
A ROS2 based communication architecture for control in
collaborative and intelligent automation systems

Downloaded from: https://research.chalmers.se, 2021-08-31 11:23 UTC

Citation for the original published paper (version of record):
Erös, E., Dahl, M., Bengtsson, K. et al (2019)
A ROS2 based communication architecture for control in collaborative and intelligent automation
systems
Procedia Manufacturing
http://dx.doi.org/10.1016/j.promfg.2020.01.045

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/389670157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Available online at www.sciencedirect.com

ScienceDirect

Procedia Manufacturing 00 (2019) 000–000

www.elsevier.com/locate/procedia

2351-9789 © 2019 The Authors, Published by Elsevier B.V.

Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

29th International Conference on Flexible Automation and Intelligent Manufacturing
(FAIM2019), June 24-28, 2019, Limerick, Ireland.

A ROS2 based communication architecture for control in

collaborative and intelligent automation systems

Endre Erős*a, Martin Dahla, Kristofer Bengtssona, Atieh Hannab, Petter Falkmana

aDepartment of Electrical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
bDepartment for Research and Technology Development, Volvo Group Trucks Operations, Gothenburg 41755, Sweden

Abstract

Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such

systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating

System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development.

However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the

development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case

of a collaborative and intelligent automation system.

© 2019 The Authors, Published by Elsevier B.V.

Peer review under the responsibility of the scientific committee of the Flexible Automation and Intelligent Manufacturing 2019

Keywords: robot operating system; collaborative robots; robot programming; communication architecture; multi-master; intelligent automation.

1. Introduction

 The ever-increasing demand for product variability and quality, as well as the need for shorter production and

delivery time, introduces new challenges in production. Some of these challenges can be solved by using

autonomous and collaborative robots [1]. To ease the integration and development of collaborative and intelligent

systems, various platforms have emerged as middle-ware solutions where the Robot Operating System (ROS) [2]

stands out.

* Corresponding author. Tel.: +46733292237.

E-mail address: endree@chalmers.se

http://www.sciencedirect.com/science/journal/22107843

2 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000

Since the incarnation of ROS in 2007 [3] by Willow Garage, the number of ROS users has seen a major increase

with more than 16 million total downloads in the year 2018 [4]. Currently, ROS2 [5] is being developed, where the

communication layer is based on Data Distribution Service (DDS) [6] to enable large scale distributed control

architectures. As it is presented in this paper, this improvement paves the way for use of ROS2-based architectures

in real-world industrial automation systems.

Since ROS2 is behind ROS when it comes to the number of packages and active developers, communication

bridges are used to pass messages between ROS and ROS2. These bridges allow the community to utilize strengths

of both ROS and ROS2 in the same system, i.e. to have an extensive set of developed packages and at the same time

have a robust way to communicate between machines. This is crucial in modern industry because it enables robust

integration of state-of-the-art tools and algorithms necessary for control in collaborative and intelligent automation

systems. Since these large-scale automation systems are usually distributed in nature, they require a well structured

and reliable communication architecture. Therefore, this paper presents variations of a ROS2 based communication

architecture with these traits.

While enabling integration and communication is greatly beneficial, it is just one part of the challenge. The

overall control architecture also needs to plan and coordinate all actions of robots, humans and other devices as well

as to keep track of everything. Mixed human-machine industrial environments where operations are carried out

either collaboratively, coactively or individually, demand non-traditional control strategies. A few ROS based

frameworks that try to handle these control strategies are ROSPlan [7], SkiROS [8], eTaSL/eTC [9] and CoSTAR

[10]. These frameworks are however mainly focused on single robot systems and as such lack the infrastructure to

support large scale automation systems. Intelligent and collaborative systems often comprise of several robots,

machines, smart tools, human-machine interfaces, cameras, safety sensors, etc.

