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Abstract
We study the infinite urn scheme when the balls are sequentially distributed over an
infinite number of urns labeled 1,2,…so that the urn j at every draw gets a ball with
probability p j , where

∑
j p j = 1. We prove functional central limit theorems for

discrete time and the Poissonized version for the urn occupancies process, for the odd
occupancy and for the missing mass processes extending the known non-functional
central limit theorems.

Keywords Infinite urn scheme · Regular variation · Functional CLT · Occupancy
process · Missing mass process

Mathematics Subject Classification (2020) 60F17 · 60G22 · 60G15 · 60G18

1 Introduction

In this paper,we study the following classical urnmodel first considered byKarlin [12]:
n ≥ 1 balls are distributed one by one over an infinite number of urns enumerated from
1 to infinity. The ball distributed at step j = 1, 2 . . . , call it j th ball, gets into urn i
with probability pi ,

∑∞
i=1 pi = 1, independently of the other balls. Such multinomial

occupancy schemes arise in many different applications, in Biology [11], Computer
science [13,14] and in many other areas, see, e.g., [10] and the references therein.
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Let X j be the urn the j th ball gets into and let Ji (n) be the number of balls the i th
urn contains after n balls are distributed:

Ji (n) =
n∑

j=1

1IX j=i .

Of a particular interest is the asymptotic behavior of the following quantities: the
number of urns containing at least k ≥ 1 balls and containing exactly k balls:

R∗
n,k =

∞∑

i=1

1IJi (n)≥k, Rn,k =
∞∑

i=1

1IJi (n)=k = R∗
n,k − R∗

n,k+1, (1)

the number of urnswith an odd number of balls and the scaledmissingmass introduced
in [12]:

Un =
∞∑

i=1

1IJi (n)≡1 (mod 2), Mn = n
∞∑

i=1

pi 1IJi (n)=0, (2)

We also use notation Rn
def= R∗

n,1 = ∑
k≥1 Rn,k for the number of non-empty urns.

Renumbering the urns if necessary, wemay assume that the sequence (pi )i≥1 is mono-
tonely decaying. We further assume that it is regularly varying:

α(x) = max{i : pi ≥ 1/x} = xθ L(x) withθ ∈ [0, 1], (3)

where L(x) is a slowly varying function as x → ∞.
Following Karlin’s [12] original approach, we will consider a Poissonized version

of the model when the balls are put into urns at the times of jumps of a homoge-
neous Poisson point processes �(s), s ≥ 0 with intensity 1 on R+. According to the

independent marking theorem for Poisson processes, {Ji (�(s))
def= �i (s), s ≥ 0} are

independent homogeneous Poisson processes with intensities pi . To ease the notation,
we write simply

R(s)
def= R∗

�(s),1, U (s)
def= U�(s),

and we introduce the following Poissonized version of the scaled missing mass:

M(s)
def= s

∞∑

i=1

pi 1I�i (s)=0 .

It differs from M�(s) by the scaling factor s vs. �(s), but, when properly scaled, it is
asymptotically equivalent to it.

Ordinary (not functional) central limit theorems for the above quantities were estab-
lished under various conditions in [2,3,9,10,12–14]. In particular, under rather general
conditions on the sequence (pi ) involving an unbounded growth of the variances, the
following results are available: a strong law of large numbers and asymptotic normality
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of Rn , an asymptotic normality of the vector (Rn,1, . . . , Rn,ν), local limit theorems,
etc.

We acknowledge a novelmethod of a randomized decomposition for provingFCLTs
developed in a recent paper [8], but we do not use it here. As a particular case of their
Theorem 2.3, a FCLT holds for the processes Rn and Un when θ ∈ (0, 1).

Our goal here is to establish a FCLT for the triplet of processes: the occupancy,
odd occupancy and the scaled missing mass when θ ∈ (0, 1]. In particular, we obtain
previously unknown FCLT for Un for θ = 1 and for Mn when θ ∈ (0, 1]. Up to a
normalizing constant, the FCLT stated in Theorem 1 also holds for the original (non-
scaled) missing mass

∑∞
i=1 pi 1IJi (n)=0 on any interval t ∈ [ε, 1], ε > 0, separated

from 0. The paper extends the results of [6] and [7], where a functional central limit
theorem (FCLT) was shown under condition (3) for the vector process
(R∗[nt],1, R∗[nt],2, . . . , R∗[nt],ν)t∈[0,1] in the case θ ∈ (0, 1].

Extending the FCLT to the case θ = 0 would require additional to (3) conditions.
As it was mentioned in [12] and in [2], θ = 0 does not imply that the variances grow
to infinity and various asymptotic behavior is possible for different statistics. We also
argue that even an infinite growth of variances does not guarantee per se the required
relative compactness.

