
Development of an Industry 4.0 Demonstrator Using Sequence
Planner and ROS2

Downloaded from: https://research.chalmers.se, 2021-08-31 11:28 UTC

Citation for the original published paper (version of record):
Erös, E., Dahl, M., Hanna, A. et al (2021)
Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2
Studies in Computational Intelligence 895: Robot Operating System: 3-29
http://dx.doi.org/10.1007/978-3-030-45956-7_1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Development of an Industry 4.0

Demonstrator Using Sequence Planner

and ROS2

Endre Erős, Martin Dahl, Atieh Hanna, Per-Lage Götvall, Petter Falkman,

and Kristofer Bengtsson

Abstract In many modern automation solutions, manual off-line programming is
being replaced by online algorithms that dynamically perform tasks based on the state
of the environment. Complexities of such systems are pushed even further with col-
laboration among robots and humans, where intelligent machines and learning algo-
rithms are replacing more traditional automation solutions. This chapter describes
the development of an industrial demonstrator using a control infrastructure called
Sequence Planner (SP), and presents some lessons learned during development. SP is
based on ROS2 and it is designed to aid in handling the increased complexity of these
new systems using formal models and online planning algorithms to coordinate the
actions of robots and other devices. During development, SP can auto generate ROS
nodes and message types as well as support continuous validation and testing. SP is
also designed with the aim to handle traditional challenges of automation software
development such as safety, reliability and efficiency. In this chapter, it is argued that
ROS2 together with SP could be an enabler of intelligent automation for the next
industrial revolution.

E. Erős · M. Dahl · P. Falkman · K. Bengtsson (B)
Chalmers University of Technology, Gothenburg, Sweden
e-mail: kristofer.bengtsson@chalmers.se

E. Erős
e-mail: endree@chalmers.se

M. Dahl
e-mail: martin.dahl@chalmers.se

P. Falkman
e-mail: petter.falkman@chalmers.se

A. Hanna · P.-L. Götvall
Research & Technology Development, Volvo Group Trucks Operations, Gothenburg, Sweden
e-mail: atieh.hanna@volvo.com

P.-L. Götvall
e-mail: Per-Lage.Gotvall@volvo.com

© Springer Nature Switzerland AG 2021
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 895, https://doi.org/10.1007/978-3-030-45956-7_1

3

4 E. Erős et al.

1 Introduction

As anyone with experience with real automation development knows, developing and
implementing a flexible and robust automation system is not a trivial task. There are
currently many automation trends in industry and academia, like Industry 4.0, cyber-
physical production systems, internet of things, multi-agent systems and artificial
intelligence. These trends try to describe how to implement and reason about flexible
and robust automation, but are often quite vague on the specifics. When it comes down
to the details, there is no silver bullet [1].

Volvo Group Trucks Operations has defined the following vision to better guide the
research and development of next generation automation systems: Future Volvo fac-
tories [2], will be re-configurable and self-balancing to better handle rapid changes,
production disturbances, and diversity of the product. Collaborative robots and other
machines can support operators at workstations, where they use the same smart tools
and are interchangeable wit operators when it comes to performing routine tasks.
Operators are supported with mixed reality technology, and are provided with digi-
tal work instructions and 3D geometry while interacting intuitively with robots and
systems. Workstations are equipped with smart sensors and cameras that feed the
system with real-time status of products, humans, and other resources in the envi-
ronment. Moreover, they are supported by advanced yet intuitive control, dynamic
safety, online optimization and learning algorithms.

Many research initiatives in academia and industry have tried to introduce collabo-
rative robots (“cobots”) in the final assembly [3–5]. Despite their relative advantages,
namely that they are sometimes cheaper and easier to program and teach [5] com-
pared to conventional industrial robots, they are mostly deployed as robots “without
fences” for co-active tasks [6]. Current cobot installations are in most cases not as
flexible, robust or scalable as required by many tasks in manual assembly. Com-
bined with the lack of industrial preparation processes for these types of systems,
new methods and technologies must be developed to better support the imminent
industrial challenges [7].

1.1 The Robot Operating System and Sequence Planner

This chapter discusses some of the challenges of developing and implementing an
industrial demonstrator that includes robots, machines, smart tools, human-machine
interfaces, online path and task planners, vision systems, safety sensors, etc. Coor-
dination and integration of the aforementioned functionality requires a well-defined
communication interface with good monitoring properties.

During the past decade, various platforms have emerged as middle-ware solu-
tions trying to provide a common ground for integration and communication. One
of them is the Robot Operating System (ROS), which stands out with a large and
enthusiastic community. ROS enables all users to leverage an ever-increasing num-

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 5

ber of algorithms and simulation packages, as well as providing a common ground
for testing and virtual commissioning. ROS2 takes this concept one step further,
integrating the scalable, robust and well-proven Data Distribution Service (DDS) as
its communications layer, eliminating many of the shortcomings of ROS1.

ROS2 systems are composed of a set of nodes that communicate by sending typed
messages over named topics using a publish/subscribe mechanism. This enables a
quick and semi-standardized way to introduce new drivers and algorithms into a
system. However, having reliable communication, monitoring tools, as well as a
plethora of drivers and algorithms ready to be deployed is not enough to be able
to perform general automation. When composing a system of heterogeneous ROS2
nodes, care needs to be taken to understand the behavior of each node. While the
interfaces are clearly separated into message types on named topics, knowledge about
the workings of each node is not readily available. This is especially true when nodes
contain an internal state that is not visible to the outside world. In order to be able
to coordinate different ROS2 nodes, a control system needs to know both how to
control the nodes making up the system, as well as how these nodes behave.

To control the behavior of nodes, an open-source control infrastructure called
Sequence Planner (SP) has been developed in the last years. SP is used for controlling
and monitoring complex and intelligent automation systems by keeping track of the
complete system state, automatically planning and re-planning all actions as well as
handling failures or re-configurations.

This chapter presents the development of a flexible automation control system
using SP and ROS2 in a transformed truck engine final assembly station inspired
by the Volvo vision. The chapter contributes with practical development guidelines
based on the lessons learned during development, as well as detailed design ratio-
nales from the final demonstrator, using SP built on top of ROS2.

The next section introduces the industrial demonstrator that will be used as an
example throughout the chapter. Section 3 discusses robust discrete control, why
distributed control states should be avoided and the good practice of using state-
based commands. The open-source control infrastructure SP is introduced in Sect. 4
and the generation of ROS2 code for logic and tests is presented in Sect. 5.

2 An Industrial Demonstrator

The demonstrator presented in this paper is the result of a transformation of an
existing manual assembly station from a truck engine final assembly line, shown in
Fig. 1, into an intelligent and collaborative robot assembly station, shown in Fig. 2.