A use-case in this paper illustrates the challenges of achieving flexible automation in an industrial setup and

highlights the need to use ROS due to great integration with smart devices and algorithms. A brief overview of the

communication layer in ROS and ROS2 is given in Section 2. A description of the use-case is given in Section 3 and

the design of the communication architecture is described in Section 5. Sequence Planner [11], a state-of-art task

planner and discrete controller is shortly explained in Section 4 and the paper is concluded in Section 6.

2. The Robot Operating System (ROS) and ROS2

ROS is a collection of tools and libraries that aids robotics software development [3]. Software is written in form

of nodes that exchange messages using a transport layer called TCPROS [12] based on standard TCP/IP sockets.

ROS has a centralized network configuration which means that there has to exist a running ROS master [13]. The

master takes care of naming and registration services so that other ROS nodes could find each other on the network

and communicate in a peer-to-peer fashion. Having a configuration where all nodes depend on a central ROS master

is not robust, especially if nodes in a network are distributed on several computers.

To improve on this design limitation, developers of ROS2 implemented Object Management Group’s standard

DDS [14] as the communication middleware considering it to be scalable, robust and well-proven in mission-critical

systems [15]. As a result, DDS enables implementation of ROS in industrial use-cases.

There is a number of available implementations of DDS, allowing ROS2 users to choose an implementation from

a vendor that suits their needs. This is done through a ROS Middleware Interface (RMW) [16], which also exposes

Quality of Service (QoS) policies. ROS2 users have the ability to choose between options of QoS policies for

supported RMW implementations, which enables them to further modify the transfer layer.

There are implementations which offer a more direct access to the real-time publish-subscribe (RTPS) wire

transfer protocol. While not fulfilling the full DDS API, they still provide sufficient functionality for ROS2. An

example implementation is eProsima’s FastRTPS [21] and it is the implementation of choice for the setup described

in this paper. Default QoS settings are kept and they specify reliability, volatile durability and KEEP_LAST history.

An extensive but outdated study compares performances of ROS middlewares [22]. In contrast to the mentioned

study, we found that FastRTPS performed without problems.

Since ROS2 uses DDS to exchange messages, the Discovery Module of the underlying RTPS protocol enables

ROS2 nodes to automatically find each other on the network [14, 15], thus there is no need for a ROS2 master.

 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000 3

a

Setting up a stable ROS multi-master system before ROS2 was introduced was rather cumbersome, and it often

resulted in using other communication platforms such as Kafka or ZeroMQ for exchanging messages between

different ROS systems. Several specialized ROS packages that enable communication in multiple ROS master

systems already exist, e.g., multimaster_fkie [13], rocon [17], ZeroMQ-ROS [18] and Kafka-ROS Bridge [19].

Currently, there are still cases where there is a need to use old ROS packages when designing new systems. In

distributed cases, it is possible to use the communication layer capabilities of ROS2 together with local ROS

systems. Utilizing ROS2 and several ROS masters enables us to partition a ROS system into local, single computer

hubs, where a hub includes a ROS master and one or multiple local nodes. This is be exemplified with an industrial

use-case and described in more detail.

3. An industrial use-case of collaborative and intelligent automation

Benefits of utilizing both ROS and ROS2 are evident in a collaborative robot assembly station in a Volvo Trucks

engine manufacturing facility located in Skövde, Sweden [20]. The aim of this use-case is to present possibilities in

designing a workstation where both humans and robots work in a collaborative or coactive fashion. Particularly in

this use-case, a collaborative robot and a human operator should perform assembly operations on a diesel engine,

Fig. 1(a).

Fig. 1: (a) A Collaborative Robot Assembly Station; (b) High-level communication overview

The physical setup of this assembly station consists of a six Degree of Freedom (DoF) collaborative robot, an

autonomous mobile platform, two different specialized end-effectors, a smart tool that can be used as an end-

effector, a docking station for the end-effectors, a lifting system and docking station for the smart tool, a camera and

RFID reader system and eight computers dedicated for different tasks. The collaborative assembly process is briefly

explained in the next part of this section.

