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Abstract—In this paper, the classic variational method is
applied for newly introduced inverted microstrip gap waveguide.
Then, the dielectric losses and the conductor losses among
the microstrip, covered microstrip and inverted microstrip gap
waveguide are analytically calculated based on the variational
method in millimeter waves. According to our theory, the dielec-
tric losses of microstrip and covered microstrip gap waveguide
are at least 7 times higher than that of inverted microstrip gap
waveguide. Therefore, inverted microstrip gap waveguide has
huge advantage of low loss in millimeter waves.

Index Terms—variational method, Green’s function in spectral
domain, loss comparison of microstrip, covered microstrip and
inverted microstrip gap waveguide.

I. INTRODUCTION

Recently, lots of attention has been paid to millimeter waves
(mmWs) because of their wide band property and the current
saturation of spectrum at microwave frequencies. Traditional
hardware technologies such as microstrip, covered microstrip
and standard hollow waveguide have technological difficulties
to satisfy with mmWs application. The main reason is that
the dielectric loss of microstrip and covered microstrip rapidly
increases versus the frequency in mmWs. Newly introduced
inverted microstrip gap waveguide (IMGW) [1] is a new type
of wave guiding structure to overcome the disadvantage of
high dielectric loss in mmWs, as shown in Fig.1. From the
theory of soft- and hard-surfaces [2], the metallic textured pins
surface is able to realize an approximate Perfect Magnetic
Conductor (PMC) boundary condition since PMC does not

Substrate 

Microstrip Metallic Plate 

PMC Boundary Condition 

The metallic pin surface  

 can be treated as an  

 approximate Perfect  

 Magnetic Boundary Condition    

Fig. 1. 3-D geometry for inverted microstrip gap waveguide and in the right
the metallic pins have been replaced by Perfect Magnetic Conductor boundary
condition.

exist in nature. The feature of the IMGW is that the metallic
pin surface forces the electromagnetic wave propagates within
the air gap between the microstrip and the top PEC plate so
that high dielectric loss can be avoided in mmWs. Thereby,
the IMGW has a much lower dielectric loss compared with
traditional covered microstrip, microstrip line and stripline. In
this work, the variational method is applied to analytically cal-
culate the dielectric losses and conductor losses of microstrip,
covered microstrip line and IMGW. Then their comparisons
of dielectric losses and conductor losses are summarized.

II. VARIATIONAL METHOD AND GREEN’S FUNCTION

The cross-sectional view of the IMGW, covered microstrip
and microstrip are illustrated in Fig.2. According to [3], the
TEM mode in a transmission line can be described by a model
of electrostatic fields as the dominant mode. Therefore, the
TEM mode problem can be treated as an electrostatic model,
namely solving a Poissons equation or a Laplaces equation.
The corresponding electric potential distribution ψ(x, y) is
related to the charge density ρ(x, y) by the Poisson’s equation,

∇2ψ(x, y) =
∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2
= −ρ(x, y)

ε
(1)

where ε is the permittivity of the substrate in the structure. In
reality, the thickness of microstrip is much smaller than the
width w so that the microstrip can be considered as infinite
thin and ρ(x, y) can be described by

ρ(x, y) = f(x)δ(y − hs) (2)

Fig. 2. Cross-sectional view for (a) IMGW, (b) Covered Microstrip, (c)
Microstrip.



where δ(y − hs) is the Dirac’s function and f(x) the charge
density distribution on the microstrip.

The Green’s function G, regarded as the potential due to
a unit charge in an infinitely small volume at (x′, y′), is the
solution to the equation of

∇2G(x, x′; y, y′) = −1

ε
δ(x− x′)δ(y − y′) (3)

where δ(x − x′)δ(y − y′) is the Dirac’s function which ex-
presses a unit charge. Once the Green’s function G is obtained,
the electric potential ψ(x, y) due to the charge distribution
ρ(x′, y′) can be determined by the superposition principle
expressed as:

ψ(x, y) =

∫
l′
G(x, x′; y, y′)ρ(x′, y′)dl′ (4)

where the integral is defined over the conductor contour l′

in 2-D cross sectional structure. Now we apply the Fourier
transform to convert the 2-D problem to a spatial 1-D problem
in spectrum,

ψ̃(k, y) =

∫ ∞
−∞

ψ(x, y)e−jkxdx. (5)

According to the differential property of the Fourier transform,
namely, ∂2ψ(x,y)

∂x2 ⇔ (jk)2ψ̃(k, y), eq.(1) can be written in
spectral domain as:

−k2ψ̃(k, y) + ∂2ψ̃(k, y)

∂y2
= 0 (y 6= hs). (6)

In spectral domain the solution of the potential distribution on
the microstrip can be expressed as:

ψ̃(k, y) = f̃(k)G̃(k, y), (7)

where f̃(k) and G̃(k, y) are the charge density and the Green’s
function in spectral domain. The corresponding Green’s func-
tions of microstrip, covered microstrip and IMGW are given
by (8), (9) and (10), respectively,

G̃m(k, hs) =
sinh(khg)

k[ε0cosh(khg) + εssinh(khs)]
. (8)

G̃c(k, hs) =

sinh(khg)sinh(khs)

k[ε0sinh(khg)cosh(khs) + εscosh(khg)sinh(khs)]
. (9)

G̃i(k, hs) =

sinh(khg)cosh(khs)

k[ε0cosh(khs)cosh(khg) + εssinh(khs)sinh(khg)]
. (10)

The trial charge density is given by:

fnarrow(x) =
∣∣∣ x
w

∣∣∣,
|x| ≤ w

2
and w ≤ 0.3 mm. (11)

The corresponding Fourier Transform expressions f̃wide(k) are
as follows:

f̃wide(k) =
1

k
sin
(
kw/2

)
+

2

k2w

[
cos(kw/2)− 2sin(kw/2)

kw/2
+
sin2(kw/4)

(kw/4)2

]
(12)

Theoretically, the loss components of a transmission line
include dielectric loss and conductor loss. The attenuation
constant of a transmission line due to the conductor loss can
be obtained by the following:

αc =
Rs
∫
l
i2sdl

2
∫
S
vε(∇ψ)2dS

[Neper/Unit Length] (13)

where Rs =
√
0.5ωµ0/σc is the surface resistance, σc the

conductivity of the microstrip, is = vρ(x, hs) the current
density on the microstrip, and v = c

√
C0/C the propagation

velocity. Similarly, the attenuation constant due to the dielec-
tric loss can be calculated by :

αd =
σd
∫
S
(∇ψ)2dS

2
∫
S
vε(∇ψ)2dS

[Neper/Unit Length] (14)

III. COMPARISON OF LOSSES

The table indicates the dielectric losses and conductor
losses of IMGW, covered microstrip line and microstrip with
1 mm wide microstrip and 0.3 mm thick Rogers Ro4003
substrate. The table indicates that the dielectric loss is the
major loss in traditional microstrip and covered microstrip
in mmWs. The dielectric losses of microstrip and covered
microstrip are around as 7 times higher as that of the IMGW
so that IMGW has very strong competitive strength for
Monolithic Microwave Integrated Circuit (MMIC) in mmWs.

Loss Types Dielectric Loss Conductor Loss
IMGW 0.15 dB/cm 0.1 dB/cm

Covered Microstrip 1.2 dB/cm 0.1 dB/cm
Microstrip 1.1 dB/cm 0.09 dB/cm

IV. CONCLUSION

In this work, variational method has been applied for
calculating dielectric losses and conductor losses among newly
IMGW, covered microstrip and microstrip in mmWs and
IMGW has much lower dielectric loss than that of the other
two types.
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