In the demonstrator, diesel engines are transported from station to station in a
predetermined time slot on Automated Guided Vehicles (AGVs). Material to be
mounted on a specific engine is loaded by an operator from kitting facades located
adjacent to the line. An autonomous mobile platform (MiR100) carries the kitted
material to be mounted on the engine, to the collaborative robot assembly station.

6 E. Erős et al.

Fig. 1 The original manual assembly station

Fig. 2 Collaborative robot assembly station controlled by a network of ROS2 nodes. A video clip
from the demonstrator: https://youtu.be/TK1Mb38xiQ8

In the station, a robot and an operator work together to mount parts on the engine
by using different tools suspended from the ceiling. A dedicated camera system keeps
track of operators, ensuring safe coexistence with machines. The camera system can
also be used for gesture recognition.

Before the collaborative mode of the system starts, an authorized operator has to
be verified by a RFID tag. After verification, the operator is greeted by the station

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 7

and operator instructions are shown on a screen. If no operator is verified, some
operations can still be executed independently by the robot, however, violation of
safety zones triggers a safeguard stop.

After the AGV and the kitting material have arrived, a Universal Robots (UR10)
robot and an operator lift a heavy ladder frame on to the engine. After placing the
ladder frame on the engine, the operator informs the control system with a button
press on a smartwatch or with a gesture, after which the UR10 leaves the current
end-effector and attaches to the nutrunner used for tightening bolts. During this tool
change, the operator starts to place 24 bolts, which the UR10 will tighten with the
nutrunner.

During the tightening of the bolts, the operator can mount three oil filters. If
the robot finishes the tightening operation first, it leaves the nutrunner in a floating
position above the engine and waits for the operator. When the operator is done,
the robot attaches a third end-effector and starts performing the oil filter tightening
operations. During the same time, the operator attaches two oil transport pipes on the
engine, and uses the same nutrunner to tighten plates that hold the pipes to the engine.
After executing these operations, the AGV with the assembled engine and the empty
MiR100 leave the collaborative robot assembly station. All of this is controlled by
the hierarchical control infrastructure Sequence Planner that uses ROS2.

2.1 ROS2 Structure

ROS2 has a much improved transport layer compared to ROS1, however, ROS1 is
still ahead of ROS2 when it comes to the number of packages and active developers.
In order to embrace the strengths of both ROS1 and ROS2, i.e. to have an extensive
set of developed robotics software and a robust way to communicate, all sub-systems
in the demonstrator communicate over ROS2 where a number of nodes have their
own dedicated ROS1 master behind a bridge [8].

A set of related nodes located on the same computer are called a hub [8], where
one or more hubs can be present on the same computer. ROS hubs are considered to
have an accompanying set of bridging nodes that pass messages between ROS and
ROS2.

In the demonstrator, ROS nodes are distributed on several computers shown in
Table 1, including standard PCs as well as multiple Raspberry Pies and a Lattepanda
Alpha (LP Alpha). Most of the nodes are only running ROS2.

All computers in the system are communicating using ROS2 and they can easily
be added or removed. All computers connect to the same VPN network as well, to
simplify the communication over cellular 4G.

One important lesson learned was that ROS1 nodes should only communicate
with a ROS1 master on the same computer, else the overall system becomes hard
to setup and maintain. During the demonstrator development, we tried to use ROS2
nodes whenever possible, and we only used ROS2 for communication between com-
puters.

8 E. Erős et al.

Table 1 Overview of the computers in the demonstrator. The ROS versions used were Kinetic for
ROS1 and Dashing for ROS2. Some nodes, like number 5 and 7, need both

No. Name ROS v. Computer OS Arch. Explanation

1 Tool ECU Dashing Rasp. Pi Ubuntu 18 ARM Smart tool
and lifting
system
control

2 RSP ECU Dashing Rasp. Pi Ubuntu 18 ARM Pneumatic
conn.
control and
tool state

3 Dock ECU Dashing Rasp. Pi Ubuntu 18 ARM State of
docked end-
effectors

4 MiRCOM Dashing LP Alpha Ubuntu 18 amd64 ROS2
to/from
REST

5 MiR Kinetic+Dashing Intel NUC Ubuntu 16 amd64 Out-of-the-
box MiR100
ROS suite

6 RFIDCAM Dashing Desktop Win 10 amd64 Published
RFID and
camera data

7 UR10 Kinetic+Dashing Desktop Ubuntu 16 amd64 UR10 ROS
suite

8 DECS Dashing Laptop Ubuntu 18 amd64 Sequence
planner

There is a number of available implementations of DDS, and since DDS is stan-
dardized, ROS2 users can choose an implementation from a vendor that suits their
needs. This is done through a ROS Middleware Interface (RMW), which also exposes
Quality of Service (QoS) policies. QoS policies allow ROS2 users to adjust data
transfer in order to meet desired communication requirements. Some of these QoS
policies include setting message history and reliability parameters. This QoS fea-
ture is crucial, especially in distributed and heterogeneous systems, since setups are
usually unique.

However, in the demonstrator described in this chapter, default settings were
sufficient for all nodes since there were no real-time requirements. Even though
standard QoS settings were used, how the messaging and communication was setup
highly influenced the robustness of the system. In the next section, we will study
this in more details. The communication between the hubs and the control system is
in some cases auto-generated by Sequence Planner and will be introduced in more
details in Sect. 5.

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 9

The main focus when developing this demonstrator was to perform the engine
assembly using both humans and intelligent machines in a robust way. Other impor-
tant aspects are non-functional requirements like safety, real-time constraints and
performance. However, these challenges were not the main focus when developing
the demonstrator. This will be important in future work, especially to handle the
safety of operators.

3 Robust Discrete Control

The presented demonstrator consists of multiple sub-systems that need to be coordi-
nated and controlled in a robust way. A robust discrete control system must handle
unplanned situations, restart or failures of sub-systems, as well as instructing and
monitoring human behavior.

During development, we also learned that one of the most complex challenges for
a robust discrete control system, is how to handle asynchronous and non-consistent
control states. In this section, we will therefore take a look at this and why it is
important to avoid having a distributed control state and why state-based commands
should be used instead of event-based. In many implementations, this challenge is
often neglected and handled in an ad-hoc fashion. To better understand this challenge
and how to handle it, let us start with some definitions.

3.1 States and State Variables

There are many different ways to define the state of a system. For example, if we
would like to model the state of a door, we can say that it can be: {opened, closed},
or maybe even: {opening, opened, closing, closed}. We could also use the door’s
angle, or maybe just a boolean variable. Depending on what we would like to do
with the model and what can we actually measure, we will end up with very different
definitions. In this chapter, a model of a state of a system is defined using state
variables:

Definition 1 A state variable v has a domain V = {x1, . . . , xn}, where each element
in V is a possible value of v. There are three types of variables: vm : measured state
variables, ve: estimated state variables, and vc: command state variables. For simplic-
ity, we will use the following notation when defining a variable: v = {x1, . . . , xn}.