An Automated Guided Vehicle (AGV) carrying a diesel truck engine and an autonomous mobile platform

(MiR100) carrying kitted material to be assembled on an engine enter the Collaborative Robot Assembly Station. A

ladder frame, three oil filters and several oil transport pipes are to be mounted on the engine in this station. Before

the collaborative execution of these operations can begin, an authorized operator has to be verified with a RFID

reader. After verification, the operator is greeted by the system and instructions for tasks that the human should

perform are shown on a screen. If no operator is verified, some operations can still be executed independently by the

robot, however, violation of safety zones around the robot trigger a safeguard stop.

In the case of collaborative assembly, a dedicated camera system keeps track of the human assuring safe

coexistence. During positioning of the AGV and the MiR100 in the assembly station, the Universal Robots (UR10)

robot attaches to a special end-effector needed for manipulation ladder frame manipulation. Since the ladder frame

is quite heavy, the robot and the human collaborate in transporting it from the kitted MiR100 to the engine.

After placing the ladder frame on the engine, the operator informs the control system with a button press on a

smart watch, after which the UR10 leaves the current end-effector and attaches itself to a smart tool used for

b

4 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000

fastening bolts. During this tool change and as it was instructed on the instructions screen, the operator is placing

twelve pairs of bolts needed for assembling the ladder frame on the engine and indicates completion of this task

through the smart watch. Now, the control system knows that bolts are in place and the UR10 starts the tightening

operation with the smart fastener tool. Since tightening of these bolts takes some time, the operator can

simultaneously mount three oil filters on the engine. If the robot finishes the tightening operations first, it leaves the

smart tool in a floating position above the engine and waits for the operator in an idle home position.

The operator uses the smart watch again to let the system know that the oil filters are in place. This event makes

the robot attach to the third end-effector and start performing the oil filter tightening operations. During the same

time, the operator attaches two oil transport pipes on the engine, and uses the same smart tool that the robot has left

floating to tighten plates that hold the pipes to the engine. After executing these operations, the AGV with the

assembled engine and the empty MiR100 leave the Collaborative Robot Assembly Station.

From the use-case example described in this section, it is evident that there is a need to model, analyze and

control large scale intelligent automation systems in a smart way. A video showing the described use-case in action

can be found here: https://youtu.be/YLZzBfY7pbA

4. Sequence Planner as a Discrete Event Controller

Sequence Planner (SP) [11] is a tool for modeling, analyzing and control of automation systems. In SP,

automation systems are modeled using operations and variables. It includes algorithms for a variety of use cases

related to modeling, for instance synthesizing control logic, verification and visualizing complex operation

sequences in different projections. SP uses a hierarchical control approach based on planning of low level abilities.

Abilities are operating directly on control state which is estimated by applying transformation pipelines to

different ROS2 topics. Because ROS messages are strictly typed, pipelines can be generated automatically to

populate a SP model with variables that correspond to fields in the message types used. More complex pipelines can

also be used, for instance for aggregating messages into a single state variable in SP or for applying some

discretization function to reduce the state space of the controller.

Modeling in SP is done by composing abilities (modeled independently of each other) using specifications that

disable undesired interactions between them. By disabling a minimum of undesired behavior, a lot of flexibility is

left for on-line planning algorithms to find the currently most suitable desired behavior. This is done by employing

synthesis based on supervisory control theory [23]. Modeling examples can be found in [24] and [25].

On top of abilities, desired behavior is modeled using operations. Operations are matched to sequences of

underlying abilities based on on-line planning. This allows for a clear separation of two control layers, i.e.

operations do not need to know about underlying detailed abilities.

Planning is continuously performed in a receding horizon fashion, allowing the control to be intelligent about

which abilities to execute based on current state of the system. Fig. 2(a) shows SP during simultaneous execution of

four operations (in green) where live resource usage is visualized at the bottom. In order to assure transparent and

robust message transfer between Sequence Planner and the rest of the system, a well organized communication

architecture has to be designed.

