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Application of the quantum approximate optimization algorithm
to combinatorial optimization problems
PONTUS VIKSTÅL
Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory
Chalmers University of Technology

Abstract

This licentiate thesis is an extended introduction to the accompanying papers,
which encompass a study of the quantum approximate optimization algorithm
(QAOA). It is a hybrid quantum-classical algorithm for solving combinatorial
optimization problems and is a promising algorithm to run on near term quan-
tum devices. In this thesis, we will introduce the workings of the QAOA, to-
gether with some applications of it on combinatorial optimization problems.
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1 Introduction

Over the past half-century there has been an amazing miniaturization in com-
puter size, thanks to technological innovations that has led to the transistor in
our computers becoming smaller. But as the transistors are shrinking to the
size of a few atoms, quantum effects are beginning to take place and interfere
with the functioning of the electronics [1]. To handle this, scientists are trying
to use these quantum effects to their advantage by introducing a new compu-
tational model, called “quantum computing,” based on the recognition that at
small scales, quantum mechanics is the most accurate description of reality that
is currently known.

1.1 Quantum computing
The quantum computing field started in the early 1980s with the prominent
physicists Paul Benioff, Yuri Manin, and Richard Feynman, conceptualizing,
independently and simultaneously, the idea of a quantum computer [2–5]. This
idea was based on the observation that simulating a quantum system on a clas-
sical computer requires resources that scale exponentially with the size of the
quantum system. Thus, we better use quantum physics if we want to simulate
quantum physics. Later on, David Deutsch formalized the idea of a quan-
tum Turing machine and put forward the quantum circuit model [6, 7]. This
was followed by Peter Shor, who found a quantum algorithm that can solve
prime factorization exponentially faster than any known classical algorithm [8].
Finding the prime factors to large numbers is believed to be hard for classical
computers, and this computational hardness has come to be used in public-key
cryptosystems, such as the RSA [9]. However, with a large enough quantum
computer, the public-key cryptosystems could easily be hacked.

Today, quantum computers are still in the early stages, and they are much
more sensitive to noise than their classical counterpart. This sets a limit on
the size of the quantum circuits. Even though quantum error correction is
theoretically known to tame errors, it still requires a large overhead of qubits [10,
11]. For example, estimates on the requirements of running Shor’s algorithms
for factoring cryptographically hard numbers have shown to require millions of
qubits with error-correction [12].
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1. Introduction

Nevertheless, the goal of building a quantum computer is still actively pur-
sued by many institutes and corporations. As small-size, non-fault tolerant
quantum computers, commonly referred to as noisy intermediate-scale quan-
tum (NISQ) devices [13], are starting to become available, academics want to
explore their usefulness. In fact, it has already been demonstrated that it is pos-
sible to run a quantum algorithm on a NISQ device, which is hard to simulate
on a classical computer [14]. Although the quantum algorithm of Ref. [14] has
little to no application purposes, it still shows the potential power of these NISQ
devices. A major task thus remains to find useful quantum algorithms that can
solve real-world problems faster than any classical algorithm. One promising
candidate for this is the quantum approximate optimization algorithm (QAOA),
whose purpose is to solve combinatorial optimization problems. These are types
of problems that frequently arise in industry, such as aviation [15, 16].

The QAOA is classified as a heuristic hybrid quantum-classical algorithm.
The hybrid character comes from the fact that a quantum computer prepares
some n-qubit state that is measured, and the measurement results are then pro-
cessed by a classical computer that tells the quantum computer how to slightly
change how the n-qubit state is prepared. And because no theoretical proof of
speed up exists for this algorithm, it is heuristic1. Thus one has to simply run
the algorithm and see what happens.

In this thesis, we set out to explore the quantum approximate optimiza-
tion algorithm, its application to combinatorial optimization problems, and its
implementation on a quantum computer.

Qubits
Just as a classical computer uses bits that are either 0 or 1 and that can physi-
cally be represented as a low and a high voltage in a wire, a quantum computer
uses qubits |0〉 or |1〉 (often called computational basis states). A qubit can, for
example, be physically manifested as two states of an atom (e.g., ground state
|0〉 and excited state |1〉). The angular-looking bracket that symbolizes the
qubit state is called “ket”-notation, and it is a shorthand notation for column
vectors

|0〉 ≡
(
1
0

)
, |1〉 ≡

(
0
1

)
. (1.1)

The reason why qubits are represented as column vectors and not by a sin-
gle number is because a quantum system, like the atom, can exist in a linear
combination or, “superposition”, of both states at once:

|ψ〉 = α |0〉+ β |1〉 ≡
(
α
β

)
. (1.2)

Here α and β are two complex numbers that satisfy |α|2 + |β|2 = 1. This is
to ensure that the qubit is properly normalized. Such that when the qubit is

1Although as we will see, for the optimization problem Max-Cut, there exist lower bounds
on the performance guarantee, which therefore makes it an approximate algorithm.
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1.1. QUANTUM COMPUTING

measured, there is a |α|2 probability of finding it in the |0〉 state, and |β|2 of
finding it in the |1〉 state. Thus the very act of measuring the qubit affects its
state! If the measurement outcome is 0, then the state after the measurement is
|0〉. And if the measurement outcome is 1, then the state after the measurement
is |1〉. Moreover, an intuitive way to visualize a general quantum state of a single
qubit as represented by Eq. (1.2) is to picture it as a unit vector inside a unit
sphere, called the Bloch sphere, see Fig. 1.1. An arbitrary state of a single qubit
state can be written in terms of the polar and the azimuthal angles (ϕ, θ) on
the Bloch sphere as

|ψ〉 = eiγ
(

cos θ
2
|0〉+ eiφ sin θ

2
|1〉
)
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (1.3)

Here γ is an overall phase factor that is unobservable, i.e., qubit states with
different values of γ are indistinguishable and are all represented by the same
point on the Bloch sphere.

|0〉+|1〉√
2

|0〉+i|1〉√
2

|0〉

|1〉

|ψ〉

φ

θ

Figure 1.1: Bloch sphere showing the computational basis states |0〉 and |1〉,
and a general qubit state |ψ〉 = cos θ/2 |0〉+ eiφ sin θ/2 |1〉.

