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Abstract

Graph data nowadays easily become so large that it is infeasible to study the underlying
structures manually. Thus, computational methods are needed to uncover large-scale
structural information. In this thesis, we present methods to understand and summarise
large networks.

We propose the hyperbolic community model to describe groups of more densely connected
nodes within networks using very intuitive parameters. The model accounts for a
frequent connectivity pattern in real data: a few community members are highly
interconnected; most members mainly have ties to this core. Our model fits real data
much better than previously-proposed models. Our corresponding random graph
generator, HYGEN, creates graphs with realistic intra-community structure.

Using the hyperbolic model, we conduct a large-scale study of the temporal evolution
of communities on online question—answer sites. We observe that the user activity
within a community is constant with respect to its size throughout its lifetime, and a
small group of users is responsible for the majority of the social interactions.

We propose an approach for Boolean tensor clustering. This special tensor factorisation is
restricted to binary data and assumes that one of the tensor directions has only non-
overlapping factors. These assumptions — valid for many real-world data, in particular
time-evolving networks — enable the use of bitwise operators and lift much of the
computational complexity from the task.






Kurzfassung

Netzwerke sind heutzutage oft so grofs und uniibersichtlich, dass manuelle Analysen
nicht reichen, um sie zu verstehen. Um zugrundeliegende Strukturen im groflen
Mafsstab zu identifizieren, bedarf es computergestiitzter Methoden.

Unser Modell fiir hyperbolische Gemeinschaften beschreibt die innere Struktur eng
verkniipfter Knotengruppen in Netzwerken mit sehr eingdngigen Parametern. Es
basiert auf der Beobachtung, dass oft ein kleiner Teil der Knoten einer Gruppe eng
miteinander verkniipft ist und die Mehrheit der Gruppenmitglieder nur Verbindungen
zu diesem Zentrum aufweist. Unser Modell bildet echte Daten besser ab als bisherige
Modelle. Der entsprechende Zufallsgraphgenerator, HyGen, erzeugt Graphen mit
realistischen innergemeinschaftlichen Strukturen.

Anhand unseres Modells analysieren wir die Bildung von Gemeinschaften in online
Frage-und-Antwort-Netzwerken. Wir beobachten, dass die Aktivitdt der Mitglieder tiber
die Zeit konstant ist, bezogen auf die Grofie der jeweiligen Gemeinschaft. Aufierdem
ist stets eine kleine Gruppe von Mitgliedern verantwortlich fiir den Grofsteil der
Aktivitat.

Wir schlagen eine Methode fiir Boolesches Tensor Clustering vor. Diese spezielle Tensor-
faktorisierung ist beschréankt auf bindre Daten und wir nehmen an, dass es entlang
einer Richtung des Tensors keinen nennenswerten Uberlapp der Faktoren gibt. Diese
Annahmen erméglichen die Nutzung von Bitoperationen, mindern den Rechenaufwand
erheblich und passen gut zu dem, was in echten Daten zu beobachten ist.






Extended Abstract

People these days frequently interact with large amounts of network data and thereby
contribute further to their growth. Online social networks, discussion forums, question—
answer sites — the Internet offers numerous options for users to communicate with their
peers through social media. This communication leaves massive traces of data and
thereby opens opportunities to acquire a better understanding of social communities.
The collected user interaction data, however, easily become so large that it is infeasible
to study the underlying structures by manual inspection. Thus, computational methods
are needed to uncover large-scale structural information.

In this thesis, we present methods to understand and summarise large networks. We
propose a model for realistically representing communities in networks, study its use
and its properties, develop a corresponding graph generator, and conduct a large-scale
study of user interactions in question-answering forums on its basis. Furthermore, we
propose an approach for Boolean tensor clustering. While this approach is for binary
tensor data in general, we demonstrate its use in particular for graph data that can be
presented as a binary tensor.

Binary information is the reoccurring scheme throughout this work. Our methods are
all targeted at {0, 1} data, meaning that a link between two objects is either present or
not. Friend relations in online social networks, for instance, follow such a structure: there
is a link between two persons if they know each other, and no link if they don’t. While
our methods are for networks in general, many ideas are intuitively best understood at
the example of networks of people.

This dissertation makes the following research contributions:

Hyperbolic Community Model

Our hyperbolic community model accounts for the specific intra-community connectivity
patterns frequently observed in real-world data: a small portion of the community
members form the highly interconnected core, whereas the remaining members mainly
have ties to the core. In other words, in the adjacency matrix, the nodes can be ordered
in such a way that (almost) all edges in the community lie below a hyperbola. Our model
tits to real-world data much better than traditional block models or previously-proposed
hyperbolic models and can be expressed by means of very intuitive parameters, enabling
us to summarise the shapes of the communities in graphs effectively.



Hyperbolic Random Graph Generator

Random graph generators are necessary tools for many network science applications. For
example, the evaluation of graph analysis algorithms requires methods for generating
realistic synthetic graphs. Typically random graph generators are generating graphs that
satisfy certain global criteria, such as degree distribution or diameter. If the generated
graph is to be used to evaluate community detection and mining algorithms, however,
the generator must produce realistic community structure, as well. Our random graph
generator, HYGEN, is based on the hyperbolic community model. It is designed to
preserve the community structure of real networks, especially the commonly observed
hyperbolic intra-community connectivity structure. Our generator can also be used to
accurately model time-evolving communities.

Study of Question-Answering Communities

We conduct a large-scale assessment of volunteer effort in online social communities.
To that end, we study the temporal evolution of communities on online question—
answer sites using the hyperbolic community model. The model parameters reflect the
connectivity patterns within the network. Our primary observation is that the user
activity within a community is constant with respect to its size throughout its lifetime,
and a small group of users is responsible for the majority of the social interactions.

Boolean Tensor Clustering

We propose a scalable tensor factorisation approach, targeted at binary data. Similarly to
analysing the adjacency matrix of a graph using a matrix factorisation, we can analyse the
tensor by factorising it. While tensor factorisations in general are computationally hard
problems, much of that hardness in case of Boolean tensor factorisations comes from
the possibility of overlapping components. It can be lifted by imposing the constraint
that factors must be non-overlapping in one of the tensor directions. This assumption is
realistic for many real-world data. For instance, graphs — such as friendship networks —
that evolve over time are naturally represented as binary tensors: the time direction
cannot have overlaps, since time acts as a property of the interaction between linked
entities. The factorisation along that direction then amounts to clustering. Our algorithm
for Boolean tensor clustering achieves high scalability, high similarity towards the input,
and good generalisation to unseen data with both synthetic and real-world data sets.
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Introduction

Large amounts of data can be collected without difficulty these
days. They however easily become so large that manually explor-
ing the collected data hardly reveals interesting information. To
uncover underlying patterns and structures we thus need compu-
tational methods. Data mining is the sub-field of computer science
that deals with the extraction of useful information from large data
sets. To aid humans with the interpretation of large portions of
data, data mining makes use of various concepts and techniques
from statistics, machine learning and database systems. Typically
employed techniques are data classification, prediction, data clus-
tering, outlier analysis, association rule mining, and regression
analysis [1]. Their common goal is to uncover the interesting, use-
ful knowledge hidden in the data. But what exactly is interesting
or useful? The exact definition of the objective is often the truly
challenging part in data mining. What constitutes interestingness
is usually data- and field-dependent, and, not uncommonly, highly
subjective. In addition, the exact definition of interestingness might
reveal only after knowing what is in the data. Prior to analysis, it
might not even be obvious at which level we can expect to find the
interesting pieces inside the data: Sometimes, it might be useful
to regard the data as a whole; novel insight then might be gained
through summarisation and explanation of the overall structure.
In other situations, the search for useful patterns within a given
data set is best implemented using a local approach [2].

It would be presumptuous to claim that this thesis could help with
the decision which method is preferable for a given set of data,
or that it could be of any help to determine the most appropriate
measure of interestingness, given a task. Instead we offer even
more options to choose from. The methods we propose add to
the repertoire of methods for handling large volumes of data and
discovering the useful information therein. As always, it is left to
the user to pick the right tool for each task.

We present two approaches, very dissimilar in their nature, yet
both targeted at revealing patterns in graph data, and both acting
rather on the global view of the data. Their common theme is to
rely on the adjacency matrix representation of the graphs under
study, which (in here) is of pure binary character. The adjacency
matrix representation facilitates the use of linear algebra operations.
Binary matrices, in particular, allow for the use of a Boolean algebra.
Analysing data in the Boolean domain where 1 + 1 = 1 enhances

1.1 Thesis Structure ... .. 2

1.2 Contributions and Prior
Publications ....... 3

[1]: Gopalan et al. (2009), Data Mining:
Techniques and Trends

[2]: Mannila (2002), ‘Local and Global
Methods in Data Mining: Basic Tech-
niques and Open Problems’
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interpretability — since the output is of the same type as the input
— and allows for efficient computations, that scale to very large
graphs.

The first approach is concerned with a characterisation of more
densely connected structures within graphs, so-called communities.
We devise a new model to concisely describe community structure
within graphs and thereby allow for creating a conceivable sum-
maries of the graphs under study. With these summaries, we can
obtain an intuitive understanding of the community structures in
large question—answer sites, such as Reddit and StackExchange, as
we demonstrate in a large-scale study. Furthermore, we generate
artificial random graphs with similar structural properties as their
observed real counterparts.

The second approach also aids the summarisation of graphs, how-
ever in a different way. Its motivation originates from the endeavour
to efficiently factorise binary tensor data. The computational effort
of factorising the multi-way generalisations of matrices (i.e. ten-
sors) can easily become overwhelming once its dimension grows.
To alleviate the computational effort, we make the simplifying
assumption that factors are non-overlapping in one of the direc-
tions. This takes away much of the hardness of the task and at the
same time allows to interpret our approach as a clustering and
summarisation technique for vertex-aligned graphs.

1.1 Thesis Structure

We start out with a basic introduction to networks, graphs, and
related terminology in Chapter 2. After that, the thesis subdivides
into two major parts.

The first part is concerned with hyperbolic communities and
encompasses Chapters 3 to 9. We start with an introduction to
hyperbolic communities in graphs and provide the necessary
background of related work in Chapter 3. Chapters 4 and 5 offer
theory and definitions. The former introduces the hyperbolic
community model, the latter defines the random graph generator.
The following three chapters are of experimental character. We test
and evaluate the hyperbolic community model in Chapter 6. We
examine the HyGen random graph generator in Chapter 7. And
we present a large-scale study of communities in question—answer
sites in Chapter 8. Finally, we end the first part with a discussion
of future directions in Chapter 9.

The second part addresses Boolean tensor clustering in Chapters 10
to 13. We first introduce the problem and discuss preliminaries
as well as related work in Chapter 10. We present the formal



1.2 Contributions and Prior Publications

definitions and theoretical results for Boolean tensor clustering in
Chapter 11. We evaluate our method in Chapter 12; our experiments
encompass synthetic and real-world data. Finally, in Chapter 13,
we give concluding remarks and discuss resulting future research
questions.

Before concluding the thesis, we outline an idea for combining the
two lines of work in Chapter 14. A final summary in Chapter 15
marks the end of the thesis.

1.2 Contributions and Prior Publications

This thesis contributes novel ideas to understandably summarise
large networks. Making use of the dualism between graphs and
matrices, we discuss two separate approaches for uncovering
patterns in graph data: (1) the description of communities by means
of a hyperbolic model, and (2) the discovery of patterns using
Boolean tensor clustering. As it is common practice in Computer
Science, the contents of this thesis are largely based on previously
published work by the author.

In the following, we list the covered prior publications in the order
they occur in the thesis. Alongside, we summarise their scientific
contributions. We outline which parts of each work are attributed
to the author. And we depict how the works are incorporated in
this thesis.

Hyperbolic community model. Commonly, communities are
modelled as non-overlapping blocks of even density. Real graphs
however often show overlaps between communities, and uneven
density within them. We propose the hyperbolic community model
which accounts for the specific intra-community connectivity pat-
terns:

Saskia Metzler, Stephan Giinnemann, and Pauli Miettinen.
‘Hyperbolae are No Hyperbole: Modelling Communities That
are Not Cliques’. In: Proceedings of the 16th IEEE International
Conference on Data Mining. (ICDM’16 in Barcelona, Spain). Edited
by Francesco Bonchi, Josep Domingo-Ferrer, Ricardo A. Baeza-
Yates, Zhi-Hua Zhou, and Xindong Wu. Los Alamitos: IEEE
Computer Society, 2016

Our major contributions are:

» We present three different but equivalent models for captur-
ing non-uniform edge distributions inside communities.

3
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[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’

» We show how to fit the models to the communities, and how
to fit a model to a full graph composed of communities.

» We demonstrate that our approach explains real graphs
much better than traditional quasi-clique based models and
also improves the model of Araujo et al. [3].

Saskia Metzler (SM), Stephan Giinnemann (SG), and Pauli Mietti-
nen (PM) jointly developed the idea. Every author had a special
focus for the theory: SM deduced the constraints for the param-
eters. SG especially focussed on the log-likelihood formulation.
PM studied the computational complexity. Implementation of the
algorithm and experimentation were in responsibility of SM. The
paper was written jointly by SM, SG, and PM.

With minor changes, we present the theoretic results in Chapter 4
and the experimental evaluation in Chapter 6.

HyGen. Random graph generators are frequently employed for
the testing of community detection algorithms. Towards the im-
provement of such algorithms, random graph generators need to
produce realistic community structure. We propose HyGeN, the first
random graph generator based on the hyperbolic model:

Saskia Metzler and Pauli Miettinen. ‘Random Graph Generators
for Hyperbolic Community Structures’. In: Proceedings of the 7th
International Conference on Complex Networks and Their Applica-
tions. (COMPLEX NETWORKS18 in Cambridge, UK). Edited
by Luca Maria Aiello, Chantal Cherifi, Hocine Cherifi, Renaud
Lambiotte, Pietro Lig, and Luis M. Rocha. Volume 812. Studies
in Computational Intelligence. Cham, Switzerland: Springer
Nature, 2019

Our main contributions are:

» We propose a generator for modular networks with realistic
intra-community structures, using parameter distributions
derived from observations in real graphs.

» We derive suggestions for the parameter distributions.

» We demonstrate the quality of the generator in extensive
experiments.

We extend this line of work in:
Saskia Metzler and Pauli Miettinen. ‘HyGen: Generating Ran-

dom Graphs with Hyperbolic Communities’. In: Applied Network
Science 4.53 (2019)


https://doi.org/10.1007/978-3-030-05411-3_54
https://doi.org/10.1007/978-3-030-05411-3_54
https://doi.org/10.1007/s41109-019-0166-8
https://doi.org/10.1007/s41109-019-0166-8

1.2 Contributions and Prior Publications

The additional contributions in this journal article are:

» We present an alternative formulation of the HyGen model
as a graphon.

» We show that the graphon model is particularly suitable for
modelling time-evolving communities.

» We show empirically that existing random graph genera-
tors are not suitable for generating hyperbolic community
structure.

For both publications, SM and PM jointly came up with the idea.
SM explored the options of existing algorithms to yield graphs with
hyperbolic communities, reflected in the literature review as well
as in the experiments. SM explored preserved properties regarding
the graph structure. PM devised the graphon representation and
conducted the related experiments. SM implemented the algorithm
and conducted all other the experiments. SM and PM jointly wrote
the paper.

With minor changes, we present most theoretic results in Chapter 5.
We already discuss the graphon view of the hyperbolic model
in Chapter 4 for improved continuity. With minor changes, we
present the experimental evaluation in Chapter 7.

Volunteer effort in question-answering communities. Social
science is concerned with the study of communities of people and
their interactions. Using our hyperbolic community model, we
study volunteer effort in online social communities at a large scale,
examining the community structure on online question-answer
sites:

Saskia Metzler, Stephan Giinnemann, and Pauli Miettinen.
‘Stability and Dynamics of Communities on Online Question-
Answer Sites’. In: Social Networks 58 (2019)

The major contributions are:

» We propose a hyperbolic structure for online question—
answer forums.

» We show that the ratio of active members per community
remains constant over time.

» We observe that this constancy shows irrespective of com-
munity size and in all datasets, and contrasts what is usually
assumed to happen in online social communities.

SM, SG, and PM jointly developed the idea for the study. SM
reviewed related studies, conducted the experiments and analysis
and took part of writing. SG and PM helped with the analysis and
writing.

5
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Largely unchanged, this study is presented in Chapter 8.

Chapter 3, being a common introduction to the so far mentioned
works, builds on the lines of argumentation used in each of the
introductions, also drawing on the reviews of related work from
those publications.

Boolean tensor clustering. Tensor factorisations are used to un-
cover the structural building blocks of multiply-related data. Their
computational complexity hampers scaling to large data. For
Boolean tensor clustering, we restrict ourselves to binary data and
assume one of the tensor directions has only non-overlapping
factors — those assumptions are valid for many real-world data.
The first restriction enables the use of bitwise operators, the latter
assumption lifts much of the computational complexity from the
task:

Saskia Metzler and Pauli Miettinen. ‘Clustering Boolean Ten-
sors’. In: Data Mining and Knowledge Discovery 29.5 (2015)

We contribute:

» We present a new algorithm for the clustering problem,
resulting from the imposed constraints.

» We investigate the consequences of our constraints for the
computational complexity of Boolean tensor factorisations.

» We analyse our algorithm with the goal of maximising
the similarity and argue that this is more meaningful than
minimising the dissimilarity.

» We obtain a PTAS and an efficient 0.828-approximation
algorithm for rank-1 binary factorisations.

» We demonstrate that our algorithm for Boolean tensor clus-
tering achieves high scalability, high similarity, and good
generalisation to unseen data with both synthetic and real-
world data sets.

PM came up with the original idea of the paper. The theory and the
algorithm were devised jointly by PM and SM. PM explored the
complexity of the algorithm. SM implemented the algorithm and
conducted the experiments. PM and SM wrote the paper jointly.

This article, with minor changes, constitutes the second part of this
thesis, Chapters 10 to 13.


https://doi.org/10.1007/s10618-015-0420-3
https://doi.org/10.1007/s10618-015-0420-3

Graphs and Networks

Before we proceed to the details, this chapter is devoted to the 2.1 Foundations . . . .. ... ”

basics. We discuss the foundations of network studies and the Variations of Networks . 7

relevant elements of graph theory. Incidentally, we highlight the

Network Properties . . . .
commonalities of the two major lines of work that constitute this

Graph Patterns . . . . .. 10
thess. Community Structure . . 10
Network Generation . .. 11
Tensors from Graphs . . . 12

2.1 Foundations

Graphs are structures to model pairwise relations between objects.

They are defined to consist of two sets, the set of vertices V and

the set of edges E. We define a graph G as G = (V, E) such that

E C V xV.Thus the elements of E are two-element subsets of V [4]. [4]: Diestel (2017), Graph Theory
The number of vertices and edges in G we denote by |V| and |E|,

respectively.

With this mathematical definition, nothing is said about the nature

of the vertices or edges. In data mining, we often refer to graphs as

networks with nodes and links. The subtle difference is that networks

often refer to real systems while graphs solely denote the abstract

structural concept [5]. Examples of networks are the Internet as [5]: Barabaési et al. (2016), Network Sci-
a network of documents linked by URLs, society as a network ence

of individuals, road maps that link cities, metabolic networks, or

communication networks. We typically study the graph structure

in conjunction with the network content, so the terms are mostly

used interchangeably throughout this work.

2.1.1 Variations of Networks

For some networks, the direction of the links is important. In
metabolic reaction networks, for instance, some reactions might be
reversible, while others occur only in one direction. In communica-
tion networks, it might be of interest who called to whom, instead
of just knowing the pairs of people in contact with each other. If
all links of a network are directed, the network is called directed. If
all links are undirected, the network is said to be undirected. The
model we introduce subsequently (see Chapter 3) is targeted at
undirected networks.
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1: Anticipating what will be dis-
cussed later in this chapter, this
amounts to a three-way binary tensor.

[5]: Barabasi et al. (2016), Network Sci-
ence

Some networks account for the strength of ties between nodes
by equipping each link with a unique weight. An example would
be a phone call network where links are weighted by the total
time people talked to each other on the phone. In an email com-
munication network, weights could be derived from how often
people where in contact with each other within a certain time
frame. While such information can be an interesting addition to the
pure link structure, we focus on unweighted networks in this work.
As we shall see shortly, unweighted networks may be represented
through a binary matrix. One prime focus of our work is to explore
the computational advantages of such a binary representation.

In some networks, nodes and edges are annotated. Annotations can
supply additional information. In a network of people, this could
be information such as the age or gender of a person. Annotations
can also be used to define the type of nodes, for instance in a network
that records who read which document. Nodes in that case either
refer to people or documents and the network will thus have a
bipartite nature, meaning that links only occur between nodes of
different type. Formally, we say G is bipartite if the vertices of G
partition into two classes U and V, and every edge has its ends in
different classes.

Furthermore, edge annotations can define the type of an interaction.
In the network of people and documents, the introduction of
edge types, for instance, allows to distinguish whether someone
commented, or authored, or just read a certain document. Since
our work is focussed on exploiting advantages of the pure binary
representation of networks, such additional information does
not play a role for the subsequently introduced methods. Notice
however, that it is often possible to turn edge annotations into
separate graphs. For the example above, this would mean that we
analyse three networks instead of one:! the network of comments,
the network of reads, and the network of authorships.

2.1.2 Network Properties

Another fine difference between the notion of graphs and net-
works is their (perceived) size. Graphs often appear unaffected by
their size. Graph-theoretical concepts, while valid for graphs of
arbitrary size, can typically be understood at the example of neat
small graphs. Networks, on the other hand, often seem large and
unwieldy. To understand their contents, it is not enough to examine
a small substitute, since their properties only show when studying
the whole network. There exist numerous statistical measures that
help to grasp the nature of a network under study by providing a
characteristic summary. Examples of such measures [5] are



average path length — how many edges need to be traversed to
reach from node i to j for any pair (i, j);

diameter — largest distance between any pair of nodes;
average degree — how many edges every vertex has;

clustering coefficient — to what extent the neighbours of a given
node link to each other.

A further important characteristic is the degree distribution. By count-
ing the number of edges incident to every node of a given network,
we can empirically observe the degree distribution. The degree
distribution provides the probability that a randomly selected
node in the network has degree k. For real networks, the degree
distribution can often be approximated by a power law function [5].
As we shall see in Chapter 4, empirical degree distributions play
an important role for the model we propose.

Large networks are often sparse, meaning that the number of
connections is less than what it could maximally be. While the
exact definition of less is rarely ever mentioned, the networks we
observe in practice have only a few percent of the potential edges
present. From the coinciding observation that power law functions
often well describe the degree distributions in real networks, we
can gain more intuition about what sparseness refers to.

Networks whose degree distribution follows a power law are
called scale-free networks [5]. Their nodes degrees are such that
each fraction P(k) of nodes with degree k obeys P(k) ~ k=7, where
y = 0 is the power-law exponent. Power law distributions are
long-tailed and thus scale-free graphs are characterised by a small
number of highly connected nodes and a large number of nodes
with only few connections. This characteristic shape, as depicted
in Figure 2.1, implies an upper bound for the number of possible
edges: in a scale-free network, the number of nodes with degree
of O(1) increases linearly with |V|; two nodes, if 0 < y < 2, or
vanishingly few nodes, otherwise, have degree O(|V|) [6].>

One way to represent graphs in a machine readable format is by
means of an adjacency matrix. The adjacency matrix A = (a;;) of
a graph G is the |V|-by-|V| matrix where a;; = 1 if there exists
an edge between vertices i and j, and a;; = 0 otherwise.” For
undirected edges, we set 4;; = 1 and a; = 1. Thus, A is symmetric
if G is undirected. The restriction of A to {0, 1} facilitates Boolean
algebra operations, and enables efficient storage of large graphs,
as we shall see later.

If a graph G is bipartite, the adjacency matrix can be expressed in a
special way: Assuming we first write all nodes of class U and then
of class V, the adjacency matrix A has two all-zero blocks along the
diagonal since there cannot be any links between nodes of the same

2.1 Foundations

4 8 x

Figure 2.1: Plot of the power law func-
tion f(x) = x~L.

[6]: Genio et al. (2011), ‘All Scale-Free
Networks Are Sparse’

2: Genio, Gross, and Bassler [6] find
no guarantees for sparsity if y < 0.
But in that case, also the characteristic
properties of scale-free networks van-
ish, hence we exclude them already
by definition.

3: We indicate matrices as bold up-
percase letters. Element (i, j) of M
is denoted as mjj. See Sections 4.1
and 11.1, respectively, for more details
regarding notation.
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[7]: Mucha et al. (2010), ‘Community
structure in time-dependent, multi-
scale, and multiplex networks’

4: Edges exist only between two sub-
sets of nodes, not within.

5: Such a single node is called hub.

[8]: Koutra et al. (2014), “VoG: Sum-
marizing and Understanding Large
Graphs’

type. The off-diagonal block B of size |U|-by-|V| is the biadjacency
matrix. With B, we obtain a non-redundant representation of the
0.B)

graph, since A = (51 ).

2.1.3 Graph Patterns

Networks, the larger they are, the more complex it gets to charac-
terise their nature as a whole. It is often advantageous to study their
constituents, or patterns they are composed of. Besides network
measures of the kind discussed above, which offer a global view
by counting properties of individual nodes, we can increase the
scale of granularity and explore the organisation of groups of
nodes. Commonly, intermediate, or mesoscopic, structure refers to
the organisation of nodes into modules or communities [7]. While
classically, this means that groups of nodes are more tightly con-
nected to each other than they are to the rest to of the network,
also internal connectivity patterns within the modules may be
observed. Examples of intermediate scale structures are

cliques — a set of fully interconnected nodes;

bipartite cores — non-empty, non-intersecting set of nodes;*

star — bipartite core with a single node in one partition;”

chain — list of nodes with links from one node to the next.

Such a vocabulary for subsets of nodes is especially useful for the
summarisation of graphs from an information theoretic point of
view [8]. For the present work, it is a major focus to realistically
model communities including their internal structure, thereby
helping to gain an intuition about the nature of large networks
under study.

2.1.4 Community Structure

Networks with community structure have (potentially) overlapping
subsets of nodes that are more densely connected among each
other than to the rest of the graph. Social networks, in particular,
frequently exhibit community structure. Using friendship networks
as an example, we can easily deduce the underlying reasons why
people form communities: individuals might know each other
from school, the same place of origin, their occupation, a common
hobby, and so on. Clearly, communities might be overlapping: the
same person can have ties to former schoolmates, to colleagues
at work, and be part of a social circle of musicians who know
each other from orchestra rehearsals. Each of the three mentioned
groups forms communities of mutual friends. One person can
participate in several of them.



Furthermore, their members might not be equally well intercon-
nected: someone who just started at a new work place probably
knows the immediate colleagues and the boss, but most likely has
not yet connected to everybody else; if the company is large enough,
the person might never connect to all the colleagues. People, like
the boss of a company, that are known by (almost) everybody else
in a community, we call the core of the community. The rest of the
members in the community we refer to as tail.®

In this social context, the intuitive notion of communities is easy
to grasp. Yet, the whole branch of Social science is devoted to
the study of social communities and the relationships among
individuals therein because their deeper understanding is all but
simple. Community structure is also observed in other contexts,
for instance in protein interaction networks [10] and transportation
networks [11]. Formal definitions to describe communities, models
for their emergence, and their detection within graphs must trade-
off between simplicity and the degree of realism.

With a focus on community detection, a variety of methods have
been introduced in the literature [12]. Even though the proposed
approaches seem highly diverse, their vast amount have been
either explicitly or implicitly aimed at detecting block-shaped
areas of uniform density in the adjacency matrix. This includes
prominent techniques such as stochastic block-models [13, 14],
affiliation network models [15], the detection of quasi-cliques [16,
17], and cross-associations [18]. Araujo et al. [3] capture that the
density within communities is not uniformly distributed — some
nodes show stronger connectivity among its peers. Inspired by
their work, we propose a more general community model that
is simple and at the same time highly realistic, as we will see in
Chapter 4.

2.1.5 Network Generation

Models that reproduce network properties aid our understanding
of large and complex networks. They reflect important character-
istics we deem typical for the networks under study. To produce
models of real networks, we need to define a suitable random
network model, referring to a probability distribution or a random
process which generates the network.

There are two classic approaches to define a random network [5]: in
Erdés-Rényi graphs, L randomly placed links connect N nodes [19];
Gilbert’s model assumes that each pair out of N nodes is connected
with probability p [20]. Either model has advantages for the
calculation of network characteristics. Real networks, however,
typically exhibit the small-world property, meaning that they have

2.1 Foundations

6: For similar structures, Borgatti and
Everett [9] coined the terms core and
periphery. We deviate from this termi-
nology since the model we propose
(see Chapter 4) allows for more shape
variations than the term periphery im-
plies: we will see subsequently that
tails may get progressively thinner;
nodes in the periphery are assumed to
be evenly connected to the core.

[9]: Borgatti et al. (1999), ‘Models of
core/periphery structures’

[10]: Girvan et al. (2002), ‘Commu-
nity structure in social and biological
networks’

[11]: Leo et al. (2013), ‘Community
core detection in transportation net-
works’

[12]: Javed et al. (2018), ‘Community
detection in networks’

[13]: Nowicki et al. (2001), ‘Estimation
and prediction for stochastic block-
structures’

[14]: Airoldi et al. (2008), ‘Mixed Mem-
bership Stochastic Blockmodels’

[15]: Yang et al. (2012), ‘Community-
affiliation graph model for overlap-
ping network community detection’
[16]: Ginnemann et al. (2014),
‘GAMer: a synthesis of subspace clus-
tering and dense subgraph mining’
[17]: Boden et al. (2012), ‘Mining coher-
ent subgraphs in multi-layer graphs
with edge labels’

[18]: Chakrabarti et al. (2004), ‘Fully
Automatic Cross-Associations’

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion

[5]: Barabasi et al. (2016), Network Sci-
ence

[19]: Erdés et al. (1959), ‘On random
graphs I

[20]: Gilbert (1959), ‘Random Graphs’
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[21]: Watts et al. (1998), ‘Collective
dynamics of ‘small-world” networks’

7: The Erd6s—Rényi model and the
Watts-Strogatz model do not exhibit
the scale-free property.

[22]: Albert et al. (2002), ‘Statistical
mechanics of complex networks’

[23]: Leskovec et al. (2005), ‘Graphs
Time: Densification Laws,
Shrinking Diameters and Possible Ex-
planations’

over

a much higher clustering coefficient than the aforementioned
models produce and at the same time a small average shortest
path length. The coexistence of these properties is addressed in
a third well-known model, the Watts-Strogatz model [21]. With
a focus on realistic degree distributions,” the Barabasi-Albert
model [22] incorporates further important principles observed
in real networks: growth and preferential attachment. The latter
means that well-connected nodes are more likely to receive further
connections.

Capturing network growth helps to understand the processes
that assemble a network. It allows for hypotheses how a certain
system came into being, and also enables to make predictions on the
future evolution of certain networks. Bringing together small-world
and scale-free phenomena in a time evolution-based modelling
approach, the Forest fire model [23] has gained considerable
attention: contrasting previous assumptions, the Forest fire model
suggests that real graphs have out-degrees that grow over time,
while the diameters have a tendency to decrease.

All of these approaches focus on imitating global properties of
the graphs, like its degree distribution, clustering coefficient, or
effective diameter. In contrast, the random graph generator we
propose in Chapter 5 generates modular random graphs with
special focus on realistic intra-community structures. To that end,
it uses parameter distributions derived from observations on real
graphs. Models for the realistic generation of community struc-
tures are especially important for the validation of community
detection algorithms: Testing community detection requires large
amounts of training data with reliable labels. Manual and auto-
mated labelling both come with the drawback that the developed
detection approach is compared to the approach used to generate
the labels. With a realistic random graph generator which accounts
for community structure, we can test algorithms on trustworthy
ground-truth information.

2.1.6 Tensors from Graphs

The networks we often encounter are all but static. Time-evolving
networks, for instance, record communication, social interaction, or
traffic. Their particular growth patterns only show if we study the
networks at various points in time. To that end, we need to represent
them in a machine readable form. One option is to record their
adjacency matrix at every point in time. Those matrices, stacked
on top of each other, can be regarded as a three-way tensor. Tensors
are multi-way generalisations of matrices. While every entry of a
matrix is identified by two indices, indicating the respective row



and column, in a three-way tensor, we additionally need to specify
the layer we refer to. Generally, tensors can be N-way, taking N
indices to refer to a particular entry.®

Representing a time-evolving graph as a tensor implies that we
need to know its dimensionality beforehand. Resizing the whole
tensor as new nodes join is computationally costly. This might be
a drawback when analysing networks in real time. It is however
unproblematic if we are interested in the past of a network up until
a certain time point. The advantage of the tensor representation is
that we can make full use of tensor methods for the analysis.

The tensor constructed from the time-evolving graph as described
above has no cross links along the time dimension. Assuming non-
overlappingness in one of the modes facilitates a scalable binary
tensor factorisation approach: Boolean tensor clustering (BTC) applies
clustering along one tensor dimension to derive a partitioning, and
presents a common representative of each partition that captures
the essence of its structure, as we shall see in Chapter 10. Of course,
binary tensors not need to originate from time-evolving graphs.
Another example would be the network of people and documents
with typed edges discussed above. A more involved example are
RDF graphs interpreted as a tensor [24].