When θ = 1, we need a function

L∗(x) =
∫ ∞

0
L(xs)e−ss−1ds.

It is known (see [12]) that L∗(x) is slowly varying when x → ∞.
Finally, for t ∈ [0, 1] introduce the following notation:

β(n) =
{

α(n), θ ∈ [0, 1);
nL∗(n), θ = 1,

Rn(t) = R[nt] − E R[nt]
(β(n))1/2

, (4)

Un(t) = U[nt] − EU[nt]
(β(n))1/2

, Mn(t) = M[nt] − EM[nt]
(α(n))1/2

. (5)

We are now ready to formulate the main result of the paper.

Theorem 1 When θ ∈ (0, 1], the vector process

(Rn(t),Un(t), Mn(t)), t ∈ [0, 1],

converges weakly in the uniformmetric on D([0, 1]3) to a three-dimensional Gaussian
process (ρ(t), υ(t), μ(t)) with zero mean and the covariance function c(τ, t) with the
following components: when θ ∈ (0, 1), τ ≤ t ,
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cρρ(τ, t) = �(1 − θ)((τ + t)θ − tθ ),

cυυ(τ, t) = �(1 − θ)2θ−2((t + τ)θ − (t − τ)θ ),

cμμ(τ, t) = θ�(2 − θ)

(
τ

t1−θ
− tτ

(t + τ)2−θ

)

,

cρυ(τ, t) = �(1 − θ)((2t + τ)θ − (2t − τ)θ )/2,

cρυ(t, τ ) = �(1 − θ)((2t + τ)θ − tθ )/2,

cρμ(τ, t) = θ�(1 − θ)

(
t

(t + τ)1−θ
− tθ

)

,

cρμ(t, τ ) = θ�(1 − θ)

(
τ

(t + τ)1−θ
− τ

t1−θ

)

,

cμυ(τ, t) = θ�(1 − θ)

(
τ

2(2t + τ)1−θ
− τ

2(2t − τ)1−θ

)

,

cμυ(t, τ ) = θ�(1 − θ)

(
t

2(2τ + t)1−θ
− tθ

2

)

.

When θ = 1, τ ≤ t , c(τ, t) is given by

cρρ(τ, t) = τ, cυυ(τ, t) = 2τ, cμμ(τ, t) = τ 2,

cρυ(τ, t) = τ, cρυ(t, τ ) = (t + τ)/2,

cρμ(τ, t) = cρμ(t, τ ) = cυμ(τ, t) = cυμ(t, τ ) = 0.

Thus, when θ = 1, ρ(t) and υ(t) are Wiener processes. For a general θ ∈ (0, 1], the
process (ρ(t), υ(t), μ(t)) is self-similar with the Hurst parameter H = θ/2 which
includes, in particular, a fractional Brownian motion, a bi-fractional Brownian motion
with parameter H = 1/2, K = θ (see, e.g., [8]) with a new self-similar process μ(t).

2 Proof of Theorem 1

We start with formulating a couple of lemmas proved in [7]. We will generally use
the letter C and its variants to denote a constant whose value is of no importance for
us and note in parentheses the parameters it depends upon. This should not lead to a
confusion when the same notation is used for, actually, different constants in different
contexts, the same way O(1) notation is used.

Lemma 1 When θ > 0, there exist n0 ≥ 1 and C(θ) < ∞ such that

E R(nδ)

β(n)
≤ C(θ)δθ/2

holds for any δ ∈ [0, 1] and n ≥ n0.

123



Journal of Theoretical Probability

Lemma 2 For any ε, δ ∈ (0, 1) there exists an N = N (ε, δ) such that for any n ≥ N,

P(∀t ∈ [0, 1] ∃τ : |τ − t | ≤ δ, �(nτ) = [nt]) ≥ 1 − ε.

In preparation of the proof, let us introduce some further notation and establish a
few inequalities we will be using.

In view of (5), let

U∗
n (t) = U (nt) − EU (nt)

(β(n))1/2
, U∗∗

n (t) = U ([nt]) − EU ([nt])
(β(n))1/2

(6)

M∗
n (t) = M(nt) − EM(nt)

(α(n))1/2
, M∗∗

n (t) = M([nt]) − EM([nt])
(α(n))1/2

. (7)

For any two positive τ1 ≤ τ2, define

U (τ2) −U (τ1) =
∞∑

i=1

1I{�i (τ2) is odd} − 1I{�i (τ1) is odd}

=
∞∑

i=1

1I{�i (τ2) is odd,�i (τ1) is even}

− 1I{�i (τ2) is even,�i (τ1) is odd}
def=

∞∑

i=1

ui (τ1, τ2) =
∞∑

i=1

ui =
∞∑

i=1

u′
i − u′′

i ,

and their expectations are denoted by

ui = u′
i − u′′

i = ui (τ1, τ2)
def= E u′

i − E u′′
i .