10 E. Erős et al.

State variables are used when describing the state of a system, where a state is
defined as follows:

Definition 2 A state S is a set of tuples S = {�vi , xi �, . . . , �v j , x j �}, where vi is a
state variable and xi ∈ Vi is the current value of the state variable. Each state variable
can only have one current value at the time.

Let us go back to the door example to better understand states and state variables.
The door can for example have the following state variables:

pose = {opened, closed}
lockedm = {true, f alse}
In this example, the position of the door is either opened or closed and is defined

by the estimated state variable pose. It is called estimated since we can not measure
the position of this example door. The pose variable must therefore be updated by
the control system based on what actions have been executed (e.g. after we have
opened the door, we can assume that it is opened).

The door also has a lock, that can either be locked or not, and is defined by the
measured state variable lockedm . It is called measured since this door has a sensor
that tells us if the door is locked or not.

The door can be in multiple states, for example, the state {�pose, closed�,
�lockedm, true�} defines that the door is closed and locked. To be able to change the
state of the door, a control system needs to perform actions that unlocks and opens
the door.

3.2 Event-Based Commands and Actions

When controlling different resources in an automation system, a common control
approach is for the control system to send commands to resources, telling them what
to do or react on. Also, the control system reacts on various events from the resources.
When communicating in this fashion, which we can call event-based communication,
all nodes will wait for and react on events. This type of communication and control
often leads to a highly reactive system but is often challenging to make robust.

In ROS2, nodes communicate via topics, services or actions. It is possible to get
some communication guarantees from the QoS settings in DDS, however, even if
the communication is robust, we learned the hard way that it is not easy to create
a robust discrete control system using only event-based communication. To better
explain this, let us study how one of the nodes from the demonstrator could have
been implemented, if we have had used event-based communication:

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 11

Example 1: The nutrunner: event-based communication

In the demonstrator, either the robot or the human can use the nutrunner. When
started, it runs until a specific torque or a timeout has been reached. In the exam-
ple, the nutrunner is controlled by the following commands: start or reset, and
responds with the events done or failed. The communication could be imple-
mented with ROS actions but for simplicity, let us use two publish-subscribe
topics and the following ROS messages:

ROS2 topic: /nutrunner/command
string cmd # ’start’, or ’reset’

ROS2 topic: /nutrunner/response
string event # ’done’, or ’failed’

To start the nutrunner, the start command message is sent to the nutrunner
node, which will start running. When a specific torque is reached, the node
sends a done event back. If for some reason the torque is not reached after a
timeout, or if the nutrunner fails in other ways, it will respond with a failed
event. To be able to start the nutrunner again, the reset command must be sent
to initialize the nutrunner.

If we can guarantee that each message is only received once and everything
behaves as expected, this may work quite fine. However, if for some reason
either the controller or the node fails and restarts, we will have a problem.
If the controller executes a sequence of actions, it will assume that it should
first send the start command and then wait for done or failure. However, if
the nutrunner node is in the wrong state, for example if it is waiting for a
reset command, nothing will happen. Then the control sequence is not really
working, since the states of the two nodes are out of sync (i.e. the control node
thinks that the nutrunner node is in a state where the control can send start).

A common problem in many industrial automation systems is that the state of the
control system gets out of sync with the actual states of some resources. The reason
for this is that many implementations are based on sequential control with event-
based communication to execute operations, with the assumption that the sequence
always starts in a well defined global state. However, this is often not the case, e.g.
when a system is restarted after a break or a failure.

During development, we learned that in order to achieve flexibility and to handle
failures and restart, a system should never be controlled using strict sequences or
if-then-else programming. When the control system gets out of sync, the common
industrial practice is to remove all products and material from the system, restart
all resources and put them in well defined initial “home” states. Since we need a
robust control that can handle resource failures, flexible and changing work orders
and other unplanned events, a better control strategy is needed.

So, if the problem is that some nodes need to know the states of other nodes,
maybe we can solve this by sharing internal state of the node and keep the event-
based communication?

12 E. Erős et al.

3.3 Distributed State

If each node shares its state and is responsible for updating it, we can say that the
global state and the control is distributed on all nodes. This is a popular control
strategy in many new automation trends, since it is simple to implement and hide
some of the node details from other nodes. Let us take a look at how a distributed
control strategy could have been implemented in the nutrunner example:

Example 2: The nutrunner: Sharing state

In this example, the node communicates with the hardware via 1 digital output
and 3 digital inputs. These can be defined as state variables:

runc = { f alse, true}
runm = { f alse, true}
tqrm = { f alse, true}
f ailm = { f alse, true}
To run the nutrunner, the command state variable runc is set to true, which is

a digital output, and then the nutrunner responds back by setting the measured
state variable runm to true when it has started. When the torque has been
reached, tqrm becomes true, or if it fails or timeouts, f ailm becomes true.
These inputs are reset to false by setting runc to false again, which can also be
used during execution to stop the nutrunner.

Since the nutrunner node is controlled via events (like in the example before),
it does not need to expose these details, but instead implements this as an internal
node control loop. In our example it communicates its state using the following
message:

ROS2 topic: /nutrunner/state
string state # ’idle’, ’running’, ’torque’, or ’failed’

Now, when the nutrunner node is sharing its state, it is easier for an external
control system to know the correct state and act accordingly. However, it is
quite challenging to implement a robust state machine that actually works as
expected.

When hiding implementation details by using a distributed control state, like in
the nutrunner example, the control will initially appear to be simple to implement
and may work at first. However, based on our struggling during the demonstrator
development, we found out that it is still quite hard to implement fully correct logic
in each node and keep the states of all nodes in sync with each other. The main reason
for this is that the control system anyway needs to know the details of each node to
actually figure out how to restart a system when something happens. So, the lesson

learned: restart of most nodes almost always depends on the state of other nodes.
It is also challenging to handle safety concerns where the system must guarantee

some global specifications when the detailed control is distributed. We have learned

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 13

the hard way that a local control loop and internal state in each node almost always
becomes tangled with multiple cross-cutting concerns making the complete system
hard to maintain and troubleshoot. Another approach is to centralize the control and
to use state-based commands.

3.4 State-Based Commands

The benefit of centralized control is that the control system knows about every-
thing and can guarantee global requirements. It can figure out the optimal operation
sequence and can restart the complete system in an efficient way.

In the door control earlier, the controller sent the open event and then it was waiting
for the done event. When using state-based commands, the controller instead sends
a reference position, refposc, telling the door what state it wants it to be in while the
door is sending back its real state. These messages are sent when something changes
as well as at a specific frequency. If one of the commands is lost, another one will
soon be sent.

Let us look at how a state-based command could be implemented for the nutrunner
example.