2.1 Foundations

8: We formally introduce tensor ter-
minology in Chapter 10.

[24]: Metzler et al. (2015), ‘Join Size Es-
timation on Boolean Tensors of RDF
Data’
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Modelling Community Structure

This chapter marks the begin of the first part of this thesis. We give
an introductory overview to prepare for the introduction of the
hyperbolic model: We motivate the need for incorporating details
about the community structure in network models. We explain
our approach to modelling community structure in networks. And
we place our contributions in the context of related work.

3.1 Our Contributions

The networks that typically come to mind when thinking of com-
munities, are networks of people: friends, grouped by their home
town, or the school they went to; people liking or following others;
people calling each other on the phone. Also in this work, people
are the entities in most data we study. It is probably a frequent
choice for testing new graph methods or models, since (1) due to
online communication, large amounts of data are freely available
on the Internet and (2) understanding the meaning of links is
very intuitive. At the same time human interaction data are so
interesting — and so difficult to truly understand — that a whole
branch of science is devoted to their study: social sciences are about
studying communities and the relationships among individuals
therein.

Our work adds options for large-scale analysis of social interaction
data. Based on the observation that it is often an oversimplifying
assumption that entities within communities have evenly strong
connections to each other, we develop a model that describes the
intra-community connectivity pattern in a realistic way: we account
for the frequent observation that a community is dominated by
a few highly inter-connected entities, and the remaining entities
mainly have ties to those and hardly connect to one another (see
Figure 3.1 for an illustration).

Primarily inspired by the observations of Araujo et al. [3], we
introduce the hyperbolic community model to capture patterns of
uneven connectivity within communities. As a special case, our
model includes extreme structures such as a star, where one node is
connected to everybody else but nobody has any further connection
to each other, or a clique, where everybody is connected to each
other. Our model furthermore includes power law connectivity,

3.1 Our Contributions . . .. 17
3.2 Related Work ....... 19
Intra-Community Struc-

ture . . ... ... 20

Overlapping Communities 21

Network Generation . .. 23

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’
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Figure 3.1: An example of the kind
of pattern we aim to model: the adja-
cency matrix of a community from the
YouTube data, unordered and ordered
by induced degree, with a hyperbolic
model fitted (green line); while the
plotted unordered adjacency matrix
hardly reveals a pattern other than
uniformly dense block, ordering by
node degree reveals the shape of a
hyperbola.

[9]: Borgatti et al. (1999), ‘Models of
core/periphery structures’
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such as described by Araujo et al. [3]. Also the widely recognised
core-periphery model [9] can be regarded as a special case of our
hyperbolic community model. Unlike these preceding approaches,
our model incorporates sparsity in its probabilistic formulation
to account for imperfect data. Of course, even though we mostly
discuss the model in the context of human interaction data here, it
is valid for arbitrary graphs with community structure.

Towards the understanding (social) network organisation, we add
another ingredient: we propose a random graph generator on
the basis of the hyperbolic community model. The generation of
realistic random graphs aids the synthesis of suitable commu-
nity detection algorithms. Naturally, the quality of community
detection algorithms is best tested on real-world data. This, how-
ever, requires significant amounts of testing data with reliable
labels. Manual labelling is usually considered qualitatively the
most adequate, yet potentially very subjective and hard to obtain
in large quantities. Any automated community labelling proce-
dure implies a comparison of the community detection algorithm
under test to another procedure of detecting the communities. A
favourable alternative to obtain large amounts of reliably labelled
testing data is to use random graph generators that create graphs
with similar properties as real-world templates. On the basis of
our hyperbolic community model, we propose HYGEeN, a random
graph generator that generates modular networks with realistic
intra-community structures using parameter distributions derived
from observations on real graphs.

In a hands-on study, we employ the hyperbolic community model
for a broad survey of freely available question—answer data from
the large popular sites reddit.com, stackexchange.com, and
healthboards.com. This large-scale assessment of the volunteer
effort in online social communities indicates that the active partici-
pation of only few community members within a group is a general
organisational principle. We identify a unifying pattern present
in all examined groups: the amount of active members is a constant


reddit.com
stackexchange.com
healthboards.com

fraction of the entire community throughout its lifetime. Because of the
social function of online communication [25], this result is relevant
for social communities in general.

In summary, in this part of the thesis, we propose a novel model
for the description of communities in networks in Chapter 4 and
a corresponding approach for network generation in Chapter 5.
Besides experiments to validate the use of our model and our
graph generator in Chapters 6 and 7, we present a large-scale case
study of volunteer effort in online social networks in Chapter 8.

3.2 Related Work

Networks are frequently observed to have community structure,
meaning that networks are composed of groups of densely con-
nected nodes, sparsely connected to one another. Such modular
structure occurs across various domains and has been regarded by
a notable body of research. Online social networks might be the
most prominent example, due to their presence in our everyday life.
In addition, their data are comparatively easy to access and, to an
extent, plausibility of the results can be verified using basic human
intuition. The situation is very different when it comes to network
data from biological systems, where data gathering and interpre-
tation of the outcome are always a multidisciplinary endeavour:
to name a few, metabolic networks [26], protein interaction net-
works [27], gene regulatory networks [28], and food-webs [29, 30]
have been examined for their community structure. In a thorough
overview, Javed et al. [12] identify further areas where modular
networks have been studied: economics, e-commerce, academia
and scientometrics, communication networks, healthcare, fraud
and anomaly detection, link prediction, and source code design.

In consequence of the numerous areas of applications, a versatile
amount of methods and models exists in the literature. It would be
beyond the scope of this thesis to provide a general comprehensive
survey. The interested reader is referred to Javed et al. [12] for a
meta-survey of relevant survey articles. In the following discussion,
we focus on the three aspects we deem most relevant to our work:

» intra-community structure,
» overlap between communities,
» generation of networks with community structure.

While discussing those points, we of course also touch the area of
community detection. The aspect of modelling the time evolution
of communities will be considered in later, in the discussion of our
results in Chapter 8.

3.2 Related Work

[25]: Wellman et al. (1996), ‘Computer
Networks as Social Networks: Collab-
orative Work, Telework, and Virtual
Community”

[26]: Ravasz et al. (2002), ‘Hierarchi-
cal Organization of Modularity in
Metabolic Networks’

[27]: Maslov et al. (2002), ‘Specificity
and Stability in Topology of Protein
Networks’

[28]: Shen-Orr et al. (2002), ‘Network
motifs in the transcriptional regula-
tion network of Escherichia coli’

[29]: Krause et al. (2003), ‘Compart-
ments revealed in food-web structure’
[30]: Guimera et al. (2010), ‘Origin of
compartmentalization in food webs’

[12]: Javed et al. (2018), ‘Community
detection in networks’
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[31]: Cherifi et al. (2019), ‘On commu-
nity structure in complex networks:
challenges and opportunities’

[13]: Nowicki et al. (2001), ‘Estimation
and prediction for stochastic block-
structures’

[14]: Airoldi etal. (2008), ‘Mixed Mem-
bership Stochastic Blockmodels’

[15]: Yang et al. (2012), ‘Community-
affiliation graph model for overlap-
ping network community detection’

[16]: Ginnemann et al. (2014),
‘GAMer: a synthesis of subspace clus-
tering and dense subgraph mining’
[17]: Boden et al. (2012), ‘Mining coher-
ent subgraphs in multi-layer graphs
with edge labels’

[18]: Chakrabarti et al. (2004), ‘Fully
Automatic Cross-Associations’

[32]: Miettinen et al. (2008), “The Dis-
crete Basis Problem’

[33]: Laumann et al. (1976), Networks
of Collective Action: A Perspective on
Community Influence Systems

[34]: Alba et al. (1978), “Elite Social
Circles’

[35]: Morgan et al. (1997), ‘“The stabil-
ity of core and peripheral networks
over time’

[36]: Reed et al. (2001), “The Civic
Core in Canada: Disproportionality
in Charitable Giving, Volunteering,
and Civic Participation’

[37]: Panzarasa et al. (2009), ‘Patterns
and dynamics of users’ behavior and
interaction: Network analysis of an
online community’

[38]: Corradino (1990), ‘Proximity
structure in a captive colony of
Japanese monkeys (Macaca fuscata
fuscata): An application of multidi-
mensional scaling’

[9]: Borgatti et al. (1999), ‘Models of
core/periphery structures’

1: Unlike in our hyperbolic commu-
nity model, all peripheral nodes are
assumed to be evenly connected to
the core.

[39]: Rombach et al. (2014), ‘Core-
Periphery Structure in Networks’

3.2.1 Intra-Community Structure

In advance of the detection of communities in networks, it is
important to define what constitutes a community. Commonly,
communities are described as subsets of nodes, more densely con-
nected to each other than to the rest of the network [31]. With this
definition, nothing is said about the characteristic patterns of con-
nectivity inside communities, and in fact, many approaches work
with the underlying assumption that nodes within a community
are evenly connected to each other. A community is then under-
stood as a block-shaped area with uniform density in the adjacency
matrix. This quasi-clique assumption is the basis of prominent
techniques such as stochastic block-models [13, 14], affiliation net-
work models [15], pattern-based techniques such as the detection
of quasi-cliques [16, 17], and cross-associations [18]. In fact, all
these techniques closely relate to the principle of Boolean matrix
factorisation (BMF) [32]. The goal of BMF is to identify the binary
factors that together explain given binary data. When applied to an
adjacency matrix, the potentially overlapping factors correspond
to sets of nodes. In other words, BMF aims to find overlapping
blocks in binary matrices.

It has been observed, however, that communities in real networks
typically display specific patterns of connectivity among their
members. Especially in social networks, they show a pronounced
core-tail structure: A small fraction of the community members
have strong ties to each other and form the core. The majority
of members only have ties to the core and not to each other; we
denote them as tail. The observation of such structures has been
described in diverse studies within the context of social networks:
the relationships of elites and leaders in population subsystems [33,
34], the development of personal networks over time [35], volunteer
effort and the civic core of society [36], communication among
students [37], the relationships among Japanese macaques [38].

Borgatti and Everett [9] propose the first widely recognised formal-
isation of core-tail structures in networks. The core/periphery model
classifies the nodes of a community in two subsets: a cohesive sub-
graph, where the participating nodes are fully interconnected, and
peripheral nodes with connections to that subgraph but lacking
cohesion.! For a continuous version of the model, Borgatti and
Everett assign core scores to the nodes reflecting how deep a node
lies inside the core. Generalising this idea, Rombach et al. [39]
present a computational method for the identification of cores.
While their reported performance would be insufficient for the
analyses we present, it is potentially still an interesting direction of
research is to explore the exact correspondence of this approach to
ours.



Our approach, the hyperbolic model, is inspired by an alternate line
of work: Araujo et al. [3] observe uneven connectivity within com-
munities in various data sets. They notice the reoccurring pattern
that a few members of the community are highly interconnected
and constitute the core. Most of the members only have ties to the
core and thus form the tail. Contrasting the model of Borgatti and
Everett, Araujo et al. assume that tails get progressively thinner,
and the most peripheral nodes knows only a single member of the
core. Such a shape in the degree-ordered adjacency matrix is well
described by a power law function. In order to find and to describe
those communities, Araujo et al. propose the HyCom algorithm.

Our model is a generalisation of both above-described approaches.
It captures the particular core-tail structure by means of simple
parameters, indicating the size of the core and the size of the tail.
As we shall see shortly, in Section 4.2, our model encompasses
the model of Borgatti and Everett as a special case, and also
encompasses power law-like connectivity as proposed by Araujo
et al. It is suitably general to represent clique-like as well as
star-like patterns of connectivity. Unlike HyCom, our probabilistic
formulation enables the use with imperfect data. Araujo et al.
assume a density of 100 per cent inside a community, violating
the general property of sparsity. Our model, in contrast, allows
varying density among the different communities, yielding clear
benefits as the experimental analysis confirms.

A generalisation of our model is the concept of nested matrices [40].
Nested matrices have non-negative rounding rank 1[41], suggesting
that rounding rank decompositions could provide an approach for
finding hyperbolic communities. We will return to this idea in the
concluding discussion in Chapter 9.

3.2.2 Overlapping Communities

Our hyperbolic community model describes not only the struc-
ture of individual communities, but also their organisation within
networks: we assume that networks may consist of multiple, po-
tentially overlapping hyperbolic communities.

A simpler alternative is to assume communities to be disjoint.
The most well-known model for networks with potentially con-
nected, but non-overlapping communities is the stochastic block
model (SBM) [42]. In its original formulation, communities are
regarded as block-shaped areas in the adjacency matrix with
uniform density. Among its numerous variations [43] are mixed
membership SBMs [14], where a variational inference approach
identifies overlapping, block-shaped communities. In an alternate
line of work, Peixoto [44] presents overlapping SBMs which account

3.2 Related Work

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’

[40]: Karaev et al. (2018), ‘Logistic-
Tropical Decompositions and Nested
Subgraphs’

[41]: Neumann et al. (2016), “‘What You
Will Gain By Rounding: Theory and
Algorithms for Rounding Rank’

[42]: Holland et al. (1983), ‘Stochastic
blockmodels: First steps’

[43]: Lee et al. (2019), ‘A review of
stochastic block models and exten-
sions for graph clustering’

[14]: Airoldi et al. (2008), “‘Mixed Mem-
bership Stochastic Blockmodels’

[44]: Peixoto (2015), ‘Model Selection
and Hypothesis Testing for Large-
Scale Network Models with Overlap-
ping Groups’
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[45]: Peixoto (2017), ‘Nonparametric
Bayesian inference of the microcanon-
ical stochastic block model’

[46]: Karrer et al. (2011), ‘Stochastic
blockmodels and community struc-
ture in networks’

[47]: Palla et al. (2005), ‘Uncovering
the overlapping community structure
of complex networks in nature and
society’

[48]: Lancichinetti et al. (2009), ‘De-
tecting the overlapping and hierarchi-
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for the co-occurrence of genuine mixed membership and single
membership nodes within the same network. Further along this
line, Peixoto [45] proposes a non-parametric generative process
for degree-corrected SBMs (DC-SBMs). DC-SBMs [46] allow for un-
even intra-community densities. Yet, DC-SBMs differ from our
hyperbolic model, as we will discuss subsequently in the context of
graph generators. The DC-SBM formulation of Peixoto incorporates
Bayesian inference and makes use of the minimum description
length (MDL) principle to determine the best configuration of
overlapping communities given a network. A distinction from our
approach is that communities are determined in the sense of a
hierarchical partitioning of the network. In a hierarchical partitioning,
communities are embedded within other communities. Combining
ideas from the work of Peixoto with our modelling approach could
be an interesting direction of future research.

Hierarchical organisation is considered an organisational principle
of complex systems, but there is disagreement about its extent.
For Palla et al. [47], the presence of communities in networks is
a signature of the hierarchical nature. Lancichinetti, Fortunato,
and Kertész [48] assume the co-presence of community structure
and hierarchies, and propose a community detection approach for
finding both overlapping communities and nested structure along-
side each other. Alternatively, hierarchical organisation can simply
be regarded as a special case of overlap between communities, as
stressed by Yang and Leskovec [15]. This latter perspective best
matches our modelling approach. Our model is valid also in case
of subsumption of one community by another. The exploration of
such structures, however, is not the focus of this work.?

Yang and Leskovec [15] furthermore explain non-uniform density
inside communities as the result of overlap between communities.
In their affiliation network model, nodes participating in multiple
communities lead to areas of higher density, as edges become
more likely due to the combined density of the overlapping tiles.
Although one might assume the opposite, this model is not com-
patible with our scenario of hyperbolic communities: given a set of
nodes to form a community, an affiliation network model generates
edges following the same probability, leading to block-like struc-
tures in the adjacency matrix. In addition, the prior assumption
of Yang and Leskovec seems inappropriate for the networks we
study, since we observe non-uniform distributions of the edges in
(often truly) non-overlapping communities.

For the purpose of graph compression, other graph patterns going
beyond quasi-cliques have been considered. For Lim, Kang, and
Faloutsos [49], graphs are a collection of hubs connecting to spokes.
These hubs are recursively connected to super-hubs. Extending



this idea, Koutra et al. [50] compress graphs by using patterns such
as stars or bipartite cores. None of these works exploits the idea of
hyperbolic community structure.

3.2.3 Network Generation

With an appropriate random network model, we may generate
networks that mimic the structure of real graphs. The aim of many
popular random graph generators is to model global properties
of the graphs, such as degree distribution, clustering coefficient,
or effective diameter. Hence, models such as Erd§s—Rényi [19],
Barabasi—-Albert [22], or the Forest fire model [23] do not generate
community structure. Similarly, graph expansion models [51, 52]
and hyperbolic geometry models [53] focus on global aspects of real-
world graphs. Kronecker graphs [54] can be interpreted to have
a community structure, but due to the recursive structure, the
constructed communities have symmetries in size and shape not
observed in real graphs.

Further developing SBMs [42], specialised random graph gener-
ators have been proposed to generate graphs with a community
structure. While the SBM is the most popular model to study com-
munity detection and clustering techniques [55], SBM has severe
limitations, since it cannot incorporate variable inter-community
degree distributions. To address this, DC-SBMs [46] incorporate
an additional degree parameter for each vertex. This allows mod-
elling uneven edge probabilities. As pointed out by Zhu, Yan, and
Moore [56], DC-SBMs use the degrees of vertices as parameters,
implying that the model cannot separate vertices based on degree
even when that would be the correct partitioning. This limitation
is overcome by degree-generated SBMs [56]. Degree-generated SBMs
treat the expected degree of each vertex as generated from prior
distributions, such as power laws, whose exponents vary from one
community to another. Our model further differs from these, as
we assume that intra- and inter-community edges have different
probabilities.

The recursive matrix (R-MAT) generator [57] is another popular model
for generating random graphs with community structure. R-MAT
generates graphs by recursively subdividing the adjacency matrix
into four equally sized partitions and distributing the edges within
the partitions according to partition-specific probabilities. This
approach allows it to mimic the degree distributions of real-world
graphs, but restricts the shape of the constructed communities.

A third popular model for testing community detection algorithms
is the Lancichinetti—Fortunato—Radicchi (LFR) benchmark [58]. LFR is
an extension of the Girvan—Newman benchmark [10]. Unlike SBM or
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3: We introduce the random graph
generator HYGen in Chapter 5.

R-MAT, LER can produce overlapping community structures and
weighted and directed graphs. Compared to Girvan-Newman, LFR
emphasises the heterogeneous distributions of node degrees and
community size. Yet, LFR generates near-uniform intra-community
degree distributions, violating the assumption of non-clique-like
community structures, as we observe in Section 7.2.

Orman, Labatut, and Cherifi [59] examine variations of LER which
achieve more realism with respect to transitivity and degree cor-
relation in the generated graphs by choosing alternate random
models for the initial step of the algorithm. In recent work, Fagnan
et al. [60] propose a generalisation of LFR which follows the evolu-
tion patterns and characteristics of real networks. While the focus
of our present work is the generation of individual communities
with realistic structure therein, these works concentrate on mod-
elling the overlap of multiple communities, and might therefore be
a source of inspiration for future extensions of our model. An LFR
variation into an alternate direction is introduced by Yang, Perotti,
and Tessone [61]. Their goal is to represent hierarchical community
structure within the generated networks, assuming that hierarchic
organization is the prevalent principle of complex systems.

To the best of our knowledge, no existing random graph generator
is designed to model graphs consisting of hyperbolic communities.
As many real-world graphs seem to follow a hyperbolic or core—
tail model, we introduce a novel random graph generator to fill
this gap. HYGeN generates modular networks with realistic intra-
community structures using parameter distributions derived from
observations on real graphs.’



The Hyperbolic Community
Model

In this chapter, we introduce the hyperbolic community model
for capturing non-uniform edge distributions. We discuss three
equivalent formulations of the proposed model, each with a dif-
ferent intuition behind. We show their equivalence and discuss
the advantages of the different parametrisations. Additionally, we
present a graphon formulation of the model. We show how to
tit the hyperbolic models to observed communities, and how to
model an entire graph consisting of multiple communities.

4.1 Model Definition

Let our input be an undirected graph G = (V, E) with n nodes
and m edges. We will assign a number from {0, ..., n — 1} to the
vertices and use (1, v) to denote both a pair of vertices and the
(potential) undirected edge between them. We will represent the
graph using its adjacency matrix A = (a,,) € {0, 1}">".

Definition 4.1.1 A community C is a tuple (Vc, mc, ©c). The set
V¢ C V contains the nodes in the community, and we write nc = |V¢|.
n: Ve —{0,...,nc — 1} is a permutation of the nodes that maps
the nodes of a community to a set of indices {0, ..., nc — 1}, and O¢
is a set of parameters that defines the shape of the community.

We assume that the permutation ¢ orders the nodes in descend-
ing order according to their intra-community degree deg-(v) =
[{u € Vc: (v,u) € E}|.

The key feature of our model is that not all edges between the nodes
in V¢ is necessarily part of the community — that assumption would
make all of our communities quasi-cliques. Which edges are part
of the community is defined using a binary decision function.

Definition 4.1.2 The model of the community is given by the decision
function

£:10,...,nc =1} x{0,...,nc =1} x O¢ — {0,1}.

The function f takes a pair of permuted node indices and the set
of parameters for the community, and decides whether the edge
between the nodes is part of the community.

4.1 Model Definition . . . . .
Area Under a Hyperbola
Fixed Points in Curve . .
Line-Hyperbola Mixture
Graphon Representation

4.2 Generalisation of Exist-
ingModels . .......

4.3 Full Graph Model .. ..
4.4 Time Complexity . . . . .
4.5 Algorithms . . . ... ...
Single Community . . . .
Full Graph . ........
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Definition 4.1.3 An edge (u, v) is a part of the community C if

1 u€eVcandv € V; and
2. f(nC(u)/ nC(v)/G)C) =1.

For brevity, we will mostly omit writing the permutation. Instead,
when it is clear from the context, we will denote vertices by their
indices in the permutation; for instance, v, u, and w could be
denoted by i, j, and h, with the meaning thati = c(v), j = mc(u),
and h = mc(w). Notice that the function f only gets the indices
relative to the subgraph, not to the full graph, that is, to test a pair
(i, 7) € Ve X V¢, we need to compute f(T(C(i), T(c(]'),G)c).

Every community is associated with two sets of edges: the area of
the community, Ac, is defined as

Ac={(G,j) e Vex Vc: f(i,j,0c) =1}, (4.1)

and the edges of it, Ec = E N Ac. For notational convenience, we
also define their complements (with respect to the community and
the area, respectively):

Ac = (Ve xVe)\ Ac (4.2)
Ec=Ac\E. (4.3)

Subsequently, we will discuss several definitions of the func-
tion f.

Probabilistic view. In practice the communities are rarely, if
ever, exact. That is, some edges (i, j) € Ac are not in Ec, and some
edges (i, j) € E that go between the nodes of the community are
not in Ac. To model these imperfect communities, we consider a
probabilistic model of the community. Given a community C, we
assume that edges (i, j) € V¢ X V¢ are drawn from a Bernoulli
distribution, a;,; ~ Bernoulli(p.), where A = (a; ;) is the adjacency
matrix of the graph, and p. is the density of the area that the edge
belongs to. For a single community, we have two kinds of areas:
the area of the community Ac and its complement Ac. We denote
the density of the area of the community by

|Ec|
dc=+—, 4.4
= 1aq| (4.4)
and the density of the area outside the community by
ENAc
do = IEnAcl (4.5)

Ac|



These densities correspond to the maximum-likelihood solutions
of the variables p. for the edges that are inside or outside of
the community. We can now consider the likelihood of the sub-
graph induced by the community G|y, given the community C,
L(Glv. | C). The likelihood of an edge that is in community C is
dc; the likelihood of a pair (7, j) that is in the area of C but that is
not an edge of G is 1 — dc; the likelihood of an edge that is not in
the community is dp; and the likelihood of a pair (i, j) that is not in
the community’s area and is not an edge of Gis 1 —do.

Definition 4.1.4 The log-likelihood G|y, of the subgraph induced
by the community Gy, given the community C is

log L(Glv,. | C) = |Ec|log(dc) + |Ec|log(1 — dc)
+|E N Ac|log(do)
+|Ac \ E|log(1 - do) .

4.1.1 Area Under a Hyperbola

From observations on real-world data, we notice that when the
nodes of a community are ordered in the induced degree order, the
edges lie under a hyperbolic curve, like shown in the example in
Figure 3.1b. To define the hyperbola we identify the vertex indices
of the community as points in x and y axes. We use i and j instead
of x and y to emphasise this connection. We will only consider
the area [0, nc — 1] X [0, nc — 1] from the non-negative quadrant,
as that is where the values important to our community are. The
equation for a (rectangular) hyperbola is

(i+p)j+p) =0, (4.6)

with the centre at (—p, —p). Following the model, an edge (i, j) is
considered to be in the community if (i + p)(j + p) < 6. We call
this model hyperbolic(p, 0) and write (i, j) € hyperbolic(p, 0)
if(i+p)(j+p) <0.

From Figure 4.1 we can gain some intuition to the parameters
p and O: different values of p will yield different shapes of the
gradient (the coloured background in Figure 4.1), while different
values of 6 will move the line away from the origin.

Valid range of parameters. The values Equation 4.6 assigns to
elements (i, j) attain their minimum at the centre (—p, —p). To
make sure that all elements (7, j) € N X N that are under the curve
Equation 4.6 are always in the community, we must bound p. A

4.1 Model Definition

hyperbolic(p, 0) is derived from the
hyperbola equation.

100 \

50

x 50 100

i

Figure 4.1: A hyperbola with p = 2.06
and O = 673 (dark red lines). The cen-
tre (—p, —p) is marked with a cross.
The colours in the background of the
non-negative quadrant indicate the
values of (i+p)(j+p) fori, j € [0,99],
with higher values moving from cyan
to magenta. The area of the commu-
nity is the solid-coloured area under
the curve.
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fixed(y, H) describes the commu-
nity shape in an easy to interpret way.

1001
50+
0 50 100

Figure 4.2: The parameter ) explains
the size of the core of the community
(dark-shaded box), while H explains
the height of the tail at the end of the
community.

simple boundary is to enforce that p > 0, though in the next section
we will derive a more relaxed boundary. Other than this boundary,
p and O can be any values.

Definition 4.1.5 The decision function for hyperbolic(p, 0) is

fhyperbolic(i/ j/ P, 9) = [(l + P)(] + p) < 9]

with the parameter set © = {p, 0}, and p > 0and 0 € R.

We use the Iverson bracket notation, meaning that [P] = 1 if
proposition P is true and [P] = 0 otherwise.

4.1.2 Fixed Points in Curve

The shape of the hyperbola is not easy to interpret from Equa-
tion 4.6, and hence it is not easy to say, by just looking at the
parameters p and 0, whether the community is “fat” or ‘skinny’. To
make the model parameters more interpretable, we can consider
two points in the curve: the point at which it crosses the diagonal
(i.e. when i = j), and the point at which the hyperbola exits the
community (i.e. j for which i = n¢ or vice versa). We call the
former y and the latter H, and we can consider them as two values
that define some p and 0 such that

(y+p)(y+p) =6 (4.7)
(H+p)(nc-1+p)=0. (4.8)

To interpret the parameters, it is helpful to divide every community
into two parts: core and tail. The core consists of nodes that form
a densely connected (quasi-) clique, while the tail is formed by
the least-connected members of the community that are mainly
connected to the core. This is illustrated in Figure 4.2 where the
core is shaded in dark blue and the tail in light red. The parameter y
is the size of the core (minus 1 to account for zero-based indexing)
— the larger y, the larger clique the community has — while the
parameter H tells how ‘fat’ the tails are. A (quasi-) clique would
have large y and H, while a star would have y = H = 0. We will
call this model fixed(y, H).



We can solve Equations 4.7 and 4.8 for p and 0 to obtain an alternate
decision function only dependant on y, H, and n¢ (the size of the
community),

_ yP—(nc-1H
p= (nc—-1)+H -2y (49)
5 (y —HP(y —nc -1 (4.10)

(nc—1+H —2y)?

Definition 4.1.6 The decision function for fixed(y, H) is

frixed(i, j, v, H) =

- y?—(nc - 1)H .+72—(nc—1)H
1’lc—1+H—2‘}/ }’lc—1+H—2‘}/

O =H2(y =~ (nc-1)"
T (nc-1+H-2y)?

with the parameter set © = {y, H} and the community size nc.

Equivalence. Given Equations 4.7 and 4.8, it is hardly surprising
that fixed is equivalent to hyperbolic. Similarly to Equations 4.9
and 4.10, we can work out the equations for  and H given p and 0
(and n¢ ), demonstrating the opposite direction of the equivalence

relation:
y=-pxVo (4.11)
2 -1 _
o P rlic-p-0 (4.12)
nc—1+ p

Constraints of parameters. Not every y and H yield valid com-
munities in Equations 4.9 and 4.10, so we have to pay particular
attention on the constraints of these parameters. Clearly both y
and H need to be non-negative. As the hyperbola is monotonic, it
must be that H < y, and as the hyperbola is convex, it must be

that
nc—1+H
A ——

; (4.13)

4.1 Model Definition
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mixture(x, X) expresses the model as
a mixture of index orderings.

Recall that in Section 4.1.1 we restricted p to be non-negative so
that it cannot happen that (0+p)(0+p) > Oif (i +p)(j+p) < O
for some (i, j) € N x N. The motivation for this was that we want
element (0, 0) to be included in every non-empty community. But
we can relax the constraint p > 0 to

pP<Oe p<(y+p)
(4.14)

~

= > -,
P="3

assuming y > 0. Here, the first equivalence follows by substitut-

ing Equation 4.7 to 0. Notice that the p and y in this inequality are

bound together via Equation 4.9. This constraint also implies the

above constraint that H < y.

4.1.3 Line-Hyperbola Mixture

Given the understanding of the previous two models, we now
introduce a third equivalent model. Here, we consider a mixture
of two restricted models: a simple hyperbola where an edge (i, j)
is in the community if 7 - j < X’ for some L’ € R, and a simple
linear model i + j < X, with " € R. Notice that unlike above,
here the hyperbola centre is fixed to the origin. Alone neither of
these models is very expressive, but a mixture of these two is much
more powerful: an edge (i, ) is in the community if

A-x)G ) +x(i+j)<Z (4.15)

for some x € [0,1] and ~ € R. Indeed, to allow even more
flexibility, one can also consider a second mixture, which combines
the hyperbola with a negative linear model

1-x)G ) +x(-i—j) <z (4.16)

for some x € [0, 1]. Combining both of the above equations into a
single model leads to our final definition: an edge (i, j) is in the
community if for some x € [-1,1] and £ € R

A-|xD)G-+x(i+])<Z. (4.17)

The meaning of the parameters here is slightly different to the
model hyperbolic: the parameter X behaves similarly to 6 in
Equation 4.6, moving the line (or the hyperbola) further from
the origin, while the mixture parameter x dictates how much the
model looks like a line and how much like a hyperbola centred to
the origin. We call this model mixture(x, X).



Definition 4.1.7 The decision function for mixture(x,X) is
fuixture(i, j, %, Z) = [(1= 2]} - ) + x(i + j) < T

with the parameter set © = {x, L}, and x € [-1,1] and £ € R.

Equivalence. We will now turn our attention to the equivalence
between hyperbolic and mixture.

Proposition 4.1.1 For any pair (p, 0) of valid parameters of the
hyperbolic model, there exists a pair (x, L) of valid parameters of
the mixture model that yields exactly the same community, and vice
versa.

Proof. We have

(i+p)j+p) <0
. . ) _ 2
i+jp 4 _O9-p

1+1|pl 1+|p| ~ 1+|p| (4.18)
P y p 0 - p*
o (i+])—— +ij|1- < ,
DT ]( ‘1+|p|‘) T+ 1p]

where the first equivalence is by expanding the left-hand side and
re-arranging the terms and the second is by noting that

1 _X+lpl=lpl_ . _Ipl :1_’ p
L+ipl 1+1pl 1+ 1pl 1+1pl
If we nowwritex:%mandz,zf;—(:',we get
((+)x+ij(l-|x)) <X, (4.19)
concluding the proof. O

4.1.4 Graphon Representation

A graphon [62] is a measurable function g: [0, 1] x [0,1] — [0, 1].
Graphon g can be seen as a model for random graphs: To sample a
graph G from graphon g, one first samples n vertices by sampling
n points from the unit interval [0, 1] uniformly at random (that is,
V c [0, 1]). One then samples the edges so that G has edge (1, v)
with probability g(u, v). For undirected G, g has to be symmetric,
thatis, g(u, v) = g(v, 1), and the undirected edge between 1 and
v is sampled as the directed edge (1, v).

4.1 Model Definition

[62]: Orbanz et al. (2015), ‘Bayesian
Models of Graphs, Arrays and Other
Exchangeable Random Structures’
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1: An edge (1, v) is part of the com-
munity if ¥ and v are in the intra-
community area.