5. Communication Architecture

The architecture described here focuses on ROS hubs which allow us to separate the system into functional

entities. Each of these hubs exchanges messages of a specific type with the rest of the system, where the types are

defined for the function that the entity has. It is enough to define and build a message type if a hub consists only

ROS2 nodes. In the case of ROS hubs, network bridges have to be used which transfer ROS messages to ROS2 and

vice-versa. In the use-case described in this paper, Sequence Planner is exchanging messages with the system using

the Java client library for ROS2. Fig.1(b) gives a high-level overview of the hubs in a ROS2 system.

 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000 5

5.1. ROS Hubs

The system is split into hubs where a hub can be considered an independent group of at least one ROS or/and

ROS2 node. One or more hubs can be present on one computer, but a single ROS hub shouldn’t spread on more than

one computer. ROS hubs are considered to have an accompanying set of bridging nodes which pass messages

between ROS and ROS2. Hubs which consist of merely ROS2 nodes can be considered ROS2 hubs.

In this use-case, ROS nodes are distributed on several computers including several single-board computers

(SBC’s). Beside ROS2 hubs, independent ROS hubs which are necessary for this use-case are located on some of

the computers. Table 1 gives an overview of used computers and functions of the ROS hubs on each of them.

Table 1. Setup component and role overview.

No. Name ROS v. Computer OS Arch. Network Explanation

1 Tool ECU Cr+Me Rasp. Pi Ubuntu 18 ARM LAN1+VPN Smart tool and lifting system control

2 RSP ECU Crystal Rasp. Pi Ubuntu 18 ARM LAN1+VPN Pneumatic conn. control and tool state

3 Dock ECU Crystal Rasp. Pi Ubuntu 18 ARM LAN1+VPN Gives states of docked end-effectors

4 MiRCOM Crystal LP Alpha Ubuntu 18 amd64 LAN2+VPN ROS2 (VPN) to/from REST (LAN2)

5 MiR Kinetic Intel NUC Ubuntu 16 amd64 LAN2 Out-of-the-box MiR100 ROS Suite

6 RFIDCAM Crystal Desktop Win 10 amd64 LAN1+VPN Publishes RFID and Camera data

7 UR10 Cr+Kin Desktop Ubuntu 16 amd64 LAN1+VPN UR10 ROS Suite

8 DECS Crystal Laptop Ubuntu 18 amd64 LAN1+VPN Sequence Planner on JVM

The smart tool and lifting system control algorithm were independently developed for ROS by another team of

developers and implemented on a Raspberry Pi with an added piggyback electronic control unit (ECU). Using ROS2

with the network bridges, it was easy to integrate this independent ROS hub into the system.

The autonomous platform MiR100 from Mobile Industrial Robots comes with an embedded Intel NUC computer

that is running all the necessary ROS control nodes locally. This comes as a factory default feature with a REST API

provided for communication. A ROS2 node runs on a SBC onboard the MiR100 that serves as a translator hub via

REST on the MiR100’s LAN. This SBC is also included in a virtual private network (VPN) using a 4G

communication dongle, and as such, it is able to receive ROS2 messages from SP in the same VPN and pass them

on as REST commands. This way, the MiR100’s factory default ROS system stays isolated and unchanged.

ROS hubs are part of a VPN, which enables convenient remote access for debugging or data collection.

Moreover, an added benefit of a VPN setup it the ensured safety of the system.

Communication in ROS and ROS2 is message based, meaning that nodes that act as publishers or subscribers

exchange messages between themselves. Nodes from hubs in this system communicate with SP using custom

message types designed for this use-case. These hubs communicate with the rest of the system via bridges since

computers running them are equipped with ROS2 as well.

5.2. Dynamic vs. Static bridges

The ROS2 package ros1_bridge [26] provides a network bridge which enables passing messages between ROS

and ROS2. The dynamic bridge can automatically open bridges while listening to topics from both sides. According

to the argument passed while starting the dynamic bridge, messages can be passed in some direction, or both.

