width for small ξ and convergence to σM is clearly seen for both
system sizes. The right panels show example simulations of the two collapse types for systems with (ξ = 0.01). The behavioral phases have
different shades of grey: strict stability (SS), extinction continuum (EC), and collapse (C) where no stable nearby fixed-point exists. The solid
vertical line indicates the first extinction prediction σ f and σM , which coincide, and the dashed vertical line indicates collapse σc. Note that
collapse type 1 does not have an extinction continuum. Collapse type 2 abruptly enters the extinction continuum at σ f /σM .

global constraints in a straightforward manner. For systems
with constrained row sums according to A = (1 − ξ )Ac +
ξA0, powers of ξ , (1 − ξ ), mixed terms (AcA0A0, etc.) are
introduced in the von Neumann series of Eq. (7). The terms
with Ac in the rightmost position disappear in the outer sum
because the row sums are zero. This leads to X ∗

i normally dis-
tributed (central limit theorem) with mean 1 but with variance
according to

σ+(c, N, σ, ξ )2

=
∞∑

p=1

[
(cNσ 2)p

p−1∑
q=0

(1 − ξ )2qξ 2(p−q)

(
p − 1

q

)]

= cNσ 2ξ 2

1 − cNσ 2((1 − ξ )2 + ξ 2)
. (13)

This reduces to the solution without constraint when ξ = 1.
Averages of the first extinction event from dynamics

with row-sum constrained interaction matrices are shown
in Fig. 3 together with example simulations. As expected,
σ f occurs at larger σ as the constraint is more strictly en-
forced. For sufficiently constrained systems σ f converges to
σM . This is seen in Eq. (13). Small ξ reduces the variance
of the species abundances unless the denominator compen-
sates by approaching zero, which is exactly when σ → σM =
1/

√
cn(1 − ξ )2 + cnξ 2. For weakly constrained systems the

variance of species abundances, σ+, is large enough for ex-
tinctions to occur before it diverges at σM , meaning collapse is
always preceded by an extinction continuum. For significantly
constrained systems, when σ f converges to σM , the approach
to collapse is highly variable.

We notice two types of collapses in these cases. Either the
system collapses at σM before any extinction, or some species
abundances suffer a sharp decrease as the variance diverges at
σM , leading to an extinction continuum and eventual collapse
as for less constrained systems. These two collapse types are
shown in Fig. 3. For the type-2 collapse, the drop in abundance
is sharp enough (and not predicted by |Re(λ)max| as in [27])
to merit being called collapse in and of itself.

For systems both with or without the row-sum constraint
(except in cases with collapse type 1) an estimation for actual
collapse is at the σ where the amount of nonextinct species
n reaches σ = 1/

√
cn. Both with and without the row-sum

constraint, the nonrandom extinctions in the EC that precede
collapse result in the same small changes in structure: a slight
increase in interaction strength mean, and weak correlations in
the interaction matrix, positive for interaction strengths within
column (Aji, Aki ) and negative for those within row (Ai j, Aik ).
The only salient difference is that the rate of extinctions when
increasing σ tends to be higher for highly constrained systems
(see near the first-extinction boundary for collapse type 2 in
Fig. 3).

V. DISCUSSION

It is natural to ask if any biological or physical constraints
in real ecosystems could lead to a row-sum constraint. In
ecosystem interaction webs, there are abiotic constraints in
terms of energy, space, time, and other resources. Part of such
constraints are translated into biotic constraints such as cost of
camouflage, prey abundance, foraging time, and many others.
Because of both abiotic and biotic constraints, species in gen-
eral need to make tradeoffs when interacting with their fellow
species and environment [28–30]. Our row-sum constraint—
where positive and negative interactions are balanced—can be
interpreted as representing these trade-offs. A species invest-
ing energy in foraging thereby gains more resources (large
positive interaction with its prey) while at the same time
exposing itself to predators (larger negative interaction with
its predators). Another type of tradeoff, in case of a nonzero
row-sum constraint in, for example, mutualistic interaction
webs, is that between specialist and generalist. Species can
either spread their efforts on many weak interactions or in-
teract strongly with a few other species. These interpretations
make the row-sum constraint not only biologically plausible,
but even likely.