Example 3: The nutrunner: State-based communication

Instead of using events to control the nutrunner, the control system and the
node instead communicate using the already defined state variables with the
following messages:

ROS2 topic: /nutrunner/command
bool run_c

ROS2 topic: /nutrunner/state
bool run_m
bool tqr_m
bool fail_m
bool run_c

The control system is sending a reference state while the nutrunner is return-
ing its current state as well as mirroring back the reference. The centralized
control system now knows everything about the nutrunner since in practice, the
detailed control loop is moved from the nutrunner node to the control node.
The mirror is monitored by an external ROS2 node which checks that all nodes
are receiving their commands.

During the development of the demonstrator, we discovered that by using state-
based commands and avoiding local states in each node, it is possible to implement
control strategies for efficient restart, error handling, monitoring and node implemen-
tation. It is much easier to recover the system by just restarting it, since the nodes do

14 E. Erős et al.

not contain any local state. Stateless nodes also makes it possible to add, remove or
change nodes while running, without complex logic. This has probably been one of
the most important lessons learned during the development.

The control of the demonstrator is using centralized control, a global state, and
state-based communication. While state-based communication requires a higher
number of messages to support control compared to event-based communication,
and centralized control with a global state is harder to scale compared to decen-
tralized approaches, we believe that these trade-offs are worth it when creating a
robust and efficient control architecture for these types of automation systems. Per-
haps the bigger challenge with this approach though, is that the control system needs
to handle all the complexity to make it robust. To aid in handling this complexity,
we have developed a new control infrastructure called Sequence Planner for robust
automation of many sub-systems.

4 Sequence Planner

The use of state-based commands introduced in Sect. 3 implies that a number of
devices should continuously get a reference (or goal) state. An overall control scheme
is then needed in order to choose what these goal states should be at all time. At the
same time, the control system should react to external inputs like state changes
or events from machines, operators, sensors, or cameras. Developing such systems
quickly becomes difficult due to all unforeseen situations one may end up in. Manual
programming becomes too complex and executing control sequences calculated off-
line become very difficult to recover from when something goes wrong.

Several frameworks in the ROS community are helping the user with compos-
ing and executing robot tasks (or algorithms). For example, the framework ROS-
Plan [9] that uses PDDL-based models for automated task planning and dispatching,
SkiROS [10] that simplifies the planning with the use of a skill-based ontology,
eTaSL/eTC [11] that defines a constraint-based task specification language for both
discrete and continuous control tasks or CoSTAR [12] that uses Behavior Trees for
defining the tasks. However, these frameworks are mainly focused on robotics rather
than automation.

4.1 A New Control Infrastructure

Based on what we learned, we have employed a combination of on-line automated
planning and formal verification, in order to ease both modeling and control. Formal
verification can help us when creating a model of the correct behavior of device
nodes while automated planning lets us avoid hard-coded sequences and “if-then-
else” programming and allowing us to be resource-agnostic on a higher level. We end

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 15

Fig. 3 Sequence Planner control infrastructure overview

up with a control scheme that continuously deliberates the best goals to distribute to
the devices. This is implemented in our research software Sequence Planner (SP).

SP is a tool for modeling and analyzing automation systems. Initially [13], the
focus was on supporting engineers in developing control code for programmable
logical controllers (PLCs). During the first years, algorithms to handle product and
automation system interaction [14], and to visualize complex operation sequences
using multiple projections [15] were developed. Over the years, other aspects have
been integrated, like formal verification and synthesis using Supremica [16], restart
support [17], cycle time optimization [18], energy optimization and hybrid sys-
tems [19], online monitoring and control [20], as well as emergency department
online planning support [21]. Recently, effort has been spent to use the developed
algorithms and visualization techniques for control and coordination of ROS- and
ROS2-based systems [22]. This section will give an overview of how SP can be used
to develop ROS2-based automation systems.

The remainder of this section will describe how these SP control models look like,
starting from the bottom up of the left part of Fig. 3. In Sect. 5 it is described how
the model is translated into ROS2 nodes with corresponding messages (top right of
Fig. 3. Because model-based control is used, it is essential that the models accurately
represent the underlying systems (bottom of Fig. 3). Therefore Sect. 5.2 describes
how randomized testing is used to ease the development of ROS2 nodes.

16 E. Erős et al.

4.2 Resources

Devices in the system are modeled as resources, which groups the device’s local state
and discrete descriptions of the tasks the device can perform. Recall Definition 1,
which divides system state into variables of three kinds: measured state, command
state, and estimated state.

Definition 3 A resource i is defined as ri = �V m
i , V c

i , V e
i , Oi �, ri ∈ R where V m

i is
a set of measured state variables, V c

i is a set of command state variables, V e
i is a set

of estimated state variables, and Oi is a set of generalized operations defining the
resource’s abilities. R is the set of all resources in the system.

The resources defined here are eventually used to generate ROS2 nodes and message
definition files corresponding to state variables.

4.3 Generalized Operations

Control of an automation system can be abstracted into performing operations.
By constructing a transition system modeling how operations modify states of the
resources in a system, formal techniques for verification and planning can be applied.
To do this in a manner suitable to express both low-level ability operations and high-
level planning operations, we define a generalized operation.

Definition 4 A generalized operation j operating on the state of a resource i is
defined as o j = �Pj , G j , T d

j , T a
j , T E

j �, o j ∈ Oi . Pj is a set of named predicates over
the state of resource variables Vi . G j is a set of un-named guard predicates over
the state of Vi . Sets T d and T a define control transitions that update Vi , where T d

defines transitions that require (external from the ability) deliberation and T a define
transitions that are automatically applied whenever possible. T E

j is a set of effect
transitions describing the possible consequences to V M

i of being in certain states.
A transition ti ∈ {T d ∪ T a ∪ T E } has a guard predicate which can contain elements
from Pj and G j and a set of actions that update the current state if and only if the
corresponding guard predicate evaluates to true.

T d
j , T a

j , and T E
j have the same formal semantics, but are separated due to their

different uses. The effect transitions T E
j define how the measured state is updated, and

as such they are not used during actual low-level control like the control transitions T d
j

and T a
j . They are important to keep track of since they are needed for on-line planning

and formal verification algorithms, as well as for simulation based validation.
It is natural to define when to take certain actions in terms of what state the

resource is currently in. To ease both modeling, planning algorithms and later on
online monitoring, the guard predicates of the generalized operations are separated
into one set of named (Pj) and one set of un-named (G j) predicates. The named

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 17

predicates can be used to define in what state the operation currently is in, in terms
of the set of local resource states defined by this predicate. The un-named predicates
are used later in Sect. 4.6 where the name of the state does not matter.