The most general n-qubit state can be written as

|ψ〉 =
∑

z∈{0,1}n

αz |z〉 , with
∑

z∈{0,1}n

|αz|2 = 1, (1.4)

where {0, 1}n is the tuple of all binary strings z = z1 . . . zn of length n, and thus
|ψ〉 is described by a 2n column vector.

Quantum gates
Similar to a classical computer that uses elementary gates, like AND or NOT,
to perform operations on the bits, a quantum computer uses quantum gates to
change the probability amplitudes of one or multiple qubits. How the probability
amplitudes change with time in a quantum system is ultimately governed by the

3



1. Introduction

|0〉+|1〉√
2

|0〉+i|1〉√
2

|0〉

|1〉

•••
•

•
•

•
•
•
•

Figure 1.2: Bloch sphere showing the action of the quantum logic operation
Ry(π/2) applied to the |0〉 state.

Schrödinger equation. It is a linear differential equation that describes the time
evolution of a closed quantum system:

−ih̄d |ψ(t)〉
dt

= Ĥ |ψ(t)〉 . (1.5)

Here h̄ is the reduced Planck’s constant. We can set it to 1 by choosing appro-
priate units, and hence we will ignore it throughout this thesis. Ĥ is a hermitian
operator, called the Hamiltonian, and it corresponds to the quantum system’s
total energy. Once the Hamiltonian is known, the Schrödinger equation can be
solved. For a time-independent Hamiltonian, the solution is

Û(t) = e−iĤt. (1.6)

Thus, if the initial state of the system |ψ(0)〉 is known, all subsequent states can
be calculated by acting with the time evolution operator Û(t) on it, |ψ(t)〉 =
Û(t) |ψ(0)〉. Important types of Hamiltonians are the Pauli-matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (1.7)

The dynamics of a quantum state evolving under one of the Pauli matrices, i.e.
Ĥ = σ̂k, k ∈ {x, y, z}, with t = θ

2 corresponds the rotational quantum gate

Rk(θ) ≡ e−i θ2 σ̂k . (1.8)

These are called rotational quantum gates because they describe rotations aro-
und the Bloch-sphere about one of its three principal-axes. For example, acting
with the quantum gate Ry(π/2) on the qubit state |0〉 corresponds to a π/2
anti-clockwise rotation around the y-axis, see Fig. 1.2.

Another important single-qubit gate is the Hadamard gate, denoted by H
(not to be confused with the Hamiltonian Ĥ). Given the input state of the qubit

4



1.1. QUANTUM COMPUTING

|0〉 H
|0〉+ |1〉√

2

Figure 1.3: Hadamard gate

is |0〉 it will output the state (|0〉+|1〉)/
√
2, and given the input |1〉 it will output

(|0〉− |1〉)/
√
2. The Hadamard gate can be written in matrix representation as

H |ψ〉 ⇐⇒ 1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
, (1.9)

or drawn as a quantum circuit as in Fig. 1.3. The Hadamard gate is equivalent
to (up to a global phase) a π/2 rotation around the y-axis, followed by π rotation
around the x-axis, Rx(π)Ry(π/2) = −iH.

Besides the single-qubit gates, there are also multi-qubit gates, with the
simplest one being two-qubit gates. A very important two-qubit gate is the
controlled-NOT gate, or CNOT gate. It is a quantum gate that will flip the
state of the second qubit if the first qubit is in state |1〉. Hence, CNOT |00〉 =
|00〉2 and CNOT |10〉 = |11〉, see Fig. 1.4.

|0〉 |0〉

|0〉 |0〉

|1〉 |1〉

|0〉 |1〉

Figure 1.4: Controlled-NOT gate

Running a quantum algorithm
The execution of an algorithm on a classical computer can be broken down into
three steps: load, run, and read [17]. The computer needs to load some input
data together with a set of instructions on how to operate on the input data. It
then needs to read out the result of the calculations. The corresponding steps
on a quantum computer become: prepare, evolve, and measure. The quantum
computer is prepared in some initial state, typically |0〉⊗n

= |0〉⊗ . . .⊗|0〉. A set
of quantum gates are then applied to the initial state, which then evolves into
some final state

∑
z αz |z〉. This state is then measured, and the probability of

observing z is |αz|2. However, the output of a measurement is random, but as
long as the solution string’s output probability is high enough, we can repeat
the process a couple of times to make the probability of success close to 100%
[18].

2Here |00〉 is compact notation for |0〉 ⊗ |0〉, where ⊗ is the tensor product.
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1. Introduction

1.2 Outline of thesis
This thesis serves as an introduction to the appended papers where we both nu-
merically and experimentally apply the QAOA to a combinatorial optimization
problem.

The outline of the thesis is as follows: In Chapter 2 we introduce the notion
of complexity theory and combinatorial optimization. This is followed by two
examples, Max-Cut, and Exact Cover. We present these problems and their re-
spective mapping to cost Hamiltonians. In Chapter 3 we introduce the QAOA
and explain how it can be applied to the Max-Cut and the Exact Cover prob-
lems. We then demonstrate how the QAOA can be implemented on a quantum
computer in terms of a universal gate set. Then, in Chapter 4 we discuss possi-
bilities of running the QAOA in a continuous variable architecture. Finally, in
Chapter 5 we give an overview of the appended papers.
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2 Complexity and
optimization

A combinatorial optimization problem concerns finding the best solution among
a set of feasible candidates. A typical example that stems from traveling is
the optimization problem of packing one’s belongings such as clothes, hygiene
products, etc., in a suitcase while not exceeding the weight limit of your baggage
set by the airline company. This optimization problem is more formally known
as the knapsack problem. It can be stated as: consider a set of items, where
each item has a weight and a value. Pick a set of these items such that the total
weight is less than or equal to a given limit such that the value is maximized.

It is possible to construct an algorithm for finding the best solution to an
optimization problem, like the knapsack problem. A plethora of algorithms exist
for solving it, but with different time complexities. The time complexity of an
algorithm depends specifically on how the time to solve the problem scales with
the size of the input n. An algorithm is said to be efficient if it has a polynomial
running time with the size of the input [19].