2: Analogously to the derivation of
Equations 4.9 and 4.10.

We now express the hyperbolic model as a graphon. The graphon
is parametrised with four parameters, pr, Or, dc, and do. The
parameters pgr and O define the hyperbola in the same way as
above: given twonodes u, v € [0, 1], the edge between them is part
of the community’ if (4 + pr)(v + pr) < Or. The parameters dc
and do are as defined in Equations 4.4 and 4.5, that is, they define
the (expected) inside density and (expected) outside density. The
graphon for one community is

_ {dc if (u + pr)(v + pr) < Or (4.20)

do otherwise.

Notice that the parameters pr and Or are not the same p and 0
as in the hyperbolic model. To understand the difference, it is
easier to study the graphon equivalent of the fixed model. In the
standard fixed model, the parameter y indicates the size of the
core; in the graphon version, it indicates the relative size of the core,
that is, which fraction of the nodes belongs to the core. Similarly,
the tail height parameter in the graphon model corresponds to
the relative thickness of the tail. We denote these parameters as yr
and Hp, respectively. They can be derived from the hyperbola
analogously to the derivation in Section 4.1.2: We can set yr as the
value u’ where (u” + pr)(4’ + pr) = Or and Hp as the value where
(u” + pr)(1 + pr) = Or. This gives

YR = —pr £ \VOR (4.21)
2
+pr — Or
Hg = —% (4.22)

As we require that ygr, Hr € [0, 1], if pr > 0, then Equation 4.22
implies that it must be that Or > pr(pr +1) and then Equation 4.21
takes from yr = —pg + VOg. Similar conditions can be easily
derived for pr < 0.

Vice versa, we can also solve pr and Or from yr and H R:Z

2_H
- JRTR ifyr #land Hg #1  (4.23)
pR_—Z)/R+HR+1 R R )
_12 - H 2
o = L&D (rr ~ Hr) ifyr #1and Hg # 1. (4.24)

(—2)/12 + Hp + 1)2

When yr = Hg = 1, we can set, for instance, pr = 0 and O = 1.
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4.2 Generalisation of Existing Models

An important consideration in our model is that we want to be
able to generalise existing models. We now discuss how our model
includes as a special case quasi-cliques, core-periphery models [9],
and power-law models such as HyCom [3].

Quasi-cliques. Clearly, quasi-cliques are a special case of our
model. Using the fixed model, we can simply set H and y to nc.

Core-periphery. For the classic core-periphery model [9], it is
assumed that all core members interconnect and peripheral nodes
connect each to all core members. This resembles restricting H = y
in our fixed model.

Power-law, represented by HyCom. Araujo et al. [3] define a com-
munity as follows: given @ < 0 and 7 € R, all edges (1, v) that
fulfil

0> T (4.25)

are part of the community. Note that in [3], one-based indexing
is used, meaning that the indices of nodes u, v start with 1. Thus,
using our zero-based indexing with respect to i, j, Equation 4.25
is equivalent to

@+ (G+1)°
& 05:-(i-j)+05-(i+7)

Y

(4.26)

IA

Here, we set 7/ = 0.5 - (77 — 1) and exploited that a < 0.

Using our mixture model, it is now obvious that HyCom is a special
case: it corresponds to mixture(0.5, 7’). Indeed, while at first sight
Equation 4.25 seems to have two degrees of freedom, it only has
one. The parameter 7’ (L in our notation) can be adapted, the
parameter x is fixed to 0.5.

This restriction in the HyCom model limits the possible shapes of the
communities significantly. Figure 4.3 provides an intuition of the
influence of the parameters on the hyperbolic model. For the HyCom
model, only the variation illustrated in Figure 4.3a is possible:
fixing x = 0.5 limits the decision boundary to keep a certain
curvature; as X varies, the boundary moves along the diagonal
maintaining its shape. Figure 4.3b, shows the additional behaviour
of the hyperbolic model under variation of x: the hyperbolic model
attains different amounts of curvature of the decision boundary;
even a straight diagonal line in the extreme case of x = 1.

[9]: Borgatti et al. (1999), ‘Models of
core/periphery structures’

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’
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Figure 4.3: Visualisation of the influ-
ence of L and x in the hyperbolic
model. The highlighted line refers to
x = 0.5, £ = 200 in both plots.
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Indeed, as we will show in the experiments in the next chapter,
many real world datasets contain communities with x not close
to 0.5 (see Figure 6.3). Thus, the additional freedom of the hyper-
bolic model, compared to HyCom, allows for a better representation.
Notice also that the HyCom model does not offer an intuitive inter-
pretation of the shape of the community as the exponent a can be
switched to any other exponent by adjusting 7 accordingly.

4.3 Full Graph Model

While the previous section focused on modelling individual com-
munities, we now introduce a principle for describing a graph
containing multiple hyperbolic communities.

When multiple communities are present, we might observe over-
lapping groups. When communities are modelled as quasi-cliques,
there is only one type of overlap we need to consider: if the nodes
of two communities overlap, so do their (implicit) edges. With our
community models, however, we have to distinguish three types
of overlapping behaviour: two communities C and D are

» node-disjoint if they do not share any nodes and hence
VenVp =0;

» area-disjoint (but node-overlapping) if they share nodes but no
(implicit) edges, whichis Vc N Vp # 0 but Ac N Ap = 0;

» area-overlapping (or overlapping for short) if also their (implicit)
edges overlap, such that Ac N Ap # 0.

Area-overlapping communities present a particular challenge to the
modelling as we have to assign a likelihood to every (implicit) edge.
In this work we assign each edge to at most one community and the
likelihood of the edge is calculated using only that community.

For defining the quality of a set of communities, we refer to
a probabilistic approach: we aim to find the set of models 6
leading to the highest likelihood of the input graph G. For this
purpose, notice that in real graphs the communities rarely have
full density (i.e. |[Ec| # |Ac|), and that the density varies between
the communities.

We use the model from Section 4.1 as the basis for modelling a
community. That is, the density of a community C, dc, is defined
as in Equation 4.4, with every community having its own density.
To define the outside density dp, we have to consider not only the
‘outside area’ of a single community, but the whole area of the graph
that does not belong to any community. If we let Ag = UcegAc be
the area that belongs to the communities and let Ag = (VXV)\Ag
be its complement, then dp = |E \ Ag] /| Ag|.



We can now model the full graph similarly to how we modelled
a single community to obtain the overall likelihood L(G | 6) of a
graph G given the set of communities 6.

Definition 4.3.1 Given a graph G and a collection of its communities
@, where every edge belongs to at most one community, the log-
likelihood log L(G | B) is defined as

log L(G | €) = 3, (IEc|log(dc) + |Ec| log(1 - do)|
Ce®6

+|E \ Ag|log(do)
+ (1Al - |\ Asl) log(1 - do)

4.4 Time Complexity

Now we turn our attention to the time complexity of the prob-
lems related to the modelling. Instead of dealing directly with
the likelihood, in this section our target is to minimise the num-
ber of non-edges inside the communities while simultaneously
maximising the number of non-edges outside.” This is a natural
surrogate for the likelihood that allows us to avoid some issues in
the analysis caused by the likelihood function.*

We will first consider problems involving only a single community,
showing that finding the node sets for communities is hard in our
model:

Proposition 4.4.1 Given a graph G = (V, E) and a pair of parameters
(p, 0), it is NP-hard to find

» the largest set of nodes Vc C V and a permutation ic: Ve —
{0, ...,|Vc| =1} such that the area Ac defined by V¢, mic, and
hyperbolic(p, 0) is exact, that is Ac = Ec;

» the set of nodes Vc C V and a permutation mic: Vo —
{0,...,|Vc| =1} such that dc > c for some given constant

c €(0,1) and do is minimised.

Proof. These results follow from the fact that the clique is a special
case of our model.

If (p, 0) are set so that they encode a clique, the first case is
equivalent to the well-known NP-hard problem of finding the
largest clique [63, Problem GT19], while the second is equivalent
to the problem of finding the maximum c-quasi-clique, which is
also NP-hard [64]. O
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3: In other words, we aim to max-
imise the community density while
minimising the outside-area density.

4: The likelihood model is oblivious
to the ‘inside” and ‘outside”: very
sparse communities with dense out-
side area are also good models in
likelihood’s sense.

[63]: Garey et al. (1979), Computers
and intractability: A guide to the theory
of NP-Completeness

[64]: Pattillo et al. (2013), ‘On the max-
imum quasi-clique problem’
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[65]: Miettinen (2015), ‘Generalized
Matrix Factorizations as a Unifying
Framework for Pattern Set Mining:
Complexity Beyond Blocks’

On the other hand, if we are given the nodes (and their ordering),
it is rather easy to find the best model for a single community, as
the following proposition indicates:

Proposition 4.4.2 Givenagraph G = (V, E), aset of vertices Vc C V,
and a permutation mc: Ve — {0, ..., |Vc| =1}, finding the pair of
parameters (p, O) that maximises the function dc + (1 — do) (or the
likelihood of Definition 4.1.4) is doable in time polynomial to |Vc|.

Proof. We utilise here the (y, H) parametrisation, which is equiv-
alent to the (p, 0) parametrisation. As y and H are non-negative
integers bounded by | V|, there are at most |V |? different configu-
rations of them. We can simply try every configuration exhaustively
to find the optimal solution. O

We use Proposition 4.4.2 in the next section to design our algo-
rithms. Importantly, we will show that we do not need to try all
the |Vc|? different configurations.

Let us now turn our attention to the case where we are already
given a collection € of communities (with fitted models), and we
want to find a subcollection § € 6 that minimises the number of
edges in the outside area plus the number of non-edges inside the
communities. That is, we want to minimise

|EN Ag| + |Ag \ E| . (4.27)

For these results, we use the general framework of Miettinen [65].
First note, that our communities are (symmetric) generalised rank-1
matrices in the sense of Miettinen: the functions f of our models
define the outer product in Definition 1 of [65], while the adjacency
matrix is the data matrix. For this problem, we only care about the
union of the areas of the communities, and consequently, we take
the element-wise disjunction of the matrices representing their
areas. Propositions 6 and 10 of [65] directly provide the following
results:

Proposition 4.4.3 Given a graph G = (V, E) and a collection € of
communities of G,

» it is NP-hard to find the subcollection S C € that minimises
Equation 4.27;
» it is NP-hard to approximate Equation 4.27 to within a factor

of Q) (21°gl_s|v|) and quasi-NP-hard to approximate it within
Q (2(410g|c6|)178)f0r any &> 0/

» Equation 4.27 can be approximated to within a factor of
24/(|6] + |V|) log |V | in polynomial time.




The situation of Proposition 4.4.3 can easily arise as the consequence
of the following simple idea of finding the communities: first, find
many subset of nodes,” then fit the community models to them,
and then select the final subset of communities from the potentially
highly redundant set of communities. As Proposition 4.4.3 shows,
the last step of this approach is computationally hard and hence
we do not use it.

4.5 Algorithms

Next we present an algorithm for fitting our model to a graph. We
assume the input is the graph and an initial collection of sets of
nodes that represent initial communities. These initial node sets
can be found using any existing community-detection algorithm,
for example HyCom [3]. We will first present the algorithm to fit the
model to a single community, and then explain how to use that to
fit the model for the full graph.

4.5.1 Single Community

To model a single community, we use the fixed model with
integer parameters y and H. Given the intuition from Figure 4.2,
this restriction is natural. We will also not lose too much, as the
following proposition demonstrates:

Proposition 4.5.1 Let C = fixed(y, H) be a community of nc nodes
defined by y € R and H € N, and let Ac be its area. Then there
exists integer Y’ such that if D = fixed(y’, H) is the community
defined by v’ and H, and Ap is the respective area, then |Ac — Ap| €

O (y In(nc)).

In other words, the difference in area between integer and non-
integer y grows only linearly with ) and logarithmically with the
number of nodes in the community. The proof of Proposition 4.5.1
is postponed to Appendix A.

Constraining ourselves to integer parameters would not alone solve
much, as there still are O(n%) parameter configurations to study.
Many of these configurations, however, can be pruned out as they
would lead to infeasible communities and the pruned search space
is small enough for exhaustive search.

To gain intuition on how much of the search space the constraints
remove, let us consider Figure 4.4. The area of the plot is the area
of all possible combinations of y and H for some community size
nc. The yellow area can be ignored as in that area H > y. But
also both of the green areas can be ignored, as in those areas, the

4.5 Algorithms

5: Subsets of nodes can be found by
sampling or by enumerating all dense
subgraphs.

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’
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Figure 4.4: The blue area shows fea-
sible values for parameters y and H
relative to a given community size.
The green and yellow area are infeasi-
ble. The yellow part violates the trivial
requirement of H < y and the green
areas violate the condition p > —/2,
where p is given by Equation 4.9.

37



38

4 The Hyperbolic Community Model

constraint p > —7/2is violated (see Equation 4.14). This pruning
significantly reduces the different parameter configurations we
need to test in the exhaustive search.

Likelihood computation. Given a pair of parameters (7, H), we
need to evaluate its fit by computing the log-likelihood of the
resulting model. According to the model proposed in Section 4.1,
this requires to determine the area inside and outside the current
community as well as the corresponding number of edges (and
non-edges) in these areas. Obviously, testing each position in the
community is not a practical solution since it would lead to a
running time quadratic in the size of the community; instead we
derive a solution which is linear in the number of edges.

The computation of the area can be done in time linear in the num-
ber of nodes by referring to the functional form of the hyperbola.
That is, we evaluate

i= i - (4.28)

Jtp
for each column j. Here we can compute p and 0 from y and H
using Equations 4.9 and 4.10. Alternatively, we can approximate
the area in constant time by taking the integral of this function from
0 to nc — 1. Counting how many edges are inside the community
requires a pass over the edges. Thus, this step dominates the time

complexity.

It is easy to optimise this procedure further: First, we can compute
the area faster by noticing that at the bottom we have a rectangle
of size nc-by-H. Second, when we test a succession of parameter
values, we can re-use part of the information about the edges: by
increasing the values of H or y only edges previously outside the
community need to be evaluated. All remaining edges will still be
located within the community.

4.5.2 Full Graph

To obtain a model for a graph consisting of multiple potentially
overlapping communities, we aim to optimise the log-likelihood
L(G | B) for the full graph, given in Definition 4.3.1. Our main
problem is to determine how to deal with overlapping communities;
indeed, if there are no node-overlapping communities, we can
simply optimise every community separately using the above
approach. If the communities do overlap, however, we do need to
decide the order of the communities so that we can assign every
edge to at most one community.
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Algorithm 1: Algorithm to fit the fixed model to a graph.

Data: Undirected graph G = (V, E), a collection of sets of nodes
9 = {V; c V} describing the initial communities
Result: Ordered set of communities 6
for every set V; € 7 do
C « best model describing G|y,
6 — 6U{C}

Order € based on the likelihoods of the communities

Compute the global outside density do

F— 6

repeat

T «—F

F—0

M0

forall C € J in decreasing likelihood do

Update the model of C ignoring areas in M

M— MUAC

if the likelihood of C improved then
Update do
F—FU{DeG:VpnNnVc+0}
Update the position of C in 6

until F = 0;
return 6

As computing the log-likelihood for the full graph for each pos-
sible order of the communities is infeasible, we optimise the
log-likelihoods of each community individually following an alter-
nating optimisation strategy. When optimising one community, we
keep track of the area that was already covered by other communi-
ties, and ignore that area in the computations of the subsequent
communities. In concordance with the log-likelihood we want to
optimise for, we consider the global density for the whole outside
community area (see Section 4.3) in the log-likelihood computa-
tion of the model, instead of just the local outside density, as in
Section 4.1.

The algorithm, shown as Algorithm 1, comprises an initialisation
phase and an update phase. In the initialisation phase of the
algorithm (Lines 1 to 5), we compute an individual model for each
community, leaving out those edges that have already been covered
in a previous step by another community. Note that during this
step, each community uses its individual outside density. Next, we
order the obtained models by their log-likelihood starting with the
best and we compute the global outside density do for the further
updates.

4.5 Algorithms
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Now that we have established an order of the communities, the
alternating optimisation starts (Line 7): Each time, we select a
community C; and fit a new model to it — now, not only excluding
edges already covered in previous communities, but also using
the global outside density to determine the true log-likelihood
for each community. After fitting the new model, we update the
global outside density (Line 15) if the new model is different to the
old one.

All communities that have node overlap with C; are marked;
due to the update of C; also the parameters of the overlapping
communities might change. Thus, we mark the communities that
overlap with C; for a re-update (Line 16). We iterate over this
process of updating the community models until there are no more
communities to be updated.

The output of this algorithm is a list of models for all communities,
ordered by their log-likelihoods.



The Graph Generator Model

In this chapter, we introduce the random graph generator, HYyGen.
Based on the hyperbolic community model introduced in the
previous chapter, HYGEN is designed to model graphs consisting of
one or multiple communities with realistic internal structures. We
discuss properties of HYGen and introduce an alternate sampling
approach, based on graphons, that is particularly suitable for
time-evolving communities.

5.1 Model Definition

Random graph models are probability distributions over networks.
Our random graph model is built upon the definition of hyperbolic
communities, introduced in the previous chapter. Therefore, it
accounts for core-tail structure that is commonly observed in real
networks. We begin with the definition of the random graph
generator for a single community, and extend it to a generator for
graphs consisting of multiple hyperbolic communities. Finally, we
discuss a graphon version of the model.

5.1.1 Single Community

The model for a single community is straight forward and wee
express it via the fixed model (see Section 4.1.2). Assume, for
now, that the size of the community, nc, is given. To define the
community fixed(y, H), we need to have the two parameters, y
and H. In our model, we assume that the relative y, yr = 7/nc,
follows the normal distribution with some mean p and variance 0.
Assuming we have sampled some y = ncyr, we will sample H by

assuming that H/, ~ Exponential(A).!

After we have sampled y and H, we can generate a perfect com-
munity C using the fixed(y, H) model. The community C will
have no noise, that is, no edges between the nodes in the tail of
the community and no missing edges within the community. As
this is an unrealistic assumption, we will apply uniform noise to
remove edges from the community and add edges between tail
nodes. For this, we will need two more parameters, dc and do,
that describe the densities of the community and of the area outside

5.1 Model Definition . . . . . 41
Single Community . ... 41
Multiple Communities . 42
HyGen as a Graphon . . . 43

5.2 Time Complexity . . . . . 43

5.3 HYGEeN Graphs from Pre-

defined Model . . . ... 44

5.4 Theoretical Results ... 44

Degree Distribution . .. 45

Clustering Coefficient . . 47

Degree Correlation . . . . 50

1: We will motivate the chosen distri-
butions later using experiments with
real-world data sets, see Section 7.3.
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2: That is between the tail nodes.

3: We study a number of distribu-
tions for the model parameters in Sec-
tion7.3.

[58]: Lancichinetti et al. (2008),
‘Benchmark graphs for testing com-
munity detection algorithms’

4: These two types of noise can be
very different, in general, dc > do.

the community; a fraction of 1 — dc edges within the community
are removed and a fraction of do edges outside the community? is
added.

5.1.2 Multiple Communities

To generate multiple communities, we use an approach similar
to SBMs, and generate individual communities independently of
each other. For each community, we will draw the size n¢ from
distribution Dyjse. Our experiments® suggest using the generalised
extreme value distribution as the distribution of the sizes, but the
power law distribution, as used by Lancichinetti, Fortunato, and
Radicchi [58], is a viable alternative.

After the community size is sampled, we can sample y and H
as explained above. Do note that the way we sample them is
independent of the community size, and hence we can use the
same distributions for every community.

After we have sampled a noise-free community, we will remove
some of its edges to obtain the desired ‘inside’ density dc and
plant the community to the graph. The planting happens so that
the communities do not overlap, similar to SBMs, but we can
permute the order of the nodes, so that the hyperbolic shape is not
immediately obvious. After all communities have been planted,
we apply the ‘outside’ noise to achieve the dp density among
the edges that are between nodes in different communities and
between nodes that are in the tail of the same community. The full
process is detailed in Algorithm 2.

Notice that this model assumes that the ‘inside’ noise is the same
in all communities, and the ‘outside’ noise is uniform throughout
the graph.* We also assume the size and shape of the communities
to be uncorrelated.

Algorithm 2: HyGen algorithm

Data: Distributions Dsize, D), Dy, densities dc, do,
number of communities k

Result: Random graph G

for i=1:kdo
Draw size s from Dgjze, ¥ from Dy, and H from Dy
Scale y according to s, and H according to y
Make model fixed(y, H)
Select edges to discard uniformly at random to reach dc
Plant result into G

Apply noise do to the outside community area of G
return G




5.1.3 HYGEeN as a Graphon

The graphon model [62] is particularly useful for modelling time-
evolving communities. Therefore, we incorporate graphons in the
HyGen algorithm. Recapitulating from Section 4.1.4, graphons can
be seen as a model for random graphs: to sample a graph G from
graphon g: [0,1] x [0,1] — [0, 1], one first samples n vertices
by sampling n points from the unit interval [0, 1] uniformly at
random; one then samples the edges so that G has edge (1, v)
with probability g(u, v). In the HyGen algorithm, we generate a
graphon for each community based on its parameters and replace
the community generation inside the for-loop of Algorithm 2 with
sampling the community from its graphon.

For modelling time-evolving communities, unlike the standard
HyGen algorithm, the graphon model makes it easy to adjust
the size of the community while retaining some vertices: this can
be done by simply randomly discarding some of the previously-
selected nodes and potentially sampling new ones. Generating a full
time-evolving graph would then amount to running Algorithm 2
for every time step, but instead of generating the communities from
the scratch, we adjust their sizes based on the graphon model.

Compared to the standard HyGen model, the graphon model
has more randomness. The parameter yg, for example, does not
define the actual size of the core, but the expected size of the core.
The actual size of the core is a binomially distributed random
variable with parameters yr and s, where s is the size of the
community. Similarly, the density parameters dc and do are only
expectations.

5.2 Time Complexity

Let us analyse the time complexity of Algorithm 2. For acommunity
C, denote by E Z the edges of a ‘perfect’ community” and denote
by EF be the edges in a graph consisting only perfect communities.
Let E" be the set of edges noise adds to the graph (inter- and intra-
community). Drawing the parameters and adjusting them is a
constant-time operation, creating the model takes O(7¢) time, and
sampling the edges to discard from the community can be done in
time O (|Eré |) [66, p. 137]. Assuming we have k communities, the
total time to generate a graph with no noise is O (k(1+n. +|EL])) =
O(k + |V| + |EP|).

5.2 Time Complexity

[62]: Orbanz et al. (2015), ‘Bayesian
Models of Graphs, Arrays and Other
Exchangeable Random Structures’

5: We call a community perfect if it
has no noise.

[66]: Knuth (1997), The Art of Computer
Programming Volume 2: Seminumerical
Algorithms
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6: The HyCom model [3] is an example
for power law connectivity.

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’

7: Assuming X > 0.

[67]: Aggarwal et al. (2010), Managing
and Mining Graph Data

To add noise, we need to do sampling without replacement over a
population of O(|V|? — |E,|) edges, taking essentially linear time.
When the graph is sparse, |E,| and |E"| are small compared to
|V |?> and we can sample with replacement to obtain practically the
same result, taking O (|E"|) time.

In total, the full running time of Algorithm 2 is O (k + |V| + |EP| +
|E"|), which is only slightly more than O(|V| + |E|).

5.3 HyGeN Graphs from Predefined Model

In the above, we described HyGen model using randomly sampled
shape parameters. Normally, we would fit the hyperparameters of
the distributions to some real data to obtain a realistic model for
the random graphs, but in some cases, we might want to obtain
specific community structures.

One specific task is to generate random graphs with power law
connectivity within the communities.® That is easy to do via the
mixture parametrisation, introduced in Section 4.1.3. Recall from
Definition 4.1.7 that two parameters, x € [-1,1] and £ € R, define
the shape via evaluating

A—=|xDE-j)+x@+j)<Z.

By setting x = 0, it becomes clear that the model reduces to a power
law; the exponent of the power law is absorbed by the parameter
Y, as setting X’ = X'/ yields’

()™ <X

Hence we can sample power law communities by just sampling
one parameter, . € (0, c0).

A clique-like community is even more restricted than power law
community, as we can set Y = H = nc to obtain a clique. With
such fixed settings, our model reduces to a variation of SBM.

5.4 Theoretical Results

The HYGen model is designed to preserve important graph prop-
erties. In addition to the hyperbolic community structure, HyGen
also preserves the degree distribution and the clustering coefficient
of the graph. These two properties measure the connectivity of
networks [67], and are often studied with social networks. In this



section, we present theoretical analysis of the HyGen random
graphs, proving that they preserve the degree distribution and
clustering coefficients (up to noise).

In the last part of this section, we discuss how the hyperbolic com-
munity structure determines the degree correlation. This measure is
studied to assess to what extent nodes of similar degree connect to
each other.

5.4.1 Degree Distribution

The degree distribution is perhaps the most important global
property of the graph and has been one of the main topics in many
seminal papers [e.g. 21, 22, 68], and preserving the distribution (at
least approximately) is one of the standard aims of random graph
generators.

As HyGen graphs have disjoint communities, we will first analyse
a single community. For the sake of simplicity, we will study
the complementary cumulative degree distribution F: {0,...,|V|} —
[0, 1], where F(k) is the fraction of vertices with a degree of at least k.
Clearly, the cumulative degree distribution F is F(k) = 1— F(k). For
a single community with no noise we have the following lemma.

Lemma 5.4.1 Let C = (V¢,Ec) be a community that follows the
hyperbolic(p, ©) model perfectly. The complementary cumulative
degree distribution Fc of C is determined by the parameters p and 6.

Proof. According to the model, an edge (7, ) is in Ec if and only if
(i+p)(j+p) < 6. Rewriting the equation, we obtain that (7, j) € Ec
if

]Si+p—p. (5.1)

That is, vertex i has degree at least j if Equation 5.1 holds,® and
conversely,

max{ieN:jS%—p}
Vel

Fc(j) = (5.2)

O

Lemma 5.4.1 uses the hyperbolic model for the simplicity of the
proof. Thanks to the equivalence relations Equations 4.9 and 4.10
derived in Section 4.1.1, we can also state the lemma using the
potentially more intuitive fixed model and its parameters:
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[22]: Albert et al. (2002), ‘Statistical
mechanics of complex networks’
[21]: Watts et al. (1998), ‘Collective dy-
namics of ‘small-world” networks’
[68]: Faloutsos et al. (1999), ‘On power-
law relationships of the Internet topol-

’

ogy

8: Recall that the model assumes that
the vertices are sorted by degree.
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Corollary 5.4.2 The complementary cumulative degree distribution
of C, Fc is determined by the parameters H and y.

Lemma 5.4.1 shows that the degree distribution of a single commu-
nity is determined by the model. To extend this statement to the full
graph, it is enough to notice that as the communities are disjoint,
the total degree distribution is the sum of degree distributions of
the individual communities.

Lemma 5.4.3 Givena graph G = (V, E) that is a product of the HYGEN
model with no noise, its complementary cumulative degree distribution
F is completely determined by the parameters of its communities.

Proof. Let G consist of k communities C; = (V¢,, Ec,),...,Ck =
(Ve,, Ec,) and denote by nc;, = |V¢,| the number of nodes in
community i. As the communities are disjoint, and there are no
vertices outside the communities,

n=|V| :chi. (5.3)

That there is no noise means that (1) communities are perfect in
the sense of Lemma 5.4.1, and (2) there are no inter-community
edges. Hence, by Lemma 5.4.1, Fc, is defined by the parameters of
community C;, and

PR I
F(j) = — > neiFe(i), (54)
i=1

that is, the number of nodes in G with degree at most j is the
sum of the numbers of nodes with degrees at most j over all the
communities. O

Lemmas 5.4.1 and 5.4.3 cover the case where there is no noise.
Such an assumption is usually too strict for real-world graphs, and
would yield to bad modelling of real-world phenomena. When we
add the noise, the model parameters (for example p and 0) will
not be enough to define the overall edge distribution. We can show,
however, that the noise has most effect to the tails of the degree
distribution.

Lemma 5.4.4 Let G be a HYGEN graph with no noise and G’ the same
graph with a fraction of q € [0, 1] noise applied, that is, do = q and
dc =1—-gqin G'. The expected degree of vertex v in G’, Ec/[d(v)],
is

Ec/[d(v)] = d(v) + q(n - 2d(v)) , (5.5)

where d(v) is the degree of v in G and n is the number of vertices in G.



Proof. A fraction of g edges connected to v will be removed due
to the noise, and a fraction of g edges not connected to v will be
added. Hence,

Ec/[d(v)] = d(v) — gd(v) + g(n — d(v)) , (5.6)

which simplifies to Equation 5.5. O

Equation 5.5 already hints that if d(v) is large or small, the expected
degree can have bigger relative changes. Let a(v) = 4(v)/n, that is
a(v) is the relative degree of v. Then we can write Equation 5.5 as

Ecla(o)] = 190

= a(i) +q(1-2a(i)) , (5.7)
showing that the noise has the most effect on nodes with a(v) ~ 0
or a(v) = 1. On the contrary, if a(v) = 1/2, the presence of noise
will have no effect on the expected degree.

The above result means that communities that have many vertices
with either very few or very many neighbours are most affected by
the noise. An extreme example of such a community would be a
star, and similarly, communities with steep power-law curves in
degree distribution would also see significant changes from small
amounts of noise.

5.4.2 Clustering Coefficient

In addition to the degree distribution, the clustering coefficient is
often used to measure the connectivity of the graphs, and high clus-
tering coefficients are associated with small-world graphs [21].

There exist two different versions of the clustering coefficient, the
global clustering coefficient and the local clustering coefficient [67].

Definition 5.4.1 Given a graph G, its global clustering coefficient
cc(G) is defined as

c(G) = number of closed triplets in G

number of all triplets in G (58)

Definition 5.4.2 Given an undirected graph G = (V,E) and its
vertex v € V, the local clustering coefficient cc,(G) of v in G is
defined as

2|{(u,w): u,we N(v),{u,w} e E}|

ccy(G) = ,
& d(v)(d(v) - 1)

(5.9)

where N (v) is the neighbourhood of v.

5.4 Theoretical Results

[21]: Watts et al. (1998), ‘Collective
dynamics of ‘small-world” networks’

[67]: Aggarwal et al. (2010), Managing
and Mining Graph Data
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We can again show that, up to the effects of the noise, the clustering
coefficients — both local and global — are fully determined by
the model parameters. We start by analysing the local clustering
coefficient in a single community.

Lemma 5.4.5 Let C = (V¢, Ec) be a community that follows the
hyperbolic(p, 0) without any noise and let i be an arbitrary vertex
of C. The local clustering coefficient cc;(C) of i in C is determined
entirely by p and 6.

Proof. In Definition 5.4.1, three terms that determine the clustering
coefficient: neighbourhood N (i), set of edges Ec, and degree d(i).
Given that C follows hyperbolic(p, 0), we can use Equation 5.1
to express the neighbourhood of v as

. 0
N@{)={heVc:h< P -p} (5.10)

and the set of edges Ec as

0
i+p

Ec={i,jeVc:j< -r}, (5.11)
showing that they both depend only on p and 0. That the degree of

vertex i, d(i), depends only on p and 6 follows from Lemma 5.4.1.
O

To analyse the global clustering coefficient cc, we will first make
some definitions. Define the indicator function x(i, j) as

1 j<2 -
x(i,j) = J=mp 7k (5.12)
0 otherwise .

This function indicates for every pair of vertices i and j if there
would be an edge between them in a community following the
hyperbolic(p, 6) model with no noise.

The number of closed triplets in a community following noise-free
hyperbolic(p, 8) model can be counted by testing whether all of
the edges between the vertices exist. Define T°': N> — {0, 1} as

TG, j,h) = x(i, j) - x(i, 1) - x(j, h) - (5.13)

An open triplet (wedge) is a set of three vertices connected by
exactly two edges. Define T°: N — {0, 1} as

TO(Z,],h):X(l,])X(Z,h) (1_X(]'h)) (514)

to test whether (i, j, h) is an open triplet centred at i.



Lemma 5.4.6 Let C be as in Lemma 5.4.5. The global clustering
coefficient cc(C) of C is entirely determined by p and O.

Proof. As the value of x(i, j) is defined by p and 0 (with fixed i
and j), so are the values of T! and T°. We can write cc(C) from
Definition 5.4.1 with T<! and T° as

Sijheve TG, j, h)

cc(C) = — — ,
i jneve (TG, j, ) +To(, j, h))

(5.15)

where we always assume that i, j, and & are disjoint. O

The above Lemmas 5.4.5 and 5.4.6 can be extended to a full graph
following noise-free HyGen model.

Lemma 5.4.7 Let G = (V, E) be a graph that follows the HYGEN model
with no noise. The global clustering coefficient cc(G) and the local
clustering coefficient cc,(G) for any v € V are determined through
the parameters of the hyperbolic communities of G.