4.4 Ability Operations

The behavior of resources in the system is modeled by ability operations (abilities for
short). While it is possible to define transitions using only un-named guard predicates
in G (from Definition 4), it is useful to define a number of “standard” predicate names
for an ability to ease modeling, reuse and support for online monitoring. In this
work, common meaning is introduced for the following predicates: enabled (ability
can start), starting (ability is starting, e.g. a handshaking state), executing (ability is
executing, e.g. waiting to be finished), finished (ability has finished), and resetting
(transitioning from finished back to enabled). In the general case, the transition
between enabled and starting has an action in T d , while the transition from finished
has an action in T a . In other types of systems, other “standard” names could be used
(e.g. request and receive).

Example 4: The nutrunner: resource and ability template

The resource nr containing state variables of the nutrunner can be defined as
rnr = �{runm, tqrm, f ailm}, {runc},∅, Onr �. Notice that V e

nr = ∅. This is the
ideal case, because it means all local state of this resource can be measured.

The table below shows the transitions of a “run nut” ability, where each line
makes up one possible transition of the ability. The ability models the task of
running a nut, by starting to run the motors forward until a pre-programmed
torque (tqrm) has been reached. Notice that for this ability, G = ∅. Control
actions in T d are marked by �.

pred. name predicate control actions effects
enabled ¬runc ∧ ¬runm runc = T � −
starting runc ∧ ¬runm − runm = T
executing runc ∧ runm ∧ ¬tqrm − tqrm = T ∨ f ailm = T
f inished runc ∧ runm ∧ tqrm runc = F −
f ailed runc ∧ runm ∧ f ailm runc = F −
resetting ¬runc ∧ runm − runm = F, tqrm = F, f ailm = F

To implement this logic, we have learned that it is as complex as implement-
ing it in a distributed state machine, which we talked about in Sect. 3. However,
since this model is directly verified and tested together with the complete sys-
tem behavior, we directly find the errors and bugs. This is much harder in a
distributed and asynchronous setup.

While abilities make for well isolated and reusable components from which larger
systems can be assembled, they can mainly be used for manual or open loop con-

18 E. Erős et al.

trol. The next step is therefore to model interaction between resources, for example
between the robot and the nutrunner, or between the state of the bolts and the nutrun-
ner.

4.5 Modeling Resource Interaction

Figure 3 illustrates two types of interaction between resources: “specification for safe
device interaction” and “effects modeling of device interaction”. The latter means
modeling what can happen when two or more devices interact. As it might not be
possible to measure these effects, many of them will be modeled as control actions
updating estimated state variables.

Given a set of resources and generalized operations as defined by Definition 4,
a complete control model is created by instantiating the needed operations into a
global resource rg (rg /∈ R). Additional estimated state added if needed in order to
express the result of different resources interacting with each other. See Example 5.

Safety specifications are created to ensure that the resources can never do some-
thing “bad”. The instantiated ability operations can be used together with a set of
global specifications to formulate a supervisor synthesis problem from the variables
and transitions in rg . Using the method described in [23], the solution to this synthesis
problem can be obtained as additional guard predicates on the deliberate transitions
in T d . Examples of this modeling technique can be found in [24, 25]. By keeping
specifications as a part of the model, we learned that there are fewer points of change
which makes for faster and less error-prone development compared to changing the
guard expressions manually.

4.6 Planning Operations

While ability operations define low-level tasks that different devices can perform,
planning operations model how to make the system do something useful. As the
name suggests, planning operations define intent in the form goal states.

A planning operation has a preconditions which define when it makes sense to
try to reach the goal, and a postcondition specifying a target, or goal, state. Planning
operations also introduce an estimated state variable oe to keep track of its own
state, oe = {initial, executing, finished}. When in the initial state, if the precondition
is satisfied, the planning operation updates its estimated state variable to executing
which will trigger this planning operation to be considered by the on-line planner.
When the goal is reached, the operation’s state variable transitions to finished, and
the goal is removed from the on-line planner.

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 19

Example 5: The nutrunner: Specifying device interaction and planning

operations

We would like to create a planning operation called TightenBolt1. When a
bolt is in position, which is a precondition of TightenBolt1, the operation
instructs the system to reach the goal where bolt1 has been tightened. This will
happen when the nutrunner has reached the correct torque and the robot is in
the correct position at the bolt.

The robot has a number of state variables and in this example, we are inter-
ested in its position, where the measured state variable ur.posm = {pos1, . . . ,

posn} defines what named pose the robot can be in. In our system we would
also like to know the state of bolt1, which is modeled with the estimated state
variable bpe

1 = {empty, placed, tightened}.
This state variable is not only used by one ability, but in multiple abilities

and planning operations. If a variable is only used by planning operations, it is
updated by their actions when starting or when reaching the goal, but in this
case also other abilities need to know the state of the bolts.

For the planner to be able to find a sequence of abilities that can reach the
goal, an ability needs to take the action bpe

1 = tightened. The nut running ability
or the robot can be extended with this extra action, but then special variants of
abilities need to be made. If, for example, we extend the nut running ability, it
needs to be duplicated for each bolt with just minor differences.

A better approach is to generate new special abilities to track these results.
In this case, an ability is created only with the following transition:

pred. name predicate control actions effects
− tqrm ∧ ur.posm = bp1 bpe

1 = tightened −

A natural way to model TightenBolt1, is to start in the pre-state defined
by its precondition bpe

1 = placed and end in the post-state defined by the
postcondition bpe

1 = tightened. The figure below shows a planning operation,
with a sequence of dynamically matched ability operations (to the right) to
reach the goal state bpe

1 = tightened.

Modeling operations in this way does two things. First, it makes it possible to add
and remove resources from the system more easily - as long as the desired goals can
be reached, the upper layers of the control system do not need to be changed. Second,
it makes it easier to model on a high level, eliminating the need to care about specific

20 E. Erős et al.

sequences of abilities. As shown in Example 5, the operation TightenBolt1
involves sequencing several abilities controlling the robot and the tool to achieve the
goal state of the operation.

4.7 Execution Engine

The execution engine of the control system keeps track of the current state of all
variables, planning operations, ability operations and two deliberation plans. The
execution engine consists of two stages, the first evaluates and triggers planning
operation transitions and the second evaluates and triggers ability operation transi-
tions. When a transition is evaluated to true in the current state and is enabled, the
transition is triggered and the state is updated. After the two steps have been executed,
updated resource state is sent out as ROS2 messages.

Each stage includes both deliberation transitions and automatic transitions. The
automatic transitions will always trigger when their guard predicate is true in the
current state, but the deliberation transitions must also be enabled by the deliberation
plan. The deliberation plan is a sequence of transitions defining the execution order
of deliberation transitions. The plan for the planning operation stage is defined either
by a manual sequence or by a planner or optimizer on a higher level. For the ability
stage, the deliberation plan is continuously refined by an automated planner that finds
the best sequence of abilities to reach a goal defined by the planning operations.