As an example, consider the task of finding a number in a sorted list of
length n. This can be done in O(n)1 using linear search, by stepping through
the list one element at a time from start to end. In the worst-case, one has
to go through the full list. However, using binary search, it is possible to find
our number in O(logn), by dividing the list in half and looking if our number
is smaller or bigger than the element in the middle of the list. One can then
discard the other half of the list and repeat the process with the remaining half.

As shown in this example, the running time is dependent on the algorithm.
The theory of computational complexity, which is the next section’s topic,
concerns classifying classes of problems by their hardness. In particular, the
hardness of a problem can be characterized by proving upper bounds on the
resources, like time and memory, required by the best possible algorithm for
solving that problem.

1O is called Big-O notation and a function f(n) is O(g(n)) if there exist a constant c > 0
and n0 ≥ 0 such that f(n) ≤ cg(n) for all n ≥ n0.

7



2. Complexity and optimization

2.1 Complexity classes
Complexity theory is most easily formulated in terms of decision problems,
meaning problems with a yes or no answer [20]. An example of a decision
problem is to ask: is the number 17 prime? In this example, the answer is
obvious yes. There exist a whole zoo of complexity classes2, but luckily one
does not need to know them all as a quantum computer scientist. Here we will
introduce the most important types of complexity classes that appear in the
context of optimization problems.

P
Is the complexity class that contains decision problems that can be solved
in polynomial time by a deterministic algorithm. Or, alternatively, the
decision problems that can be solved in polynomial time by a determin-
istic Turing machine. An example of a problem in P is determining if a
number is prime [21].

BPP
Stands for bounded-error probabilistic polynomial time and is the class
of problems that can be solved by a randomized algorithm in polynomial
time. Or, alternatively, the complexity class that contains the decision
problems that can be solved in polynomial time by a probabilistic Tur-
ing machine, with an error-probability less than 1/3. It is known that
BPP can simulate P since a deterministic algorithm is a special case of a
probabilistic one.

NP
Stands for non-deterministic polynomial time and contains the decision
problems such that, when given a yes instance, it can be easily checked
on a classical computer. Or more formally, the decision problems such
that given a yes instance can be efficiently verified by a deterministic
Turing machine. An example of an NP problem is prime factorization,
which is to find two prime factors to an integer n. As mentioned in
the introduction, this is a really hard problem to solve on a classical
computer, which suggests that the problem is not in P. However, once
given a number p, it can be quickly verified if it is a divisor of n by simply
dividing n by p. It is conjectured and believed by most researchers that
P 6= NP.

NP-complete
Is the class of problems in NP for which there exists a polynomial time-
reduction algorithm of every problem other problem in NP to that prob-
lem. Therefore, this complexity class contains the hardest problems in
NP in some sense, as if you would find a polynomial-time algorithm for

2At http://complexityzoo.com, you will find over 500 complexity classes!
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2.2. COMBINATORIAL OPTIMIZATION AND THE ISING MODEL

solving an NP-complete problem, you could use the polynomial-time re-
duction for all other problems to also solve them in polynomial time. An
example of an NP-complete problem is the Exact Cover.

NP-hard
Is the class of problems that are at least as hard as the NP-complete
ones. They furthermore do not need to be decision problem. In detail,
a problem is said to be NP-hard if an algorithm for solving it can be
translated into an algorithm for solving any NP-problem. An example of
an NP-hard problem is the Max-Cut.

BQP
Stands for bounded-error quantum polynomial time, and contains the
class of decision problems that can be solved on a quantum computer in
polynomial-time, with an error-probability less than 1/3. It is in some
sense the quantum version of BPP.

Although it is not believed by the majority of scientists that quantum algorithms
will be able to solve NP-complete problems in polynomial time, it is known that
quantum algorithms can solve some problems in NP efficiently, most notably
prime factoring using Shor’s algorithm.

Moreover, quantum algorithms could also prove useful if they have a lower
time complexity than the best classical algorithm. An example of this is the
unconstructed search problem, where the best classical algorithm has to use
linear search with time complexity O(n), while using Grover’s quantum search
algorithm can solve the problem in O(

√
n) [22].

Furthermore, when a problem is computationally hard, i.e. when the only
way to solve it is by making use of an algorithm that runs in exponential time,
it may be unfeasible to try and compute the exact solution, because it might
require months or even years of computer time. In such cases, one may want to
resolve to use an approximate algorithm instead, which can efficiently compute
a solution, though not being an optimal one, it has some provable performance
guarantee on the optimality of the returned solution [23]. With this motivation,
researchers have started looking for approximate quantum algorithms, such as
the QAOA, which is introduced in chapter 3.

2.2 Combinatorial optimization and
the Ising model

To solve a combinatorial optimization problem using a quantum algorithm, the
quantum algorithm must be able to encode the specific problem that we wish to
solve. This can be done by encoding the optimization problem onto a quantum
system. In this section we will see how a combinatorial optimization can be
framed as a cost Hamiltonian in the Ising form.

9



2. Complexity and optimization

Let C : {0, 1}n → R be a cost function that encodes a combinatorial opti-
mization problem. There are in total 2n possible strings and the goal is to find
the bit-string z = z1 . . . zn that maximizes the cost function C(z). Note that a
maximization problem can be transformed into and minimization problem by a
minus sign C(z) → −C(z).