Similarly for M ,

M(τ2) − M(τ1) =
∞∑

i=1

(τ2 − τ1)pi 1I{�i (τ2) = 0} − τ1 pi 1I{�i (τ1) = 0,�i (τ2) > 0}

def=
∞∑

i=1

mi (τ1, τ2) =
∞∑

i=1

mi =
∞∑

i=1

m′
i − m′′

i ,

mi = m′
i − m′′

i = mi (τ1, τ2)
def= Em′

i − Em′′
i .
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Clearly, for all natural k,

E |ui − ui |k = |1 + ui |ku′′
i + |ui |k(1 − u′

i − u′′
i ) + |1 − ui |ku′

i

≤ 2k(u′
i + u′′

i ) + |ui |k ≤ (2k + 1)(u′
i + u′′

i )

= (2k + 1)

⎡

⎣
∞∑

j=0

P{�i (τ1) = 2 j, �i (τ2) − �i (τ1) is odd}

+
∞∑

j=0

P{�i (τ1) = 2 j + 1, �i (τ2) − �i (τ1) is odd}
⎤

⎦

= (2k + 1)P{�i (τ2 − τ1) is odd}
< (2k + 1)P{�i (τ2 − τ1) > 0}. (8)

Similarly,

E |m′
i − m′

i |k ≤ 2k−1(E |m′
i |k + |m′

i |k) = 2k−1(τ2 − τ1)
k pki (e

−τ2 pi + e−kτ2 pi )

< 2kk!(1 − e−(τ2−τ1)pi ) = 2kk!P{�i (τ2 − τ1) > 0},
E |m′′

i − m′′
i |k ≤ 2k−1(E |m′′

i |k + |m′′
i |k) < 2kτ k1 p

k
i e

−τ1 pi (1 − e−(τ2−τ1)pi )

< 2kk!(1 − e−(τ2−τ1)pi ) = 2kk!P{�i (τ2 − τ1) > 0}.

As a result,
E |mi − mi |k < 4kk!P{�i (τ2 − τ1) > 0}. (9)

We are using the same notation ui , mi and ui , mi without explicitly specifying the
corresponding values of τ1 < τ2; this should not create a confusion. The following
lemma will be used in the proof of the relative compactness of the process M∗

n (t).

Lemma 3 Let θ ∈ (0, 1] and δ ∈ [0, 1]. Then, there exist n0 ≥ 1 and C(θ) < ∞ such
that

var(M(nt2) − M(nt1))

α(n)
≤ C(θ)δθ/2

for all t2 − t1 = δ ≥ 0 and n ≥ n0.
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Proof Put τ2 = nt2 and τ1 = nt1. Since the variance of an indicator does not exceed
its expectation, we have that

var(M(τ2) − M(τ1)) =
∞∑

i=1

E(mi − mi )
2 =

∞∑

i=1

E(m′
i )
2 − (m′

i − m′′
i )

2 + E(m′′
i )

2

≤
∞∑

i=1

(τ2−τ1)
2 p2i e

−τ2 pi + τ 21 p
2
i e

−τ1 pi (1 − e−(τ2−τ1)pi ± (τ2−τ1)pi e
−(τ2−τ1)pi )

≤ 2
(τ2 − τ1)

2

τ 22
E R�(τ2),2 + E R∗

�(τ2−τ1),2 + 6
τ 21 (τ2 − τ1)

τ 32
E R�(τ2),3.

By [12, Th. 2.1 and (23)],

lim
x→∞

E R∗
�(x),2

α(x)
= �(2 − θ) < 2,

and therefore, there exists an x1 > 1 such that for all x ≥ x1,

E R�(x),2 + E R�(x),3 < E R∗
�(x),2 < 2α(x).

According to Karamata (see, e.g., [5, Th. 2,1,Eq. A6.2.10]), there exists an x2 > 0
such that for all x and δ ∈ (0, 1] satisfying xδ ≥ x2, one has

L(xδ)

L(x)
≤ 2δ−1/2.

Let nδ > max{x1, x2} = x0, then

E R∗
�(nδ),2

α(n)
≤ 2

(nδ)θ L(nδ)

nθ L(n)
≤ 4δθ/2,

max(E R�(nt2),2,E R�(nt2),3)

α(n)
≤ 4tθ/2

2 .

Choose n0 such that for all n ≥ n0 we have nθ L(n) ≥ nθ/2. Then, provided nt2 ≤ x0,

E R∗
�(nδ),2

α(n)
≤ E�(nδ)

α(n)
≤ nδ

nθ/2 = (nδ)1−θ/2δθ/2 ≤ x0δ
θ/2,

max(E R�(nt2),2,E R�(nt2),3)

α(n)
≤ x0t

θ/2
2 .