Since inconsistency of received messages can close the dynamic bridge and lead to a temporary loss of transfer,

static bridges are used instead. These bridges are modified so that they could pass custom messages of a single topic

in one direction only. Static bridges are more customizable and their performance doesn’t depend on the periodical

consistency of the messages.

These static bridges are opened on each ROS hub; they are essentially scripts that start both a ROS and a ROS2

node. These scripts provide a way to specify the direction of the bridge, which topic should be bridged and which

type of message is flowing on that topic.

For example, to bridge a ROS node from a hub that is subscribed to Command messages and publishes State

6 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000

messages, one would have to open two static bridges. The one-directional static bridge for the Command topic

would contain a ROS2 Subscriber node and a ROS Publisher node and would pass Command messages to the node

of the hub. For the other way, a one-directional static bridge for the State topic would contain a ROS Subscriber

node and a ROS2 Publisher node and would pass State messages from the node of the hub to others.

5.3. Messages and Communication

A set of packages exists that defines common message and service types for ROS and ROS2. This set covers a

wide range of types. Still, some setups call for designing custom messages whose usability extends those of

common types. In the setup described here, two families of messages were compiled and used to communicate

between SP and every other ROS or/and ROS2 hub in the system.

 Table 2. Example Command and State messages for Robot Mover.

 Command State

Type Name Content Type Name Content

string action MOVEJ string robot_name TARS

string robot_type UR10 bool fresh_msg TRUE

string robot_name TARS float32 t_plus 0.8

string pose_type JOINT bool got_reset FALSE

string pose_name HOME string[] error_list []

float32 speed_scal 0.1 command echo Command

float32 acc_scal 0.2 bool moving FALSE

float32 goal_toll 0.01 float32 actual_pose POSE13

One family of messages contains custom command types which are used to send state based commands to the

hubs, while the other family contains custom state messages that the hubs use to send out data about their state.

Example messages from each family are shown in Table 2. It should be noted that the Echo message is nested in the

State message and as such is part of it. The purpose of the Echo message is to inform SP that the intended node has

received the message.

Another interesting thing to note is that this message type can also be used to communicate with the MiR100

platform as well. It is enough to specify the correct robot type and name, and to update the action to match the

capabilities of the robot. An additional example of a used message type is shown in Table 3. This message is used to

save a current pose of a robot and can also be applied to any robot in the system.

 Table 3. Example Command and State messages for Pose Saver.

 Command State

Type Name Content Type Name Content

string action UPDATE string robot_name TARS

string robot_type UR10 bool fresh_msg FALSE

string robot_name TARS float32 t_plus 38

string pose_type JOINT command echo command

string pose_name HOME string done_action updated

Dividing message types into these two families is of course not necessary, one could pass any messages between

hubs. Still, in larger systems, it is convenient to compile such types of messages and limit the amount of topics that

is bridged since designing and debugging can be simplified. Also, having state based communication in a ROS

system, enables the nodes to stay stateless which can simplify the system and make the handshaking more

convenient. These messages are continuously sent out from both sides with a constant frequency, utilizing the

decoupled nature of a publish-subscribe transfer. This way, the communication in the system is made even more

resilient.

 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000 7

a b

a

5.4. Hub vs. Node type oriented communication architecture

There are several ways to organize nodes, hubs, messages and topics in a distributed ROS system. Designing the

communication architecture in the described collaborative robot assembly station was approached with

considerations of possible future expansions. One possible expansion of the system would be the inclusion of other

robots from other vendors, thus nodes and hubs are designed with the ability to handle equipment agnostic

messages. This leads to a primarily node type oriented communication architecture since families of handler nodes

could be copied on different hubs to handle different equipment while receiving messages of same type.

In a system where hubs differ in structure, it is valid to pursue a more hub oriented communication architecture.

This means that each hub is looked at as a unique set of nodes that are communicating with the rest of the system.

This implies that, in order to structure the communication in a large multi-hub system where hubs are structurally

different, hub specific message types have to be defined.