One of the most widely used models in physics that is used to represent
optimization problems is the Ising model [24]. It is was developed in the 1920s
by Ernst Ising and Wilhelm Lenz as a way to understand phase transitions in
magnetic materials [25]. The Ising model can be thought of as n Ising spins
that sit on a lattice and that can take the values si ± 1, where si refers to the
i:th Ising spin. These spins are coupled together through long-range magnetic
interactions that encourage the spins be aligned or anti-aligned. Moreover, an
external magnetic field can be applied at each individual spin site which will
give a different energy to the two possible spin directions. The total energy of
the Ising model consisting of n Ising spins is given by [26]

E(s1, . . . , sn) =
∑

1≤i<j≤n

Jijsisj +

n∑
i=1

hisi, (si = ±1), (2.1)

where Jij is the coupling strength between the i:th and j:th spin, and hi is
the magnetic field acting on the i:th spin. A quantum version of this model is
obtained by simply replacing the spin-variables si with Pauli-z operators

ĤC ≡ Ĥ(σ̂z
1 , . . . , σ̂

z
n)

∑
1≤i<j≤n

Jij σ̂
z
i σ̂

z
j +

n∑
i=1

hiσ̂
z
i , (2.2)

were σ̂z
i refers to the Pauli-z matrix acting on the i:th qubit. Many optimization

problems, including all of Karp’s 21 NP-complete problems, can be written
in the form of Eq. (2.2), by choosing appropriate values for Jij and hi [27].
Furthermore, the spectral decomposition of the this Hamiltonian encodes the
different solutions in the computational basis

ĤC =
∑

z∈{0,1}n

C(z) |z〉〈z| , (2.3)

where C(z) is the cost function. The Hamiltonian of Eq. (2.2) is formally
known as an Ising-Hamiltonian, but we will refer to this Hamiltonian as a cost
Hamiltonian, because its eigenvalues in the computational basis correspond to
the possible values of the cost function.

In the two next sections, we will introduce some notable examples of com-
binatorial optimization problems, and derive their respective cost Hamiltonians
in the form of Eq. (2.2)

2.3 Max-Cut
The Max-Cut problem has application in circuit design [28] and is one of the
most extensively studied problems in the context of the QAOA [29–32]. The

10



2.4. EXACT COVER

1 2

34

5 S

Figure 2.1: A maximum cut of a graph with 5 vertices. The dashed red line
corresponds to the cut edges. An edge is cut if two vertices connected by an
edge are assigned different colors.

objective of Max-Cut is to partition the set of vertices of a graph into two
subsets, such that the sum of the edge weights going from one partition to the
other is maximum. Max-Cut is NP-hard because it is not a problem with a yes
or no answer. However the decision version of Max-Cut which asks whether
there is a cut of at least size k in a graph is NP-complete [33, 34].

Given an undirected graph G = (V,E), where V is the set of vertices, E
is the set of edges with nonnegative edge weights wij = wji : (i, j) ∈ E, the
formulation of Max-Cut is given by:

maximize 1

2

∑
1≤i<j≤n

wij(1− sisj), (2.4)

subject to: si ∈ {−1, 1} i ∈ V. (2.5)

An example of a graph as well as its maximum cut is shown in Fig 2.1.
To map this problem onto a cost Hamiltonian all we have to do is to replace

the classical variables si with Pauli-z matrices. The corresponding Max-Cut
Hamiltonian then reads

ĤC =
1

2

∑
1≤i<j≤n

wij(1− σ̂z
i σ̂

z
j ). (2.6)

The eigenstate to this Hamiltonian with the highest eigenvalue corresponds to
the maximum cut.

2.4 Exact Cover
The Exact Cover problem is an NP-complete problem [33, 34]. Moreover, it is
this problem to which we apply the QAOA in paper A and B. The task in the
Exact Cover is given a collection of subsets V of a set U , find a sub-collection of
V called R, such that the each element of U is contained in exactly one of the

11
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V U

V4

V3

V2

V1

c3

c2

c1

Figure 2.2: An example of the Exact Cover visualized as a bipartite graph.
There is an edge from V to U if subset Vi contain the element cj .

subsets of R. A notable example of an Exact Cover problem is Sudoku, but it
also appears in aviation, such as a simplified case of the tail assignment problem
[35].

In detail: given a set a set U = {c1, c2, . . . , cn}, and a set of subsets V =
{V1, . . . , Vm} with Vi ⊂ U such that U =

⋃m
i=1 Vi, the Exact Cover is∑

j∈V

Kijzj = 1, ∀i ∈ U, (2.7)

subject to: zj ∈ {0, 1}, (2.8)

where Kij is the ij:th element of an incidence matrix that is 1 if ci ∈ Vj , and
0 otherwise, and the binary variables zj represents if the subset Vj should be
included in the Exact Cover set R or not. The Exact Cover can moreover be
visualized as a bipartite graph as shown in Fig 2.2.

To map the Exact Cover problem onto a cost Hamiltonian, the firsts step is
to transform Eq. (2.7) into a cost function. This can be done by subtracting 1
from the r.h.s of Eq. (2.7) and squaring the expression:

C(z) =

u∑
i=1

 v∑
j=1

Kijzj − 1

2

. (2.9)

Here u ≡ |U | denotes the cardinality of U and v ≡ |V | denotes the cardinality
of V . There exists a solution if and only if there exists a string z such that
C(z) is zero (corresponding to a yes answer). Note that all the other strings
corresponding to a no answer will have a positive cost. Therefore we want to
minimize the cost for the Exact Cover.

Next, we want to write this cost function in the Ising form Eq. (2.1). This
is done by substituting the binary variables zj ∈ {0, 1} with spin variables
sj ∈ {1,−1},

zj =
1− sj

2
.
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2.4. EXACT COVER

By using this substitution and expanding the square of Eq. (2.9) we obtain the
Ising energy function for the Exact Cover problem

E(s1, . . . , sv) =
∑

1≤i<j≤v

Jijsisj +

v∑
i=1

hisi, (2.10)

with Jij and hi defined by3

Jij ≡
1

2

u∑
k=1

KkiKkj , and hi ≡
1

2

u∑
j=1

Kji

(
v∑

k=1

Kjk − 2

)
. (2.11)

Finally, we quantize Eq. (2.10) by promoting the spin variables si to Pauli-z
matrices as si → σ̂z

i . The final cost Hamiltonian for the Exact Cover problem
is then

ĤC =
∑

1≤i<j≤v

Jij σ̂
z
i σ̂

z
j −

v∑
i=1

hiσ̂
z
i . (2.12)

The ground state of this Hamiltonian corresponds to the bit-string that mini-
mizes the cost function C.

3For the full mathematical derivation we refer the reader to the appended paper A.

13



2. Complexity and optimization

14



3 The quantum approximate
optimization algorithm

The quantum approximate optimization algorithm (QAOA) is a promising quan-
tum algorithm for solving combinatorial optimization problems. It was invented
by Farhi et al. in 2014 [36] and has since then spurred a lot of interest in the
scientific community for its simplicity and its possibility to run on near term
NISQ devices.