Now, take c = max{4, x0}. Since t2 − t1 = δ ≥ 0, for all n ≥ n0 we obtain

var(M(nt2) − M(nt1))

α(n)
≤ 2c

δ2

t2−θ/2
2

+ δθ/2 + 6c
t21 δ

t3−θ/2
2

≤ 9c · δθ/2.

�
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We are ready to prove Theorem 1. The proof is broken into four steps.
Step 1: Covariance The first rather technical step consists in establishing a formula
for the covariances which is put in Appendix.
Step 2: Convergence of finite-dimensional distributions Along the lines of the proof
of [9, Th. 12], one can show that for

m ≥ 1, 0 < t1 < t2 < . . . < tm ≤ 1

the triangular array of m-dimensional vectors (i.e., independent in k for every n)

{
1I(�k(nt j ) is odd) − P(�k(nt j ) is odd)√

β(n)
, j ≤ m, k ≤ n

}

n≥1

satisfies the Lindeberg condition (see, e.g., [5, Th. 6.2]). Similarly, the convergence
of the finite-dimensional distributions is shown for the process M∗

n (t).
Step 3: Relative compactness

We shall follow the following plan:

(a) prove the continuity of the limiting process;
(b) prove that U∗

n and U∗∗
n (M∗

n and M∗∗
n ) are sufficiently close;

(c) prove the relative compactness of U∗∗
n (M∗∗

n ).

a(U) Take τ1 = nt1, τ2 = nt2 for 0 < t1 < t2 < 0. Then,

E(U∗
n (t2) −U∗

n (t1))
2 = E

( ∞∑

i=1

(ui − ui )
)2

/β(n) =
∞∑

i=1

E(ui − ui )
2/β(n)

≤ 5
∞∑

i=1

P(�i (τ2 − τ1)>0)/β(n)=5E R�(τ2−τ1)/β(n)

≤ 5C(θ)(t2 − t1)
θ/2.

We have used above the independence of the summands, inequality (8) and
Lemma 1.
Since the covariance function has a limit, [1, Th. 1.4] will imply that the limiting
Gaussian process a.s. has a continuous modification on [0, 1].
Since the trajectories of the limiting Gaussian process belong a.s. to the class
C(0, 1), the weak convergence in the Skorohod topology implies the weak con-
vergence in the uniform metric, see, e.g., [4]. Therefore, it is sufficient to prove
the relative compactness of {U∗

n }n≥n0 (with n0 as in Lemma 1) in the Skorohod
topology.
b(U) Since with probability one we have

|U (nt) −U ([nt])| ≤ �(nt) − �([nt]) ≤ �([nt] + 1) − �([nt]),

then

E |U (nt) −U ([nt])| ≤ 1.
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Hence, for all η > 0,

P( sup
0≤t≤1

|U∗
n (t) −U∗∗

n (t)| > η)

≤ P( sup
0≤t≤1

(|U (nt) −U ([nt])| + E |U (nt) −U ([nt])|) > η
√

β(n))

≤ P( sup
0≤t≤1

(�([nt] + 1) − �([nt]) + 1) > η
√

β(n))

= P( sup
0≤m≤n

(�(m + 1) − �(m) + 1) > η
√

β(n))

≤
n∑

m=0

P(�(m + 1) − �(m) + 1 > η
√

β(n))

≤
n∑

m=0

E e�(m+1)−�(m)+1

eη
√

β(n)
= (n + 1)

E e�(1)

eη
√

β(n)−1
= (n + 1)ee−η

√
β(n) → 0

when n → ∞. Therefore, it is sufficient to show the relative compactness of
{U∗∗

n }n≥n0 (with n0 as in Lemma 1) in the Skorohod topology.
c(U) For any t1, t2 ∈ [0, 1] satisfying 1

2n ≤ t2 − t1 we have that

[nt2] − [nt1] ≤ n(t2 − t1) + 1 ≤ n(t2 − t1) + 2n(t2 − t1) = 3n(t2 − t1)

≤ 3n(t2 − t1) · (2n(t2 − t1))
3 = 24n4(t2 − t1)

4. (10)

Put k = [16/θ ] + 1, τ1 = [nt1], τ2 = [nt2].
Recall the Rosenthal inequality [15]: if ϕi are independent random variables with

E ϕi = 0, then for all k ≥ 2 there exists a constant c(k) such that

E
∣
∣
∣
∑

i

ϕi

∣
∣
∣
k ≤ c(k)max

{ ∑

i

E |ϕi |k,
( ∑

i

E ϕ2
i

)k/2
}

. (11)

For all n ≥ n0 (with n0 as in Lemma 1), we then have

E |U∗∗
n (t2) −U∗∗

n (t1)|k =
E

∣
∣
∣

∞∑
i=1

(ui − ui )
∣
∣
∣
k

(β(n))k/2

≤ c(k)

(β(n))k/2

( ∞∑

i=1

E |ui − ui |k +
( ∞∑

i=1

E(ui − ui )
2
)k/2

)