Proof. As there are no inter-community edges, the neighbourhood
of any v € V is entirely contained in the community where v is,
and Lemma 5.4.5 applies directly. The function x(), testing whether
there is an edge between vertices 7 and j, also needs to take the
communities into account. It can be re-defined as

. 0c
1,0) = {1 ifu,v € Cand ic(u) < mctoyrpe ~ PC

0 otherwise,

where pc and Oc are the parameters of the community C and m¢c
is the permutation associated with it. With this definition of x(),
the functions T and T° will also work throughout the full graph,
concluding the proof. O

Lemma 5.4.7 also shows that the average local clustering coefficient is
determined by the community parameters.

Corollary 5.4.8 Let G be as above. The average local clustering
coefficient cc(G) = I‘lf_l Dvev CCu(G) is entirely determined by the
community parameters.

It is not trivial to analyse the effects of noise to the clustering
coefficient. Triangles or wedges from the inside-community area
disappear, and new ones get introduced involving the outside-
community area. Given the overall density of a graph, the expected
number of triangles or wedges is derivable, but integrating the
specific intra-community structure into this expectation remains
an open problem.’

5.4 Theoretical Results

9: There are (V;l) triangles in the
core, and every i with d(i) > 2 adds
(dg)) more triangles because it only
has connections to the core. To the
best of our knowledge, there is no
similar expression to determine the
number of wedges.
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[67]: Aggarwal et al. (2010), Managing
and Mining Graph Data

[69]: Jonhson et al. (2013), ‘Factors
Determining Nestedness in Complex
Networks’

[40]: Karaev et al. (2018), ‘Logistic-
Tropical Decompositions and Nested
Subgraphs’

5.4.3 Degree Correlation

The degree correlation measures whether the number of links
between nodes with high degree and nodes with low degree is
systematically different from what is expected in a random network.
A network is called assortative if nodes of similar degree tend
to link to each other, and dissassortative if the network exhibits
a preference for links between nodes of dissimilar degree. Both
trends of correlation may occur in real world networks. While social
networks tend to be assortative, other kinds of networks, including
those of question-answering portals, are typically observed to be
disassortative [67].

Positive degree correlation in social networks occurs since the
degree-ordered adjacency matrix typically shows a banded struc-
ture, meaning that links between nodes of similar degree occur
more likely than other links. The modular character of such net-
works with multiple, potentially distinct, communities helps as-
sortativity. Interestingly, for the building blocks of such modular
networks, the individual communities, we observe an opposite
trend of degree correlation.

Using results of prior work, we may claim that hyperbolic communi-
ties are usually disassortative: In [69], Johnson, Dominguez-Garcia,
and Mufioz study the relation between nestedness of networks
and disassortivity. They show that with high probability, disassor-
tative networks are nested and vice versa. Let G = (V, E) be an
undirected graph. We say G is nested if we can order the vertices
v € V in a sequence (v1, 02, ...,0,) such that N(viy1) € N(v;)
foralli = 1,...,n — 1. As discussed by Karaev, Metzler, and
Miettinen [40], hyperbolic communities are a special case of nested
matrices. Notice that also communities whose adjacency is de-
scribed by a power law function are therefore disassortative since
the power law is special case of the hyperbolic model.



Validation of the Hyperbolic
Community Model

In this chapter, we demonstrate the use of the hyperbolic commu-
nity model. In our experimental study, we analyse a large variety
of real-world datasets. We observe that our modelling approach
explains real graphs much better than traditional quasi-clique
models and also improves preceding approaches.

6.1 Datasets

For our experiments, we use two collections of real-world data sets.
In the first set of experiments, in Sections 6.2 and 6.3, we use graphs
with given ground-truth communities from the Stanford Large
Network Dataset collection [70], called SNAP. Our goal is to study
the shape of these communities, and the differences between our
model and power law models, as well as quasi-clique models. The
employed data sets originate from different large online resources
where nodes of the respective network typically correspond to
people and edges indicate interactions or friend relationships. In
summary, the SNAP data collection comprises

Amazon — products bought together, grouped by product

category;
DBLP — author collaboration network, grouped by venue;
Friendster — online gamers’ network of friendships with user-
defined groups;
LiveJournal — bloggers’ friendship network with user-defined
groups;
Orkut — friendship network with user-defined groups;
YouTube — video sharers’ network of friendships with user-
defined groups.

Their size ranges from 300000 nodes up to 65 million nodes,
as outlined in Table 6.1. As neither very small nor very large
communities are particularly interesting, we restrict our analysis
to communities with between 100 and 1000 nodes (inclusive). We
use a sample of 500 communities from each of these data sets.!
For DBLP we also use a sample of 100 communities which we
denote DBLP(100).” Notice that the ground-truth information for
the communities is only provided for the nodes and not for the
edges.

6.1Datasets . . . ........ 51

6.2 Models from Annotated
Communities. . ... .. 52

6.3 Comparison to Alterna-
tive Models . . . ... .. 54

6.4 Finding Communities . . 56

6.5 Discussion . ........ 57

[70]: Leskovec et al. (2014), SNAP
Datasets: Stanford Large Network
Dataset Collection

1: Notice that the YouTube network
has only 129 communities within that
size range; hence we use them all.

2: We discuss the reasons in Sec-
tion 6.3.
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Table 6.1: Sizes of the SNAP datasets
used for evaluation, their total num-
ber of communities as well as the
number of communities of size 100
to 1000, and the time it took to deter-
mine a hyperbolic model for a sample
of size 500.

Table 6.2: Datasets used for the
community finding experiments. We
choose k, the number of clusters, as
displayed.

[71]: Davis et al. (2011), “The University
of Florida Sparse Matrix Collection’

3: The data collection renamed to
SuiteSparse Matrix Collection.

4: The source code for the algorithm
and the scripts to run the experiments
are available at https://cs.uef.fi/
~pauli/hybobo/.

Figure 6.1: Distribution of y relative
to the community size n¢ after fitting
a hyperbolic model to the sampled
communities.

nodes edges communities time

all  100-1000 (h)
Amazon 334863 925872 75149 1380 0.6
DBLP 317 080 1049 866 13 477 805 27.0
Friendster 65608366 1806067135 957154 19763 12.3
LiveJournal 3997962 34681189 287512 8769 113
Orkut 3072441 117185083 6288363 80251 3.1
YouTube 1134 890 2987 624 8385 129 0.8
nodes edges  content k
Email 1133 10902 University email network 10
Erdés 472 2628 Erdés collaboration network 8
Jazz 198 5481 Network of Jazz musicians 5
PolBooks 105 882  Books about US politics 6

The second collection of data, called SuiteSparse, originates from
the University of Florida Sparse Matrix Collection [71].> As out-
lined in Table 6.2, the data are significantly smaller than in the
SNAP collection. Also, they are not annotated with community
information. We use SuiteSparse for a second group of experiments
in Section 6.4 where we employ existing community-detection
algorithms to find the communities, and then apply our model to
the found communities. Their smaller size allows the community
detection algorithms to work efficiently.

6.2 Models from Annotated Communities

We start by studying the results of fitting our model to the SNAP
networks for which ground-truth communities are given.*

Fitting the hyperbolic community model in its fixed parametri-
sation yields the parameters y and H for every community. We
summarise the results per data set in Figures 6.1 and 6.2. Ad-
ditionally, we display the distribution of the x which we infer
by converting the results into the mixture parametrisation (see
Section 4.1.3) in Figure 6.3. The boxplots display distributions such
that in each box, the central mark is the median and the edges
of the box are the first and third quartiles. The whiskers extend
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6.2 Models from Annotated Communities
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to the most extreme data points that are not outliers. Points are
considered outliers if they are larger (smaller) than the third (first)
quantile plus (minus) 1.5 times the difference between the quantiles.
Outliers are plotted individually.

The boxplots reveal a characteristic shape for each data set: Amazon,
DBLP, and Friendster show rather thick communities with 7 on me-
dian being more than 50 per cent of the community size. LiveJournal,
Orkut, and YouTube communities mostly have thin cores. While
Orkut also has communities with big cores, LiveJournal is at the
other extreme and its communities mostly exhibit a star-like shape.
These observations are in line with the intuitive idea about some of
the data sets. DBLP, for instance, is the network of co-authorships
and therefore many communities are almost quasi-cliques.

Furthermore, we observe that the obtained models for all datasets
differ significantly from the HyCom model that would require x =
0.5 (see Section 4.2). As Figure 6.3 shows, none of the medians is
near x = (0.5.

To gain intuition on how these communities look like, we give
examples in Figure 6.4 (and above in Figure 3.1), and refer to
Appendix B for further examples.

800 | \ i
300 |

|
700 §
600

n
o
o

o

500 | AN 200 |
400 N\
‘ X 150
300
| 100
200 \
f |
100 | S X
2 “\\\_ -,
0 IS CPIN Shdudit. AN TSENPARSS T R T = A% e olady O - - —— .. ]
0 200 400 600 800 0 100 200 300

(a) Community from Amazon. (b) Community from Friendster.

Figure 6.2: Distribution of H relative
to the community size nc after fitting
a hyperbolic model to the sampled
communities.

Figure 6.3: Distribution of x after fit-
ting a hyperbolic model to the sam-
pled communities.

Figure 6.4: Examples of hyperbolic
community models, depicted as
degree-ordered adjacency matrices
where dots indicate edges between
nodes i and j. The green curve indi-
cates the fitted hyperbolic model.
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[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion

5: We obtain the models just as in
Section 6.2.

[72]: Wasserman (2004), All of Statis-
tics: A Concise Course in Statistical In-
ference

6: All parameters refers to all H and
y of all communities.

Running time. Our algorithm is implemented in Matlab and C.
It took between half an hour and a full day to compute the models
on a machine with four Intel Xeon E7-4860 10-core CPUs running
at 2.27 GHz and 256 GB of main memory. The exact running times
are given in Table 6.1. Notice that the time depends not only on the
size of the graphs, but to a great extend on the amount of overlap
between the communities. Overlapping communities have to be
computed in a sequential manner as the model of one community
has impact on the next (see Algorithm 1). Additionally, an update
to one model causes the re-computation of all communities that
overlap with it. Hence, the computation for DBLP takes more than
twice as much time than that for Friendster although the Friendster
graph is orders of magnitude larger.

6.3 Comparison to Alternative Models

In Section 4.2, we describe special cases of our model: In the
case where every community is assumed to be a quasi-clique, the
community size, ¢, determines the model parameters structure,
as H = y = nc. When the communities are assumed to follow a
power law pattern, only the threshold parameter X may vary and,
assuming HyCom [3] as the power law model, the other is fixed to
x =0.5.

In this section, we assess the benefit of the additional flexibility of
our model by comparing to these restricted versions. To do so, we
compare the log-likelihoods (Definition 4.3.1) of our hyperbolic
models for the SNAP collection to the log-likelihoods of the respec-
tive HyCom models and block models. For the HyCom models, we run
Algorithm 1 only admitting those (), H) combinations that yield
x = 0.5. For the block models, no parameter search is necessary as
there is only one admitted configuration per community.

To compare the log-likelihood, we use the likelihood ratio test [72,
Ch. 10.6]. In case of the block model, we test the null hypothesis Hy
that all parameters,® are fixed so that they create block structures
versus the alternative hypothesis H; that the parameters are not
tixed; for HyCom, we assume one free parameter. The likelihood
ratio test statistics are given by

L(our model)

=21
A 8 L(block model)
and I del)
our mode
A =2log L(HyCom model)

for block and HyCom models, respectively.



6.3 Comparison to Alternative Models

likelihood ratio

block model HyCom

Amazon 26450.6  30997.1
DBLP(100) 3148.5 -788.0
DBLP -264974.7 17 958.1
Friendster 200627.6 17 811.7
LiveJournal 154982.4  22705.8
Orkut 11945.3 1598.5
YouTube 75689.6  12660.0

Block model. We can see from Table 6.3 that, for the block model,
statistic yields highly positive values, with one exception. Since the
derived p-values are always essentially zero, we confirm that the
hyperbolic model is statistically significantly better than the block
model.” The exception is the 500 sample of the DBLP data. For
this data set, the block model gives a better likelihood than ours.
While cliques are a special case of our model, and hence we can
always model each community as a clique, our iterative method
to update the model parameters (see Section 4.5.2) is based on a
greedy heuristic. In case of the DBLP data, the greedy heuristic
has reached a local optimum that is less good than what could be
obtained with pure block models. On one hand, this is partially
because DBLP contains block-like communities, and on the other
hand, the large overlaps between these communities might have
lead the optimisation astray. To test the latter hypothesis, we also
sampled just 100 communities from DBLP: this reduced the amount
of overlap between the communities (from 33 % to 18 %) and also
significantly improved the results of our algorithm.

HyCom. For the comparison to the HyCommodel, we obtain a similar
result: with one exception, our hyperbolic model describes the data
statistically significantly better than the HyCom model. The better
solution for DBLP(100) found with the parameter space restricted
to HyCom models is also a valid solution within our more general
modelling framework. The greedy algorithm we propose, however,
gives no guarantee to converge to the globally best solution and
this result indicates that it depends on the data whether additional
freedom in the parameter space is a benefit or hindrance for the
algorithm to find a good solution. More importantly, as we will see
in the next section, starting with HyCom as initialisation, our model
is always significantly better.

55

Table 6.3: Test statistic of the likeli-

hood ratio test between our models
and block models, and our models

and HyCom. For all datasets 500 com-

munities were sampled. Additionally,
we display the result for sampling 100
communities from the DBLP data.

7: We will see a similar result in a rep-

etition of this experiment on different

data in Section 8.3.1.
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Figure 6.5: Examples of communities
obtained via spectral clustering and
fitted by our model.

[73]: Luxburg (2007), ‘A Tutorial on
Spectral Clustering’

Table 6.4: Statistic of the likelihood ra-
tio test between our model and block
models (resulting from spectral clus-
tering and BMF), as well as our and
HyCom models. The communities are
found using HyCom, spectral cluster-
ing, and BMF.
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(a) Community from Email data. (b) Community from Jazz data.

6.4 Finding Communities

Next, we demonstrate that our model improves the description of
communities returned by existing community-finding methods.
To that end, we performed spectral clustering, Boolean matrix
factorisation (BMF), and HyCom to find the communities in the
SuiteSparse collection; the first two approaches look for clique-
like communities while HyCom looks for hyperbolic shapes (see
Section 4.2). For each approach, using the likelihood ratio test, we
compare the original outcome to the result after fitting hyperbolic
models on the outcome.

Spectral clustering. We use spectral clustering with the nor-
malised Laplacian [73] to cluster the nodes of the graph. The re-
sulting communities are non-overlapping. We notice a significant
benefit of modelling the obtained result by means of hyperbolic
models, as the likelihood ratio test confirms for all examined
datasets (see Table 6.4). These results yield p-values that are essen-
tially zero, confirming that the results are statistically significant.
We have chosen the number of clusters k as indicated in Table 6.2.
The examples of modelled communities in Figure 6.5 show rela-
tively large cores but thin tails, with most edges being in the lower
triangular area. Our models clearly capture this phenomenon.

likelihood ratio

spectral clustering BMF  HyCom

Email 10895.8 3552.0 250.1
Erdés 1797.0  949.0 256.3
Jazz 3003.8 4435.0 3718.5

PolBooks 648.0 303.3 228.2




(a) Community from Jazz data. (b) Community from PolBooks data.

BME. To find overlapping communities, we use BMF and run
the Asso algorithm [32] with the number of communities k as in
Table 6.2. We set the threshold parameter 7 of Asso to 0.6 and the
weight w to 10. We again find that our models resemble the data
significantly better than the corresponding block models (see Ta-
ble 6.4). Figure 6.6 shows example communities from the PolBooks
and Jazz data. Further examples are displayed in Appendix B.

HyCom algorithm. We run the HyCom algorithm [3] on each of the
data sets stopping after we found k communities, with k specified
in Table 6.2. As the likelihood ratio test confirms (Table 6.4), our
hyperbolic model improves the result of the HyCom algorithm.

6.5 Discussion

Our experiments have verified our intuition that the communi-
ties in real graphs are better modelled using our models than
the traditional quasi-clique models, and that our models are an
improvement over the previously proposed HyCom model [3]. This
holds true for a variety of data sets, both with ground-truth commu-
nities, and with communities detected with existing methods. It is
important to notice that the existing methods, especially BMF, aim
at finding clique-like communities. Thus, since our algorithm uses
their results as the initial community candidates, any weaknesses
of these algorithms will also affect our result. Still, our experiments
show that our models provide statistically significantly better fit,
even when we take into account the increased number of free
parameters for our model.

One advantage of our hyperbolic community model is that it con-
siders overlap between communities. As we discuss in Section 4.3,
communities may overlap in three different ways; in addition to

6.5 Discussion 57

Figure 6.6: Examples of communities
obtained via BMF and fitted by our
model.

[32]: Miettinen et al. (2008), “The Dis-
crete Basis Problem’

[3]: Araujo et al. (2014), ‘Beyond
blocks: Hyperbolic community detec-
tion’
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the nodes, our model considers the edges that constitute a commu-
nity. Thus communities can be node-overlapping but edge-disjoint.
Exactly that case is not entirely represented in Algorithm 1. For
the computation of full graph models, we have restricted edges to
be part of at most one community. We use a heuristic approach
to assign an edge to that community where it best improves the
log-likelihood. Avoiding the need to regard partial memberships
is advantageous as it simplifies the log-likelihood computation.
But there might be merits of extending our algorithm to handle
edge overlaps more elegantly.

Already with the present implementation, we observe that our
model is not only a better fit for the data, but also provides
interesting insights to the shape of the communities. The easy in-
terpretability of the parameters y and H means that we can simply
study a summary of their distributions to gain an understanding
on how the communities in a data look like, whether the cores are
small or big and whether the tails are fat or skinny. This allows a
data analyst to obtain a fast general understanding about the data
without having to look at any particular community.

Finally, our experiments also demonstrate the scalability of our
method. It had no problem of handling even the largest graph,
Friendster, with approximately 65.6 million nodes and 1.8 billion
edges.



Graph Generation with HYGen

In this chapter we conduct a series of experiments to verify the use
of the hyperbolic graph generator. We start by exploring to what
extent previous graph generators are able to capture hyperbolic
community structure. In further experiments, we demonstrate that
HyGen generates modular networks with realistic intra-community
structures using parameter distributions derived from observations
on real graphs.

7.1 Datasets

We begin our experimentation by studying on artificially gener-
ated data how related random graph generators work at modelling
the kind of communities observed in real-world graphs in Sec-
tion 7.2. For the remainder of this chapter, we employ two different
collections of real-world data sets.

The first collection is SNAP. We use four networks from the Stanford
Large Network Dataset collection [70]: Amazon, DBLP, Friendster,
and YouTube. As detailed in Section 6.2, these real-world social
networks have ground-truth community information.! We use the
SNAP collection to explore the parameter distributions for HyGen
in Section 7.3, and to test for the stability and the randomness of
HyGen-generated graphs, in Sections 7.4 and 7.5.

The second collection of real-world datasets is StackExchange. In
Section 7.6, we use four time-evolving communities from the
collection of online question—answer sites on stackexchange.
com [74]:2

» gaming.stackexchange.com,
» gardening.stackexchange.com,
» tex.stackexchange.conm,
» unix.stackexchange.com.

The data sets contain a snapshot of the community at the begin of
each month from the start date until November 2016. Some basic
properties of these communities are listed in Table 7.1.

We base our evaluation on the HYGEn parameters, since (1) up
to noise, clustering coefficient as well as degree distribution are
derivable from the HYGEN parameters (see Section 5.3), and (2)
inter-community connections such as path length, modularity, or

71 Datasets. . .........
7.2 Limits of Current Graph
Generators ........

Experimental Setup
SBM . ............

7.3 Distributions for the Pa-
rameters . . ........

7.4 Stability of the Graph
Generation ........

7.5 Randomness of the Gen-
erated Graphs ... ...

7.6 Modelling Time-Evolv-
ing Communities . . . .

7.7 Discussion . ........

[70]: Leskovec et al. (2014), SNAP

Datasets:
Dataset Collection

Stanford Large Network

1: An overview of the SNAP data is

in Table 6.1.

[74]: Stack Exchange, Inc. (2016), Stack

Exchange Data Dump

2: The whole StackExchange data col-
lection is introduced in Section 8.2. In

this chapter we use an excerpt of four
communities to provide proof of con-
cept of how to model time-evolving

communities.


stackexchange.com
stackexchange.com
gaming.stackexchange.com
gardening.stackexchange.com
tex.stackexchange.com
unix.stackexchange.com
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Table 7.1: Basic properties of four
StackExchange communities. The av-
erage YR and average HR are com-
puted using a weighted average with
the community size at each month
being the weight.

3: Matlab code for the graph genera-
tor and scripts for the experiments can
be obtained from https://cs.uef.
fi/~pauli/hybobo/rgg/.

4: Compare with examples of real
communities in Figures 3.1 and 6.4
to 6.6, as well as in Appendix B.

Figure 7.1: Adjacency matrices of ide-
alised hyperbolic communities. The
different extremes of hyperbolic struc-
tures, range from star-like to near-
clique.

Start date largest size average yr average Hr
gaming 2009-08-01 3818 0.106 0.004
gardening 2010-07-01 446 0.124 0.009
tex 2008-08-01 3342 0.074 0.009
unix 2008-08-01 5450 0.073 0.001

degree correlation would measure only added noise, or in case
of the degree correlation of individual communities, be already
predetermined through the structures we allow.”

7.2 Limits of Current Graph Generators

While many of the existing random graph generators cannot be
used to model community structures in networks at all, there are a
number of related approaches that allow for generated graphs with
community structure. To the best of our knowledge however, there
exists no approach of preserving the intra-community connection
patterns in the modelling process.

In this section, we detail why SBM, DC-SBM,LFR, and R-MAT do
not provide solutions to the modelling task we aim to solve. For
this purpose, we compare the outcome of these generators when
fitted to idealised hyperbolic communities. One may argue that
such communities are not realistic and therefore not a fair basis
of comparison for these generators that are designed to model
real-world graphs, which are usually sparse and exhibit a certain
level of noise. However, the purpose of this experiment is to see to
what extent the pure hyperbolic structure can be captured at all by
the different generators.

7.2.1 Experimental Setup

We generate single hyperbolic communities with the extremes of
shapes that can be represented: a star, a near-clique, a triangular,
and a stereotypical core-tail pattern (see Figure 7.1).* Each of these
communities consists of 100 nodes. For each of the graph gener-
ators, SBM, DC-SBM, LFR, and R-MAT, we learn the respective

(@) 20 %-core (b) star (c) near-clique (d) triangle
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(a) SBM (b) DC-SBM (c) R-MAT (d) LFR

parameters with these communities as input and generate new
graphs according to those parameters. After that, we fit the best
hyperbolic model on the newly generated graphs, measure the
titting quality in terms of log-likelihood, and compare how well
the obtained model matches the original input. We repeat this
experiment 50 times to counteract effects of randomness. Figure 7.3
summarises the resulting hyperbolic models that best fit the com-
munities generated by the respective method. We overlay the 50
obtained models in light grey. Ideally, we would expect to see the
exactly the structures of Figure 7.1 again.

Notice that the LFR implementation strictly requires multiple
communities to be generated. Therefore, we provide graphs con-
taining twice the same community as input (like illustrated in
Figure 7.4a for the 20 %-core’) and use the better matching one in
the evaluation of the fit quality.

7.2.2 SBM

The standard SBM is based on the assumption that vertices within
a block are stochastically equivalent. The hyperbolic model fulfils
this assumption only in the extreme case of a quasi-clique, where
the size of the core equals the size of the community. The typical
core-tail structure of hyperbolic communities cannot be captured
(see Figure 7.2a). As the generated graphs after fitting the SBM
model are almost uniformly dense, the hyperbolic models fitted
on these outputs exhibit a huge degree of variance and often
differ a lot from the original input (see Figure 7.3a). The high
negative log-likelihood scores of the fits (see Table 7.2) indicate
that the fitted hyperbolic models are also not particularly good
at explaining SBM-generated communities. Regarding the case
of a near-clique, it is worth pointing out that a perfect clique

20 %-core star near-clique triangle
SBM = -2354+1919 -451+1406 -282+1007 -3393+39
DC-SBM -1545+1734 -212+713 -3238+521 —2679+768
R-MAT -2008+38619 —440+958  —214+548 -2727+230133
LFR —-2515+7 697 — —1299+17 346 -3714+6 250

Figure 7.2: How the compared graph
generators create a new random com-
munity when given the 20 %-core
community shown in Figure 7.1a as
input. The adjacency matrices in each
subfigure are degree-ordered.

5: The core of the stereotypical core-
tail community is formed by 20 % of
the nodes, hence the name.

Table 7.2: Average best log-likelihood
for 50 trials of generating hyperbolic
communities with SBM, DC-SBM, R-
MAT, and LFR, with standard devia-
tions (SDs). Notice that HyGex would
achieve the ideal value of 0 in each of
the examined cases.
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Figure 7.3: Hyperbolic model fitted
on results of alternate generators.
Each subfigure summarises 50 rep-
etitions of using the alternative gen-
erator to fit the respective input dis-
played in Figure 7.1. For every sam-
ple, the adjacency matrix of the clos-
est hyperbolic model is displayed in
light grey. Shades of grey result from
overlaying all samples and yield a vi-
sual summarisation of the observed
shapes. The ideal result would be
complete resemblance to the respec-
tive input.

20 %-core star near-clique triangle

(a) Hyperbolic model fitted on results of SBM.

(b) Hyperbolic model fitted on results of DC-SBM.

(c) Hyperbolic model fitted on results of R-MAT.

(d) Hyperbolic model fitted on results of LFR.

would be recovered well by the SBM. The case of the near-clique
(Figure 7.3a, column 3) is substantially harder: almost all nodes
are connected to each other but a few miss some connections. For
the SBM however, the primary aim is to match the overall density
evenly. Thus the fit is such that many nodes are fully connected
and some are connected to almost every other node, which yields
into a substantially different looking hyperbolic model.

7.2.3 DC-SBM

DC-SBMs allow for variation of the degree within a community
(see Figure 7.2b). Fitting back a hyperbolic model on the DC-SBM
outcome of modelling a 20 %-core structure, a star, or a triangle
are fairly accurate in the sense that the parameters y and H are
close to the original (see Figure 7.3b). Yet, the hyperbolic models
fitted on the DC-SBM-generated communities leave some amount
of noise to be explained otherwise (see Table 7.2). The DC-SBM
expects a power-law degree distribution within the communities
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and draws edges from that one to recover the connectivity pat-
tern inside the community. In particular the near-clique case (see
Figure 7.3b, column 3) seems to be hard to explain by a power
law. The hyperbolic model is more general in the sense that it
includes power-law distributions as a special case. It also has a
substantially different noise model, assuming uniform density for
the inside-community area and as well as for the outside.

7.2.4 R-MAT

R-MAT is designed to model the degree distribution of the input
data using a recursive procedure. The results we observe for the sin-
gle artificial communities are comparable to those of the DC-SBM
(see Figure 7.3c). The recursive construction procedure however
introduces particular structures in the data. To construct a graph,
R-MAT subdivides the adjacency matrix recursively into quarters
of certain density. This makes it hard to capture multiple communi-
ties, especially of unequal sizes. An additional experiment reveals
that, already if R-MAT is fitted on a graph of two equally sized
(hyperbolic) communities with no inter-connections, the resulting
model is not capturing the this structure well (see Figure 7.4): by its
definition, R-MAT models consist of four self-similar blocks. This
means, the blocks with community structure are always mirrored
to the off-diagonal, introducing many surplus links between the
communities.

7.2.5 LFR

The LFR benchmark generates random graphs given power-law
distributions for the node degree and the community size. Creating
graphs that consist of a single community is not included as a
special case in this approach. To still obtain comparable modelling
results for the four sample hyperbolic communities (see Figure 7.1),
we fit LFR on graphs consisting of twice each of those communities.
The reported log-likelihood scores of fitting a hyperbolic model on

Figure 7.4: How R-MAT reconstructs
a graph of two identical hyperbolic
communities. To fit the hyperbolic
models, we assume that the commu-
nity sizes remained unchanged dur-
ing modelling. Fitting implies degree
ordering the communities.
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[58]: Lancichinetti et al. (2008),
‘Benchmark graphs for testing com-
munity detection algorithms’

6: Here, p refers to either y, H, or the
size nc.

the LER results then refer to the better of the two obtained commu-
nities. While for the star pattern, we could not find a set of valid LFR
parameters to describe this pattern with the procedure suggested
by Lancichinetti, Fortunato, and Radicchi [58], we observe that the
remaining hyperbolic communities are modelled very similar to
each other by LFR, as the best hyperbolic model to explain these
communities is the same in each case (see Figure 7.3d). A closer
look at the LFR-generated graphs reveals that they actually differ:
the average degree per community is retained from the original
communities, but the hyperbolic structure is lost.

7.3 Distributions for the Parameters

In the theoretic derivation of HYGeN in Section 5.1, we suggested
distribution functions to use for the distributions of the shape
parameters ¥ and H and the size nc. Here we detail how these
suggestions were obtained.

For these experiments, we use the SNAP collection of real-world
data sets. Like in Section 6.2, we fit the hyperbolic model to a
sample of 500 communities of size between 100 and 1000 nodes
from each network. Thereby, we obtain the empirical distributions
for y, H, and the (truncated) community size nc.

For each of the empirical distributions for y, H, and nc, we fit
different distributions (namely, generalised extreme value (GEV)
distribution, inverse Gaussian distribution, Birnbaum-Saunders
distribution, exponential distribution, log-normal distribution, log-
logistic distribution, gamma distribution, Rayleigh distribution,
Weibull distribution, Nakagami distribution, Rician distribution,
normal distribution, logistic distribution, extreme value distri-
bution, and t-location-scale distribution). Not every distribution
is applicable for each of the parameters. While the observed ys
look normally distributed, H and the community size show an
exponential behaviour.

In order to validate our subjective observations, we tested how
well the different distributions fit using the negative log-likelihood.
Alternative reasonable measures for evaluation would be Akaike
or Bayesian information criterion. We observe highly similar re-
sults with either of the measures and therefore only present the
evaluation with respect to the log-likelihood. To show the results
in a concise manner, we present here only comparisons of our
chosen distributions against all other options. Namely, for every
distribution D that is not the one we chose to model parameter p,°
we compute our test statistics T,(D) = LL,(D) — LL,(D*), where
LL,(D) is the negative log-likelihood of modelling parameter p
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using distribution D and LL,(D") is that for the selected distribu-
tion D*. The larger values T, (D) obtains, the better the selected
distribution performs compared to distribution D, T,(D) = 0 in-
dicates that D and D* perform equally well, and negative values
indicate that D performs better than the chosen distribution D*.

Based on our experiments, we propose to model y (relative to the
community size) using the normal distribution, H (relative to y)
using the exponential distribution, and the community size nc
using the GEV distribution. Our comparison of these distributions
against others in the SNAP datasets is presented in Figure 7.5.

As can be seen in Figure 7.5a, the normal distribution for y is
constantly at least as good as the other distributions,” implying
that the use of normal distribution is a valid choice. The situation
when modelling the distribution of the H parameter (with respect
to ) is more complicated. Our experiments showed the exponential
distribution to have the best fit, but as can be seen in Figure 7.5b, in
some cases other distributions would be better. More experiments
would be needed to give a conclusive answer to the question which
distribution explains observed Hs best.

For modelling the distribution of the community size (Figure 7.5c¢),
the GEV distribution is always the best, and shows the strongest
performance against the other distributions. Please note, however,
that in this test we model the distribution of the sizes of the
communities in a single network at one point of time; when
studying the sizes of a single community over time, very different
distributions might be needed.®

Figure 7.5: Relative log-likelihoods of
the hypothesised distributions com-
pared to the other distributions. For
each dataset, the boxplot indicates
how well each parameter follows the
hypothesised distribution compared
to other potential distributions. Posi-
tive values indicate that the preferred
distribution performs better than the
others and zero indicates even perfor-
mance.

7: Negative values would indicate
lesser performance.

8: Figure 7.7 gives an impression of
how the community size varies.
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[75]: Nepusz (2015), Blockmodel: Fit-
ting stochastic blockmodels to empirical
networks

9: This is the distribution we should
match.

7.4 Stability of the Graph Generation

We now turn our attention into analysing the HyGen-generated
graphs. In this section we will study how well the generated graphs
fit to the real-world graphs; in the next section, we will study how
random the generated graphs are.

We use the following procedure to test how well the generated
graphs fit to the real-world data they were generated from: First, we
fit the hyperparameters of the parameter distributions to real-world
networks from the SNAP collection. Then we use these distribu-
tions in HyGen to sample collections of random graphs. Finally,
we compute the best hyperbolic model for each community in the
generated graphs and evaluate how accurately the found commu-
nities match to the original communities. Our hypothesis is that the
found communities have similar distributions of parameters as the
original communities, indicating that the generated graphs retain
the essence of the community structure of the original graphs.

In order to compare HyGen, we also generated graphs using LFR
and DC-SBM. Based on our experiments in the previous section,
we know that they cannot model the hyperbolic structure too well,
but it is still possible that they can model all of the structure that is
observed in real-world graphs.

In order to fit the hyperbolic model to the generated communities,
we need to know what these communities are. Both HyGen and
LFR return this information; the DC-SBM implementation we
used [75], on the other hand, only uses this information internally
and does not report it. In order to find the communities from graphs
generated by DC-SBM, we fit the model again to the generated
graphs, and record the community structure from the fitted models.
We assume that DC-SBM correctly recovers communities when
provided graphs generated by it.