3.1 From the quantum adiabatic algorithm
to the QAOA

The QAOA is inspired by the quantum adiabatic algorithm (QAA), which was
also invented by Farhi et al. [37]. The main idea of QAA is to cleverly take
advantage of adiabatic evolution, to go from the highest energy eigenstate of an
initial Hamiltonian that is easy to prepare, to the highest energy state of a cost
Hamiltonian1. The QAA Hamiltonian is written as a sum of two non-commuting
Hamiltonians,

Ĥ(t) = (1− s(t))ĤB + s(t)ĤC . (3.1)

Here s(0) = 0 and s(T ) = 1, T is the total time of the algorithm, ĤB is the
initial Hamiltonian, whose highest energy eigenstate is easy to prepare, and ĤC

is the cost Hamiltonian whose highest energy eigenstate encodes the solution
to an optimization problem. A linear time-dependence is commonly assumed
where the time-dependent function take the form s(t) = t/T . In order to have a
high probability of ending up in the optimal state of the cost Hamiltonian, the
total time T should be O(1/∆E2

min), where ∆Emin is the minimum energy gap
between the two highest energy eigenstates during the evolution [38]. Unfortu-
nately, there are results indicating that QAA requires computation time that is
exponential in the number of variables n to reach the optimal state of the cost
Hamiltonian [39–41].

1Usually QAA is formalized as seeking the lowest energy state; but to make notation
uniform with those in the QAOA, we consider the excited state variant.
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3. The quantum approximate optimization algorithm

The QAOA is based on the observation that the easiest way to simulate the
QAA is to Trotterize the evolution [42]

Û(T ) ≡ T exp

[
−i
∫ T

0

Ĥ(t)dt

]
≈

p∏
k=1

exp
[
−iĤ(k∆t)∆t

]
. (3.2)

Here Û(T ) is the evolution operator from 0 to T , T is the time-ordering operator,
and p is a large integer so that ∆t = T/p is a small time segment. Next, for
two non-commuting operators A and B and sufficiently small ∆t, one can use
the Trotter formula:

ei(A+B)∆t = eiA∆teiB∆t +O(∆t2), (3.3)

and apply it to the discretized time evolution operator (3.2)

Û(T ) ≈
p∏

k=1

exp
[
−i(1− s(k∆t))ĤB∆t

]
exp
[
−is(k∆t)ĤC∆t

]
. (3.4)

Thus, it is possible to approximate the QAA by applying ĤC and ĤB in an
alternating sequence.

The brilliant yet very simple idea that came from Farhi, Goldstone, and Gut-
man was to truncate this product to an arbitrary positive integer and redefine
the time dependence in each exponent (1−s(k∆t))∆t→ βk and s(k∆t)∆t→ γk,
such that the fixed time segments become angles to be optimized:

Û =

p∏
k=1

e−iβkĤBe−iγkĤC , p ∈ Z+. (3.5)

Then by choosing ĤB to be

ĤB =
∑
i

σ̂x
i , (3.6)

where σ̂x
i refers to the Pauli-x matrix on the i:th qubit, and letting Û in Eq. (3.5)

act on the superposition of all possible states in the computational basis with
equal probability

|+〉⊗n ≡ H⊗n |0〉⊗n
=

1√
2n

∑
z∈{0,1}n

|z〉, (3.7)

the final variational “QAOA” state is obtained

|ψp(~γ, ~β)〉 ≡
p∏

k=1

(
e−iβkĤBe−iγkĤC

)
|+〉⊗n

. (3.8)

Here ~γ = (γ1, γ2, . . . , γp) and ~β = (β1, β2, . . . , βp). Each βk lies in the interval
between 0 and π. This can be seen by inserting βk → βk ± π into Eq. (3.8)
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level 1 level p Classical computer
. . .

. . .

...
...

...
...

. . .

|0〉⊗n

H

e−iγ1ĤC e−iβ1ĤB e−iγpĤC e−iβpĤB

Optimize
Fp(~γ, ~β)

H

H

Quantum computer

Update the angles (~γ, ~β)

Figure 3.1: Schematic representation of the QAOA. The quantum processor
prepares the variational state, depending on the angles. The angles (~γ, ~β) are
optimized in a closed loop using a classical optimizer.

and noting that e±iπĤB =
∏

i e±iπσ̂x
i =

∏
i(−Ii), is minus the identity on all

the qubits, which is mere a global phase. Likewise, if the eigenvalues of the cost
Hamiltonian are all integers, it can be shown that γk lies between 0 and 2π,
for similar reasons. Still, the task of choosing the angles (~γ, ~β), remains. Let
Fp(~γ, ~β) be the expectation value of ĤC in this state

Fp(~γ, ~β) ≡ 〈ψp(~γ, ~β)|ĤC |ψp(~γ, ~β)〉 . (3.9)

By finding good angles ~γ and ~β that maximize the expectation value above, the
probability of finding the qubits in a high energy configuration when measuring
is increased. Therefore the angles are chosen such that the expectation value is
maximized:

Fmax ≡ max
~γ,~β

Fp(~γ, ~β). (3.10)

In general, this requires the quantum computer to query a classical optimizer,
to tell the quantum computer how it should update the variational state by
slightly changing the angles to maximize the expectation value, see Fig. 3.1.

Considerable research has been conducted on the classical optimization part
of the QAOA [43]. Several numerical investigations have examined different
classical optimizers [44, 45]. Other studies have found heuristic methods that
enhance the classical optimization procedure [32, 46]. However, in practice, noise
and finite sampling error put unique challenges on the optimizers. In the handful
of experiments that have run the QAOA [47–49], Bayesian optimization [50],
Nelder-mead [51], and Model gradient descent [49] are a few of the optimizers
that have been implemented.

In short, the QAOA can be summarized as follows:

1. Pick a positive integer p and start with an initial set of 2p angles (~γ, ~β).
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3. The quantum approximate optimization algorithm

2. Construct the state |ψp(~γ, ~β)〉 using a quantum computer and measure
this state in the computational basis. The output is a string z with a
probability given by the distribution of states |z〉.