≤ C(k)

(β(n))k/2

( ∞∑

i=1

P(�i (τ2 − τ1) > 0) +
( ∞∑

i=1

P(�i (τ2 − τ1) > 0)
)k/2

)

= C(k)

(β(n))k/2

(
E R(τ2 − τ1) + (E R(τ2 − τ1))

k/2
)

123



Journal of Theoretical Probability

≤ C(k)

(β(n))k/2

(
24n4(t2 − t1)

4 + (E R(3n(t2 − t1)))
k/2

)
≤ C̃(θ)(t2 − t1)

4,

where c(k), C(k) and C̃(θ) depend only on their arguments.
Above, we have used (11) in the first inequality, (8) in the second and finally (10)

and Lemma 1 alongside with the bound

E R(τ2 − τ1) ≤ E(�([nt2]) − �([nt1])) = [nt2] − [nt1]. (12)

If 0 ≤ t2 − t1 < 1
n , then [nt1] = [nt] or [nt2] = [nt] for all t ∈ [t1, t2]; therefore,

D
def= E(|U∗∗

n (t) −U∗∗
n (t1)|k/2|U∗∗

n (t2) −U∗∗
n (t)|k/2) = 0 ≤ (t2 − t1)

2.

If t2 − t1 ≥ 1/n, then there are the following three cases:

1. if t2 − t ≥ 1
2n , t − t1 ≥ 1

2n , then the Cauchy–Schwarz inequality implies

D ≤ C̃(θ)(t2 − t)2 · (t − t1)
2 ≤ C̃(θ)(t2 − t1)

2.

2. If t2 − t ≥ 1
2n , t − t1 < 1

2n , then since

|U ([nt]) −U ([nt1])| ≤a.s. �([nt]) − �([nt1]) ≤st �(1),

the same inequality yields

D ≤
(

C̃(θ)(t2 − t)4 · E
(

�(1) + 1√
β(n)

)k
)1/2

≤ Ĉ(θ)(t2 − t1)
2.

3. If t2 − t < 1
2n , t − t1 ≥ 1

2n , then since

|U ([nt2]) −U ([nt])| ≤a.s. �([nt2]) − �([nt]) ≤st �(1),

we have that

D ≤
(

E
(

�(1) + 1√
β(n)

)k

· C̃(θ)(t − t1)
4

)1/2

≤ Ĉ(θ)(t2 − t1)
2.

Now, the relative compactness follows from, for example, [4, Th. 13.5].

a(M) Because the covariance function has a limit, it is sufficient to appeal to
Lemma 3 and [1, Th. 1.4] to establish existence of an almost sure continuous
on [0, 1] modification of the limiting Gaussian process. Since the trajectories of
this process are a.s. in C(0, 1), the weak convergence in the Skorohod topology
implies the uniform convergence, see [4]. Thus, it is sufficient to prove a relative
compactness of the family {M∗

n }n≥n0 in the Skorohod topology (here, n0 is the
same as in Lemma 1).
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b(M) Set τ2 = nt and τ1 = [nt]. Since τ2 − τ1 ≤ 1,

E |M(τ2) − M(τ1)| ≤
∞∑

i=1

(τ2 − τ1)pi e
−pi τ2

+τ1 pi e
−pi τ1(1 − e−pi (τ2−τ1))

≤
∞∑

i=1

pi e
−pi τ2 + e−1 pi (τ2 − τ1) <

∞∑

i=1

2pi = 2.

Let m′′′
i = m′′

i (τ1, τ1 + 1) and m′′′
i = Em′′′

i . Then, we have almost surely

|M(τ2) − M(τ1)| ≤
∞∑

i=1

(m′
i + m′′

i ) ≤
∞∑

i=1

(pi + m′′′
i )

= 1 +
∞∑

i=1

(m′′′
i + m′′′

i − m′′′
i ) < 2 +

∣
∣
∣
∣
∣

∞∑

i=1

(m′′′
i − m′′′

i )

∣
∣
∣
∣
∣
.

We know that for any integer k ≥ 2

E |m′′′
i − Em′′′

i |k < 2kk!P(�i (τ1 + 1 − τ1) > 0) = 2kk!(1 − e−pi ) < 2kk!pi .

Using the independence of the terms and Rosenthal inequality, for any k ≥ 2,

E

∣
∣
∣
∣
∣

∞∑

i=1

(m′′′
i − m′′′

i )

∣
∣
∣
∣
∣

k

≤ c(k)

⎛

⎝
∞∑

i=1

E |m′′′
i − m′′′

i |k +
( ∞∑

i=1

E(m′′′
i − m′′′

i )2

)k/2
⎞

⎠

< c(k)(2kk! + 4k) = C(k).

