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Abstract - Three-dimensional (3D) multiple-input multiple-

output (MIMO) channel sounder measurements of a multi-user 
MIMO channel at the 30-40 GHz mm-wave band are presented.  
3D-MIMO downlink transmissions to two users is considered. 
The measurement campaign employing a vector network 
analyzer (VNA) has been performed in an office scenario. The 
mm-wave 3D-MIMO channel is characterized in the 
wavenumber domain and the time domain via a 3D inverse fast 
Fourier transform (IFFT). It is shown that the massive 3D-
MIMO significantly improve the estimation resolution of 
multipath components as compared to none-massive 3D-MIMO.  

Index Terms — mm-wave, 3D-MIMO, massive MIMO, 
channel sounding, radio propagation. 

1. Introduction 

The large number of degrees of freedom (DoF) in the 

space domain due to the large number of antennas and the 

large available bandwidth at the millimeter wave (mm-wave) 

band makes the massive 3D multi-user (MU) multiple-input 

multiple-output (MIMO) a promising technology for  5G 

mobile networks [1,2]. The measurement-based channel 

modelling becomes therefore critical for mm-wave 3D-

MIMO system design and network optimization [3].  

Accurate channel sounder measurements are required to 

spatially characterize the 3D-MIMO channel. The vector 

network analyzer (VNA) offers a large MIMO measurement 

bandwidth [4,5]. Virtual array antenna systems can be 

produced with VNA channel sounding techniques without 

using expensive large array antennas [6]. 

In this paper, we report VNA based downlink mm-wave 

3D-MIMO channel sounder measurements with a virtual 

uniform rectangular array (URA) of 256 (16 � 16) antenna 

elements. The measurement campaign involving 

transmissions to two users was conducted in an office 

scenario. The measured channel impulse responses are 

analyzed in the wavenumber domain and the time domain. 

Measurement shows that the massive 3D-MIMO with a 16 � 

16 URA provides a much better resolution of multipath 

components than that with a 4 � 4 URA. 

2. Channel Sounder 

The 3D-MIMO channel sounder employing the Agilent 

VNA E8363 is shown in Fig. 1. The measurements were 

carried out at a center frequency fc = 35 GHz with a 

bandwidth of 10 GHz. Thus, the delay resolution is 0.1 ns.  
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Fig. 1. The channel sounder and the measurement scenario. 

 

 
Fig. 2. The measured power density profile. 

 

Two open waveguide antennas were employed to transmit 

and receive radio frequency signals. At the base station (BS) 

end, the transmit antenna is moved within a fixed grid of 16 

× 16 points with a spatial interval of 5 mm that provides a 

virtual uniform rectangular array (URA) antenna. At the user 

equipment (UE) end, a single-element receive antenna is 

used. The VNA measures the S21(�, rV, rH) of the wireless 

channel, where � is a vector of angular frequency samples 

with Nf elements, rV and rH are vectors of transmit element 

positions relative to the reference pint of the virtual-array. 

The number of measured frequency points Nf = 1601, i.e., � 
= 2� × [30, 30.00625, 30.0125, ..., 39.99375, 40] � 109 

Grads/s. For the 16 × 16 virtual transmit array, rV = rH = [0, 5, 

10, ..., 75] mm. A laptop is used to collect and analyze the 

data from the VNA.  

3. Measurement Setup 

The measurement was carried out in an office room in 

Hörsalsvägen 11, ED-building, floor 7, Chalmers University 

of Technology, as shown in Fig. 1. The virtual BS URA was 

located on the shelf. Two UEs, which are denoted as UE1 

and UE2, respectively, were located at 1.5 m distance from 

the BS. The transmissions from the BS to both UEs are in 

line of sight (LOS). Before carrying out the measurements, 

the whole system was calibrated using the VNA. During the 

measurements, there were no moving scatterers indoors and 

the measured channel was static. 
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Fig. 3. The delay-wavenumber profile for 16 � 16 URA. 

 

Fig. 4. The delay-wavenumber profile 

for 4 � 4 URA. 