In this work, planning is done by finding counter-examples using bounded model
checking (BMC) [26]. Today’s SAT-based model checkers are very efficient in finding
counter-examples, even for systems with hundreds of variables. By starting in the
current state, the model of the system is unrolled to a SAT problem of increasing
bound, essentially becoming an efficient breadth-first search. As such, a counter-
example (or deliberation plan) is minimal in the number of transitions taken from the
current state. Additionally, well-known and powerful specification languages like
Linear Temporal Logic (LTL) [27] can be used to formulate constraints.

When decisions are taken by the SP execution engine instead of by the resources
themselves, nodes essentially become shallow wrappers around the actual devices
in the system. The fact that the core device behavior is modeled in SP allows for
generation of a lot boilerplate code (and tests!) in the nodes, which is described in
the next section.

5 Auto Generated ROS Nodes

The architecture of the system is based on the ROS hubs described in Sect. 2.1 and
in [8], which allow us to separate the system into functional entities. Each ROS hub
represents one SP resource which is exchanging messages based on the SP model of

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 21

the resource. Based on these models of resources, SP’s component generator module
generates a set of ROS2 nodes with accompanying messages during compile-time.

5.1 Auto Generated Code for Resource

Five nodes per resource hub are generated: interfacer, emulator, simulator, driver
and test. The interfacer node serves as a standardized interface node between SP
and nodes of the resource. Emulator nodes are generated based on abilities defined
in SP and are used when testing the control system since they emulate the expected
behavior of the ability. Simulator and driver nodes implement the actual device
control and also an initial template to be used when implementing the connection
with the real drivers in ROS. Test nodes implement automatic testing of simulator
and driver nodes based on the SP model.

To use the abilities in formal planning algorithms and to support testing of the
SP model without being connected to the real subsystem, measured variables must
be updated by someone. We have chosen to place this updating as individual emula-
tion nodes [28] rather than to let SP perform it internally. This allows us to always
maintain the structure of the network which allows an easy transition to simulated or
actual nodes at any time, while at the same time keeping the core execution engine
uncluttered. The internal structure of the emulator node is quite simple and can be
fully generated based on the SP model. This is because the internal state of an emu-
lation does not have to reflect the internal state of the target which it is emulating, it
only needs to mimic the observable behavior to match an existing target.

After the SP model has been tested with generated emulator nodes, the next step
in the workflow is to use a variety of simulators instead of emulators connected in the
ROS2 network via simulator nodes. These nodes are partially generated based on the
model of the resource and partially manually assembled. The manually assembled
part is decoupled from the main node and is imported into the simulator so that the
node itself can be independently re-generated when the SP model changes.

These imports contain interface definitions for specific hardware and software.
In the example of the nutrunner, the driver node is run on a Raspberry Pi and its
manually written part contains mapping between variables and physical inputs and
outputs.

Per resource, the Simulator node talks to SP over the interfacer node using same
message types generated for all three nodes, emulator, simulator and driver. This
way, the interfacer node does not care if the equipment is real, simulated or just
emulated.

The driver nodes are in most cases exactly the same as simulator nodes, however
we distinguish them by trying to be general. Both the simulator and the driver nodes
use same imported manually assembled interfacing components.

22 E. Erős et al.

Example 6: The nutrunner: model-based component generation

Given the nutrunner’s “run nut” ability defined in Example 4, the component
generator module generates one ROS2 package containing the different node
types for that resource and another package containing the necessary message
types:

5.2 Model Based Testing

Unit-testing is a natural part of modern software development. In addition to the
nodes generated from SP models, tests are also generated. Because the SP model
clearly specifies the intended behavior of the nodes via effects, it is also possible to
generate tests which can be used to determine if the model and the underlying driver
implementation do in fact share the same behavior. The generated tests are run over
the ROS2 network, using the same interfaces as the control system implementation.
This enables model based testing using a seamless mixture of emulated, simulated,
and real device drivers, which can be configured depending on what is tested. Based
on what we learned, the generated unit tests can:

• ensure that the device drivers and simulated devices adhere to the behavior speci-
fied in the SP model.

• help eliminate “simple” programming errors that waste development resources,
for example making sure that the correct topics and message types are used for
user-written code.

• provide means to validate if the specifications in the SP model make sense. While
formal methods can guarantee correctness w.r.t. some specification, writing the
specification is still difficult and needs to be supported by continuous testing.

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 23

The tests generated by SP employ property-based testing using the Hypothesis
library [29], which builds on ideas from the original QuickCheck [30] implementa-
tion. These tools generate random test vectors to see if they can break user-specified
properties. If so, they automatically try to find a minimal length example that vio-
lates the given properties. The properties that need to hold in our case are that effects
specified in the SP model always need to be fulfilled by the nodes implementing
the resource drivers. Of course, when bombarded by arbitrary messages, it is not
surprising to also find other errors (e.g. crashes).

Example 7: The nutrunner: automated testing during node development

Let’s exemplify with the nutrunner resource again. The figure below shows
the invocation of pytest for executing a generated unit test. The test will send
arbitrary commands to the nutrunner node, via the same interface that SP uses
for control, and check that the responses from the system match what is expected
in the SP model.

The test fails, showing the generated test vector for which the effect failed to
emerge, as well the message last observed on the ROS2 network. This makes
it easier to spot problems which often arise due to the model and the actual
device behavior differing. In this case, it turns out that the driver node does not
properly reset tqrm when runc resets. Investigating how the driver node works
yields:

msg.tqr_m = GPIO.input(self.gpi5) == 1

It can be seen from the snippet above that the driver node simply forwards
what the lower-level device emits to some input pin. It turns out that for this
particular nutrunner, the torque reached flag is reset only when the output used
to set start running forward goes high.

24 E. Erős et al.

Instead of introducing more state, and with that, complexity to the driver
node, the proper fix for this is to go back and change the SP model to reflect the
actual behavior of the node. By moving the torque reset effect from the resetting
state to the starting state of the ability template definition and re-generating our
package, the generated test now succeeds:

The nutrunner node should now be safe to include in the automation system.

The unit-test described in Example 7 deals only with testing one resource individ-
ually: it is not the instantiated abilities but the templates that are tested. This means
that additional preconditions (e.g. handling zone booking) are not tested in this step.
As such, while the real driver for the nutrunner could, and probably should be sub-
jected to these kinds of tests, it is not safe to do with, for instance, a robot. Triggering
random target states (e.g. robot movements) would be dangerous and such tests need
to be run in a more controlled manner. Luckily ROS2 makes it simple to run the tests
on a simulated robot by simply swapping which node runs.

It can also be interesting to generate tests from the complete SP model. Consider
an ability ur.moveTo for moving the UR robot between predefined poses, that is
instantiated for a number of different target poses, each with a different precondition
describing in which configuration of the system the move is valid. If a simulated
node triggers a simulated protective stop when collisions are detected (e.g. between
collision objects in the MoveIt! framework), it becomes possible to test whether the
SP model is correct w.r.t allowed moves (it would not reach the target if protective
stop is triggered). In fact, such a test can be used to find all the moves that satisfy the
stated property, which eases modeling.