Hence, for k ≥ [2/θ ] + 1 and all η > 0

P

(

sup
0≤t≤1

|M∗
n (t) − M∗∗

n (t)| > η

)

≤ P( sup
0≤t≤1

(|M(nt) − M([nt])| + E |M(nt) − M([nt])|) > η
√

α(n))

≤ P

(

max
0≤[nt]≤n

(∣
∣
∣
∣
∣

∞∑

i=1

m′′′
i − Em′′′

i

∣
∣
∣
∣
∣
+ 4

)

> η
√

α(n)

)

≤
∑

[nt]=m∈{0,1,...,n}
P

(∣
∣
∣
∣
∣

∞∑

i=1

m′′′
i − Em′′′

i

∣
∣
∣
∣
∣
+ 4 > η

√
α(n)

)
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≤
n∑

m=0

C(k)

(η
√

α(n) − 4)k
= C(k)(n + 1)

(η
√

α(n) − 4)k
→ 0 when n → ∞.

Therefore, it is sufficient to show the local compactness of {M∗∗
n }n≥n0 in the Skorohod

topology.

c(M) Let t1, t2 ∈ [0, 1] and 1
2n ≤ t2 − t1, then (10) holds. Set k = [16/θ ] + 1,

τ1 = [nt1], τ2 = [nt2].
Again, by independence and the Rosenthal inequality,

E |M∗∗
n (t2) − M∗∗

n (t1)|k = E
∣
∣
∑∞

i=1(mi − mi )
∣
∣k

(α(n))k/2

≤ c(k)

(α(n))k/2

⎛

⎝
∞∑

i=1

E |mi − mi |k +
( ∞∑

i=1

E(mi − mi )
2

)k/2
⎞

⎠

≤ C(β)

(α(n))k/2

( ∞∑

i=1

P(�i (τ2 − τ1) > 0) + (var(M(τ2) − M(τ1)))
k/2

)

= C(k)

(α(n))k/2

(
E R(τ2 − τ1) + (var(M(τ2) − M(τ1)))

k/2
)

≤ C(k)

(α(n))k/2

(
24n4(t2 − t1)

4 + (C(θ)α(n)(τ2 − τ1)/n)k/2
)

≤ C̃(θ)(t2 − t1)
4,

where c(k), C(k) and C̃(θ) depend only on their arguments.
Above, we have used inequalities (9), (10) and Lemmas 3, 1 alongside with the

bound

E R(τ2 − τ1) ≤ E(�([nt2] − [nt1])) = [nt2] − [nt1].

When 0 ≤ t2 − t1 < 1
n , then [nt1] = [nt] or [nt2] = [nt] for any t ∈ [t1, t2]. Thus,

B
def= E(|M∗∗

n (t) − M∗∗
n (t1)|k/2|M∗∗

n (t2) − M∗∗
n (t)|k/2) = 0 ≤ (t2 − t1)

2.

When t2 − t1 ≥ 1/n, we have the following three cases:

1. if t2 − t ≥ 1
2n , t − t1 ≥ 1

2n , then the Cauchy–Schwarz inequality gives

B ≤ C̃(θ)(t2 − t)2 · (t − t1)
2 ≤ C̃(θ)(t2 − t1)

2;

2. if t2 − t ≥ 1
2n , t − t1 < 1

2n , then since for any l ≥ 2,

E |M([nt]) − M([nt1]) − E(M([nt]) − M([nt1])|l

≤ E

(

4 +
∣
∣
∣
∣
∣

∞∑

i=1

m′′
i ([nt1] + 1, [nt1]) − Em′′

i ([nt1] + 1, [nt1])
∣
∣
∣
∣
∣

)l

< C(l),
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the Cauchy–Schwarz inequality yields the bound

B ≤
(

C̃(θ)(t2 − t)4 · C(k)

α(n)k/2

)1/2

≤ Ĉ(θ)(t2 − t1)
2;

3. finally, t2 − t < 1
2n , t − t1 ≥ 1

2n , is similar to the previous case.

Thus, the required compactness follows from [4, Th. 13.5].
Finally, for the next step we need to show that M(s), when time scaled, is close to

its fully Poissonized version

M̃(s)
def= M�(s) =

∞∑

i=1

�(s)pi 1I�i (s)=0 .

Namely, we aim to show that

sup
0≤t≤1

|M∗
n (t) − M̃n(t)| → 0 in probability, (13)

where

M̃n(t) = M̃(nt) − E M̃(nt)

(α(n))1/2
.