In the hub oriented communication architecture scenario, two cases can be defined. In the first case, a pair of

command-state topics per hub is communicating via a set of hub specific distributor-collector nodes, Fig. 3(a). The

distributor nodes subscribe to the intended command topic, disassemble the message and publish matching message

fragments to all nodes in the local hub. Nodes of a hub send their state to the collector node which assembles the

total state of the hub in a state message and publishes it on the state topic of that hub. In this case, all the traffic to

and from the hub is bridged with a single pair of one-directional static bridges.

Fig. 3: (a) Distributor and collector node aided hub oriented communication; (b) Direct hub oriented communication

In the second case, there are no gateway nodes that distribute or collect messages in a hub, Fig. 3(b). This means

that all nodes of a hub subscribe either to the same command topic for that hub and evaluate only a part of the

message intended for them, or subscribe to node dedicated topics. Without the state collector node in a hub, each

node publishes its state on a separate topic. These two cases shouldn’t be considered as mutually exclusive and

should be used together according to complexities of nodes, hubs and the overall system.

In a multi-hub system where hubs contain nodes that are similar to nodes from other hubs, a node oriented

communication architecture can be approached. This means that similar nodes from all hubs subscribe to a single

topic and evaluate the message according to some flags that specifiy the hub. In this scenario, the state can be

collected in one of the ways shown in the hub oriented scenario, or by having a dedicated node that collects states

from node groups from all hubs and pass it on.

Fig. 4: (a) Direct node type oriented communication; (b) State collector hub aided node type oriented communication

b

8 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000

In the described use-case, the communication architecture was dominantly node type oriented without the aid of a

state collector hub. This means that the stream of state messages from each node occupied dedicated topics, which

made the number of topics needed for communication with SP quite big. Structure was maintained utilizing

adequate namespaces for each topic group.

6. Conclusion

It is not always trivial to come up with a good solution on how to design the system architecture in the beginning

phases of a project, especially for a large and distributed automation system. This paper presented utilization of ROS

and ROS2 in intelligent automation systems and pointed out ways to structure the communication architecture. A

described use-case incorporated the stated proposals throughout the paper and showed possibilities of achieving

flexible automation in a collaborative robot assembly station.

Some of the main features of designing a system in the described way are the ability to choose between DDS

implementations and QoS policy options, an industrial standard communication protocol, the independence of a

specific operating system and ROS distribution, scalability due to an architecture based on self-contained hubs and a

major library of ROS and ROS2 packages containing tools and algorithms necessary for large scale intelligent

automation.

Future work will include further development of stateless nodes with and attempt to make them more general and

reusable. The underlying DDS layer will be additionally explored and its features utilized. Sequence Planner will be

branched and a distribution for the ROS community will be provided.

Acknowledgements

This project is supported by UNIFICATION, Vinnova, Produktion 2030.

References

[1] Richard Bloss, (2016) "Collaborative robots are rapidly providing major improvements in productivity, safety, programing ease, portability

and cost while addressing many new applications", Industrial Robot: An International Journal, Vol. 43 Issue: 5, pp.463-468

[2] http://www.ros.org/, [Online; accessed 25-Feb-2019]

[3] Morgan Quigley, Brian Gerkey, and William D. Smart. 2015. Programming Robots with ROS: A Practical Introduction to the Robot

Operating System (1st ed.). O'Reilly Media, Inc..

[4] https://discourse.ros.org/t/the-2018-ros-metrics-report/6216/2, [Online; accessed 25-Feb-2019]

[5] http://design.ros2.org/articles/ros_on_dds.html, [Online; accessed 25-Feb-2019]

[6] G. Pardo-Castellote, “Omg data-distribution service: architectural overview,” in23rd International Conference on Distributed Computing

Systems Workshops, 2003. Proceedings.,May 2003, pp. 200–206.