 

4. Measurement results and analysis 

The power delay profile (PDP) is computed from the 

measured data by  
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 where h(t,rV,rH) is the channel impulse response (CIR) 

computed by inverse fast Fourier transform (IFFT) of the 

S21(�, rV, rH). The PDPs for the UE1 and UE2 are shown in 

Fig. 2. As can be seen, multipath components with a path 

length difference less than 3 cm can be distinguished well 

due to a delay resolution of 0.1 ns. It is observed that the 

power of non-LOS multipath components is 25 dB below the 

LOS level at 30-40 GHz due to the high directivity of the 

antennas. Even with a massive MIMO at BS, both UEs has 

two major common multipath components with delays of 

around 9 ns and 11 ns, respectively.  

The delay-wavenumber function is computed by 
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where the IFFT3 is the 3D inverse fast Fourier transform, 

which is equivalent to computing the 1-D transform along �, 

rV, and rH, independently. The vectors kV and kH denote 

wavenumbers of multipaths in the vertical and the horizontal 

directions, respectively. The IFFT from rV and rH to kV and 

kH holds because the wavenumber domain can be considered 

as the spectral domain of position [Table 2.2, 7]. In the space 

domain, a Hamming window is used to reduce the power of 

the side lobes in the wavenumber domain. The aperture of 

the URA is 7.5 mm × 7.5 mm, and the resolution of the 

wavenumber domain is 83.8 rad/m × 83.8 rad/m. (kV, kH) is a 

bijection of the angles of arrival (AOA) (�, �). More 

specifically, for any (�, �), we have  
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  Fig. 3 shows the delay-wavenumber functions for the UE1 

and UE2. For t, kV, or kH, the mm-wave channels behave as a 

combination of a few resolvable multi-paths. From Fig. 3(c-

d), we found that the both users are not easy to be 

distinguished in the horizontal delay-wavenumber profiles. 

The similarity of the horizontal delay-wavenumber profiles 

leads to the worse performance of the traditional 2D-MU-

MIMO. Fortunately, the two UEs are more distinguishable in 

the vertical delay-wavenumber profiles, see Fig. 3(a-b), since 

the elevation wave number profiles of UEs show a larger 

difference. Hence, in this typical indoor scenario, using the 

3D-MU-MIMO to carry out beamforming is feasible. 

Moreover, the advantage of 3D-MIMO arises with the 

implementation of massive MIMO array antennas. For 

comparison, the delay-wavenumber profile for the wireless 

channel with a 4 � 4 URA is shown in Fig. 4. The lower 

resolution in the wavenumber domain, i.e., 419 rad/m × 419 

rad/m, may therefore have a detrimental impact on the 

performance of 3D MIMO.  

5. Conclusions 

An indoor 3D-MIMO channel with two users was 

measured and analyzed. The URA with 256 elements 

provides high wavenumber resolution in both vertical and 

horizontal directions. The analysis shows that the spatial 

resolution of 3D-MIMO relies on the size of the antenna 

array. In the future, we will design an accurate 3D automatic 

space positioner and carry out comprehensive channel 

measurement.  

Acknowledgment 

This work is funded in part by the European Union's 

Horizon 2020 research and innovation programme project-

is3DMIMO (734798), and in part by the European Union's 

Eurostars programme-Build-Wise (11088). 

References 
[1] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas 

Commun., vol. 32, no. 6, pp. 1065-1082, 2014.  
[2] X. Cheng et al., “Communicating in the real world: 3D MIMO,” 

IEEE Wireless Commun., vol. 21, no. 4, pp. 136-144, 2014. 
[3] J. Zhang et al., “Three-dimensional fading channel models: A survey 

of elevation angle research,” IEEE Commun. Mag., vol. 52, no. 6, pp. 

218-226, 2014. 
[4] J. Zhang et al., “Bit error probability of spatial modulation over 

measured indoor channels,” IEEE Trans Wireless Commun., vol. 13, 
no. 3, pp. 1380-1387. 

[5] L. Hu et al., “Spatial characterization of indoor MIMO radio channel 

at both 6.05GHz and 2.45GHz based on measurement,” IEEE WCSP, 
2015 

[6] A. W. Mbugua et al., “Millimeter wave multi-user performance 
evaluation based on measured channels with virtual antenna array 

channel sounder,” IEEE Access, vol. 6, pp. 12318-12326, 2018. 

[7] G. D. Durgin, “Space-time wireless channels,” Prentice Hall PTR, pp. 
36, 2003. 