5.3 Node Management and Integrated Testing

The first step in the engineering workflow would be testing the model with emulator
nodes, iterating the model until the desired behavior is reached. Afterwards, a sim-
ulation or real hardware can be interfaced for one of the resources, while the others
remain emulated. This way, targeted model properties can be tested.

To extend the usability of code generation, a node manager is generated to launch
node groups for different testing and commissioning purposes, supporting testing of
targeted model properties.

Testing the model using emulator nodes can be referred to as virtual commission-
ing (VC) [31]. The purpose of VC is to enable the control software, which controls

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 25

and coordinates different devices in a production station, to be tested and validated
before physical commissioning.

The concept of integrated virtual preparation and commissioning (IVPC) [32]
aims to integrate VC into the standard engineering workflow as a continuous support
for automation engineers. Exactly this is gained with the described workflow of
continuous model improvements, autogeneration of components and testing using
ROS2 as a common platform that supports integration of different smart software
and hardware components.

So, during the development, we have learned, that model-based code generation
speeds up development and eliminates a lot of coding related errors since components
are generated as a one-to-one match to the model. This enables for continuous model
improvements during development based on behavior of the generated emulator
node.

6 Conclusions

This chapter has presented the development of a industrial demonstrator and the
control infrastructure Sequence Planner, together with some practical development
guidelines and lessons learned. The demonstrator includes robots, machines, smart
tools, human-machine interfaces, online path and task planners, vision systems,
safety sensors, optimization algorithms, etc. Coordination and integration of all these
functionality has required the well-defined communication interface provided by
ROS2 as well as the robust task planning and control of Sequence Planner.

From a technical perspective, ROS2, is an excellent fit for industry 4.0 systems
as shown in this chapter. However, being a well-structured and reliable commu-
nication architecture is just one part of the challenge. As we have shown, various
design decisions will greatly influence the end result, for example in choosing how
to communicate between nodes or in how the system behavior is modeled.

Since the presented control approach uses state based communication, the nodes
are continuously sending out messages. This implies that care needs to be taken to
avoid flooding the network. However, during work on the demonstrator, the bottle-
neck was more related to planning time rather than network capacity. Future work
should include studying how many resources can be handled by SP, at what pub-
lishing frequency messages can be reliably received and how this is influenced by
different QoS settings.

During the development and implementation of the industrial demonstrator, we
learned that:

• To be able to restart the control system, it was important to avoid distributed control
state, as the restart of a node almost always depends on the states of other nodes.

• To make the intelligent automation robust and functional, it was much easier to
have a centralized control approach.

26 E. Erős et al.

• It was easier to handle failures, troubleshoot, and maintain the system when using
state-based commands.

• For the system to be flexible and robust, we had to stay away from hard-coded
control sequences and if-then-else programming.

• Online automated planning and optimization is necessary for any type of intelligent
automation.

• It is impossible to develop these types of systems without continuous testing and
verification.

The major challenges during development were always related to implementation
details and we learned the hard way that the devil is in the details. Developing any type
of automation systems will never be a simple task, but it is possible to support the cre-
ative design process using algorithms. The control infrastructure Sequence Planner
is an open source project that can be found here: http://github.com/sequenceplanner/
sp.

Acknowledgements This work was funded by Volvo Groups Trucks Operations and the Swedish
Innovation Agency Vinnova through the Production 2030 project Unification and the FFI project
Unicorn.

References

1. F.P. Brooks Jr., No silver bullet: Essence and accidents of software engineering. Computer 20,
10–19 (1987)

2. Volvo GTO Vision. https://www.engineering.com/PLMERP/ArticleID/18868/Vision-and-
Practice-at-Volvo-Group-GTO-Industry-40-and-PLM-in-Global-Truck-Manufacturing.
aspx. Accessed 14 Apr 2019

3. P. Tsarouchi, A.-S. Matthaiakis, S. Makris, G. Chryssolouris, On a human-robot collaboration
in an assembly cell. Int. J. Comput. Integr. Manufact. 30(6), 580–589 (2017)

4. Å. Fast-Berglund, F. Palmkvist, P. Nyqvist, S. Ekered, M. Åkerman, Evaluating cobots for final
assembly, in 6th CIRP Conference on Assembly Technologies and Systems (CATS), Procedia
CIRP, vol. 44 (2016), pp. 175–180

5. V. Villani, F. Pini, F. Leali, C. Secchi, Survey on human-robot collaboration in industrial
settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

6. W. He, Z. Li, C.L.P. Chen, A survey of human-centered intelligent robots: issues and challenges.
IEEE/CAA J. Autom. Sin. 4(4), 602–609 (2017)

7. A. Hanna, K. Bengtsson, M. Dahl, E. Erős, P. Götvall, and M. Ekström, Industrial challenges
when planning and preparing collaborative and intelligent automation systems for final assem-
bly stations, in 2019 24th IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA) (2019), pp. 400–406

8. E. Erős, M. Dahl, H. Atieh, K. Bengtsson, A ROS2 based communication architecture for
control in collaborative and intelligent automation systems, in Proceedings of 29th International
Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019) (2019)

9. M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carreraa, N. Palomeras,
N. Hurtós, M. Carrerasa, Rosplan: planning in the robot operating system, in Proceedings
of the Twenty-Fifth International Conference on International Conference on Automated Plan-
ning and Scheduling, ICAPS’15 (AAAI Press, 2015), pp. 333–341

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 27

10. F. Rovida, M. Crosby, D. Holz, A.S. Polydoros, B. Großmann, R.P.A. Petrick, V. Krüger,
SkiROS—A Skill-Based Robot Control Platform on Top of ROS (Springer International Pub-
lishing, Cham, 2017), pp. 121–160

11. E. Aertbeliën, J. De Schutter, ETASL/ETC: a constraint-based task specification language
and robot controller using expression graphs, in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2014), pp. 1540–1546

12. C. Paxton, A. Hundt, F. Jonathan, K. Guerin, G.D. Hager, Costar: Instructing collaborative
robots with behavior trees and vision, in 2017 IEEE International Conference on Robotics and
Automation (ICRA) (2017), pp. 564–571

13. P. Falkman, B. Lennartson, K. Andersson, Specification of production systems using PPN and
sequential operation charts, in 2007 IEEE International Conference on Automation Science
and Engineering (2007), pp. 20–25

14. K. Bengtsson, B. Lennartson, C. Yuan, The origin of operations: interactions between the
product and the manufacturing automation control system, in 13th IFAC Symposium on Infor-
mation Control Problems in Manufacturing, IFAC Proceedings Volumes, vol. 42, no. 4, (2009),
pp. 40–45