The results of this experiment, with respect to y, H, and community
size nc, are presented in Figure 7.6. It shows four boxplots for each
dataset and parameter combination: the first, called empirical, is the
distribution observed from the original data,” and the other three
boxplots show the distributions of the parameters when fitted to
the generated graphs.

In order to obtain reliable results, with HyGen and LFR, we sampled
a hundred times as many communities as was in the original data.
That is, for the YouTube data, we sampled 12 900 communities, and
for the other datasets, we sampled 50 000 communities. DC-SBM,
on the other hand, was so slow to generate the sampled graphs
and fit to them that we had to limit it to one graph with 100
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communities for each dataset. Even with this limitation, it could
not finish the Friendster data set within a week, and hence we
exclude DC-SBM from the results regarding the Friendster data.

The results in Figure 7.6a show that HYGen generates a very good
match for yr in all datasets. LFR is somewhat accurate, but has
much higher SD and often generates too many communities with
too large cores. This behaviour is most pronounced in the YouTube
dataset. DC-SBM generates communities with even larger cores,
and in case of DBLP and YouTube, the first quartile of g in DC-SBM
generated communities is above the third quartile of the original
distribution, indicating a very bad fit.

Figure 7.6b shows the results for the relative H. Again, HYGen
produces the most accurate results, although the communities
have a slightly thicker tails than in the original data at least in the
DBLP and Friendster data sets. On the other hand, these data sets
have extremely thin tails in their communities. The communities
generated by the LFR model have much thicker tails than the real
communities or those generated by the HyGen model. In short, it
is obvious that LFR cannot model the kind of thin tail real-world
data sets often have. DC-SBM, on one hand, under-estimates the
tail thickness for the Amazon data set, and on the other hand,
over-estimates it for the YouTube data set.

Figure 7.6: Distributions of parame-
ters in generated graphs compared to
the empirical distributions observed
in the original data. H and 7 are ob-
tained after fitting hyperbolic models.
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[76]: Cover et al. (2006), Elements of
Information Theory

When we look at the sizes of the generated communities, in Fig-
ure 7.6c, we can observe that LFR has very small deviation of the
community sizes, and they are generally too small, while DC-SBM
generates too large communities for Amazon and DBLP data sets,
but approximately correctly-sized communities for the YouTube
data set. The communities generated by HyGen have again the
best fit in the distribution of the sizes, though it seems to generate
slightly less of the larger communities than what is seen in the real
data.

Overall, we can conclude that HyGeN provides a reasonably good
fit for the original data, and significantly better than what is
provided by either LFR or DC-SBM. This again shows that HYGex
is the best method for modelling hyperbolic structure, and that
the real-world data actually has communities with structure that
cannot be captured by the other models.

7.5 Randomness of the Generated Graphs

We now study whether the generated graphs are random enough.
In a way, this experiment tests the opposite of the previous experi-
ment; it would be easy to obtain a very good match to the original
graph by simply generating graphs that are identical copies of
the original one, but these would be rather useless. Hence, it is
important to study also whether the generated graphs have enough
randomness.

For this study, we quantify the randomness using the conditional
entropy (Y | X). Intuitively, it measures how much information
is needed to describe random variable Y given that we know
random variable X, that is, how much X ‘tells about’ Y. The
entropy of Y [76, Ch. 2.1]is # (Y | X) = 0if Y is fully determined
by X, (Y | X) = #(Y) and if Y and X are independent. As
0 < (Y | X) <H(Y), we report the relative conditional entropy

(Y | X)

Hr(Y | X) = R0

€[0,1] . 7.1

We use the relative conditional entropy to compare the adjacency
matrices of the different communities (original and generated). As
the graphs are undirected, we will only study the upper triangular
part of the adjacency matrix. We sort the rows and columns of
the adjacency matrix according to the vertex degree so that they
are ordered in similar way for all graphs. We then consider the
upper triangular part of the adjacency matrix as a binary vector,
and identify that as a discrete random variable.



7.6 Modelling Time-Evolving Communities

To generate the data to compute #r(Y | X), we create 100 random
graphs using HyGen. We sample ) and H from fitted distributions,
but for the size, we use the original sizes of the communities to
ensure that the random variables X and Y are of same length.

The relative conditional entropy #r(Y | X) is computed per com-
munity because communities sampled from the original graph do
not maintain their context,'’ and thus we cannot match the gener-
ated communities correctly to the original communities unless we
generate the communities one-by-one. In addition, using the fixed
sizes of communities introduces determinism not present in the
full graph model that could bias the analysis.

Our results are presented in Table 7.3. The results indicate that the
information we have on the generated graphs given the original
data is very small (all relative conditional entropies are larger than
0.96), that is, the generated communities are truly random. To-
gether with the previous experiment, showing that the generation
preserves the desired structure, we can conclude that HyGen can
generate random graphs that preserve the desired structure.

7.6 Modelling Time-Evolving Communities

We now examine how the graphon version of HyGen can be used
to model time-evolving communities. Anticipating the main result
of the next chapter, communities in social networks, especially in
online question—answer sites, have a surprisingly constant relative
core size.!! Thus, the graphon model should be a good model for
such communities. The purpose of this experiment is to study
whether that is true; in particular, whether the graphon model can
generate time-evolving communities that behave similarly to the
real ones.

In these experiments, we use the four communities from the
StackExchange collection. Notice that here each dataset is just
one community; this is sufficient for this experiment, as multi-
community graphs would not change the behaviour of single
communities. We initialise a graphon for each community using
the relative parameters yr and Hr from Table 7.1 and sample a
new community for every month in the data. We do not model
the size of these communities, but use the real sizes. Similarly, we
keep the same number of nodes from the previous month as was
kept in the real data. Also, we sample without adding the noise.
This way we can concentrate on the shape of the community; the
modelling of the size, or the amount of the overlap, over time is an
interesting problem for future work'? and adding the noise will

10: With the sampling, we loose the
information which community over-
laps with which community.

Table 7.3: Average relative condi-
tional entropy of generated communi-
ties given the original data. Standard
deviations are within the displayed
precision and thus omitted.

Hr(Y | X)
Amazon 0.996
DBLP 0.996
Friendster 0.990
YouTube 0.963

11: In Chapter 8, we will see that the
relative y, YR, stays almost constant
over time.

12: As Figure 7.7 shows, there is no
common trend in the sizes.
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Figure 7.7: Behaviour of yR in graphon models of different communities. With the red dashed line, we display the average
¥R over 100 sampled communities; the red shading corresponds to the area two SDs above and below the average yr. The
scale for the community size is on the right.

13: We will see in Section 8.4 that
this is the case with essentially all
communities like this.

14: Notice that in Figure 7.7, com-
pared to the plots in Figure 8.6, we
display the entire timeline, while later,
for improved clarity, we omit very
small communities and only display
results with n¢c > 20.

not change the analysis of the shape. As the tail height parameter
Hp is almost zero for every community,”> we do not report any
results on that one.

Figure 7.7 shows the results for the four StackExchange commu-
nities. The red solid line shows the true yr for each month. The
dashed line shows the average yr computed from 100 samples
from the graphon, and the shaded area extends two SDs above
and below the average (though clipping at 0)."*

As we can see in the red lines, all communities have much higher
values of yr at the beginning of their lives but soon the values
converge to a lower value and stay rather constant. The biggest
reason for the behaviour at the begin seems to be the size of the
community (depicted as black line in the figures): initially all
communities start small, but as they grow, the relative core size yr
stabilises. This can be readily seen, for instance, from the gardening
community, that has a cyclic pattern in its size: the value of yr
varies the most when the community has the smallest sizes.

The graphon model can capture this variance based on size very
well. The larger the sample (i.e. the community), the smaller the SD
around the expected core size yr. Consequently, the samples follow
the behaviour of the real graphs very closely, having much higher
deviation at the early stages of the communities and stabilising
as the community grows. Notice that the model even follows the
individual peaks very well (for example in the unix community),
even if the initial values are usually more than two SDs away from
the average.



Opverall, this experiment shows that the graphon model can be used
very effectively to model time-evolving hyperbolic communities,
even though there are some important future directions to explore.
The current model selects the members that leave the community
uniformly at random; potentially more realistic model would
depend, for instance, on the length of the node’s membership in
the community and on its degree. Also, we did not model the
community size over time. In order to generate fully synthetic
graphs, this is a very important feature, although as can be seen
already from Figure 7.7, different communities can have so different
behaviour that a single distribution is probably never sufficient to
model all of them.

7.7 Discussion

Our experiments demonstrate that HyGen is able to produce
realistic intra-community structure. In its graphon formulation,
HyGeN is particularly well-suited for modelling time-evolving
graphs.

While HyGeN is already an improvement over the state-of-the-
art random graph generators, there are still important topics of
further development. The first important topic is to incorporate
more realistic noise models to HYGeN. At the present, the model
assumes uniform noise with different probabilities of eliminating
real edges and adding spurious ones. Our experiments, however,
indicate that the noise is correlated with the size of the community.
Incorporating a size-dependent noise model for removing the true
edges is somewhat straight forward, but modelling similar noise
for inter-community edges requires future work.

The HyGEeN-generated communities have currently too thick tails
compared to what we see in the real world. This might be because
the distribution we use to model the tail thickness parameter
(Exponential) is not concentrated strongly enough, or it might have
something to do with the noise model.

Finally, HyGEeN produces non-overlapping communities. In prin-
ciple, this could be solved relatively easily: the HyGen algorithm
(Algorithm 2) could generate partially-overlapping communities
assuming it knows the amount of overlap. This could be either
provided indirectly by specifying number of nodes for the output
graph G, or by specifying the amount of mixture among commu-
nities. The real challenge however is not the definition of such
a model, but its evaluation. Available test data from real world
networks only comes with community information with respect
to the nodes. Assuming the hyperbolic model, overlap can either

7.7 Discussion
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be within the intra-community area, or outside. In both cases, we
would observe overlapping nodes, but only in the first case the
communities actually overlap. Due to the lack of data to evaluate
the realism of generated graphs with overlapping communities,
we leave this extension of the model for future work.

HyGeN has its obvious use for testing community detection al-
gorithms. It can generate realistic graphs equipped with reliable
labelling of the communities. Besides this, HyGEn might serve as
an anonymisation tool to study the structure of social networks
without revealing the participants identities.



Hyperbolic Communities on
Question—Answer Sites

In this chapter, we use the hyperbolic community model to study
the community structures of online question-answer sites over
time. Users of such sites donate their time and effort voluntarily to
the community. In return, they gain visibility within the community
through votes by other users. We show that the amount of active
members is a constant fraction of the entire community throughout
its lifetime.

8.1 Online Communication, Volunteer Effort,
and Large Networks Under Study

We investigate the particular dynamics of interactions between
people in online communities on question—answer sites. Besides
the textual content that users provide, they leave traces of their
interactions, such as who responds to whom at which time. We
study freely available question-answer data from the large popular
sites reddit.com, stackexchange.com, and healthboards. com.
While reddit.com is a social news aggregation site with a very
broad spectrum of topics, stackexchange. com is known for its
free expert advice for the user asking a question, from which the
entire community profits as well. Similarly, on healthboards. com,
experts answer to questions of laymen regarding health topics.

Our primary result is the identification of a unifying pattern present
in all examined groups: the amount of active members is a constant
fraction of the entire community throughout its lifetime. Furthermore,
through our analysis we conduct a large-scale assessment of the
volunteer effort in online social communities, indicating that the
active participation of only few community members within a
group is a general organisational principle. Since online communi-
cation serves a social function [25, 77-79], this result is relevant for
social communities in general.

While our analysis has a quantitative character, prior studies have
analysed who these people are who volunteer for clubs, charities,
or other organisations [36, 80], and who are the contributors of
Internet content [81, 82]. Their motivations and backgrounds were
the focus of these studies. In particular in the online world, contri-
butions by people on a voluntary basis drive many communities.
Wikipedia is one popular example of a community-driven project
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to which everybody can contribute. In contrast to the kind of user
interactions we focus on, users of Wikipedia collaboratively edit
the same document. They may even revert the changes of each
others. It has been shown that a large fraction of the content on
Wikipedia is created by only a few highly active users [83, 84],
which is in accordance with observations of volunteer efforts in
other contexts [36, 80]. While this inequality in participation is
an important principle and promotes productivity by forming
leadership structures [83, 85], it might also be discriminative and
demotivating for new contributors since it can be hard to compete
with the well-established leadership core [86]. It is exactly this
competition for fame and personal visibility has also been found to
be one of the central motivations for volunteering in online commu-
nities [87]. With our study, we identify the most active contributors
of the analysed sites. We, however, gather no personal information
about the users but rather study their interaction patterns on a
large scale.

Overall, the dynamics within groups of individuals are a long-
running research topic [33-35, 38]. But since only recently, with
the increasing popularity of the Internet, large data sets can easily
be acquired for analysis: Two decades ago researchers presented
hypotheses about social communities after interviewing around
300 people multiple times within one year [35]. Nowadays, such
a dataset seems tiny. As millions of people leave traces of their
interactions on the Internet, the availability of online network data
has enabled numerous studies on the organisation of networks
and the communities therein [23, 37, 88-93].

In our work, we study the intra-community structure of various
communities from three different online question-answer sites
using the hyperbolic community model. We regard this model
as especially suitable to analyse the intra-community structure of
social communities over time because it provides very intuitive
parameters to summarise the connectivity pattern in every time
step. We analyse which portion of the members is actively partici-
pating in discussions and how stable this core fraction is over an
extended period of time.

Especially in the early formation phase of a community, with new
members joining month for month, our expectation was to see
characteristic formation patterns. For example, Kumar, Novak,
and Tomkins [94], when studying the density of the network
as a measure for the connectivity of every person in friendship
networks, observed rapid growth followed by a decline and then
slow but steady growth. In contrast, we find that for question—
answer networks, the overall structure of a community remains



very stable throughout its lifetime. A community might gain or
lose active members, but relative to its size, the amount of core
contributors remains nearly constant.

This observation raises the question as to why there is such a
unifying organisational schema. We find that roughly 20 per cent
of the members form the active core. This finding might hint
towards deeper organisation principles. The 80-20 rule named
after Pareto [95] resembles our result. This rule, however, does not
allow for a hypothesis towards an underlying generative process
to explain human social behaviour in general. Also, the extent
to which this result is transferable to human social interaction in
general remains an open question.

We believe that our modelling approach, using concise descriptions
of intra-community structures at a high level, leads to a better un-
derstanding of network structures within social communities and
thereby promotes the comprehension of the underlying processes
of social interaction.

8.2 Datasets

We examine meta-information of three large online discussion
sites; reddit.com, stackexchange.com, and healthboards. com.
We are interested in identifying the active users within the dif-
ferent communities of these sites. Therefore we collect the user
interactions, that is, who has replied to whose post at which time.
This information reveals the interactions between users and allows
for the construction of user interaction graphs for each data set.
Every obtained graph denotes the users as nodes and the interac-
tions, labelled with times of occurrence, as edges. A summary of
the employed data sets and their characteristics are displayed in
Table 8.1. All data is publicly available. Further details on the data
preparation are provided in Appendix C.1.

Reddit StackExchange HealthBoards
forums meta-forums

covered time span  2005-2016 2008-2016 1999-2013
nodes ~230 x 10° ~8 x 10° 338079
communities 635048 160 160 235
used communities 6 056 147 117 222
max. community size 155511 219693 30223 18924
avg. community size 2774 15124 849 3015
avg. time span (months) 42 58 58 128

8.2 Datasets

[95]: Koch (2011), The 80/20 Principle:
The Secret of Achieving More with Less

Table 8.1: Characteristics of the
datasets. The statistics about the com-
munity size refer to the number of
communities considered in this study
and are reported with respect to their
number of nodes. We require commu-
nities to have more than 100 nodes in
total and to cover a time span of more
than 12 months.
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[74]: Stack Exchange, Inc. (2016), Stack
Exchange Data Dump

Figure 8.1: The gardening community
from StackExchange in June 2016 with
279 users, visualised as Fruchterman—
Reingold drawing.!

1: We used Gephi [96] for the visuali-
sation.

Reddit. The largest of the analysed sites is reddit. com. Reddit is
an American social news aggregation and discussion website. As
of the end of 2016, it encompasses 635 048 different topics, called
subreddits. In every subreddit, users can open new discussion
threads where other users can comment. From these threads,
we gather the information who answered whom and when and
construct a labelled undirected graph. Users constitute the nodes
of this graph. There is an edge between two nodes if a user replied
to another user (ignoring self-edges). Every edge is labelled with
the date of the interaction. Furthermore, we group the nodes into
communities by the subreddit under which the users contributed
something.

Notice that we do not analyse whether the initiator of a discus-
sion thread actually poses a question. While StackExchange and
HealthBoards have a clear question—answer structure, Reddit is a
discussion board and may well have threads where no question
is posed or answered. This difference in the type of content, in
addition to its size, makes the dataset particularly interesting for
the present study: The fact that a post encourages other users to
reply and engage in a discussion allows us to analyse this dataset
in the same way as we do the pure question-answer sites. At the
same time, we might expect to observe differences in the results
due to the difference in the type of content.

StackExchange (SE). We likewise obtained an undirected la-
belled graph from the stackexchange.com page [74]. StackEx-
change is composed of question—answer websites on topics in
various fields, the most prominent being related to computer
programming and system administration. As of the end of 2016,
there are a total of 160 different topics, each of them with a meta-
discussion board. The derived graph contains the users as nodes.
There is an edge between two nodes if a user replied to a question
of another user or if a user commented on a post (can be question
or answer) of another user. Every edge is labelled with the times-
tamp of the interaction. In addition, to define the communities, we
group the nodes with respect to the topic under which they made
a contribution (for instance ‘gardening’, depicted Figure 8.1).

HealthBoards (HB). healthboards.com is a long-running mes-
sage board for patient to patient health support. It consists of 235
message boards for different health-related topics. This data is
orders of magnitude smaller than the aforementioned resources.
However, it is particularly interesting because not only the for-
mation of communities can be observed, but also the dissolving
phase where user activity gradually declines. The graph we de-
rive has the users as nodes. Edges are formed through every


reddit.com
stackexchange.com
healthboards.com

answer of one user to a thread opened by another user and are
annotated with the timestamp of the interaction. The nodes are
grouped in communities according to the message boards where
they posted.

8.2.1 Modelling Decisions

We use monthly intervals to discretise the time line for the analysis.
This choice trades off between a fine-grained view on the evolution
of the communities and keeping the amount of models to compute
and evaluate within a feasible range.

We consider the subgraph of every community individually instead
of modelling the whole graph at once, as (1) our focus are the
intra-community interactions, (2) for many communities there
is very little overlap, and (3) the partitioning helps to keep the
computational complexity manageable, in particular the memory
consumption.

We experimented with how to accumulate the data for the monthly
time steps. Options are for every time step (1) to accumulate all
interactions from the beginning of the time series to the current
time step, (2) to use a sliding window in order to accumulate over
the last few months until the current time step, or (3) to only take the
interactions of the respective month as edges. The results presented
subsequently were obtained employing the latter option, which
exhibits the highest variance and, thus, is the hardest case for what
we aim to show. The other two options yield denser subgraphs,
and because there is overlap between the data of consecutive time
steps, the course of the core size parameter ) is much smoother. As
we detail in Appendix C.3, we obtain similar results with respect
to the relative shapes of the communities with these set-ups.

We report only results for communities with at least 100 nodes in
total and a covered time range of more than 12 months.

8.3 Model Suitability

We use the hyperbolic model (as introduced in Section 4.1) for our
study of the development of the connectivity patterns within the
communities of question-answer sites. For easy interpretability of
the model, we parametrise the model into ® = {y, H}, where the
parameters y and H can, respectively, be interpreted as the size of
the core, and as the thickness of the tail (see Figure 8.2).

8.3 Model Suitability

node index

100 , 150 200
node index

Figure 8.2: The gardening commu-
nity from StackExchange in June 2016
visualised as degree-ordered adja-
cency matrix where dots indicate
edges between nodes i and j. The
green curve indicates the fitted hyper-
bolic model. The parameter y denotes
where i = j, and we have y = 38 core
members (shaded in grey). The tail H
thins down to two members.

0 50 250
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2: All computations have been car-
ried out using Matlab. The code for
the hyperbolic community model
is publicly available at https://cs.
uef.fi/~pauli/hybobo/.

3: This testis similar to our analysis in
Section 6.3 and confirms our findings
on different data.

[72]: Wasserman (2004), All of Statis-
tics: A Concise Course in Statistical In-
ference

Table 8.2: Result of the likelihood ra-
tio test between modelling the data
as hyperbolic communities compared
to modelling them as quasi-cliques.
We report the percentage of commu-
nities that are better explained using
the hyperbolic model, at significance
levels @ = 0.01 and a = 0.05.

percentage
a= 0.01 0.05
Reddit 993  99.7

StackExchange 100.0 100.0
HealthBoards 941 955

4: We normalise by %(rzcz —nc) for
a community with nc members.

We begin our analysis with an assessment of the suitability of the
chosen model: in this section, we show that the hyperbolic model
is better suited than traditional quasi-clique models to explain the
data, and that the hyperbolic models are robust, meaning that
moderate changes to the parameters also only have a moderate
impact on the model quality.

8.3.1 Comparison to Block Model

To validate that the hyperbolic community model is a good way to
describe the analysed data sets, we compare it to the commonly
used alternative, a quasi-clique model. A quasi-clique, or in other
words, a uniformly dense block, is a common description of a
community in a graph. The hyperbolic community model includes
this option as a special case (see Section 4.2), the core size y is
then equal to the size of the community. We want to validate that
such a model is not capable of describing the data as well as the
hyperbolic community model.”

From every community, from every dataset, we take the time step
where the community is the largest. This usually coincides with
the last time step. Only in HealthBoards user activity decreases
towards the end of the time series of every community. Very small
communities are susceptible to noise and are therefore not the
focus of this analysis.

We use the log-likelihood to judge the description quality and carry
out a likelihood ratio test [72, Ch. 10.6]. Like in Section 6.3, we test
the null hypothesis Hj is that all parameters are fixed versus the
alternative hypothesis Hj is that the parameters are not fixed.

We find that all StackExchange communities and most communities
from Reddit and HealthBoards are statistically significantly better
explained by the hyperbolic block model (see Table 8.2). It should
be noted that the cases where a hyperbolic model is not statistically
significantly better than the block model coincide with extremely
small communities, typically below 20 nodes at their maximum.

8.3.2 Robustness of the Model

We analyse the robustness of the obtained hyperbolic community
models. To that end, we analyse how the log-likelihood deviates
if we alter the optimal value for the parameter y by 10 % in each
direction. Notice that the absolute log-likelihood of a community
model is dependent on the size of the community. To compare
among different communities, we normalise the log-likelihood by
the number of possible edges within the community.*
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We observe that, indeed, the log-likelihood never improves when
the parameter is shifted away from the optimum. More importantly,
the log-likelihood worsens by a similar amount in every time step
and in every community and for both directions of shifting ys.

To illustrate the development of the log-likelihood with the altered
parameter y over time, exemplary courses of the evolution are
displayed in Figure 8.3. We summarise the differences in the log-
likelihood, for StackExchange and its meta-communities separately,
in Figure 8.4.°

When increasing y by 10 %, we notice a drop of 0.022 on average
for the non-meta StackExchange communities and 0.096 for the
meta communities. Likewise, when decreasing y by 10 %, the
average drop is 0.019 and 0.083, respectively. We conclude that the
hyperbolic community model is very robust and thus well-suited
for our analysis.

=
=
W
‘
o
=
W

o+

++ 0+

.
S

L per potential edge
"O B
L per potential edge

-0.15 -0.15

o+

-

-0.2

opt. - (y-10%) opt. - (y + 10%)
(a) Communities of StackExchange.

opt. - (y-10%) opt. - (y + 10%)

(b) Meta-communities of StackExchange.

8.3 Model Suitability

Figure 8.3: Evolution of the log-
likelihood of the hyperbolic commu-
nity model for the StackExchange
communities and the log-likelihood
when shifting the parameter y by
10 % away from its optimum. The log-
likelihood is reported relative to the
number of possible edges within the
community.

5: Here again, boxplots display dis-
tributions such that in each box, the
central mark is the median and the
edges of the box are the first and third
quartiles. The whiskers extend to the
most extreme data points that are not
outliers. Points are considered out-
liers if they are larger (smaller) than
the third (first) quantile plus (minus)
1.5 times the difference between the
quantiles. Outliers are plotted indi-
vidually.

Figure 8.4: Differences in the log-
likelihood (LL) per possible edge
when applying the best hyperbolic
community model versus shifting the
parameter y by 10 % away from its
optimum. The distributions are the
average log-likelihood differences per
community.

79



80

8 Hyperbolic Communities on Question—Answer Sites

6: Within plots, we use the shorthand
notations SE and HB to denote Stack-
Exchange and HealthBoards, respec-
tively.

Figure 8.5: Distribution of the core
size y and the tail height H. Each box
displays the distribution of averages
over the time lines of each commu-
nity in the respective data set. Further
statistics are displayed in Table C.2.

8.4 Fitting the Models

We now examine the results of fitting the hyperbolic model to the
time line of every community. Optimising the log-likelihood as
described in Section 4.5, we compute a hyperbolic model for every
month for all communities from the question—answer sites; at the
example of the gardening community, we display the model for a
single time step in Figure 8.2. For a number of communities, we
show the behaviour of the model parameters over time in Figure 8.6
and refer to Appendix C.8 for an overview of all time line plots.

We observe a predominant shape of the intra-community con-
nectivity pattern: between 10 % and 30 % of nodes form the core;
the rest of the nodes are loosely connected to the core area. As
can be observed in Figure 8.6, and is examined in more detail
subsequently, the value of y is almost constant in this range over
the full lifetime of the community. Surprisingly, we see this shape
throughout the whole lifetime of every (sufficiently large) commu-
nity, suggesting that the core of each community is invariant to
its size and life time. Of course some fluctuations occur if there
are very few community members in total, such as in the initiation
phase of a community.

To quantify the characteristics of the observed shapes, we exam-
ine parameter distributions for each dataset. As summarised in
Figure 8.5,° the distributions for the core size parameter y pre-
dominantly range between 10 % and 30 %, while the tail H is
mostly very thin. The cores of the StackExchange communities
are even smaller, with their median size being 15 %. We regard
separately the actual discussion boards of StackExchange and the
meta-communities, where discussions about the respective board
take place. Meta-communities are much smaller, their activities
often vary heavily, and their members are a subset of the users of
the respective basic discussion board. We find the cores of these
communities to be 26 % of the community size on average, which
is not even within the 90" percentile of the basic StackExchange
communities. This is likely a result of the bias towards otherwise
active users as participants in these discussions.
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8.4 Fitting the Models

Figure 8.6: Examples of models
for communities from the different
question—answer sites over time. The
model parameters H and y obtained
from fitting the hyperbolic commu-
nity model are shown relative to the
community size. The right axis in ev-
ery plot denotes the absolute size of
the community (black curve). Only
data from communities with at least
20 members is displayed. The time
lines form all data are displayed in
Figures C.8 to C.15.
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[72]: Wasserman (2004), All of Statis-
tics: A Concise Course in Statistical In-
ference

8.5 Regression on Time

Now, we analyse whether the seemingly constant relative size of
the core of the communities is truly constant over time. To that
end, we perform two tests.

First, we fit a linear model on each time line of ys. To assert
that no quality is gained when using more complex models, we
compare the fitting quality to that of higher order polynomials in
Appendix C.4. As Figure 8.7a shows, we observe that the slope of
the linear models is close to zero everywhere. Mostly large p-values
(see Table C.2) provide no evidence to reject the null-hypothesis,
which states that the slope is equal to zero.

Since this alone is no proof of the significance of our finding, we
secondly measure the Pearson correlation coefficient between each
time line of y and a constant function. We find a strong correla-
tion throughout the data with high significance. This statement
may seem incoherent with the definition of Pearson’s correlation
coefficient: for a sample statistic, the sample correlation r between
variables x and v is

3 (5= 0y =)

5 (i = 2P 5 (i - 97

where x; and y; are the values of x and y for the ith sample [72,
Ch. 8.2]. In the case we describe, all y; would be identical and in
particular y; = i which yields 0 in the denominator. Commonly,
r = 0 is the defined outcome for this ill-defined case. To remedy
this deficiency in the definition, we tilt the coordinate system prior
to computing the correlation coefficient. To that end, we apply a
coordinate transformation to all samples by multiplication with
the rotation matrix

cosa -—sina

¢-2m
360°

) where a =
sinad cosa

This way, we achieve a turning of the data by an arbitrarily cho-
sen angle of ¢ = 45° and may compute the Pearson correlation
coefficient in this transformed space. The argument for this proce-
dure is that if there is no correlation and the data is just normally
distributed along both axes, then no rotation will reveal any corre-
lation. Vice versa, however, if there is any correlation with the flat
line, then we can see it by rotation.
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The p-values of the correlation are computed for testing the hy-
pothesis of no correlation against the alternative that there is a
non-zero correlation. For every data set, we observe a significant
amount of correlation, with no p-value larger than 0.000 001 (see
Table C.2).

In particular, we notice that all examined datasets of the different
question—answer boards show a similarly constant core size. While
Reddit and StackExchange data range over less than five years on
average and include mostly growing communities, the average
HealthBoards communities have user interactions recorded over
more than a decade. Even within such extended time periods,
which include the formation and dissolving of communities, we
have identified the constant core size as a unifying pattern.

8.6 Regression on Size

In this section, we study whether there is also no trend in the core
size with respect to the size of a community. With this experiment,
we aim to confirm what is observable in Figure 8.6: over time,
the community sizes vary, but the sizes of community cores are
invariant to community size.

To that end, we compute regression models for every community,
like we did in the previous section, this time, however, with the
community size instead of time on the x-axis. As Figure 8.7b shows,
the relative core size is close to constant, also under variation of
community size. We can therefore assert that the size of the cores is
invariant to changes in the community size. Like for the regression
with respect to time, we measure the Pearson correlation coefficient
towards a constant function also in this setup. We again observe a
strong correlation throughout the data with high significance (all
p-values <0.000 001, compare with Table C.2).

8.6 Regression on Size

Figure 8.7: Distribution of the slopes
obtained from linear regression on
every community.
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Figure 8.8: Core overlap between
time-wise subsequent cores, and
cores two, four, and eight months
apart. The exact numbers can be
found in Table C.2.

As Figure 8.7b indicates, outliers are an order of magnitude more
extreme in this set up and appear to be more prominent, especially
in the HealthBoards data. A closer look at the data (see Appendix C.7
and, in particular, Figure C.7) reveals that the smallest of the
communities constitute the outliers in these boxplots and are most
likely explained by insufficient data to compute reliable hyperbolic
models.

8.7 Stability of the Core

Our results above indicate that the relative size of the cores stays
constant; however, we do not see whether the involved users inside
the core vary strongly over time. To analyse how constant the
fraction of core members stays from one time step to the next, we
measured the stability of the core using the containment index.

Given two sets of nodes, the containment index indicates which
percentage of nodes from the smaller set is contained in both sets.
Formally, given two sets of nodes, € and %, the containment index
C(€, %) is defined as

C(Cg , %) = M .
min (|G|, |%])

We observe that from one time step to the next, between 40 % and
60 % of the nodes are overlapping. Figure 8.8 displays the result
per dataset and includes the comparison of cores that are two, four,
and eight time steps apart. As expected, we observe a gradual
decrease of the overlap. However, even between time intervals that
are more than half a year apart, the overlap is more than 30 % for
all datasets. This suggests that a substantial portion of the active
members stay active for a longer period of time and might even be
a conservative estimate, since the employed measure ignores users
who take a pause and then return.

We further observe that the cores of the StackExchange commu-
nities and, in particular, of the meta-discussion boards are more
stable than those of Reddit or HealthBoards. This suggests that
active StackExchange users generally stay more committed to their
community, and, in particular, those users who discuss their com-
munity on a meta-level adhere to their communities. Reddit users,
on the other hand, are less devoted to their communities, called
subreddits. This is logical, as new subreddits can be opened easily,
and many of them are about arbitrary topics relating to current
events.



For both, HealthBoards and StackExchange, we observe a stronger
decline in the fraction of steady members when increasing the time
interval than we do for Reddit or the meta-forums of StackExchange.
We hypothesise that this is due to the expert-layman interaction
nature in these two boards: a layman comes, discusses his matters
with the experts, and leaves again.

An interesting direction of future research is to characterise the
active users who constitute the core, and especially those who
stabilise the community over time. For StackExchange, where each
user has a reputation score that reflects expertise, we analyse to
what extent high reputation is correlated to users in the cores of
communities. As we detail in Appendix C.5, high reputation alone
is, however, not a reliable indicator of the activity of a user.

8.8 Discussion

Modelling the interaction graphs of various communities of differ-
ent online question—-answer sites, we observe very similar patterns
that remain stable over the lifetime of every community. We find
that a constantly small fraction of the members constitutes the
active core of each community, donating their time and effort
voluntarily to the entire group.