One of the strongest and most pervasive constraints across
consumer and resources is Damuth’s law: the rate of energy
consumption of each species is approximately constant across
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species [31]. This law leads to the number density of individu-
als within a species decreasing as body mass, M, to the −3/4
power (M−3/4) and to biomass density increasing as (M1/4).
That is, species with small body sizes (which consume less
per individual) compensate with higher numbers to consume
the total amount of resources per time as a species with a
large body size. If a row-sum constraint is imposed on in-
teraction strengths (i.e., consumption rates) in the interaction
matrix, then this would immediately lead to a correspondence
between Dmauth’s law and a row-sum constraint, providing
a compelling ecological reasoning as to why this constraint
might exist and systems might exhibit the properties that we
have explained in our current study. Indeed, previous theoretic
studies have shown that stability is enhanced when species
abundances and body sizes scale according to Damuth’s law
[12] but that this scaling alone cannot stabilize a community
without also having negative intraspecific interactions [32]. If
the row-sum constraint is found to be a valid representation of
Damuth’s law in future research, this would support and en-
large the stabilizing role of the energy scaling of ecosystems.

The likely existence of constraints and their large impact
on the first extinction boundary and width of the extinc-
tion continuum can lead to radically different behaviors of
ecosystems under pressure. A highly relevant example of
this is loss of habitat. In case of habitat loss, organisms
are forced together more tightly, often increasing interac-
tion strengths that correspond to an increase in σ . From
this perspective, the EC mimics a sequential loss of habitat
and demonstrates that such changes do not inexorably lead
to collapses but can be preceded and anticipated by single-
species extinctions. However, the stricter the constraints are,
the higher the frequency of extinctions is under continued
habitat loss and the shorter the period of extinctions is before
collapse.

If constraints are such that the EC is present, the single-
species extinctions are not equivalent to a random draw.
Consequently, interaction matrices of systems in the EC are
no longer completely random. This makes an interesting
connection to assembly models where immigration or speci-
ation together with extinctions are used to form ecosystems
[33–35]. The closest resemblance is to assembly models im-
plementing immigration of species with random interspecific
interaction strengths since systems in the EC are subsets of
initial random communities. Remarkably, in such systems the
increase in structure is very slight. Interaction strengths are
still normally distributed with a slight shift to larger mean
[25]. This finding agrees with random immigration assembly

models that find such communities indistinguishable from
random ones based on analysis of their eigenvalue spectrum
[34]. However, the extinctions notably do introduce small
correlations, positive for (Aji, Aki ) and negative for (Ai j, Aik )
[36]. On the other hand when speciation is used to assemble,
communities develop a richer structure with more clustering,
and subsequently more cascades in extinctions [34]. This
might imply that for highly niched systems the EC would
have a more clustered succession of extinctions. In addi-
tio,n the fact that communities formed in assembly models
saturate at a certain diversity, with turnover if continued
migration/speciation occurs, makes it plausible that many
systems reside in the EC, although it is hard to tell how
constraints would alter this conclusion.

Notwithstanding all insights from GLV models as used
in this paper and elsewhere, it is important to put the re-
sults in context. Modeling choices are always made, many of
which can influence a system’s properties’ effects on stability.
As mentioned above, symmetry and antisymmetry in species
interactions are examples of such properties. In GLV type
models with direct and (in terms of mechanism) unspecified
interactions, symmetry is destabilizing while antisymmetry
acts to stabilize [23,37]. In contrast, models with an explicit
mechanism—such as consumers interacting indirectly with
a resource species—have demonstrated that the influence of
symmetry can be stabilizing [26]. Overall, comparisons across
studies reveal that the impacts of symmetry and antisymmetry
on stability are not yet resolved. Or, to phrase it differently, the
impacts clearly depend on the details in the models, much like
the influence of diversity [38–40]. It thus remains unexplored
and left for future research what the effects of constraints may
be in mechanistically explicit models and models with other
types of functional responses.

In summary, the behavior of Lotka-Volterra dynamics in-
cluding extinctions is generic but can be altered with certain
types of constraints on the interaction matrix that break the
assumption of independence of the random entries without
affecting the spectrum. For such systems the approach to
collapse is highly variable and can be without extinctions
such that the collapse is located approximately at the clas-
sical stability boundary. Or the system can have a phase of
single-species extinctions that locates the actual collapse at
larger values of σ . It is therefore vital to know what type
of constraints exist for a system because they qualitatively
change the system’s response to species abundance perturba-
tions or changes in structure, represented here by the standard
deviation of interaction strengths.
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