Introduce �′
i (s) = �(s) − �i (s) and �̃(s) = (�(s) − s)/

√
s. Since M̃(s) =∑∞

i=1 �′
i (s)pi 1I�i (s)=0,

|E M̃(s) − EM(s)| = |E
∞∑

i=1

(�′
i (s) − s)pi 1I�i (s)=0 |

=
∣
∣
∣

∞∑

i=1

(s(1 − pi ) − s)pi e
−spi

∣
∣
∣ = 2E R�(s),2

s
→ 0

as s → ∞ and it is bounded by 1. Thus, there exists a sufficiently small ε = ε(θ) > 0
such that for δn = nε−1

sup
0≤t≤δn

|M∗
n (t) − M̃n(t)| <

�(nδn) + nδn + 1

(α(n))1/2
→ 0 a.s.

when n → ∞.
By the strong law of large numbers for M(s) and the well-known asymptotic

behavior of EM(s) (see, e.g., [12][Eq. (23)]), we conclude that for any θ ∈ (0, 1],
M(s)/(sα(s))1/2 → 0 a.s. when s → ∞. Moreover, according to the central limit
theorem �̃(s) is asymptotically standard normal for large s.
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Finally, we have almost surely

|M∗
n (t) − M̃n(t)| ≤ |�̃(nt)|M(nt)

(ntα(n))1/2
+ 1

(α(n))1/2
.

Using this inequality, and the fact that sup0≤t≤1(·) ≤ sup0≤t≤δn
(·)+ supδn≤t≤1(·) and

that sup
0≤t≤1

(·) is a continuous functional, we readily obtain 13.

Step 4: Approximation of the initial process Since �(t) is monotone, the strong law
of large numbers implies that for any ε, δ ∈ (0, 1) there is an integer N = N (ε, δ)

such that for all n ≥ N one has

P(∀t ∈ [0, 1] ∃τ : |τ − t | ≤ δ, �(nτ) = [nt]) def= P(A(n)) ≥ 1 − ε,

see Lemma 2. Here and below, F stands for R,U or M . The relative compactness
of the distributions {F∗

n }n≥n0 implies that for any ε ∈ (0, 1) and η > 0 there exist
δ ∈ (0, 1) and an integer N1 = N1(ε, η) such that for all n ≥ N1,

P

(

sup
|t−τ |≤δ

∣
∣F∗

n (τ ) − F∗
n (t)

∣
∣ ≥ η

)

≤ ε.

Hence, since

P(Fn(t) = F∗
n (τ )|�(nτ) = [nt]) = 1,

for all n ≥ max(N , N1),

P

(

sup
0≤t≤1

∣
∣Fn(t) − F∗

n (t)
∣
∣ ≥ η

)

≤ P

(

sup
0≤t≤1

∣
∣Fn(t) − F∗

n (t)
∣
∣ ≥ η, A(n)

)

+ ε

≤ P

(

sup
|t−τ |≤δ

∣
∣F∗

n (τ ) − F∗
n (t)

∣
∣ ≥ η

)

+ ε ≤ 2ε.

which proves Theorem 1.
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Appendix

An explicit expression for the covariance between R(τ ) and R(t) can be found in [7].
Take τ ≤ t . The

c∗
UU (τ, t) = cov(U (τ ),U (t))

=
∞∑

k=1

P(�k(τ ),�k(t) is odd) − P(�k(τ ) is odd)P(�k(t) is odd)

= 1

4

∞∑

k=1

(

(1 − e−2pkτ )(1 + e−2pk (t−τ)) − (1 − e−2pkτ )(1 − e−2pk t )

)

= 1

4

∞∑

k=1

e−2pk (t−τ) − e−2pk (t+τ) = 1

2
E(U (t + τ) −U (t − τ)).

Hence (since β(nt)
β(n)

→ tθ as n → ∞)

cυυ(τ, t) = lim
n→∞

c∗
UU (nτ, nt)

α(n)
= �(1 − θ)2θ−2((t + τ)θ − (t − τ)θ ), θ ∈ (0, 1),

cυυ(τ, t) = lim
n→∞

c∗
UU (nτ, nt)

nL∗(n)
= 2τ, θ = 1,

cf. [12][Eq. (21)].
Next,

c∗
MM (τ, t) = cov(M(τ ), M(t))

=
∞∑

k=1

E(tpi 1I(�i (t) = 0) − tpi e
−tpi )(τ pi 1I(�i (τ ) = 0) − τ pi e

−τ pi )

=
∞∑

k=1

tτ p2i e
−tpi (1 − e−τ pi ) = 2τ

t
E R�(t),2 − 2tτ

(t + τ)2
E R�(t+τ),2.
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Since α(nt)
α(n)

→ tθ when n → ∞,

cμμ(τ, t) = lim
n→∞

c∗
MM (nτ, nt)

α(n)

= θ�(2 − θ)

(
τ

t1−θ
− tτ

(t + τ)2−θ

)

,

cf. [12][Eq. (23)].
Continuing,

c∗
RU (τ, t) = cov(R(τ ),U (t)) =

∞∑

k=1

cov(1 − 1I(�k(τ ) = 0), 1I(�k(t) is odd))

= −
∞∑

k=1

cov(1I(�k(τ ) = 0), 1I(�k(t) is odd))