Placement with respect to earlier work. One might think that
particular communities have a substantially higher fraction of
active members than others. Or, communities in the early phase,
during their formation, might initially start as a block-like structure,
where everybody interacts with everybody else. This phase might
then be followed by a star pattern, as new members join and
connect first to the old members. Such a formation pattern has
been reported by Kumar, Novak, and Tomkins [94] for the social
networks Flickr and Yahoo! 360, but cannot be confirmed for the
analysed data sets.

Arguably, it is a matter of conjecture whether differences in the data
analysis disguise such patterns or whether they are truly absent.
Kumar, Novak, and Tomkins, as well as Leskovec, Kleinberg, and
Faloutsos [23] base their findings on the density observed in whole
networks, whereas we study the hyperbolic community model.
The major difference is that we consider only those nodes that
have interactions with others while Kumar, Novak, and Tomkins
consider every node irrespective of the connectivity. It is likely
that the pattern they reported is caused by singleton users signing
up and not immediately building up connections. Furthermore,
Kumar, Novak, and Tomkins use discretisation based on weeks’

8.8 Discussion
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granularity; we use months. However, since their detected patterns
occur within a period of 40 weeks, they should also be visible
when studying monthly patterns.

Another important distinction between our study and earlier work
is that in previous representations of social networks [e.g. 23,
94], an edge corresponds to a passive friendship relation. That
means, adding more friends to someone’s network does not, per
se, increase the workload of this person. This is in contrast to
our setting, where each edge represents active participation in the
question—answer site, and especially in case of complex answers,
can involve significant time investment. Such active commitment,
done at least partially for altruistic reasons [80, 87], is likely to
follow different dynamics than the mostly passive inclusion of
friends.

One possible organisational principle underlying the networks
studied here is the widely applied Pareto principle, or the law of
the vital few [95], which states that around 80 per cent of the effects
come from around 20 per cent of the causes. This principle matches
observations in various fields, such as business and biology [97-
99] and also explains communication in online discussion boards
surprisingly well: about 20 per cent of the people are responsible
for 80 per cent of the content in every community. The actual
people who contribute actively might change over time, but the
structural stability appears to be a property of large groups. Palla,
Barabasi, and Vicsek [100] emphasise that small groups, on the
contrary, are susceptible to change and are likely to dissolve if
their members change. This observation agrees with the increased
amounts of variance we observe within small communities.

From the viewpoint of an individual, preceding studies [78, 79,
101-103] yield supporting evidence for more general organisation
principles in human communication. Saramaéki et al. [104] coin
the term social signature, suggesting that most communication
between individuals is limited to a small portion thereof. The
frequent contacts of a person might change over time, but the
overall distribution persists. The authors hypothesise that this
is a consequence of finite resources, such as time available for
communication and emotional capital. Following this thought,
most active users in the examined question—answer sites would
either have extremely frequent contact with their closest friends,
or they have no further social circle. As either scenario seems
unlikely, a subsequent qualitative analysis might be necessary to
unify these results. Our study covers voluntary effort in the form
of question answering. We assume that this serves as a proxy to
communication behaviour in general. However, the conducted
study is limited to the communication that people ‘donate’ to
the examined sites. The large amount of studied data allows for



statistically well-grounded hypotheses, but we cannot make holistic
claims about the communication patterns from the perspective of
an individual.

Data representation. To construct the studied interaction graphs,
we use the response of one user to the posting of another as an in-
dicator for a social interaction. For simplicity, these interactions are
modelled dichotomously and we do not account for the direction
of the interactions. Incorporating the latter would require a more
complex community model in which donators and receivers are
distinguishable. What further insights could be gained from such
a modelling remains an open question. In the current approach,
we seek for a very simple summary of the communities under
study, describing their shape by just two different parameters. This
allows us to summarise especially large data sets into a graspable
format.

To model additional information about the strength of the edges,
every interaction could be weighted, either by the amount of inter-
actions in a given time interval, or by the elapsed time between
a post and its response. Empirical examination of StackExchange
communities indicates that the majority of connections, in the for-
mer setting, would show very low weights, mostly equal to 1 and,
therefore, would not provide much additional information (see Ap-
pendix C.2). The reason is potentially the particular expert-layman
interaction on this site. Whether more general discussion boards
like on Reddit could benefit more from weighted interaction graph
models, and how the time between interactions as an indicator of
strength could be beneficial, are interesting directions of future
research. Such an analysis would also require the use of a modified
approach to model the communities. Our model is restricted to
undirected, unweighted networks.

Use for finding discontinuities. We have seen that the relative
amount of active members in a community remains constant over
time. In particular, this holds while the actual size of the community
might vary — either through growth in general or due to seasonal
trends, such as in the gardening community of StackExchange, or
the golf community of Reddit (first and fourth plot in Figure 8.6).
Occasionally, however, seemingly independent of the community
size, we observe short-term enlargements of the core size by about
ten per cent . The Raspberry Pi community of StackExchange, for
instance, shows such discontinuities around March 2013 and April
2014 (third plot in Figure 8.6). Coincidentally, these dates refer
to release dates of new versions of the product. Unlike for the
Bitcoin community (second plot in Figure 8.6), where the size of
the community can easily be aligned with major events in the value

8.8 Discussion
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development of the currency, the Raspberry Pi release events do
not show in the number of members, rather in their connectivity
patterns. Our employed modelling framework might thus facilitate
new methods for event detection.

In summary, our work provides new insight on the evolution of
community structures in large networks. The examined online
question—answer sites show a common scheme of roughly 20 per
cent of highly connected active members and 80 per cent loosely
associated members who mainly communicate with the active core.
This scheme remains throughout the lifetime of a community.



Conclusion

This chapter concludes the first part of the thesis. We summarise
our contribution towards modelling hyperbolic communities and
discuss further directions for this line of research.

9.1 Summary

We have introduced the hyperbolic community model and its
graph generator, HYGeN. Our model captures non-uniform edge
distributions within communities in networks. It enables a real-
istic, yet simple description of the building blocks of networks.
We present the model in terms of three different but equivalent
parametrisations, each with its own merits:

» hyperbolic employs a hyperbola equation and emphasises
the geometric shape of the community.

» fixed uses the core size and tail height as parameters and
thus gives an immediate intuition about the shape of the
community.

» mixture offers a probabilistic perspective by expressing the
community shape as a mixture of a line and a hyperbola.

In addition, we express the hyperbolic model in terms of a graphon,
thereby offering the perspective of an exchangeable random graph
model. Furthermore, we present a random graph generator on
the basis of the hyperbolic model. HYGen generates modular net-
works with realistic intra-community structures, using parameter
distribution derived from observations in real graphs.

In extensive experiments, we confirm that the hyperbolic com-
munity model explains real graphs much better than previous
approaches, and that HYGeN produces satisfactory modular ran-
dom graphs with realistic intra-community structure.

In a large-scale study of volunteer effort on online question-answer
sites, we successfully demonstrate the use of the hyperbolic com-
munity model. Our primary result is the identification of a unifying
pattern, present in all examined data: the amount of active members
is a constant fraction of the entire community throughout its lifetime.

9.1 Summary .

9.2 Challenges
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9.2 Challenges

Notwithstanding the achievements towards modelling communi-
ties in networks more realistically, there are still challenges to meet
along this line of work. The major point to name here is how to find
the communities within a network.

There is a wide range of approaches for community detection [12].
Overlapping or not, many of them regard communities simply as
denser blocks in the data, and therefore aim to identify (quasi-)
cliques. Modifying those methods to account for hyperbolic com-
munity structure is always possible as a post-processing step. As
we demonstrate in Section 6.4, existing community detection algo-
rithms can be improved by expressing the result using hyperbolic
communities." A favourable alternative would be to incorporate hy-
perbolic community structure already in the detection procedure.
As opposed to searching for evenly dense blocks and expressing
them with the hyperbolic model, the community detection would
be tuned towards finding the hyperbolic structures right from the
start.

Hyperbolic community detection faces the challenge that three
different types of overlap between communities can occur (see
Section 4.3): our model specifies not only which nodes of a graph
constitute a community, but also which edges between these nodes
belong to the community. Therefore, in addition to the usual dis-
tinction of having common nodes, or not, hyperbolic communities
might be edge-disjoint despite having common nodes.

The latter case is particularly difficult to identify, since node-
overlapping but edge-disjoint communities seemingly appear like
a single community with one big core. If more detailed examination
reveals bipartite intra-community structure, that would be a hint
that actually two communities overlap each other. A Bayesian
inference approach, where the best assignment of community
memberships is determined in an MDL fashion, might serve as a
basis for hyperbolic community detection. The starting point for
such an approach could be the method of Peixoto [45], targeted at
a hierarchical partitioning of DC-SBMs.

Another promising direction for the development of a detection
approach is offered by the recent works on nested matrices and
rounding rank. As discussed by Karaev, Metzler, and Miettinen [40],
hyperbolic communities are a special case of nested matrices.’
Nested matrices have non-negative rounding rank 1 [41], which
suggests that rounding rank decompositions could provide an
approach for finding hyperbolic communities. Yet, the combina-
tion of nested graphs is problematic, since the characterisation

from rounding rank falls apart in higher-rank decompositions. To



overcome this difficulty, Karaev, Metzler, and Miettinen propose
a decomposition approach for overlapping nested matrices using
tropical algebra.® Under tropical algebra, the rounding rank extends
naturally to higher-rank decompositions. This approach, amended
with appropriate constraints* could be suitable method for the
detection of hyperbolic communities.”

No matter how promising an detection approach appears, the next
challenge is its validation. Testing community detection approaches
requires large amounts of reliable test data — in our case, with
labels for the nodes and the edges. Indeed, we propose HyGen not
least exactly to close this gap. However, independent real network
data would still be an asset.

Yet another challenging direction is to explore the detectability
of hyperbolic communities from a theoretic point of view. For
(clique-like) community detection, there exists a resolution limit:
as networks becomes too sparse, communities are undetectable. Al-
though they still exist, it becomes information-theoretically impos-
sible to identify them better than by chance, because the densities
within and outside of communities are too similar. Nadakuditi and
Newman [105] explore the conditions under which the detectability
of communities vanishes with a focus on matrix-based methods for
community detection, while Decelle et al. [106] especially analyse
methods based on Bayesian inference. Both works regard networks
generated by SBMs. The internal structure of communities in our
approach differs that of SBM, but since we rely on differences in
density to decide upon the community membership of nodes, it is
likely that any approach to hyperbolic community detection also
faces a similar resolution limit.

9.2 Challenges 91
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Introduction

We now switch topics. The second part of this thesis is about
Boolean tensor clustering, and we start here with an introductory
chapter, where we motivate the idea, outline our results, and
discuss related approaches.

10.1 Tensors, Clustering, and Binary Data

Tensors are multi-way generalisations of matrices. They are com-
mon in data mining: three-way tensors can be used to record
ternary relations — for example source IP-target IP-target port
in network traffic analysis; a set of different relations between
the same entities — for example subject-relation—object data for
information extraction; or different instances of the same relation
between the same entities — for example the adjacency matrices of
a dynamic graph over time, such as who sent email to whom in
which month.

Given such data, a typical goal in data mining is to find structure
and regularities from it in order to create an informative summary
that describes the data well. To that end, tensor decomposition
methods are often employed. Their output are the building blocks,
called factors, that together explain the data. For three-way tensors,
a decomposition yields three factors; one for each direction in the
data, referred to as mode. The factors are represented by matrices
whose ‘multiplication’ yields the tensor again.' If the data are
binary — as in all the examples above — it is natural to restrict
also the factor matrices to the binary domain. It is also natural
to consider the data to denote presence or absence of features,
making Boolean algebra a natural choice. Hence we will study
Boolean tensor decompositions.

Finding good Boolean tensor decompositions is computation-
ally hard. The hardness comes from the complexity caused by
overlapping factors. In applications on real data sets, however,
it has been observed that the returned factors often are (almost)
non-overlapping in at least one mode [107, 108]. This means, the
respective factor matrix has exactly one non-zero per row.

Typically the mode where these non-overlapping factors appear
is unsurprising given the data: in the above examples, it would
be target ports in the network traffic analysis data, relations in the
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information extraction data, and time (month) in the email data -
in all of these cases, this mode has a different behaviour compared
to the other two.

Exactly these observations are the motivation for our approach: we
restrict one mode to non-overlapping factors, thereby removing
one of the main sources of computational complexity. We will see
subsequently that the resulting problem admits better approxima-
bility results, and yields simpler algorithms with better results,
compared to other Boolean tensor decomposition approaches. We
refer to the problem as Boolean tensor clustering (BTC), since the
factor matrix with exactly one non-zero per row can be interpreted
as a cluster assignment matrix.

If clustering is what we propose here, then why do we not simply
cluster the slices of the tensor using any off-the-shelf clustering
algorithm? The answer is two-fold: On one hand, having binary
centroids to express binary data often improves the interpretabil-
ity (and sparsity) of the results, and hence we want to develop
specific algorithms for the Boolean case. On the other hand, just
clustering the slices will not reveal the underlying structure within
the slices; extracting that structure facilitates the interpretation of
the clustering, and will also alleviate the curse of dimensionality,
as we shall see in the experiments. With BTC, we seek for a concise
representation of the major patterns in the data. Given the exam-
ple of subject-relation—object data, this would amount to finding
clusters of relations and describing them by the most important
subjects and objects for each cluster.

10.1.1 Our Contribution

We present the problem of Boolean tensor clustering (BTC) in
Section 11.2. The general form of BTC is in fact very similar to
standard binary clustering problems, and therefore we concentrate
on the more restricted problem of Boolean CP clustering (BCPC).
While we approach these problems from the point of view of tensor
decompositions, they can be equivalently seen from the clustering
point of view: the task then is to find a clustering while the cluster
centroids are constrained to comply with the tensor structure.

While we concentrate on three-way tensors, our approach can
be extended to higher-order Boolean tensors. We discuss about
application-specific design decisions this extension involves.

Normally, the quality of a clustering or tensor decomposition is
measured using the distance of the original data to its representa-
tion. In Section 11.3 we argue, however, that for many data mining



problems (especially with binary data), measuring the quality
using the similarity instead of distance leads to a more meaningful
analysis.

Motivated by this, the goal of our algorithms is to maximise the
similarity instead of minimising the dissimilarity, as we detail in
Section 11.4. As a by-product of the analysis of our algorithms,
we also develop and analyse algorithms for maximum-similarity
binary rank-1 decompositions. We show that the problem admits
a polynomial-time approximation scheme (PTAS) and present a
scalable algorithm that achieves a 2(V2—1) ~ 0.828 approximation
ratio.

The experimental evaluation, in Chapter 12, shows that our al-
gorithm achieves comparable representations of the input tensor
when compared to methods that do (Boolean or normal) tensor
CP decompositions — even when our algorithm is solving a more
restricted problem — while being generally faster and admitting
good generalisation to unseen data.

10.2 Related Work

Tensor clusterings have received some research interest in recent
years. The existing work can be divided roughly into two separate
approaches: on one hand Zhao and Zaki [109], Jegelka, Sra, and
Banerjee [110], and Papalexakis, Sidiropoulos, and Bro [111] study
the problem of clustering simultaneously all modes of a tensor
(tensor co-clustering); and on the other hand, Huang et al. [112]
and Liu et al. [113] (among others) study the problem where only
one mode is clustered and the remaining modes are represented
using a low-rank approximation. The latter form is closer to what
we study, but the techniques used for the continuous methods do
not apply to the binary case.

Normal tensor factorisations are well-studied, dating back to the
late Twenties. The Tucker and CP decompositions were proposed
in the Sixties [114] and Seventies [115, 116], respectively. The topic
has nevertheless attained growing interest in recent years, both in
numerical linear algebra and computer science communities. For a
comprehensive study of recent work, see Kolda and Bader [117],
and the recent work on scalable factorisations by Papalexakis,
Faloutsos, and Sidiropoulos [118].

The first algorithm for Boolean CP factorisation was presented by
Leenen et al. [119], although without much analysis. Working in the
framework of formal tri-concepts, Bélohldvek, Glodeanu, and Vy-
chodil [120] studied the exact Boolean tensor decompositions, while
Ignatov et al. [121] studied the problem of finding dense rank-1
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subtensors from binary tensors. In data mining, Miettinen [122]
studied computational complexity and sparsity of the Boolean ten-
sor decompositions. Recently, Erd6s and Miettinen [108] proposed
a scalable algorithm for Boolean CP and Tucker decompositions,
and applied that algorithm for information extraction [107]. The
tri-concepts are also related to closed n-ary relations, that is, n-ary
extensions of closed itemsets [see, e.g. 123, 124]. For more on
these methods and their relation to Boolean CP factorisation, see
Miettinen [122].

Miettinen et al. [32] presented the discrete basis partitioning prob-
lem (DBPP) for clustering binary data and using binary centroids.
They gave a (10 + ¢) approximation algorithm based on the idea
that any algorithm that can solve the so-called binary graph clus-
tering (where centroids must be rows of the original data) within
factor f, can solve the arbitrary binary centroid version within
factor 2 f. Recently, Jiang [125] gave a 2-approximation algorithm
for the slightly more general case with k + 1 clusters with one
centroid restricted to be an all-zero vector.

The maximisation dual of binary clustering, the hypercube seg-
mentation problem, was studied by Kleinberg, Papadimitriou, and
Raghavan [126, 127] and they also gave three algorithms for the
problem, obtaining an approximation ratio of 2(V2 — 1). Later, Sep-
panen [128] proved that this ratio is tight for this type of algorithms,
and Alon and Sudakov [129] presented a PTAS for the problem.

Recently, Kim and Candan [130] proposed the tensor/relational
model, where relational information is represented as tensors.
They defined the relational algebra over the (decompositions of)
the tensors, noting that in the tensor-relational model, the tensor
decomposition becomes the costliest operation. Hence, their subse-
quent work [131, 132] has concentrated on faster decompositions
in the tensor-relational framework.



Theory

In this chapter, we devise the theory. We give a brief introduction to
tensors, reviewing properties and basic operations. We formalise
the task of Boolean tensor clustering (BTC), discuss variations and
related problems, and present an algorithm towards it.

11.1 Preliminaries

We start with a brief introduction to the basic notation and concepts
relevant for the BTC problem. For detailed presentations of general
tensor operations and decompositions, we refer the reader to Kolda
and Bader [117], and to Miettinen [122] for the specifics of Boolean
tensors.

11.1.1 Notation and Terminology

We indicate vectors as bold lowercase letters (v), matrices as bold
uppercase letters (M), and tensors as bold uppercase calligraphic
letters (). Element (i, j, k) of a three-way tensor & is denoted as
Xijk- A colon in a subscript denotes taking that mode entirely; for
example, X. is the kth frontal slice of &L (X in short).

Fibers of a tensor are the higher order analogues of matrix rows
and columns. They are obtained by fixing every index but one; for
example, x,j is the j™ column of the k' frontal slice of .

An N-way tensor can be unfolded, or matricised, into a matrix by
arranging its fibers as columns of a matrix. For a mode-n matrici-
sation, the mode-n fibers are used as the columns and the result
is denoted by X(;). In case of a three-way tensor, we refer to the
fibers X(1), X(2), X(3), as columns, rows, and tubes, respectively.

11.1.2 Right up to Decompositions

The outer product of vectors is denoted by X. It generalises to tensors
in the following way: for vectors a, b, and c of length n, m, and [,
& = a¥bXcisan n-by-m-by-I tensor with x;jx = a;bjc.
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For a tensor &, |9 | denotes its number of non-zero elements. The
Frobenius norm of a three-way tensor & is

|l = /Z;{ X7 - (11.1)
i,

If & is binary, we have || = lec 1.

The similarity between two n-by-m-by-I binary tensors & and Y
is defined as

sim(X,Y)=nml—|A -Y| . (11.2)

The Boolean tensor sum of binary tensors & and Y is defined as
(X VY)ijk = Xijk V Yijk - (11.3)

For binary matrices X and Y where X has r columns and Y has r
rows their Boolean matrix product, X oY, is defined as

XoY)ij = \/ xiky; - (11.4)
k=1

The Boolean matrix rank of a binary matrix A is the least r such that
there exists a pair of binary matrices (X, Y) of inner dimension r
with

A=XoY. (11.5)

A binary matrix X is a cluster assignment matrix if each row of X
has exactly one non-zero element. In that case the Boolean matrix
product corresponds to the regular matrix product,

XoY =XY. (11.6)

We can now define the Boolean tensor rank and two decomposi-
tions: Boolean CP and Tucker3.

Definition 11.1.1 The Boolean tensor rank of a three-way binary
tensor &, rankp (), is the least integer r such that there exist r
triplets of binary vectors (a;, b;, ¢;) with

r
fl':\/al’@biﬁci.
i=1



The low-rank Boolean tensor CP decomposition is defined as
follows:

Problem 11.1.1 (Boolean CP) Given an n-by-m-by-1 binary ten-
sor I and an integer r, find binary matrices A (n-by-r), B (m-by-r),
and C (I-by-r) such that they minimise

T
‘fx—\/ai@bigci .
i=1

The standard (non-Boolean) tensor rank and CP decomposition
are defined analogously [117]. Both finding the least error Boolean
CP decomposition and deciding the Boolean tensor rank are NP-
hard [122]. Following Kolda and Bader [117], we use [[A, B, C]] to
denote the normal three-way CP decomposition and [[A, B, C]]
for the Boolean CP decomposition.

Let X be an n1-by-m matrix and Y be an n,-by-m, matrix. Their
Kronecker (matrix) product, X ® Y, is the nyny-by-mim, matrix
defined by

Y xpY o Xy Y
XY  xnY o Xop Y

xeY=|"" (11.7)
xi’lllY x}’lle e x?’llle

The Khatri—Rao (matrix) product of X and Y is defined as ‘column-
wise Kronecker’. That is, X and Y must have the same number of
columns (my = my = m), and their Khatri-Rao product X © Y is
the n1n-by-m matrix defined as

xeY:(x1®y1,Xz®Yz,-.-,Xm®ym) : (11.8)

Notice that if the matrices X and Y are binary, both their Kronecker
product, X ® Y, and their Khatri-Rao product, X © Y, are binary as
well.

We can write the Boolean CP decomposition equivalently as matri-
ces in three different representations using unfolding and matrix
products:

X ZAO(CQB)T,

X@p ~#Bo(CoA), (11.9)

X3 ~ Co(BOA).

11.1 Preliminaries

[117]: Kolda et al. (2009), ‘“Tensor de-
compositions and applications’

[122]: Miettinen (2011), “Boolean Ten-
sor Factorizations’
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Order SVD and K-Means Clustering’

[110]: Jegelka et al. (2009), “Approxi-
mation Algorithms for Tensor Clus-
tering’

The Boolean Tucker3 decomposition can be seen as a generalisation
of the Boolean CP decomposition:

Problem 11.1.2 (Boolean Tucker3) Given an n-by-m-by-I binary
tensor & and three integers 11, r2, and rs3, find a binary r1-by-ro-by-r3
core tensor G and binary factor matrices A (n-by-r1), B (m-by-r2),
and C (I-by-r3) such that they minimise

r. rx 13
EAVAVAVFWNER- 9328 )
a=1p=1y=1

We use [[€; A, B, C]]p as the shorthand notation for the Boolean
Tucker3 decomposition.

11.2 Problem Definitions

We consider the variation of tensor clustering where the idea is to
cluster one mode of a tensor and potentially reduce the dimension-
ality of the other modes. Another common approach is to do the
co-clustering equivalent, that is, to cluster each mode of the tensor
simultaneously. The former is the approach taken, for example, by
Huang et al. [112], while the latter appears for instance in Jegelka,
Sra, and Banerjee [110]. Unlike either of these methods, however, we
concentrate on binary data endowed with the Boolean algebra.

For the presentation of our problems, we leave the exact measure
of goodness of the approximation open. Only later, in Section 11.3,
we will argue that the similarity — instead of the more common
dissimilarity — should be used as the measure of goodness. After
defining BTC for three-way tensors, we change the perspective and
provide alternative definitions as clustering tasks. The end of this
section is marked by a discussion of extensions to higher-order
tensors in Section 11.2.4.

11.2.1 General Problem

Assuming a three-way tensor and that we do the clustering in
the last mode, we can express the general Boolean tensor clustering
(BTC) problem as follows:

Problem 11.2.1 (BTC) Given a binary n-by-m-by-I tensor & and
integers 11, 1, and r3, find a r1-by-ro-by-r3 binary tensor € and
matrices A € {0,1}"™", B € {0,1}"*"2, and C € {0, 1}>*"* such
that C is a cluster assignment matrix and that [[€; A, B, C]]p is a
good Boolean Tucker decomposition of &C.



If we let r1 = n and r, = m, we obtain essentially a traditional
(binary) clustering problem: given a set of [ binary matrices
{X1,Xz,...,X;} (the frontal slices of &), cluster these matrices
into r3 clusters, each represented by an n-by-m binary matrix G;
(the frontal slices of the core tensor €); the factor matrices A and B
can be left as identity matrices. We call this problem unconstrained
BTC (U-BTC). Writing each of the involved matrices as an nm-
dimensional vector, we obtain the following problem, called the
discrete basis partitioning problem (DBPP) in [32]:

Problem 11.2.2 (U-BTC [DBPP, 32]) Given an l-by-nm binary
matrix X and a positive integer r, find matrices C € {0,1}*" and
G € {0, 1} such that C is a cluster assignment matrix and C and
G minimise [X — CGl|.

Miettinen et al. [32] show that DBPP is NP-hard and give a (10 + ¢)-
approximation algorithm that runs in polynomial time with respect
ton, m, I, and r, while Jiang [125] gives a 2-approximation algo-
rithm that runs in time O(nml").

11.2.2 Boolean CP Clustering

In what can be seen as the other extreme, we can restrict r; =
rp = r3 = r and € (which now is r-by-r-by-r) to having 1s exactly
on the hyperdiagonal to obtain the Boolean CP clustering (BCPC)
problem:

Problem 11.2.3 (BCPC) Given a binary n-by-m-by-I tensor &
and an integer r, find matrices A € {0,1}"", B € {0, 1}, and
C € {0,1}"*" such that C is a cluster assignment matrix and that
[[A, B, C]]p is a good Boolean CP decomposition of .

What BCPC does is perhaps easiest to understand if we use the
unfolding rules (Equation 11.9) and write

X3 ~ Co(BOA), (11.10)

where we can see that compared to the general BTC, we have
restricted the type of centroids: each centroid must be a row of type
(b ® a)”. This restriction plays a crucial role in the decomposition,
as we shall see shortly. Notice also that using Equation 11.6 we can
rewrite Equation 11.10 without the Boolean product,

X3 ~ CBoOA). (11.11)

11.2 Problem Definitions 103

[32]: Miettinen et al. (2008), “The Dis-
crete Basis Problem’

[125]: Jiang (2014), ‘Pattern extraction
and clustering for high-dimensional
discrete data’
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11.2.3 Clustering Perspective

We defined U-BTC and BCPC as tensor decomposition problems
with additional constraints to enforce the clustering. Equivalently,
we can define the problems as clustering problems with additional
constraints to enforce the tensor structure. We provide these alter-
native definitions here, as they will make the connections to other
clustering problems easier to see.

Clustering version of U-BTC. The U-BTC problem is straight
forward to express as a clustering task:

Problem 11.2.4 (U-BTC, clustering version) Given aset X of binary
vectors, X = {x1,...,x;} C {0, 1}"™ and an integer v, partition X in
r disjoint sets C1, Co, ..., C,, with each C; associated with a centroid
gi € {0, 1}, such that the centroids g; are good representations of
vectors x; that are in their clusters.

The input vectors x; € X are simply the rows of matrix X(3), and the
assignment of x;s to clusters C; defines the matrix C € {0, 1}
cij = 1 if and only if vector x; is assigned to cluster C;. Finally,
treating vectors g1, . . ., g, as columns of an unfolded tensor G3) €
{0, 1}""™*" gives us the m-by-n-by-r core tensor € that we used
earlier to describe U-BTC.

This formulation of U-BTC makes its connection to standard parti-
tion clustering problems obvious; in particular, if the quality of the
result is measured as the sum of Hamming distances from input
vectors to their centroids, it is clear that U-BTC is equivalent to
binary k-median clustering [133]. It is also clear from the formula-
tion that U-BTC can easily suffer from the curse of dimensionality:
a modestly-sized 100-by-100-by-100 tensor yields 100 vectors of
dimensionality 10000 to be clustered.

Clustering version of BCPC. The BCPC problem imposes an
additional constraint on the centroids: they must be of form g; =
(b; ® a;)T for somea € {0,1}" and b € {0,1}™.

Problem 11.2.5 (BCPC, clustering version) Given a set X of binary
vectors, X = {x1,...,x;} C {0,1}"" and an integer r, partition
X in r disjoint sets C1,Ca, ..., C,, with each C; associated with a
centroid g; = (b; ® a;)T € {0,1}"", such that the centroids g; are
good representations of vectors x; that are in their clusters.

The vectors ay, . . ., a, yield the columns of the n-by-r factor matrix
A, and the vectors by, .. ., b, yield the columns of the m-by-r factor
matrix B used in the previous section to define BCPC.
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While the additional constraints might not seem very intuitive in
the clustering framework, they do increase the interpretability of
the clusters. Also, they can help with the curse of dimensionality:
compared to the unconstrained version, the degree of freedom
of the centroids' is reduced to only those that admit a rank-1
decomposition. Conveniently, the centroids that admit the con-
straint can also be described in a more compact way than arbitrary
centroids.

11.2.4 Extensions to Multi-Way Tensors

All the above definitions are restricted to three-way tensors. Three-
way tensors are the most fundamental case, and they also allow
relatively simple notation. Extending the definitions to three-way
tensors, with N > 3, involves design decisions that are highly
application-specific: for example, how many of the modes should
be (co-)clustered and how high order should the centroids have.
With four-way tensors, for instance, we could either co-cluster
two modes so that the centroids would still be matrices, or we
could cluster just one mode and have the centroids as three-way
tensors.

If we cluster only the last mode of an N-way tensor & and use C to
denote the cluster assignment matrix and A to denote the factor
for mode i withi =1,..., N — 1, Equation 11.11 is generalised into

Xy * CAN Vo AN o ...0 AD)T | (11.12)

If we keep the centroids as matrices and co-cluster the other modes,
finding the centroids is similar to the three-way setting, but the
clustering must be changed to some type of tensor co-clustering,
such as [109].

11.3 Similarity versus Dissimilarity

So far we have avoided defining what we mean by ‘good’ clustering.
Arguably the most common approach is to say that any clustering
is good if it minimises the sum of distances (or dissimilarities)
between the original elements and their cluster representative (or
centroid). An alternative is to maximise the similarity between the
elements and their representatives. If the data and the centroids are
binary, this problem is known as hypercube segmentation [127].>

Maximising similarity is obviously a dual of minimising the dis-
similarity — in the sense that an optimal solution to one is also an
optimal solution to the other. The two, however, behave differently

1: Degree of freedom refers to the
number of possible centroids.

[109]: Zhao et al. (2005), ‘triCluster:
An Effective Algorithm for Mining
Coherent Clusters in 3D Microarray
Data’

[127]: Kleinberg et al. (2004), ‘Segmen-
tation problems’

2: Hypercube segmentation immedi-
ately solves U-BTC. Hence, it plays an
important role in our algorithm for
BCPC, as we shall see in Section 11.4
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[125]: Jiang (2014), ‘Pattern extraction
and clustering for high-dimensional
discrete data’

[129]: Alon et al. (1999), ‘On two seg-
mentation problems’

3: In the first case,

500000 - 20

———— = 0.99998,
500000 —1/2 - 20

and in the second scenario

1/2 - 500 000 2
500000 — 1/4 - 500000 ~ 3~

4: Derivation for the factor of 1.3:
(1-x)-500000 9
500000 — 1/4 - 500000 ~ 10
& x=0325=1/4-13.

when we aim at approximating the optimal solution. For example,
for a fixed r, the best known approximation algorithm to DBPP is
the aforementioned 2-approximation algorithm [125], while Alon
and Sudakov [129] gave a PTAS for the hypercube segmentation
problem.

The differences between the approximability, and in particular the
reasons behind those differences, are important for data miners. It
is not uncommon that our ability to minimise the dissimilarities
is bounded by a family of problems where the optimal solution
obtains extremely small dissimilarities, while the best polynomial-
time algorithm has to do with slightly larger errors. These larger
errors, however, might still be small enough relative to the data
size that we can ignore them. This is what essentially happens
when we maximise the similarities.

For example, consider an instance of DBPP where the optimal
solution causes ten errors. The best-known algorithm can guar-
antee to not cause more than twenty errors; assuming the data
size is 1000-by-500, making mistakes on twenty elements can still
be considered excellent. On the other hand, should the optimal
solution make an error on every fourth element, the best approx-
imation could only guarantee to make errors in at most every
second element. When considering the similarities instead of dis-
similarities, these two setups look very different: in the first, we
get within 0.99998 of the best solution, while in the other, we are
only within 2/3 of the optimal.®> Conversely, if the algorithm wants
to be within 9/10 of the optimal similarity in the latter setup, it
must approximate the dissimilarity within a factor of 1.3.* Hence
similarity is less sensitive to small errors (relative to the data size)
and more sensitive to large errors, than dissimilarity is. In many
applications, this is exactly what we want.