3. Calculate C(z) using a classical computer. This step is classically efficient.

4. Repeat step 2-3, m times. Record the best observed string zbest, and the
sample mean 1/m

∑m
i=1 C(zi), where zi is the i:th measurement outcome.

Note that when m → ∞ the sample mean approaches the expectation
value Eq. (3.9) by the law of large numbers.

5. If the optimal or a “good enough” solution is found, output C(zbest) to-
gether with the string zbest. Else, query a classical optimizer that updates
the angles (~γ, ~β) based on the minimization of the expectation value and
repeat from step 2.

3.2 QAOA for Max-Cut
In the first publication of the QAOA, the authors Farhi et al. applied it to the
Max-Cut problem. In particular, they showed that the QAOA for p = 1 will
always yield a cut that is at least .6924 times the maximum cut for all 3-regular
graphs. These are graphs where every vertex’s degree is 3, i.e., every vertex is
connected by an edge to three other vertices. Following the spirit of Ref. [36],
we will demonstrate exactly how this result can be obtained.

To begin, we define the approximation ratio of a graph to be

Fp(~γ, ~β)

Cmax
, (3.11)

where Fp(~γ, ~β) is given by Eq. (3.9) and corresponds to the average cut produce
by the QAOA for Max-Cut, and Cmax is the value of the maximum cut for the
graph. The approximation ratio is a value between 0 and 1, which is a measure
of how close the variational state |ψp(~γ, ~β)〉 is to the optimal state. A value
of 1 means that the variational state is equal to the optimal state. It is this
approximation ratio that we will show is guaranteed to not be less than .6924
on 3-regular graphs.

Recall the Max-Cut Hamiltonian from Eq. (2.6). The expectation value
for p = 1 of this cost Hamiltonian with unit edge weights (wij = 1), can be
expressed as a sum over the individual edges’ expectation values

F1(γ, β) =
∑

(i,j)∈E

f〈ij〉(γ, β), (3.12)

with f〈ij〉(γ, β) =
1

2
〈ψp(γ, β)|1− σ̂z

i σ̂
z
j |ψp(γ, β)〉 . (3.13)
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3.2. QAOA FOR MAX-CUT

i j

(a)

i j

(b)

i j

(c)

Figure 3.2: The three possible subgraphs for p = 1. The red dashed lines
represent edges connecting to the rest of the graph, while the red solid line
represent the 〈ij〉 edge.

Focusing on one pair of edges 〈ij〉, the expectation value for that edge is

1

2
− 1

2
〈+|⊗n eiγĤC eiβĤB σ̂z

i σ̂
z
j e−iβĤBe−iγĤC |+〉⊗n

. (3.14)

Since e−iβĤB = e−iβ
∑n

k=1 σ̂x
k and σ̂z

i σ̂
z
j only involves qubit i and j, all σ̂x

k terms
in e−iβĤB which do not involve qubit i or j commutes through σ̂z

i σ̂
z
j and cancel,

leaving us with

1

2
− 1

2
〈+|⊗n eiγĤC eiβ(σ̂x

i +σ̂x
j )σ̂z

i σ̂
z
j e−iβ(σ̂x

i +σ̂x
j )e−iγĤC |+〉⊗n

. (3.15)

Likewise for e−iγĤC , all the terms which do not involve qubit i or j commutes
through (σ̂x

i + σ̂x
j ) and cancels out. Hence the expectation value for the 〈ij〉

edge involves vertex i and j, and those vertices that are adjacent to i and/or j.
Therefore, vertex i and j together with their adjacent vertices form a sub-

graph. For 3-regular graphs, there exist exactly three such types of subgraphs
that they can form, see Fig. 3.2. Other pairs of qubits in Eq. (3.12) will also
form one of these three subgraphs types. Isomorphic subgraphs will correspond
to the same expectation value for the same value of (γ, β). Hence we can express
the expectation value as the occurrences of each subgraph type

F1(γ, β) =
∑
λ

Nλfλ(γ, β) = N f (γ, β)+N f (γ, β)+N f (γ, β), (3.16)

where Nλ is the number of subgraphs that look like λ and fλ(γ, β) is the expec-
tation value of that subgraph.

The number of subgraph occurrences are not independent of one another.
Suppose that a graph has n vertices with accordingly 3n/2 edges, and assume
that it contains N isolated triangles and N diamonds, see Fig. 3.3. An isolated
triangle means that the outgoing edges of the triangle land on distinct vertices.
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3. The quantum approximate optimization algorithm

(a) (b)

Figure 3.3: (a) Triangle graph. (b) Diamond graph. The red dashed lines
represent edges connecting to the rest of the graph.

In general 3N +4N ≤ n, because no isolated triangle and diamond can share a
vertex. Every isolated triangle gives rise to 3 subgraphs that looks like Fig. 3.2b.
Similarly, there are 4 edges in a diamond that give rise to a subgraph that also
looks like Fig. 3.2b. Hence, N = 4N + 3N , and the remaining edges must
therefore form tree subgraphs N = 3n/2− 5N − 3N .

A lower bound on the approximation ratio can be obtained by the fraction
of the two terms Fmax/Cmax. The value of Fmax is bounded from below by

Fmax = max
γ,β

F1(γ, β) ≥

≥ N f (γ, β) + (4N + 3N )f (γ, β) +

(
3n

2
− 5N − 3N

)
f (γ, β). (3.17)

An exact value of Cmax is hard to find. Nevertheless, an upper bound is enough
to lower bound the approximation ratio. There are in total 3n/2 edges. But
for every isolated triangle and diamond, there must be at least one uncut edge.
This sets the upper limit of Cmax to ≤ 3n/2 − N − N . The approximation
ratio is therefore lower bounded by

Fmax

Cmax
≥

≥
N f (γ, β) + (4N + 3N )f (γ, β) + ( 3n2 − 5N − 3N )f (γ, β)

3n
2 −N −N

. (3.18)

The right hand side is a function of N , N , γ, and β. It is favorable to
multiply the numerator and denominator by 1/n, and redefine N /n ≡ n and
N /n ≡ n , so that we can write

n f (γ, β) + (4n + 3n )f (γ, β) + ( 32 − 5n − 3n )f (γ, β)
3
2 − n − n

, (3.19)

where n , n ≥ 0 and 4n +3n ≤ 1. By numerically minimizing over n and n
while maximizing over the angles (γ, β), we find that the minimum is obtained
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3.3. QAOA FOR EXACT COVER

when n = n = 0 with (γ, β) = (35.3◦, 22.5◦), and that the corresponding
approximation ratio is lower bounded by .6924. Thus the worst graph is the one
that is only made up of tree subgraphs, Fig. 3.2a.