= −
∞∑

k=1

P(�k(τ ) = 0,�k(t) is odd) − P(�k(τ ) = 0)P(�k(t) is odd)

= −1

2

∞∑

k=1

(

e−pkτ (1 − e−2pk (t−τ)) − e−pkτ (1 − e−2pk t )

)

= 1

2

∞∑

k=1

(

e−pk (2t−τ) − e−pk (2t+τ) ± 1

)

= 1

2
E(R(2t + τ) − R(2t − τ)).

Similarly,

c∗
RU (t, τ ) = cov(R(t),U (τ )) = −

∞∑

k=1

cov(1I(�k(t) = 0), 1I(�k(τ ) is odd))

= 1

2

∞∑

k=1

e−pk t (1 − e−2pkτ )

= 1

2

∞∑

k=1

(

e−pk t − e−pk (2τ+t) ± 1

)

= 1

2
E(R(2t + τ) − R(t)).

Because β(nt)
β(n)

→ tθ when n → ∞, for θ ∈ (0, 1) we have that

cρυ(τ, t) = lim
n→∞

c∗
RU (nτ, nt)

α(n)
= �(1 − θ)((2t + τ)θ − (2t − τ)θ )/2,

cρυ(t, τ ) = lim
n→∞

c∗
RU (nt, nτ)

α(n)
= �(1 − θ)((2t + τ)θ − tθ )/2.
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For θ = 1, this reduces to

cρυ(τ, t) = lim
n→∞

c∗
RU (nτ, nt)

nL∗(n)
= τ,

cρυ(t, τ ) = lim
n→∞

c∗
RU (nt, nτ)

nL∗(n)
= (t + τ)/2,

cf. [12, Th. 1].
Next,

c∗
MU (τ, t) = cov(M(τ ),U (t))

=
∞∑

k=1

τ pk cov(1I(�k(τ ) = 0), 1I(�k(t) is odd))

= 1

2

∞∑

k=1

τ pk

(

e−pk (2t+τ) − e−pk (2t−τ)

)

= τ

2(2t + τ)
EM(2t + τ) − τ

2(2t − τ)
EM(2t − τ),

and

c∗
MU (t, τ ) = cov(M(t),U (τ ))

= 1

2

∞∑

k=1

tpk

(

e−pk (2τ+t) − e−pk t
)

= t

2(2τ + t)
EM(2τ + t) − 1

2
EM(t).

Finally,

c∗
RM (τ, t) = cov(R(τ ), M(t))

=
∞∑

k=1

cov(1 − 1I(�k(τ ) = 0), tpk 1I(�k(t) = 0))

= −
∞∑

k=1

tpk cov(1I{�k(τ ) = 0}, 1I{�k(t) = 0)}

= −
∞∑

k=1

tpk

(

e−pk t − e−pk (τ+t)
)

= t

τ + t
EM(τ + t) − EM(t),

and

c∗
RM (t, τ ) = cov(R(t), M(τ )) = τ

τ + t
EM(τ + t) − τ

t
EM(t).
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Because α(nt)
α(n)

→ tθ when n → ∞, for θ ∈ (0, 1) we obtain

cρμ(τ, t) = lim
n→∞

c∗
RM (nτ, nt)

α(n)
= θ�(1 − θ)

(
t

(t + τ)1−θ
− tθ

)

,

cρμ(t, τ ) = lim
n→∞

c∗
RM (nt, nτ)

α(n)
= θ�(1 − θ)

(
τ

(t + τ)1−θ
− τ

t1−θ

)

,

cμυ(τ, t) = lim
n→∞

c∗
MU (nτ, nt)

α(n)
= θ�(1 − θ)

(
τ

2(2t + τ)1−θ
− τ

2(2t − τ)1−θ

)

,

cμυ(t, τ ) = lim
n→∞

c∗
MU (nt, nτ)

α(n)
= θ�(1 − θ)

(
t

2(2τ + t)1−θ
− tθ

2

)

,

cf. [12][Eq. (23)].
Clearly, L(n) → 0 as n → ∞. According to [12][Lem. 4], in the case θ = 1 the

function L∗(n) → 0 when n → ∞ is slowly varying and

lim
n→∞

L(n)

L∗(n)

def= lim
n→∞ δn = 0. (14)

Therefore, in the case θ = 1,

cρμ(τ, t) = lim
n→∞

c∗
RM (nτ, nt)

α(n)

√
δn = 0,

cρμ(t, τ ) = lim
n→∞

c∗
RM (nt, nτ)

α(n)

√
δn = 0,

cμυ(τ, t) = lim
n→∞

c∗
MU (nτ, nt)

α(n)

√
δn = 0,

cμυ(t, τ ) = lim
n→∞

c∗
MU (nt, nτ)

α(n)

√
δn = 0.
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