None of this is to say that we should stop considering the error
and concentrate only on the similarities. On the contrary: knowing
the data size and the error, we can easily compute the similarity for
the binary data, and especially when the error is relatively small,
it is much easier to compare than the similarity scores. What we
argue, however, is that when analysing the approximation ratio a
data mining algorithm can obtain, similarity can give us a more
interesting picture of the actual behaviour of the algorithm. Hence,
subsequently, we shall concentrate on the maximum-similarity
variants of the problems; most notably, we concentrate on the
maximum-similarity BCPC, denoted BCPCppay.



11.4 Solving BCPCpax

In this section, we present our main algorithm, SaBoTeu r,5 for
solving the BCPC problem. Our algorithm works in two parts: it first
finds a solution to U-BTC, and then turns that into a valid solution to
BCPC. The maximum-similarity U-BTC is equivalent to hypercube
segmentation, explained in Section 11.4.1. The overall approach of
SaBoTeur is explained in Section 11.4.2, and the problem of turning
a solution of U-BTC to a valid solution of BCPC is further studied
in Section 11.4.3. We present an intuitive iterative updates scheme
in Section 11.4.4, and discuss about the implementation details in
Section 11.4.5. Finally, we consider the problem of selecting the
correct number of clusters in Section 11.4.6.

11.4.1 The Hypercube Segmentation Problem

Given a tensor &, for the optimal solution to BCPCp,x, we need
matrices A, B, and C that maximise sim(X(3), C(B © A)T). In the
maximum-similarity U-BTC we replace B © A with an arbitrary
binary matrix G. This latter problem is equal to the hypercube
segmentation problem defined by Kleinberg, Papadimitriou, and
Raghavan [127]:

Problem 11.4.1 (Hypercube Segmentation) Given a set S of |
vertices of the d-dimensional cube {0, 1}4, find r vertices Py, ..., P, €
{0,1} and a partition of S into r segments such that

r

Z Z sim(P;, c)

i=1 ceS

is maximised.

The partition S defines the cluster assignment matrix C, while the
vertices P; correspond to the rows of G.°

Alon and Sudakov [129] gave a PTAS for the hypercube segmenta-
tion problem. The PTAS obtains a similarity within (1 — ¢) of the
optimum with running time of 1 ) 1 for n-by-m-by-1
data and r clusters. While technically linear in data size, the first
term turns the running time unfeasible even for moderate values
of r and ¢. Kleinberg, Papadimitriou, and Raghavan proposed a
sampling-based algorithm that obtains an approximation ratio of
0.828 — ¢ with constant probability and running time O(nmlrs),

11.4 Solving BCPC,yax

5: SaBoTeur stands for Sampling for
Boolean Tensor clustering.

[127]: Kleinberg et al. (2004), ‘Segmen-
tation problems’

6: This amounts to the clustering
version of U-BTC, compare Prob-
lem 11.2.4.

[129]: Alon et al. (1999), ‘On two seg-
mentation problems’
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7: The linear-time algorithm comes
with the cost of losing approximation
guarantees, though.

[127]: Kleinberg et al. (2004), ‘Segmen-
tation problems’

where s = (9/¢)" In1/¢ is the number of times the sampling is done.
While the number of samples this algorithm requires is still ex-
ponential in 7, in practice we can take s = ©(1) for a linear-time
algorithm.” We will therefore follow a sampling approach similar
to that of Kleinberg, Papadimitriou, and Raghavan in SaBoTeur.

We note that both the PTAS [129] and the sampling-based algo-
rithm [127] can be used as-is to solve the maximum-similarity
U-BTC problem using the above connection between it and the
hypercube segmentation problem.

11.4.2 The SaBoTeur Algorithm

We outline our algorithm for BCPC in Algorithm 3. SaBoTeur
considers only the unfolded tensor X3). In each iteration, it samples
r rows of X(3) as the initial, unrestricted centroids. It then turns
these unrestricted centroids into the restricted type in Line 3, and
then assigns each row of X(3) to its closest restricted centroid. The
sampling is repeated multiple times, and in the end, the factors
that gave the highest similarity are returned.

The algorithm is extremely simple and fast. The repeated sampling
of rows of X(3) for (initial) centroids is similar to the aforementioned
hypercube segmentation algorithm, and we can use the analysis of
Kleinberg, Papadimitriou, and Raghavan to justify why sampling
the rows of the input matrix is justifiable (instead of finding arbi-
trary binary vectors). In particular, Kleinberg, Papadimitriou, and
Raghavan proved that among the rows of X(3) that are in the same
optimal cluster, one is a good approximation of the (unrestricted)
centroid of the cluster:

Lemma 11.4.1 ([127, Lemma 3.1]) Let X be an n-by-m binary matrix
and let

n
y' = argmax Z sim(x;, y) .
ye{0,1}" =1

Then there exists a row x; of X such that
n n
> sim(xi, xj) > (2V2 - 2) > sim(x;, y°) -
=1 i=1

That is, if we sample one row from each cluster, we have a high
probability of inducing a close-to-optimal clustering, and with
enough re-samples, we have a high probability to have at least one
such sample. The crux of BCPC however is the restriction of the
centroids, and we will now turn our attention to the problem of
enforcing this restriction in SaBoTeur.
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Algorithm 3: SaBoTeur algorithm for the BCPC
Data: Three-way binary tensor &, number of clusters 7,
number of samples s
Result: Binary factor matrices A and B,
cluster assignment matrix C

repeat
Sample r rows of X(3) into matrix Y
Find binary matrices A and B that maximise sim(Y, (B ® A)T)
Cluster C: assign each row of X(3) to closest row of (B © AT
until s resamples are done;
return Best A, B, and C

11.4.3 Binary Rank-1 Matrix Decompositions

After sampling, the next part of the SaBoTeur algorithm is to
turn the unrestricted centroids into the restricted form (Line 3).
We start by showing that this problem is equivalent to finding
the maximum-similarity binary rank-1 decomposition of a binary
matrix:

Problem 11.4.2 (Binary rank-1 decomposition) Given an n-by-m
binary matrix X, find an n-dimensional binary vector a and an m-
dimensional binary vector b that maximise sim(X, a X b).

Lemma 11.4.2 Given an r-by-nm binary matrix X, finding n-by-r
and m-by-r binary matrices A, B that maximise sim(X, (B © A)T) is
equivalent to finding the most similar binary rank-1 approximation
of each row x of X, where the rows are re-shaped as n-by-m binary
matrices.

Proof. If x; is row i of X and z; is the corresponding row of (BO A)7,
then sim(X, (B ® A)T) = Zle sim(x;, z;), and hence we can solve
the problem row-by-row.

Letx = (X1,1,X21,--,Xn,1,X12,-- -, Xn,m) be arow of X. Rewrite x
as an n-by-m matrix Y,

X114 X12 0 Xim
X21 X22 -0 Xom
Xn1l Xn2 - Xum

Consider the row of (B ® A)T that corresponds to x, and notice
that it can be written as (b ® a)”, where a and b are the columns
of A and B that correspond to x.

11.4 Solving BCPC,yax
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As(b®a)! = (bia’,bra’,--- ,byal), rewriting it similarly as x we

obtain
aiby aby -+ a1by,
azbl ﬂzbz s azbm
=ab’ =aXb.
anbl anbz ce anbm
Therefore, sim(x, (b ® a)T) = sim(Y,a X b). O

Now, we show that the maximum-similarity binary rank-1 de-
composition admits a PTAS. To that end, we present a family
of randomised algorithms that on expectation attain a similarity
within (1 — ¢) of the optimum. The family is similar to that of Alon
and Sudakov and can be analysed and de-randomised following
the techniques presented by them [129]. The family of algorithms
(one for each ¢) is presented as Algorithm 4.

Lines 6 and 7 require us to solve one of the factor vectors when the
other is given. To build b in Line 6, we simply take the column-wise
majority element of those rows where a is 1, and we extend a
similarly in Line 7. The analysis of Algorithm 4 follows closely the
proofs by Alon and Sudakov.

The running time of the PTAS algorithm becomes prohibitive even
with moderate values of ¢, and therefore we will not use it in
SaBoTeur.

Instead, we present a simple, deterministic algorithm that approxi-
mates the maximum similarity within 0.828, shown as Algorithm 5.
It is similar to the algorithm for hypercube segmentation based on
random sampling [127]. The algorithm considers every row of X
as a potential vector b and finds the best a given b.

Algorithm 4: Randomised PTAS for maximum-similarity binary
rank-1 decompositions

Data: n-by-m binary matrix X
Result: Binary vectors a and b
Sample | = ©(¢72) rows of X u.a.r. with replacements
forall Partitions of the sample into two sets do
Let X’ contain the rows in the sample
for Both sets in the partition do
Let a be the incidence vector of the set
Find b” maximising sim(X’, ab”)
Extend a to rows not in sample maximising sim(X, ab”)

return Best vectors a and b




Algorithm 5: Approximation of maximum-similarity binary rank-1
decompositions

Data: n-by-m binary matrix X
Result: Binary vectors a and b
forall Rows x; of X do

Letb = x;
L Find a maximising sim(X, ab”)

return Best vectors a and b

Using Lemma 11.4.1 it is straight forward to show that the algorithm
achieves the claimed approximation ratio:

Lemma 11.4.3 Algorithm 5 approximates the optimum similarity
within 0.828 in time O(nm min{n, m}).

Proof. To prove the approximation ratio, let a*(b*)T be the opti-
mum decomposition. Consider the rows in which a* has 1. Per

Lemma 11.4.1, selecting one of these rows, call it b, gives us®

sim(X,a’b’) > (2V2 - 2) sim(X, a'b”) .

Selecting a that maximises the similarity given b can only improve
the result, and the claim follows as we try every row of X.

If n < m, the time complexity follows as for every candidate b we
have to make one sweep over the matrix. If m < n, we can operate
on the transpose. O

11.4.4 Iterative Updates

The SaBoTeur algorithm bears resemblance to the initialisation
phase of k-means style clustering algorithms. We propose a varia-
tion of SaBoTeur, SaBoTeur+itUp shown in Algorithm 6, where
k-means style iterative updates are performed on the result of
SaBoTeur until it does not improve further. In each iteration of the
iterative updates phase, the new centroids are first determined by
placing 1s in those positions where the majority of cluster members
have a 1. Next, these new centroids are constrained to rank-1, and
finally, the cluster assignment is recomputed.

This procedure clearly slows down the algorithm. Also, due to the
constraint on the centroids the iterative updates might actually
impair the result, unlike in the normal k-means algorithm that con-
verges to a local optimum. However, as we shall see in Chapter 12,
the results in practice improve slightly.

11.4 Solving BCPC,yax

8: Notice that a'b” agrees with the
optimal solution in rows where a* is
Zero.
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Algorithm 6: SaBoTeur+itUp algorithm solves BCPC with k-
means-like updates

Data: Three-way binary tensor &, number of clusters 7,
number of samples s
Result: Binary factor matrices A and B,
cluster assignment matrix C
repeat
Sample 7 rows of X(3) into matrix Y
repeat
Find binary matrices A, B that maximise sim(Y, (B ® A)T)
Cluster C: assign each row of X(3) to closest row of (B ® AT
Update centroids Y with cluster members” majority vote

until Similarity of [[A, B, C]]g to & no longer improves;
until s resamples are done;
return Best A, B, and C

11.4.5 Implementation

We implemented the SaBoTeur algorithm in C.” In the implementa-
tion, the tensor & is represented as a bitmap. This allows for using
fast vectorised instructions such as xor and popcnt. In addition this
representation takes exactly one bit per entry (excluding necessary
padding), being very memory efficient even compared to sparse
tensor representations.

The second ingredient to the fast algorithm we present is par-
allelisation. As every row of X(3) is handled independently, the
algorithm is embarrassingly parallel. We use the OpenMP [134] and
parallelise along the sampled cluster centroids. This means that the
rank-1 decompositions of each centroid as well as the computation
of the similarity in each of the columns of the Khatri-Rao product
(Line 3 of Algorithm 3) are computed in parallel.

11.4.6 Number of Clusters

A common problem in data analysis is that many methods require
the selection of the model order a priori; for example, most low-rank
matrix factorisation methods require the user to provide the target
rank before the algorithm starts. Many clustering methods — ours
included - assume the number of clusters as a parameter, although
there are other methods that do not have this requirement.

When the user does not know what would be a proper number of
clusters for the data, we propose the use of the MDL principle [135]
for automatically inferring it. In particular, we adopt the recent
work of Miettinen and Vreeken [136] on using MDL for BMF to
our setting.


https://cs.uef.fi/~pauli/btc/
https://cs.uef.fi/~pauli/btc/

The intuition behind the MDL principle is that the best model for
the data'’ is the one that lets us compress the data most. We use
the crude MIDL where the description length contains two parts: the
description length of the model M, L(M), and that of the data D
given the model M, L(D | M). The overall description length is
simply L(M) + L(D | M). Intuitively, when the model complexity
L(M) increases,'' the model fits better to the data and L(D | M)
decreases; however, at some point, the model starts over-fitting,
and the increase in L(M) overtakes the decrease in L(D | M). In the
sense of MDL, the optimal model is the one where L(M)+L(D | M)
is minimised.

In BCPC, the model consists of the two factor matrices A and B and
the cluster assignment matrix C. Given these, we can reconstruct
the original tensor & if we know the locations where [[A, B, C]]p
differs from &C. Therefore, L(M) is the total length of encoding A, B,
and C, while L(D | M) is the length of encoding the locations
of the differences, L & [[A, B, C]]g, where & is the element-wise
exclusive-or.

Encoding A and B is similar to BMF, so we can use the data-to-
model (DtM) encoding of Miettinen and Vreeken for encoding
them (and the related dimensions of the data).'” To encode the
matrix C, we only need to store to which cluster each frontal slice is
associated to, taking [ - log,(r) bits. This finalises the computation
of L(M).

To compute L(D | M), we note that we can rewrite

X @[[A,B,Cllsp=Xz@Co(BoA) . (11.13)

The computation of L(D | M) now becomes equivalent of comput-
ing it for BMF with factor matrices Cand D = (B o A)T. Hence,
we can follow the Typed XOR DtM approach of Miettinen and
Vreeken [136] directly.

To sum up, in order to use MDL to select the number of clusters, we
have to run SaBoTeur with different numbers of clusters, compute
the description length for each result, and take the one that yields
the smallest description length.
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10: In our case, that would be the
most suitable number of clusters.

11: The model complexity increases
for instance when more clusters are
added.

12: The idea of DtM encoding is to
encode all entries in one code [137].
Thus, in an abstract way, we can enu-
merate all possible strings that satisfy
the given information.

[137]: Vereshchagin et al. (2004), ‘Kol-
mogorov’s structure functions and
model selection’






Experimental Evaluation

Our experimental evaluation of SaBoTeur focuses on two central
aspects: First, we test whether SaBoTeur can compete with other
solvers for the Boolean and continuous CP decomposition in
terms of reconstruction error and speed. Second, we examine the
clusterings obtained by SaBoTeur in comparison to a standard
k-means-type approach. In particular, we assess the ability of
SaBoTeur to classify unseen data after learning the centroids.

12.1 Experimental Setup

To the best of our knowledge, this work presents the first algo-
rithms for Boolean tensor clustering and hence we cannot compare
directly to other methods. To assess the reconstruction error, we
decided to compare SaBoTeur to continuous and Boolean tensor
CP decompositions. We did not use other tensor clustering meth-
ods as they aim at optimising significantly different targets.! To
evaluate the clustering quality, we compare SaBoTeur to a standard
k-means-type approach.’

12.1.1 Compared Methods

We used the BCP_ALS [122] and Walk’n’Merge [108] algorithms
for computing Boolean CP decompositions. BCP_ALS is based
on iteratively updating the factor matrices one at a time, simi-
larly to the classical alternating least squares optimisations, while
Walk’n’Merge is an algorithm for scalable Boolean tensor factori-
sation in sparse binary tensors.

We did not use Walk’n’Merge on synthetic data as BCP_ALS is
expected to perform better on smaller and denser tensors [108],
but we used it on some larger real-world tensors; BCP_ALS, on the
other hand, does not scale well to larger tensors and hence we had
to omit it from most real-world experiments.

Of the continuous methods we compared to ParCube® and CP_APR.*
The CP_APR algorithm [138] uses alternating Poisson regression
and is specifically developed for sparse counting data, with the
goal of returning sparse factors. It is debatable whether CP_APR
is suitable for comparison in the first place, since it aims to min-
imise the generalised K-L divergence, not the squared error. And
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1: We have highlighted this aspect in
the discussion of related methods in
Section 10.2.

2: We will explain the details subse-
quently in Section 12.2.5.

[122]: Miettinen (2011), “Boolean Ten-
sor Factorizations’

[108]: ErdéGs et al. (2013), “Walk'n’-
Merge: A Scalable Algorithm for
Boolean Tensor Factorization’

3: ParCube codeis from http://www.
cs.cmu.edu/~epapalex/.

4: The CP_APR implementation is
from the Matlab Tensor Toolbox v2.5,
found at http://www.sandia.gov/
~tgkolda/TensorToolbox/.

[138]: Chi et al. (2012), ‘On Tensors,
Sparsity, and Nonnegative Factoriza-
tions’


http://www.cs.cmu.edu/~epapalex/
http://www.cs.cmu.edu/~epapalex/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
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[118]: Papalexakis et al. (2012), ‘Par-
Cube: Sparse Parallelizable Tensor De-
compositions’

5: The solutions for Boolean and nor-
mal CP factorisation are not inter-
changeable.

furthermore, while counting data can be expected to follow the
Poisson distribution, this is not true for binary data. Due to its aim
for sparsity, we still consider it for comparison.

The other method, ParCube [118], aims to minimise the squared
error. It uses sampling to find smaller subtensors, solves the CP
decomposition in this subtensor, and merges the solutions back
into one. We used a non-negative variant of ParCube that expects
non-negative data, and returns non-negative factor matrices.

12.1.2 Evaluation Criteria

For the synthetic data, we report the relative similarity. That is, the
fraction of the elements where the data and the clustering agree.
For the real-world data, we report the error in terms of squared
Frobenius norm. That is the number of disagreements between the
data and the clustering when both are binary (see Equation 11.1).

We have to take special care when comparing binary methods
against continuous ones, though. Using the squared Frobenius
norm can help the real-valued methods, as it scales all errors less
than 1 down, but at the same time, small errors cumulate unlike
with fully binary data. To alleviate this problem, we also rounded
the reconstructed tensors from CP_APR and ParCube to binary
tensors. We tried different rounding thresholds between 0 and 1 and
selected the one that gave the lowest Boolean reconstruction error.
The rounded versions are denoted by CP_APRy, and ParCubeyy;.

It is worth emphasising that all of the methods we are comparing
against are solving a relaxed version of the BCPC problem: unlike
BCPC, the Boolean CP factorisation is not restricted to clustering the
third mode; the normal CP factorisation lifts even the requirement
for binary factor matrices. Hence, a valid solution to BCPC is always
also a valid solution to the (Boolean and normal) CP factorisation.”
The methods we compare against should therefore always perform
better than (or at least as good as) SaBoTeur.

12.2 Synthetic Experiments

To test the SaBoTeur algorithm in a controlled environment, we
created synthetic data sets that measured the response of the
algorithm to

» different numbers of clusters;

» different density of data;

» different levels of additive noise;

» different levels of destructive noise.



All tensors were of size 700-by-500-by-50. All data sets were created
by first creating random binary factor matrices A, and B, and a
random cluster assignment matrix C. The outer product of the
factor matrices yields the ground-truth tensor & = [[A, B, C]]s.
The default number of clusters was r = 7 and the default density
of the tensor was d = 0.05. To obtain the desired density for the
tensor &, we uniformly at random set a fraction of \/E elements of
A and of B to 1. The outer product of these matrices and matrix C
gives a tensor with the desired density.

Additive and destructive noise were applied to the tensor &.
Additive noise turns zeros into ones while destructive noise turns
ones into zeros. The default noise level for both types was 10 %,
yielding to a noised input tensor L. We report the noise levels
with respect to the number of non-zeros.

We varied each of the four features one at a time keeping the others
in their default values, and created five random copies on each
parameter combination. We report the mean values over these five
random copies. In all experiments, the number of clusters was set
to the true number of clusters used to create the data. The number
of re-samples in SaBoTeur was set to r = 20 in all experiments.

For these experiments, we compared the obtained reconstructions
[[A, B, C]]5 to both the original tensor 9 and the noised tensor <&,
respectively using the relative similarity towards the original
tensor,

and the relative similarity towards the noised tensor,

|w - [[A/ Br C]]Bl )

]_ —
nml

12.2.1 Varying the Noise

In the first experiment, we studied the effects different noise levels
have to the reconstruction accuracy. First, we varied the level of
additive noise from 5% to 50 % in steps of 5 %. The results are
shown in Figure 12.1a, where we can see that SaBoTeur (with
and without iterative updates) and CP_APRy; all achieve very
high similarity with a gentle downwards slope as the level of
additive noise increases. BCP_ALS is slightly worse, but consistent,
while the performance of ParCubey, suffers significantly from
increased noise levels. In order to test if the good performance of
SaBoTeur means it isjust modelling the noise, we also compared the
similarity of the reconstruction to the original, noise-free tensor &
(Figure 12.1b). This did not change the results in meaningful ways,
except that BCP_ALS improved by a bit.

12.2 Synthetic Experiments
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Figure 12.1: Results from additive
and destructive noise variation on
synthetic data. All y-axes show the
relative similarity. All markers are
mean values over five iterations and
the width of the error bars is twice
the SD.

6: Note that an increased density im-
plies higher amounts of noise as the
level of noise is defined with respect
to the number of ones.
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When moving from additive to destructive noise (Figure 12.1c),
SaBoTeur, SaBoTeur+itUp, and CP_APRy, stay the best three meth-
ods. As the destructive noise level increases, BCP_ALS approaches
the three. That behaviour is mostly driven by ‘modelling the noise’,
as can be seen in Figure 12.1d, which shows the similarity to the
noise-free data. There, with highest levels of destructive noise, the
performance of SaBoTeur suffers more than that of CP_APRy;.

12.2.2 Varying the Number of Clusters

The number of clusters varied from 3 to 15 with steps of 2. The
results are shown in Figure 12.2a. None of the tested methods show
any significant effect to the number of clusters, and the best three
methods are still SaBoTeur, SaBoTeur+itUp, and CP_APRy,.

12.2.3 Varying the Density

The density of the tensor varied from 5 % to 30 % with steps of 5 %.
The results can be seen in Figure 12.2b. All methods perform worse
with denser data, with CP_APRy;, SaBoTeur+itUp, and SaBoTeur
being the best three methods in that order. The results of BCP_ALS
and ParCube quickly went below 75 % similarity, ParCubeo, going
as low as 55 % with 30 % density; we omit the worst results from
the plots for clarity.®
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12.2.4 Scalability

We run the scalability tests on a dedicated machine with two Intel
Xeon X5650 6-Core CPUs at 2.66 GHz and 64 GB of main memory.
All reported times are wall-clock times. For these experiments, we
created a new set of tensors with a default size of 800-by-800-by-500,
a density of 5%, 10 % of additive and destructive noise, and 20
clusters by default. During the experiments, we varied the size,
the number of clusters, and the number of threads used for the
computation.

We also tried ParCube, CP_APR, and BCP_ALS with these data sets,
but only ParCube was able to handle that big data sets without
running out of memory. However, already with 200-by-200-by-500
data, the smallest we tried, it took 155.4 seconds. With 10 clusters,
the least number we used, ParCube finished only after 1319.4
seconds. Therefore, we omitted these results from the figures.

As can be seen in Figure 12.3a, the SaBoTeur algorithm scales very
well with the number of clusters. This is mostly due to efficient
parallelisation of the computing of the clusters.” SaBoTeur+itUp,
however, slows down with higher number of clusters. This is
to be expected, given that more clusters require more update
computations.

For the second experiment, we varied the dimensionality of the
tirst and second mode between 200 and 3400 with steps of 400.
The results can be seen in Figure 12.3b. As we grew both modes
simultaneously, the size of the tensor grows as a square.® Given
this, the running time of SaBoTeur grows as expected, or even
slower, while SaBoTeur+itUp is again clearly slower.

In the last scalability experiment (Figure 12.3c), we tested how well
SaBoTeur parallelises. As the computer we used had 12 cores, we
set that as the maximum number of threads. Yet, after 9 threads,
there were no more obvious benefits. We expect that the memory
bus is the limiting factor here.

12.2 Synthetic Experiments

Figure 12.2: Results from varying the
number of clusters and the density
on synthetic data. Legend and data
representation as in Figure 12.1. The
relative similarity is with respect to
the noisy data.

7: Anticipating the result from the
last experiment on scalability.

8: The number of non-zeros likewise
grows as a square, as the density was
kept constant.

119



120

12 Experimental Evaluation

Figure 12.3: Results from scalability

tests. All times are wall-clock times.

The speedup factor in (c) is provided
with respect to the time a run with a
single thread took. Markers are mean
values over five iterations and the

width of the error bars is twice the SD.
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(c) Speedup factor for increasing num-
ber of threads.

12.2.5 Generalisation Tests

Our final test with synthetic data is how well the clusterings
of SaBoTeur+itUp generalise to yet-unseen data. Our hypothesis
is that restricting the centroids to rank-1 matrices helps with
the overfitting, and hence we compared SaBoTeur+itUp to an
algorithm solving U-BTC, where the centroids are arbitrary binary
matrices. As this problem is equivalent to clustering under binary
constraints in the centroids (see Section 11.2.3), the algorithm
we used follows the standard k-means-type approach: first it
samples k random points as its centroids, and then it alternates
between assigning the frontal slices to the closest centroid and
recomputing the centroid as the element-wise majority matrix. We
call this algorithm Binary k-Median. Notice that Binary k-Median
will always obtain at least as good reconstruction error on the
training data as SaBoTeur+itUp. Notice further that an in-between
approach would be to run Binary k-Median with a subsequent
rank-1 decomposition on the centroids. We did not include this
variation in the set of experiments but instead compared SaBoTeur
to the more extreme counterpart with no additional constraint on
the centroids.

We generated tensors of size 700-by-500-by-300 with 7 clusters, 15 %
of density and different levels of both additive and destructive noise,
from 10 % till 50 %. We randomly selected 25 % of the frontal slices
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as the test data and computed the clusterings on the remaining
data. We then connected each frontal slice in the test set to its
closest centroid.

The quality of the results was measured in two different ways. First,
we used the reconstruction error in the test data (Figure 12.4a)
and computed the overall similarity of expressing the testing data
using the centroids. We also used the original, noise-free frontal
slices to assess whether we model the noise. The results show
that with the noise-free test data (dashed lines), SaBoTeur+itUp is
better than the Binary k-Median with 30 % to 40 % to noise, and
the results are reversed with 10 % and 50 % of noise. With noisy
test data, the differences are less.

We also measured the similarity of the cluster labels with respect to
the ground truth. We used two metrics for that, Cohen’s « statistic
(Figure 12.4b) and normalised mutual information (Figure 12.4c).
Cohen’s « takes values from [—1, 1], the former meaning complete
disagreement and the latter meaning complete agreement. As
Cohen’s k requires the labels of the clusters to match, we paired
the labels using bipartite maximum matching.” The mutual infor-
mation was normalised by dividing it with the joint entropy; the
resulting statistic takes values from [0, 1], with 1 meaning perfect
agreement. To assess the significance of the results we used one-
sided Wilcoxon rank sum tests for either side with a significance
level of 5 %.

12.2 Synthetic Experiments 121

Figure 12.4: Evaluation of the gener-
alisation quality using (a) reconstruc-
tion error on test data, and (b) Cohen'’s
«k statistic and (c) normalised mutual
information of cluster labels between
the obtained and true labels in the test
data. Markers are mean values over
50 different data sets and the width
of the error bars is twice the standard
deviation.

9: To compute the matching, we used
the Hungarian method [139].

[139]: Papadimitriou et al. (1982), Com-
binatorial Optimization: Algorithms and
Complexity
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By significance tests on all results from Cohen’s ¥ and on all
results from the normalised mutual information, we find that
SaBoTeur+itUp can recover clusterings overall significantly better
than Binary k-Median. Looking at each level of noise separately,
the two measures agree that SaBoTeur+itUp is significantly better
at 30 % and 40 % of noise and worse with 10 % and 50 % of noise.
With 20 % of noise, the difference is not significant with either
metric.

Perhaps the clearest sign of the benefits of the rank-1 centroids
that distinguish SaBoTeur+itUp from Binary k-Median is the con-
sistently smaller standard deviation obtained by SaBoTeur+itUp.
This suggests that SaBoTeur+itUp is less susceptible to random
variations in the data, which should improve the generalisation
quality. Indeed, our generalisation experiments with the real-world
data in Section 12.3.5 support this.

12.3 Real Data Experiments

We test SaBoTeur with multiple real-world data sets of varying
characteristics. The purpose of these experiments is to verify
our findings with synthetic data. To that end, we study how well
SaBoTeur (and the other methods) can reconstruct the data, how the
methods scale with real-world data, and how SaBoTeur generalises
to unknown data. In addition, we also study the sparsity of the
factors, using MDL to select the number of clusters. And we assess
how interpretable the results of SaBoTeur are.

12.3.1 Data Sets

We used nine data sets from different online resources. The size
and density for each data set are listed in Table 12.1. Their contents,
in row—column-tube order, comprise:

Table 12.1: Size and density of the

real-world data sets. rows columns tubes density (1077)
Delicious 1640 23584 7968 8.23
Enron 146 146 38 22752.86
Facebook 42390 39986 224 16.51
Last.FM 1892 12523 9749 8.07
MovieLens 2113 5908 9079 4.23
MAG 10197 10673 20 1036.37
Resolver 343 360 200 626.01
TracePort 10266 8622 501 2.51

YAGO 190962 62428 25 67.35




Delicious — user-bookmark—tag tuples from the del.icio.us
social bookmarking system [140];

Enron — sender-recipient—month tuples from email communi-
cation of Enron employees [141];

Facebook — user-user—week tuples telling who posted a message
on whose wall on facebook. com per week [142];
Last.FM — user—artist—tag tuples from the Last. fm online mu-
sic system [140];
MovieLens — user—film—tag tuples from the movielens.org film
recommendation site [140];
MAG — film—actor-genre tuples also from movielens.org;"
Resolver — entity—entity—relation tuples from the TextRunner
open information extraction algorithm [143];!
TracePort — source—target—port tuples encoding anonymised pas-
sive IP traffic traces from 2009 [144];
YAGO — subject—object—relation tuples of the semantic knowl-

edge base yago- knowledge.org [145].

Throughout the experiments, the clustering constraint is imposed
on the last-mentioned dimension.

As a preprocessing step we removed all the all-zero slices in every
mode. In addition, for the Delicious data set, also all slices that had
less than six entries were purged. For the MAG data, all actors that
appeared in less than five films were discarded.

12.3.2 Reconstruction Accuracy

As all employed data sets are very sparse, we report the errors,
not the similarity, for these experiments. The error is measured
as the number of disagreements, when the reconstructed tensor
is also binary, or as squared tensor Frobenius distance, when the
reconstructed tensor is real-valued.'”> The results can be seen in
Table 12.2. The results for CP_APRy; and ParCubey, for all data
sets except Enron and Resolver are obtained by sampling: If ||
is the number of non-zeros in data &, we sampled 200 - ||
locations of zeros, and computed the error the methods make for
every non-zero and for the sampled zero elements. The sampled
results were then extrapolated to the size of the full tensor. We had
to use sampling, as the factor matrices were too dense to allow

reconstructing the full tensor."

The smallest reconstruction error is obtained by ParCubey, in al-
most all experiments, YAGO being a notable exception. Remember,
however, that ParCubeo, returns a non-negative tensor CP decom-
position that is afterwards rounded to binary tensor; ParCubey, is

12.3 Real Data Experiments

[140]: Cantador et al. (2011), ‘Second
Workshop on Information Hetero-
geneity and Fusion in Recommender
Systems’

[141]: Klimt et al. (2004), “The Enron
Corpus: A New Dataset for Email
Classification Research’

[142]: Viswanath et al. (2009), ‘On the

Evolution of User Interaction in Face-
book’

10: The MAG data has a special struc-
ture, as the actors are connected to
the genres only through the films.

[143]: Yates et al. (2009), ‘Unsuper-
vised methods for determining object
and relation synonyms on the web’

11: We used the sample called Re-
solverL from Miettinen [122].

[122]: Miettinen (2011), “Boolean Ten-
sor Factorizations’

[144]: Center for Applied Internet
Data Analysis (2009), The CAIDA
UCSD Anonymized Internet Traces

[145]: Suchanek et al. (2007), “Yago: A
Core of Semantic Knowledge’

12: We use the not-rounded versions
of CP_APR and ParCube, unlike above.