[7] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder,A. Carreraa, N. Palomeras, N. Hurt ́os, and M. Carrerasa,“Rosplan: Planning in the

robot operating system,” inPro-ceedings of the Twenty-Fifth International Conference on In-ternational Conference on Automated Planning

and Schedul-ing, ser. ICAPS’15. AAAI Press, 2015, pp. 333–341.

[8] F. Rovida, M. Crosby, D. Holz, A. S. Polydoros, B. Großmann,R. P. A. Petrick, and V. Kr ̈uger,SkiROS—A Skill-Based Robot Control

Platform on Top of ROS.Cham: SpringerInternational Publishing, 2017, pp. 121–160.

[9] E. Aertbeli ̈en and J. De Schutter, “etasl/etc: A constraint-based task specification language and robot controller using expression graphs,”

in2014 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems, Sep. 2014, pp. 1540–1546.

[10] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D.Hager, “Costar: Instructing collaborative robots with behavior trees and vision,” in

2017 IEEE International Conference onRobotics and Automation (ICRA), May 2017, pp. 564–571.

[11] Dahl, Martin & Bengtsson, Kristofer & Bergagard, Patrik & Fabian, Martin & Falkman, Petter. (2017). Sequence Planner: Supporting

Integrated Virtual Preparation and Commissioning. IFAC-PapersOnLine. 50. 5818-5823. 10.1016/j.ifacol.2017.08.536.

[12] http://wiki.ros.org/ROS/TCPROS, [Online; accessed 25-Feb-2019]

[13] Tiderko, Alexander & Hoeller, Frank & Röhling, Timo. (2016). The ROS Multimaster Extension for Simplified Deployment of Multi-Robot

Systems. 10.1007/978-3-319-26054-9.

[14] OMG Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification (DDS-RTPS) V.2.1 November 2010.

[15] https://design.ros2.org/articles/ros_on_dds.html, [Online; accessed 25-Feb-2019]

[16] https://design.ros2.org/articles/ros_middleware_interface.html, [Online; accessed 25-Feb-2019]

[17] http://wiki.ros.org/rocon/indigo/Guide, [Online; accessed 25-Feb-2019]

[18] https://github.com/wallarelvo/zmqros, [Online; accessed 25-Feb-2019]

http://wiki.ros.org/ROS/TCPROS
https://design.ros2.org/articles/ros_on_dds.html
http://wiki.ros.org/rocon/indigo/Guide
https://github.com/wallarelvo/zmqros

 Endre Erős, Martin Dahl, Kristofer Bengtsson, Atieh Hanna, Petter Falkman / Procedia Manufacturing 00 (2019) 000–000 9

[19] https://github.com/endre90/ros1_kafka_bridge, [Online; accessed 25-Feb-2019]

[20] A. Hanna, P.-L. Götvall, M. Ekström, and K. Bengtsson, ‘Requirements for designing and controlling autonomous collaborative robots

system-an industrial case’, in Advances in Transdisciplinary Engineering, 2018, pp. 139–144.

[21] https://media.readthedocs.org/pdf/eprosima-fast-rtps/latest/eprosima-fast-rtps.pdf

[22] Maruyama, Yuya & Kato, Shinpei & Azumi, Takuya. (2016). Exploring the performance of ROS2. 1-10. 10.1145/2968478.2968502.

[23] P. J. Ramadge, W. M. Wonham, Supervisory control of a class of discrete event processes, SIAM J. Control Optim. 25 (1) (1987)206–230.

[24] P. Bergagard, P. Falkman, and M. Fabian, “Modeling and automatic calculation of restart states for an industrial wind-screen mounting

station,”IFAC-PapersOnLine, vol. 48, no. 3,pp. 1030–1036, 2015.

[25] M. Dahl, K. Bengtsson, M. Fabian, and P. Falkman, “Automatic modeling and simulation of robot program behavior in integrated virtual

preparation and commissioning, ”Procedia Manufacturing, vol. 11, pp. 284–291, 2017.

[26] https://github.com/ros2/ros1_bridge, [Online; accessed 25-Feb-2019]