15. K. Bengtsson, P. Bergagard, C. Thorstensson, B. Lennartson, K. Akesson, C. Yuan, S. Mire-
madi, P. Falkman, Sequence planning using multiple and coordinated sequences of operations.
IEEE Trans. Autom. Sci. Eng. 9, 308–319 (2012)

16. P. Bergagård, M. Fabian, Deadlock avoidance for multi-product manufacturing systems mod-
eled as sequences of operations,” in 2012 IEEE International Conference on Automation Sci-
ence and Engineering: Green Automation Toward a Sustainable Society, CASE 2012, Seoul,
20–24 August 2012 (2012), pp. 515–520

17. P. Bergagård, On restart of automated manufacturing systems. Ph.D. Thesis at Chalmers Uni-
versity of Technology (2015)

18. N. Sundström, O. Wigström, P. Falkman, B. Lennartson, Optimization of operation sequences
using constraint programming. IFAC Proc. Vol. 45(6), 1580–1585 (2012)

19. S. Riazi, K. Bengtsson, R. Bischoff, A. Aurnhammer, O. Wigström, B. Lennartson, Energy
and peak-power optimization of existing time-optimal robot trajectories, in 2016 IEEE Inter-
national Conference on Automation Science and Engineering (CASE) (2016)

20. A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lundholm, B. Lennartson, An
event-driven manufacturing information system architecture for industry 4.0. Int. J. Product.
Res. 1–15 (2016)

21. K. Bengtsson, E. Blomgren, O. Henriksson, L. Johansson, E. Lindelöf, M. Pettersson, Å. Söder-
lund, Emergency department overview - improving the dynamic capabilities using an event-
driven information architecture, in IEEE International Conference on Emerging technologies
and factory automation (ETFA) (2016)

22. M. Dahl, E. Erős, A. Hanna, K. Bengtsson, M. Fabian, P. Falkman, Control components for
collaborative and intelligent automation systems, in 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 378–384 (2019)

23. S. Miremadi, B. Lennartson, K. Åkesson, A BDD-based approach for modeling plant and
supervisor by extended finite automata. IEEE Trans. Control Syst. Technol. 20(6), 1421–1435
(2012)

24. P. Bergagård, P. Falkman, M. Fabian, Modeling and automatic calculation of restart states for
an industrial windscreen mounting station. IFAC-PapersOnLine 48(3), 1030–1036 (2015)

25. M. Dahl, K. Bengtsson, M. Fabian, P. Falkman, Automatic modeling and simulation of robot
program behavior in integrated virtual preparation and commissioning. Proc. Manufact. 11,
284–291 (2017)

26. A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDS, in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(Springer, 1999), pp. 193–207

27. A. Pnueli, The temporal logic of programs, in 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977) (IEEE, 1977), pp. 46–57

28 E. Erős et al.

28. E. Erős, M. Dahl, A. Hanna, A. Albo, P. Falkman, K. Bengtsson, Integrated virtual commis-
sioning of a ROS2-based collaborative and intelligent automation system, in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA) (2019),
pp. 407–413

29. D.R. MacIver, Hypothesis 4.24 (2018), https://github.com/HypothesisWorks/hypothesis
30. K. Claessen, J. Hughes, Quickcheck: a lightweight tool for random testing of haskell pro-

grams, in Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’00 (ACM, New York, 2000), pp. 268–279

31. C.G. Lee, S.C. Park, Survey on the virtual commissioning of manufacturing systems. J. Comput.
Des. Eng. 1(3), 213–222 (2014)

32. M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, P. Falkman, Integrated virtual preparation and
commissioning: supporting formal methods during automation systems development. IFAC-
PapersOnLine 49(12), 1939–1944 (2016). 8th IFAC Conference on Manufacturing Modelling,
Management and Control MIM 2016

Endre Erős received his M.Sc. degree in Control Engineering in 2018 at the Faculty of Mechan-
ical Engineering, University of Belgrade, Serbia. He is currently working as a Ph.D. student in the
automation research group at Chalmers University of Technology, researching discrete control of
complex systems. Endre is involved in developing, testing and integrating discrete control meth-
ods in two projects that aim to bring humans and robots closer together in working, as well as in
living environments.

Martin Dahl received the M.Sc.Eng. degree in Computer Science and Engineering in 2015 from
Chalmers University of Technology in Gothenburg, Sweden. He is currently working towards a
Ph.D. degree in Electrical Engineering, also at Chalmers University of Technology. His research
is currently focused on discrete control of complex systems.

Atieh Hanna received the M.Sc.Eng. degree in Electrical Engineering in 2001 from Chalmers
University of Technology in Gothenburg, Sweden. From 2001 to 2011, she was working at Volvo
Group Trucks Technology as a Development Engineer and from 2012 as a Research and Develop-
ment Engineer at Volvo Group Trucks Operations within Digital and Flexible Manufacturing. She
is currently working towards a Ph.D. degree and her research is focused on planning and prepa-
ration process of collaborative production systems.

Per-Lage Götvall received his B.Sc. from Chalmers in 1996 after an eight-year career in the
Royal Swedish navy as a marine engineer. He joined the Volvo Group the same year and has
worked in various roles at the company since then. In 2015 started a work aimed at understanding
what was required for humans and robotic machines to work together. This work, as a manager
for Volvo Group Trucks area of Transport system, robotics, was followed by a position as a Senior
research engineer at Volvo Group Trucks Operations within the area of Flexible manufacturing,
which is also the current position at the Volvo Group.

Petter Falkman received the Ph.D. degree in Electrical Engineering in 2005 from Chalmers Uni-
versity of Technology, Göteborg, Sweden. Dr. Falkman is currently Associate Professor at the
Department of Signals and Systems, Chalmers University of Technology. He received his Master
of Science in Automation and Mechatronics at Chalmers in 1999. Dr. Falkman is vice head of uti-
lization in the electrical engineering department. Dr. Falkman is program director for the Automa-
tion and Mechatronics program at Chalmers. He is profile leader in the Chalmers production area
of advance. He is also part of the Wingquist Laboratory, a research center for virtual product and
production development at Chalmers. His main research topic concerns information integration,
virtual preparation, machine learning, control, and optimization of automation systems.

Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2 29

Kristofer Bengtsson received the Ph.D. degree in Automation in 2012 from Chalmers Univer-
sity of Technology, Gothenburg, Sweden. From 2001 to 2005 he was with Advanced Flow Con-
trol AB developing automation control systems and user interfaces, and from 2005 to 2011 with
Teamster AB, an automation firm in Gothenburg. From 2012 he is a researcher in the Automation
research group at Chalmers and from 2011 he is also with Sekvensa AB, a research consulting
firm. His current research interest includes control architectures based on ROS2 and new AI-based
algorithms for complex automation systems as well as supporting healthcare providers with online
prediction, planning and optimization.