This lower bound on the approximation ratio is better than random guessing.
However it is worse than the current best classical approximation algorithm
for Max-Cut, which gives an approximation ratio of .87856 for all graphs [52],
and .9326 for 3-regular graphs [53]. Nevertheless, the possibility that quantum
advantage might exist for higher level p is not ruled out.

3.3 QAOA for Exact Cover
Although the QAOA was initially introduced as an approximation algorithm for
Max-Cut, nothing prohibits us from using it to try and solve decision problems.
In fact, because the QAOA can be thought of as a Trotterization of the QAA, in
the limit of large p, there is exist a set of angles ~γ and ~β that make the overlap
between the optimal state close to unity

lim
p→∞

(
max
~γ,~β

Fp(~γ, ~β)

)
= max

z
C(z). (3.20)

For a decision problem it is possible to define the success probability of the
QAOA as the sum of the probability amplitudes over all feasible solutions f (all
the “yes” answers) ∑

z∈f

| 〈z|ψp(~γ, ~β)〉|
2
. (3.21)

As a demonstration, we will show how the QAOA solves a simple exact-cover
problem. Consider the problem where U = {c1, c2} and V = {V1, V2}, with
V1 = {c1, c2} and V2 = {0, c2}. It has the solution |10〉. The cost Hamiltonian
for this problem is ĤC = Jσ̂z

1 σ̂
z
2 − h1σ̂

z
1 − h2σ̂

z
2 with J = 1/2, h1 = −1/2, and

0
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Figure 3.4: The expectation value Eq. (3.22) as a surface plot (left) and contour
plot (right).
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h2 = 0, that we get from Eq. (2.11). For p = 1, it is possible to write down
an analytical expression of the expectation value Eq. (3.9) by performing the
matrix vector multiplication:

F1(γ, β) =
1

2

(
cos(2β) + 2 cos2(β) cos(γ)

)
sin 2β sin(γ). (3.22)

This expectation value can be visualized on a grid, see Fig. 3.4. From the grid
the optimal values (γopt, βopt) can be read off. Note that since we seek the
lowest energy eigenstate of the Exact Cover cost Hamiltonian, it is favorable to
minimize the expectation value F1(γ, β) instead of maximizing it. In this exam-
ple, there is only one feasible solution, and we find that the success probability
is 50% for p = 1 using the angles that minimize Eq. (3.22). By numerically
minimizing F2(~γ, ~β) we find a 100% success probability for p = 2. This exam-
ple demonstrates that the QAOA can be used as a means for solving decision
problems. However, since there exists no known lower bound on the success
probability, one has to simply run the algorithm and see how it performs.

3.4 Implementation of the QAOA
The QAOA has already been implemented on several different hardware sys-
tems, including photonic [54], trapped ion [55], and superconducting quantum
processors [47–49, 56]. The unitary matrices that create the variational state
|ψp(~γ, ~β)〉 needs to be decomposed into 1-qubit and 2-qubit gates in order to
run on an actual quantum computer. In general, the decomposition will depend
on the primitive quantum gates for the specific hardware. Here we will give an
example of how the variational state |ψp(~γ, ~β)〉 can be constructed in terms of
single and two-qubit gates starting from the |0〉⊗n state and using the follow-
ing universal gate set: {Rx(θ),Rz(θ),CZ}. Here CZ is the control-Z gate that
applies a (−1) phase to the |11〉 state. This is, moreover, the gate-set that we
used in paper B [48].

The starting state |+〉⊗n of the QAOA can be constructed by applying the
Hadamard gate to each individual qubit in the |0〉⊗n state Eq. (3.7). However,
since the Hadamard gate is not in the available gate set it has to be compiled
using a product of gates. This can be achieved by a π/2 rotation around the
x-axis of the Bloch-sphere, followed by a π/2 rotation around the z-axis, and
yet another π/2 rotation around the x-axis: H = iRx

(
π
2

)
Rz

(
π
2

)
Rx

(
π
2

)
.

Next, the unitary that involves the sum of Pauli-x matrices can be written
as a product because all terms in the Hamiltonian commute

e−iβĤB = e−iβ
∑n

i=1 σ̂x
i =

n∏
i=1

e−iβσ̂x
i . (3.23)

This unitary can be implemented as n parallel single-qubit rotations around the
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3.4. IMPLEMENTATION OF THE QAOA

x-axis of the Bloch sphere with the same angle. The rotation on qubit i is

e−iβσ̂x
i ≡ Rx(2β) (3.24)

The cost Hamiltonian Eq. (2.3), consists of two parts: a two-body Hamiltonian
σ̂z
i σ̂

z
j and a single-body Hamiltonian σ̂z

i :

e−iγĤC =
∏

1≤i<j≤n

e−iγJij σ̂
z
i σ̂

z
j

n∏
i=1

e−iγhiσ̂
z
i . (3.25)

All terms in this product commute so the order with which they are applied
does not matter. Starting with the single-qubit term, it can be implemented as
n rotations around the z-axis of the Bloch-sphere, where the rotation for the
i:th qubit is

e−iγhiσ̂
z
i ≡ Rz(2γhi) (3.26)

The two-qubit interaction σ̂z
i σ̂

z
j in the cost Hamiltonian can be implemented

using a local single-qubit gate between two CNOT gates [29]

e−iγJij σ̂
z
i σ̂

z
j ≡

Rz(2γJij)
=

H Rx(2γJij) H
(3.27)

Since CNOT is not in our available gate set we have used the following identity
to express the CNOT gates into CZ gates:

X ≡ H Z H (3.28)

where X and Z are the Pauli-x and z matrices. A problem where every element
of Jij is non-zero would require a total of n(n−1) CZ gates for each level p. This
is of course under the assumption that it is possible to apply the two-qubit gates
directly between any two qubits. In reality, quantum processors have limited
hardware connectivity. Still, SWAP gates can be used to move distant qubits,
see Fig. 3.5. The number of SWAP gates needed to make all the qubits interact

|ψ〉 |φ〉

|φ〉 |ψ〉

Figure 3.5: The SWAP gate swaps the state of two qubits.

with each other depends on the connectivity of the hardware. For example, in a
linear array of qubits a swap network can be implemented using O(n) number
of SWAP gates [29].
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3.5 History and further reading
We will end this chapter with a list of results in connection to the QAOA,
taking a historical perspective. As mentioned, the QAOA was invented by
Farhi, Goldstone, and Gutmann. After their initial publication, where they
had applied this algorithm to the Max-Cut, they applied it to the Max E3LIN2
problem. For this problem, they were able to show that the QAOA can achieve
a better approximation ratio than the best classical approximation algorithm
[57]. This was not happily accepted by the computer science community that
came together to flex their muscles and soon came up with a better classical
algorithm [58].

In 2018, Brandao et al. [59] demonstrated that if the problem instances come
from a reasonable distribution2, then the expectation value of the cost function
concentrates. Meaning that for fixed angles (~γ, ~β), the expectation value will
be the same on all typical instances. This suggests that it is possible to train a
classical optimizer to find good angles on small instances and reuse those angles
on larger instances, as long as they come from the same distribution.

Moreover, it has been shown that the QAOA is universal, meaning that for
a problem of size n, and a choice of ĤC and ĤB , the QAOA can approximate
any unitary U of dimension 2n × 2n to arbitrary precision [60, 61]. Also, it has
been shown that the QAOA is able to realize Grover’s search algorithm [62, 63].

Later on, Farhi et al. argued that for certain choices of ĤC and (γ, β), level
p = 1 is computationally hard to simulate on a classical computer without
collapsing the polynomial hierarchy to the third level [64]. However, this would
not imply that P = NP.

In 2019, Hadfield et al. created the quantum operator alternating ansatz,
which generalizes the original QAOA ansatz to allow for more general types of
Hamiltonians and initial states [65].

In 2020 Farhi et al. showed that for certain types of graphs, the algorithm
has limited power when p is less than O(logn) [66, 67]. This is because qubits
in a graph that are further than 2p edges apart can not influence each other,
which will make the measurement of these qubits uncorrelated. The same year,
Wurtz and Love [68] conjectured that the approximation ratio for Max-Cut on
3-regular graphs for p = 3 is .7924, and speculated that for p < 6, there is no
quantum advantage.

2For example, random graphs, where each edge is included with a probability p.
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4 Discussion and outlook

In this thesis, we have studied the working principles of the QAOA and shown
how performance bounds can be derived for the Max-Cut problem and how the
QAOA can be applied to the Exact Cover problem. We have also demonstrated
how the QAOA can be compiled onto a quantum circuit in terms of a universal-
gate set.

The QAOA has shown to be an extremely versatile algorithm that can be
applied to a broad set of combinatorial optimization problems [35, 36, 69, 70].
As long as the problem can be mapped onto a cost Hamiltonian, the QAOA
can be used as a means to solve it. Although quantum advantage remains to
be seen, the application of the QAOA to combinatorial optimization problems
is still a fascinating topic to research and to run on NISQ devices.

For many levels of the QAOA, i.e. for large p, there is a high probability
of measuring the optimal solution. However, in reality, there exists a trade-off
between the number p and the algorithm’s performance [49]. This is because
quantum circuits are prone to errors due to decoherence mechanisms. To bat-
tle these surreptitious errors, quantum error-correcting (QEC) codes has to be
implemented. A good candidate for this is continuous variable encoding, which
has shown great success in realizing hardware-efficient QEC [71]. In short, a
continuous variable system is associated with an infinite-dimensional Hilbert
space, e.g., the quantum harmonic oscillator [72], while a discrete variable sys-
tem, such as a qubit, is associated with a finite-dimensional Hilbert space, e.g.,
the ground and excited state of an atom. A numerical study of the QAA found
that when implemented in a continuous variable encoding, the success proba-
bility was considerably higher than for discrete variable qubits under the same
amount of noise [73].

As a future research project, we would like to build upon these results and
investigate if a similar performance advantage is obtained for the QAOA when
implemented in a continuous variable encoding. This could translate into the
possibility of running more levels of the QAOA in experiments without perfor-
mance loss.
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5 Summary of papers

In paper A, we explore the performance of the QAOA when applied to the tail
assignment (TAS) problem. It is a problem that consists of assigning aircraft
to routes such that all routes are covered by an aircraft and that two aircraft
do not share the same route. The instances that we investigate have only one
feasible solution, making it possible to frame the TAS problem as an Exact
Cover problem. In the paper, we perform numerical experiments to investigate
the performance of the QAOA for solving the TAS problem. Specifically, we
look at the dependence of its success probability as a function of circuit depth
p and problem size n. We simulated several instances consisting of 8, 15, and
25 qubits. From the simulation results, we observe patterns in the angles (~γ, ~β),
and use this to employ an interpolation strategy that significantly simplifies the
classical optimization part of the QAOA [32].

Furthermore, we find a strong size dependence on the success probability.
In detail, we find that the 15 qubit instances are more challenging to solve than
the 25 qubit ones. We attribute this to the problems’ graph connectivity, where
we find that the 15 qubit instances have more than twice the average vertex
degree compared to the 25 qubit instances.

In paper B, we implement the QAOA on a quantum processor, consisting
of two superconducting transmon qubits. This requires compiling the QAOA in
terms of the available gate set for the hardware.

In the paper, we solve small instances of the exact-cover problem and find
a 96.6% success probability by iterating the algorithm up to p = 2. The ex-
periment serves as a technological demonstration that the algorithm works and
that there is nothing fundamentally wrong with the theory. In the experiment,
we implemented three different classical optimizers, Bayesian optimization with
Gaussian processes, Nelder-mead, and covariance matrix adaptation evolution
optimization. Of these three, the Bayesian optimizer showed the best perfor-
mance.
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