13: We will discuss more on density
in Section 12.3.3.


del.icio.us
facebook.com
Last.fm
movielens.org
movielens.org
yago-knowledge.org
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Table 12.2: Reconstruction errors on real data sets, measured as squared tensor Frobenius distance. ‘—" means that the
algorithm was not able to finish.

Delicious Enron MAG
r = 7 10 15 30 5 10 12 15 5 7
SaBoTeur 253608 253546 253447 253004 1811 1779 1769 1753 224322 223580
SaBoTeur+itUp 253153 253293 252738 252859 1793 1756 1750 1735 223869 223489
BCP_ALS — — — — 1850 1850 1850 1850 — —
CP_APR 253558 253516 253433 253196 1718 1631 1598 1560 224996 224696
CP_APRy, 253653 253653 253652 253639 1838 1817 1811 1781 225580 225155
ParCube 367521 373710 363581 418252 2137 2273 2352 2270 375290 322121
ParCubeo, 247129 246566 246016 241850 1802 1744 1751 1690 222133 221933
Walk’'n’Merge — 251034 — — — — 1753 — — —
MovielLens Resolver Facebook
r = 5 15 20 30 5 10 15 30 15 20
SaBoTeur 56761 56712 56678 56571 1530 1509 1485 1455 626999 626776
SaBoTeur+itUp 47933 47479 47280 47316 1522 1503 1457 1443 — —
BCP_ALS — — — — 1624 1624 1626 1632 — —
CP_APR 47584 46927 46555 46287 1519 1509 1489 1457 626343 626202
CP_APRy; 47178 44655 43614 42609 1545 1545 1538 1539 626945 626945
ParCube 252719 463025 454826 449534 1784 1762 1798 1939 750891 797534
ParCubeo, 41223 38098 37915 37393 1507 1471 1450 1370 619939 620894
Walk’'n’Merge — 46807 — — — — 1534 — — —
Last.FM TracePort YAGO
r = 8 15 20 30 5 10 15 30 7
SaBoTeur 195905 195735 195570 195278 11085 11004 10923 10776 1957737
SaBoTeur+itUp 186072 185713 185651 185399 10990 10961 10913 10673 —
BCP_ALS — — — — — — — — —_
CP_APR 184513 184038 183489 182659 11140 11114 11082 11027 —
CP_APRy; 180766 177527 174491 170939 11110 11059 10893 10617 —
ParCube 2745259 2879381 2856941 2770361 19803 30793 31107 29796 619476763
ParCubeo, 133057 139207 119461 131322 10708 9913 10097 9647 4793390
Walk’'n'Merge — — — — — — 10679 — —
Table 12.3: Total density of the factor
matrices A and B for different r on r= 7 10 15 30
the Delicious data. SaBoTeur 0.00016 0.00031  0.00029  0.00029
CP_APR 0.20219 0.14786 0.10312  0.05396
ParCube 0.28186 0.21069 0.16658  0.099 00

Walk’'n’'Merge — 0.00022 — —




neither clustering nor Boolean, and hence together with CP_APR,
is expected to be better than SaBoTeur. Also, without the rounding,
ParCube is often the worst method by a large margin. CP_APR
benefits much less from the rounding, CP_APRy;, being comparable
to SaBoTeur.

In those data sets where we were able to run BCP_ALS, its results
were consistently worse than SaBoTeur’s results, despite it solving
more relaxed problem. We were unable to get Walk’n’Merge to
finish within a reasonable time with most data sets: it found rank-1
tensors sufficiently quickly, but took too much time to select the
top ones from there.'* When it did finish, however, it was slightly
better than SaBoTeur+itUp or SaBoTeur.

Finally, the iterative updates of SaBoTeur+itUp consistently im-
proved the results compared to SaBoTeur, but did so with signifi-
cant increase to the running time. It seems that with most data sets,
the iterative updates are not necessarily worth the extra wait.

12.3.3 Sparsity of the Factors

An important question on the practical feasibility of the tensor
decomposition and clustering algorithms is the density of the factor
matrices. Too dense factor matrices increase the computational
complexity and also the storage requirements. Furthermore, multi-
plying the dense factors together becomes prohibitively expensive,
making it impossible to fully reconstruct the tensor. This is the
reason why, for example, we had to use sampling to compute the
rounded representations of CP_APR and ParCube.

We studied the sparsity of the factors using the Delicious data. In
Table 12.3 we report the total densities of the matrices A and B,

that is,
|A| + [B|

rm+rm
for n-by-r and m-by-r factors.

Itis obvious that the Boolean methods, SaBoTeur andWalk’n’'Merge,
are orders of magnitude sparser than the continuous methods,
CP_APR and ParCube. This was to be expected as similar be-
haviour has already been observed with Boolean matrix factorisa-
tions [146].

We did not compare the third-mode factor matrices for densities.
For SaBoTeur, the clustering assignment matrix C has density /i
that depends only on the number of frontal slices /; obtaining
density less than that requires having rows of C that have no
non-zeros.
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14: See Erdds and Miettinen [108] for
explanations on how Walk’n’Merge
finds a Boolean CP decomposition.
[108]: Erdés et al. (2013), “Walk'n’-
Merge: A Scalable Algorithm for
Boolean Tensor Factorization’

[146]: Miettinen (2010), ‘Sparse
Boolean Matrix Factorizations’
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Table 12.4: Average wall-clock run-
ning times in seconds for real-world
data sets. Averages are over five re-
starts for MovieLens and ten for Re-
solver. Both data sets used r = 15
clusters.

Table 12.5: Training and testing errors
on real-world data. The number of
clusters was r = 15 for MovieLens and
TracePort and » = 10 for Resolver.

MovieLens Resolver

SaBoTeur 45.6 0.02
SaBoTeur+itUp 303.6 0.11
CP_APR 196.6 22.00
ParCube 24.8 7.68
Walk’'n’Merge 207.5 2.15

12.3.4 Scalability

Table 12.4 shows the wall-clock times for MovieLens and Resolver
with r = 15. MovieLens is one of the sparsest data sets, while
Resolver is one of the densest ones, and hence these two show
us how the relative speed of the methods changes as the density
changes. The other data sets generally followed the behaviour we
report here, adjusting to their density.

With the MovieLens data, ParCube is the fastest of the methods, fol-
lowed by SaBoTeur. CP_APR, Walk’n’Merge, and SaBoTeur+itUp
are significantly slower than the two. With the denser Resolver data,
however, the order is changed, with SaBoTeur and SaBoTeur+itUp
being an order of magnitude faster than Walk’n’Merge, which still
is faster than ParCube or CP_APR. The density of the data does
not affect the speed of SaBoTeur, while it does have a significant
effect to CP_APR and ParCube. SaBoTeur+itUp is less affected by
density, and more affected by the size of the data, than the other
methods.

12.3.5 Generalisation Capability

We repeated the generalisation test we did with synthetic data
with three real-world data sets — MovieLens, Resolver, and TracePort
— keeping 85% of the frontal slices as training data while the
remaining 15 % we used for testing. The results can be seen in
Table 12.5. We used r = 15 clusters for MovieLens and TracePort, and
ten clusters for the Resolver data. On each data set we conducted
ten repetitions of the training phase, and selected the one with the
smallest training error.

MovieLens Resolver TracePort

train SaBoTeur+itUp 40075 1282 9730
Binaryk-Median 39351 1122 8843
test SaBoTeur+itUp 7258 225 1144

Binaryk-Median 8256 274 1554
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As expected, Binary k-Median achieves lower training error, but
larger testing error. This agrees with our synthetic experiments,
and strongly indicates that using the rank-1 centroids helps to
avoid overfitting.

12.3.6 Selecting the Number of Clusters

We tested the use of MDL to select the number of clusters with
Enron and MAG. To that end, we ran SaBoTeur with every possible
number of clusters: from having all slices in one cluster to having
one cluster for each slice. Further, we computed the description
length of representing the data with no clusters.® The description
lengths for the different numbers of clusters are presented in
Figure 12.5. For Enron, the number of clusters that gave the smallest
description length was 3, while for MAG it was 16.

Both Enron and MAG show non-smooth behaviour in the description
length. This is likely partially due to the randomised behaviour
of SaBoTeur and partially due to the fact that SaBoTeur does
not consider the description length when it builds the clustering.
Nevertheless, especially with Enron (Figure 12.5a), the selection of
the best number of clusters — in the sense of MDL — seems clear.

12.3.7 Interpretability

For the final experiment, we studied some of the results we obtained
from SaBoTeur in order to see if they can provide insights to the
data. We report results from four data sets: Enron, MAG, Delicious,
and Last.FM. For Enron and MAG, we can interpret all three modes
(email sender and recipient per month in Enron and films, actors,
genres in MAG); for the other two, we can only interpret two of the
three modes (tags and URLs, and tags and artists, respectively), as
the third mode corresponds to user IDs.
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Figure 12.5: Description length vs.
number of clusters.

15: This amounts to having the full
data explained in the L(D | M) part.
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[32]: Miettinen et al. (2008), ‘The Dis-
crete Basis Problem’

For Enron, the densest and smallest of the examined data sets,
we mined five clusters. This data set is created from a set of
email messages that was made public during the legal operation
concerning the Enron corporation. The clusters SaBoTeur obtained
can be associated to certain events in the timeline of this scandal or
to the roles of certain people. One cluster we find is characterised
by communication among the directors of Enron: in many months
between September 2000 and December 2001, John Arnold (vice
president), sends messages to Michael Maggi (director), to Andy
Zipper (vice president), to Dutch Quigley (unknown position),
and to John Griffith (unknown position). Another cluster has only
November 2001 as member and describes communication of John
Lavorato (CEO) to Kevin Presto (vice president), John Arnold
(vice president), Richard Shapiro (vice president), Barry Tycholiz
(vice president), Rick Buy (chief risk management officer), Stanley
Horton (president), Bradley Mckay (employee), Kenneth Lay (CEO),
Greg Whalley (president), and Mike Swerzbin (trader). This month
is when the formal investigation started and Enron negotiated to
be bought by Dynegy to avoid bankruptcy. Dynegy first agrees on
a deal and withdraws its offer in the end of November 2001.

For MAG, we used 16 clusters, as suggested by MDL, and clustered
the genres. As there are only 20 genres in the data, this means many
clusters contained only one genre; this, however, is not surprising,
as we would expect the sets of films that fall in different genres be
generally rather different. The results picked famous films of the
genre as the centroids: for example, the cluster of animation and
comedy genres had the 1995 animation Toy Story appearing in its
centroid. Another cluster, containing genres adventure and fantasy,
had as its centroid Peter Jackson’s Lord of the Rings trilogy, and its
main cast. Similarly to Toy Story, Lord of the Rings films are arguably
stereotypical adventure—fantasy films.

The centroids for the MAG data contained very few films (for
example the three Lord of the Rings films). This is due to the fact
that the data sets are very sparse, and the algorithm can only pick
up the most prominent elements in the centroids.

With even sparser data sets, such as Delicious and Last.FM, the
centroids get even sparser, perhaps containing just a singleton
element from some mode. This is a common problem to many
Boolean methods [see, e.g. 32]. To alleviate it, we used the weighted
the reconstruction error, a method proposed by Miettinen et al. [32].
Normally, representing a 0 as a 1 and representing a 1 as a 0 both
increase the error by 1, but for the next experiments, we set the
weight so that representing a 1 with a 0 causes ten times more
error as representing 0 as a 1.



For Delicious and Last.FM, we mined 30 clusters. Even with the 10-
fold weight, results for Delicious were rather sparse.'® Some clusters
were very informative, however, such as one with the tags software,
apple, mac, and osx that contained bookmarked pages on HFS for
Windows, iVPN, Object-Oriented Programming with Objective-C, and
iBooks and ePub, among others. For Last.FM, the clusters were gener-
ally more dense, as users tend to tag artists more homogeneously.
For example, the cluster containing the tags pop and rnb contained
the superstar artists such as Beyoncé, Britney Spears, Katy Perry, and
Miley Cyrus (and many more). But importantly, one could also find
less-known artists: in a cluster containing tags dance, trance, house,
progressive trance, techno, and vocal trance, we found artists such as
Infected Mushroom, T.M.Revolution, Dance Nation, and RuPaul.

12.4 Discussion

All the experiments show that SaBoTeur can hold its own even
against methods that are theoretically superior: For reconstruc-
tion error (or similarity) with both synthetic (Sections 12.2.1
to 12.2.3) and real-world data (Section 12.3.2), SaBoTeur (and
SaBoTeur+itUp) achieve results that are the best or close to the best
results, notwithstanding that other methods, especially CP_APRy,
and ParCubey,, benefit from significantly less constrained forms of
decomposition, coupled with the post-hoc rounding. These relax-
ations also come with a price, as both methods create significantly
denser factor matrices, and — as can be seen in Sections 12.2.4
and 12.3.4 — are unable to scale to denser data. Compared to the
Boolean CP factorisation methods, BCP_ALS and Walk’n’Merge,
SaBoTeur is comparable (or sometimes clearly better) in recon-
struction error and density of the factor matrices, while being
significantly more scalable.

Our hypothesis that the rank-1 centroids help with overfitting was
also confirmed (Sections 12.2.5 and 12.3.5): while Binary k-Median
obtained lower training errors (as expected), SaBoTeur obtained
better results with testing data in all real-world data sets and in most
synthetic experiments (with TracePort, SaBoTeur’s testing error
was more than 25 per cent better than that of Binary k-Median).

Our experiments also show that MDL can be used to select the
number of clusters automatically, even though we do think that
more studies are needed to better understand the behaviour of
the description length. Also, when studying the results, it seems
obvious that SaBoTeur can return results that are easy to interpret
and insightful; in part, this is due to the Boolean algebra, and in
part, due to the clustering.

12.4 Discussion

16: This sparsity indicates that the
behaviour of the users is very hetero-
geneous.
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The last open question is whether one should use SaBoTeur or
SaBoTeur+itUp. Judging by the results, SaBoTeur+itUp can pro-
vide tangible benefits over SaBoTeur, however, with a significant
price in the running time. Thence, we think that it is best to start
with SaBoTeur, and only if the user thinks she would benefit from
more accurate results, move to SaBoTeur+itUp.



Conclusion

To conclude the second part of the thesis, in this chapter, we
summarise our contributions for Boolean tensor clustering and
discuss potential future directions.

13.1 Summary

We have studied the problem of clustering one mode of a three-way
binary tensor while simultaneously reducing the dimensionality
in the two other modes. This problem bears close resemblance
to the Boolean CP tensor decomposition, but the additional clus-
tering constraint makes the problem significantly different. The
main source of computational complexity — the consideration of
overlapping factors in the tensor decomposition — does not play
a role in Boolean CP clustering. From another point of view, the
problem can be seen as a clustering task where the centroids are
constrained to rank-1 matrices in order to comply with the tensor
structure.

For our assessment of the theoretical quality of the algorithm, we
analyse the difference of maximising the similarity and minimising
the dissimilarity. While typically, the quality of a clustering or
tensor decomposition is measured using the distance of the original
data to its representation, find that using the similarity instead of
distance leads to a more meaningful analysis — also for other data
mining problems, especially with binary data.

As a by-product of the analysis of our algorithm in terms of
maximising the similarity instead of minimising the dissimilarity,
we show that the problem of finding maximum-similarity binary
rank-1 decompositions admits a PTAS and present a scalable
algorithm that achieves a 0.828 approximation ratio.

Our experiments show that the SaBoTeur algorithm obtains similar
reconstruction errors compared to the much less restricted tensor
factorisation methods while obtaining sparse factor matrices and
overall best scalability. We also showed that restricting the cluster
centroids to rank-1 matrices significantly helped the generalisation
to unseen data.

13

13.1 Summary .
13.2 Challenges

.........
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13.2 Challenges

While studying the task of Boolean tensor clustering, we encoun-
tered three different subjects which could be interesting for future
considerations.

First, throughout our work, we concentrated on three-way tensors
as they are the most common type of tensor data. The techniques
we presented can be extended to higher-order tensors. Though,
when realising such an extension, one has to first decide whether
to cluster or decompose the further modes. It is also an option
to cluster some modes and decompose some others. Just like
the selection of the mode along which to cluster a three-way
tensor, such a decision will of course highly depend on the data.
Therefore it could be a helpful addition to develop strategies to
assist the decision of decomposing or clustering for every mode.
Furthermore, of course the resulting algorithms for higher-order
tensors will depend on these decisions. Development and in-depth
study of those algorithms could yield interesting future research.

Second, the idea of restricting cluster centroids to a specific struc-
ture opens opportunities for future research: Other clustering
approaches, also on other types of data, could be amended by
restrictions of cluster centroids. While the exact benefits of such
a modification need to be explored, we envision some potential
of such constraints to help with the curse of dimensionality. An-
other idea along these lines is to consider higher-rank centroids
for our algorithm. That would mean to explore the behaviour of
the algorithm when moving from BCPC towards unconstrained
BTC. Then, the rank of the centroid would act as a regularisation
parameter. To explore whether such a regularisation is viable, both
for the Boolean and the continuous domain, could be an intriguing
topic of further research.

Third, we argue that the similarity — as opposed to distance or error
—is often a more meaningful metric for studying the (theoretical)
performance of data mining algorithms due to its robustness
towards small errors and more pronounced effects of large errors.
While we have seen the benefits of assessing similarity instead of
error in our analysis, such a shift of view might be an asset for
more methods, both existing and novel. Our hypothesis is that
good theoretical performance in terms of similarity correlates better
with good real-world performance than good (or bad) performance
correlates with the error.



Interconnecting the Pieces

To round off, in this chapter, we outline how hyperbolic com-
munities and Boolean tensor clustering could benefit from each
other.

14.1 Hyperbolic Cluster Centroids

We have presented two major lines of work: hyperbolic communi-
ties and Boolean tensor clustering. Both lines, we have introduced
as beneficial for analysing and understanding graph data in partic-
ular. And in both lines, we rely on the representation in terms of
binary data. Yet, the goals of both works, as well as their method-
ology, differ to a great extent: in one case we seek for a fast, yet
performant, tensor decomposition; in the other case our focus is
the realistic modelling of network structures.

What benefits could their combination have? In our implementa-
tion of Boolean tensor clustering, we suggest rank-1 matrices as
cluster representatives. While our experiments indicate that this is
a reasonable idea, we may ask whether, for certain data, not just a
higher rank but another form of representative would be a better
fit given the data. For instance, if we would like to analyse the time
course of a social network, its modules would — as we have argued
extensively — be well explained by means of hyperbolic communi-
ties. To replace the rank-1 centroids that SaBoTeur discovers with
hyperbolic communities, could help the interpretability of the
results. In our Boolean tensor clustering framework we discover
the rank-1 centroids through decomposition of the tensor. Doing
the same, but discovering hyperbolic communities as the factors
in the decomposition brings us back exactly to the problem of
detecting the hyperbolic communities (compare Section 9.2): an
approach towards solving BCPC such that the hyperbolic commu-
nities serve as cluster centroids would likewise be an approach
towards hyperbolic community detection.

As touched upon, hyperbolic communities are a special case of
nested subgraphs [40]. In the following, we outline how this
observation offers a community detection approach by means of a
factorisation.

14.1 Hyperbolic Cluster Cen-
troids............ 133

[40]: Karaev et al. (2018), ‘Logistic-
Tropical Decompositions and Nested
Subgraphs’
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1: Notice that we apply the threshold
function 7, independently to each
element of the matrix xyT‘

[41]: Neumann et al. (2016), “‘What You
Will Gain By Rounding: Theory and
Algorithms for Rounding Rank’

2: An arithmetic progression is a se-
quence of numbers in which the differ-
ence of any two successive numbers
is constant.

Nested subgraphs can be defined based on the neighbourhood N
of every node:

Definition 14.1.1 An undirected graph G = (V, E) is nested if we
can order the vertices v € V in a sequence (v1,vy, ..., vy) such that
N(vi+1) € N(v;) foralli=1,...,n—1.

Karaev, Metzler, and Miettinen propose an algorithm for covering
by nested subgraphs. To achieve a formulation of the problem as a
matrix factorisation problem, they use an alternate characterisation
of nested subgraphs by means of the rounding rank; a binary matrix
A € {0, 1} has nonnegative rounding rank of 1 if and only if there
exist nonnegative vectors x € RY and y € RZ, such that

A=1,(xy"), (14.1)

where 7,: R59 — {0, 1} is a threshold function with 7,(x) = 1 if
x > a and 0 otherwise.! As the following proposition shows, the
nonnegative rounding rank is connected to nestedness:

Proposition 14.1.1 ([41, Theorem 11]) Let A be a binary matrix. A
is nested if and only if it has nonnegative rounding rank of 1.

The extension of this characterisation to a union of nested sub-
graphs is unfortunately not immediate: a rank-k decomposition
is unequal to the union of k nested submatrices. As a remedy,
Karaev, Metzler, and Miettinen replace the standard algebra with
the subtropical algebra and show that the characterisation of
nested matrices under rounding rank extends to higher-rank trop-
ical decompositions. They propose a stochastic gradient descent
approach, called SLTF, for finding nested subgraphs in practice.

Since hyperbolic communities are nested subgraphs, we suggest
to use SLTF with additional constraints. The constraints need to
be such that only those nested subgraphs are found that also
are hyperbolic communities. Also, to be compatible with the
decomposition approach of SLTF, we present a formulation of
hyperbolic communities in terms of an outer product.

In fact, the hyperbolic parametrisation can already be interpreted
as an outer product. The inequality (i + p)(j + p) < O (see Sec-
tion 4.1.1), can equivalently be stated in terms of an arithmetic
progression:” We define

n+p

Vo

forn =[1,...,nc]. The positions (i, j) of the outer product s, s}
where we have

Sy = (14.2)

sush <1 (14.3)



14.1 Hyperbolic Cluster Centroids

are those which constitute the area of the community. But, to be
compatible with the SLTF algorithm, we need the values of the
vector such that the higher values indicate where the information
is. With the hyperbolic function, the behaviour is exactly the
opposite: values below a certain threshold are those that contain the
information, i.e. are within the community. Therefore, we propose
(yet) an alternate parametrisation of our hyperbolic model:

Definition 14.1.2 The decision function for converse(q, ®) is

. 1 1
fconverse(lz]/ q, (I)) = (q - 7)(4 - ;) > P

with the parameter set © = {q, P}.

Equivalence of converse. As an interlude, we demonstrate that
this model is related to our previously-defined characterisations.

Like for the derivation of fixed (see Section 4.1.2), we express the
point at which the decision boundary, (g — %)(q - %) = @, crosses
the diagonal (where i = j), and the point where the hyperbola

exits the community (that is j for which i = nc or vice versa).

Analogously to Equations 4.7 and 4.8, we have
1 1
G-=)g-=)=a (14.4)
7 )4 7 4
(1-)g- )= (145)
1 H 1 nc B '

Equating those expressions determines g by means of y and H
and thus allows to translate to our previously derived models:

1 1 1 1
(q——)(q—;)=(q—a)(q—g)

V4
1 2q q q 1
2 - =T _ 21 7 -
© TR TT TH T uc THue  (146)

11
y Hnc

S 4=3_1_1
y H nc

Notice that we assume 1-based indexing here, since this expression
is not defined for i = 0 or j = 0. With the assumption of 1-based
indexing, we remain with strictly positive values for i and j, and
the discontinuity occurs outside the admitted value range.

Using the converse model, we can state the arithmetic progression
respectively as

I =

b, =11 (147)

Vo
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We achieve the desired behaviour that intra-community edges are
associated with values that exceed a threshold. To constrain SLTF
to only search for nested communities that are also hyperbolic, a
straight-forward approach would be to extend the algorithm with
an alternating updates procedure where we map the solution of
SLTF always to the closest allowed hyperbolic model t,.

While using SLTF seems to be a promising direction, having the
hyperbolic communities as cluster centroids would require to
give up on the pure binary character of Boolean tensor clustering:
the centroids that admit the arithmetic progression t, would be
represented by means of positive real numbers. Our algorithms,
however, are currently optimised for the binary domain and more
investigation is needed to achieve a scalable alternative when this
is no longer the case.



Final Conclusion

This chapter marks the end of the thesis. We conclude with a
review of our contributions.

15.1 Summary of Contributions

In this thesis, we have studied two aspects of structural patterns
in graph data: the description of communities by means of the
hyperbolic model, and the discovery of factors by means of Boolean
tensor clustering. Although being dissimilar in their nature, both
strains of work contribute to understandably summarise large
networks; they reveal patterns in graph data, make use of the
dualism between graphs and matrices, and rely on binary data.

Part One. We have introduced the hyperbolic community model.
The model offers very intuitive parameters to describe groups of
more densely connected nodes within networks. It accounts for
connectivity patterns that are frequently observed in real data,
especially in social networks: a few community members are highly
interconnected, while the remaining majority mainly has ties to
this core.

To express the hyperbolic community model, we have presented
three different but equivalent parametrisations: hyperbolic un-
derlines the geometric shape of the communities; fixed intuitively
characterises every community by means of the core size and the
tail height; mixture highlights the probabilistic nature of com-
munity shapes. The additional graphon representation enables
the perspective of an exchangeable random graph model, thereby
offering options to efficiently model time-evolving communities.

Alongside with the hyperbolic community model, we have in-
troduced the random graph generator HYGen. On the basis of
the hyperbolic model, HyGen generates modular networks with
realistic intra-community structures, using parameter distributions
derived from observations in real graphs.

In extensive experiments on various data, we have demonstrated
that our model fits real data much better than previously-proposed
models, and that our random graph generator creates graphs with
realistic intra-community structure. Our large scale study of the

15.1 Summary of Contribu-

tions
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temporal evolution of online question-answering communities has
revealed that the user activity within a community is constant with
respect to its size throughout its lifetime. Furthermore, we have
seen that only a small group of users is responsible for the majority
of the social interactions.

Part Two. We have proposed an algorithm for uncovering the
structural building blocks in multiply-related binary data. As a
special tensor factorisation, Boolean tensor clustering assumes that
one of the tensor directions has only non-overlapping factors. This
assumption is valid for many real-world data, in particular for time-
evolving networks, and lifts much of the computational complexity
from the task.

For our analysis of the theoretical quality of the algorithm, we
have studied the differences between maximising the similarity
and minimising the dissimilarity. While practically similar to each
other, we find that using the similarity instead of distance yields a
more meaningful theoretical analysis.

In our experiments, we have demonstrated that our algorithm for
Boolean tensor clustering obtains results of similar quality like
much less restricted tensor factorisation methods. At the same
time our algorithm showed overall best scalability, obtained sparse
factor matrices, and, because of the restriction to rank-1 centroids,
showed good generalisation to unseen data.

Notwithstanding the contributions, the research in neither line
of work is exhaustive. The most noticeable open ends that may
inspire future investigations are:

» How to detect hyperbolic communities in networks?

» Cantheidea of restricting the cluster centroids in Boolean ten-
sor clustering be transferred to other methods, and what are
the benefits if the rank of the centroids acts as a regularisation
parameter?

» Is the consideration of similarity opposed to distance also
beneficial for the analysis of other methods?

In addition, as we have discussed in Chapter 14, there is also a poten-
tial benefit of bringing together the lines of work by constraining
the cluster centroids in Boolean tensor clustering to be hyper-
bolic communities. Exactly this combination offers a promising
direction for addressing remaining challenge to detect hyperbolic
communities.
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Proof of Proposition 4.5.1

Recall that the proposition was:

Proposition 4.5.1 Let C = fixed(y, H) be a community of nc nodes
defined by y € R and H € N, and let Ac be its area. Then there
exists integer Y’ such that if D = fixed(y’, H) is the community
defined by y’" and H, and Ap is the respective area, then |Ac — Ap| €
© (y In(nc)).

We will prove the claim by bounding the difference of the area
between y and y + 1, which is clearly sufficient.

Notice first that we can assume H = 0: the tail part will always
contribute the same area of Hnc — H*/2 irrespective of y.

Consider for now the hyperbolic model and recall that the hyper-
bolic equation is

(x+py+p) =0, (A1)
where we used x and vy instead of i and j to emphasize their

continuous nature. From (A.1) we get that

_ 7]
Cx+p

y -p. (A2)

The area of the function is the integral of (A.2) from 0 to n¢, that

is,
Ac ; p dx . (A.3)

Here we dropped the —1 from nc¢ for the sake of clarity; it will not
effect the asymptotic analysis in any case. To get back to the fixed

model, we can substitute

2

Y
2(~,2 _ 2
0= M ) (A.5)
(nc —2y)

following Equations 4.10 and 4.14, respectively.
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A Proof of Proposition 4.5.1

Given the constraints that y € [0, 7c/2), we can solve the integral
(A.3) with the substitutions (A.4) and (A.5) to be

(y2(4y In(y)nc —2y*In(y) — 2In(y)nc? +2y* In(=y + nc)
- }’lc2 + 2ync + 21]?1(—]/ + 1’lc)1’lc2 - 4)/ 11’1(—]/ + nc)nc))
/(nc? —4dync +4y%) . (A6)

Hence, the difference between the areas with y and y + 1 is

—(=2nc +In(y* +2y + 1))/271%

—In(y*+2y —2ync+1-2nc +nk)y*nk
—6ync+In(y* +2y + nZ
+y*In(y? +2y +1) = In(y* +2y —=2ync +1-2n¢c + nZ)nZ
—y*In(y*+2y - 2ync +1-2nc +n?)
+y*n% -4’ In(y* +2y —2ync +1-2nc +nZ)
—61In(y? +2y —2ync+1-2nc +nZ)y?
—41In(y?+2y —2ync+1-2nc +n)y
+4)°In(y? +2y +1) + 6 In(y? + 2y + 1)y?
+4In(y?+2y +1)y =2 In(y* + 2y + Dnc
+21In(y*+2y —2ync +1-2nc +nZ)nc
-2y%nc —6y*nc +2yné+né
—In(y*+2y -2ync+1-2nc +n?)
+In(y? +2y +1) =29y In(y? +2y + Dnc
+61In(y? +2y —=2ync+1-2nc +n2)y*nc
+61In(y*+2y —2ync+1-2nc +nZ)ync
—61In(y* +2y +1)y*nc +2In(y* +2y + D)ynZ
-6 In(y?+2y +1)ync
—21In(y*+2y =2ync +1-2nc +ng)yng
+29°In(y* +2y —2ync+1-2nc +nZ)nc)
[(nE —4ync—4nc+4y*+8y +4)

+ (Y24 yIn(y)nc +27*In(y)
+2 In(y)nZ — y*In(y* —2ync + nZ)
+ng —2ync —In(y? —2ync + nZ)ng

+2yIn(y? = 2ync + ng)nc))/(ne —4ync +4y*) (A7)

If we denote (A.7) with d(y, nc), we can notice that

~ vIn(nce) 1
lim

, A.8
A, n0) ¥y +4 (A8)

which is in (0, 1/4) for any y, showing that d(y, nc) € ©(y In(n¢))
and concluding the proof. O



Examples of Modelled Communities

Models from ground-truth communities. Figures B.1 to B.5
show further examples of communities from different data sets
and the models we found.

Models after spectral clustering. Figures B.6 to B.8 give addi-
tional examples of the modelled communities obtained by spectral
clustering.

Models after BMF. Figures B.9 to B.12, show the models obtained
for communities found by BMF.

00 200 ) 400 600 8(;0 00 200 o 400 ) 6 éOO Figure B.1: Example of a Communjty
(@) Before. (b) After fitting the model. obtained from the Amazon data.

% 200 400 00 800 0 200 400 600 800 Figure B.2: Example of a community
(a) Before. (b) After fitting the model. obtained from the DBLP data.
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Figure B.3: Example of a community
obtained from the Friendster data.

Figure B.4: Example of a community
obtained from the YouTube data.

Figure B.5: Example of a community
obtained from the YouTube data.

Figure B.6: Examples of a community
obtained from spectral clustering of
the Erd6s data.
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Figure B.7: Examples of communities
obtained from spectral clustering of
the Jazz data fitted by our model.

Figure B.8: Examples of communities
obtained from spectral clustering of
the Email data fitted by our model.

Figure B.9: Examples of communities
obtained from BMF of the Email data.

Figure B.10: Examples of communi-
ties obtained from BMF of the Erdés
data.
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Figure B.11: Examples of communi-
ties obtained from BMF of the Pol-
Books data.

Figure B.12: Examples of communi-
ties obtained from BMF of the Jazz
data.




Hyperbolic Communities on Question—-Answer Sites

In order to further validate the presented results, we performed
additional experiments which we detail in this appendix. The
experiments comprise

» a comparison of different options to discretise the time axis;

» astudy of higher order polynomials fitted to the time lines;

» an analysis of the correlation between highly reputed users
and their position within a community,

in Appendices C.3 to C.5. In addition, we present the time lines
of all communities (Appendix C.8). Furthermore, we provide
additional information, tables, or figures to accompany the results
presented in the thesis (Appendices C.1, C.2, C.6 and C.7):

» details about the data gathering;

» a discussion on the use of weighted data;

» a tabular summary of the numeric results from the linear
regression and core stability experiments;

» avisualization of where outliers occur in the linear regression
experiments with respect to community size.

C.1 Data Preparation

We use data from three large online message boards for this study.
This section gives further details about the data preparation for
each data set.

C.1.1 Reddit

We downloaded the Reddit data dump from https://files.
pushshift.io/reddit/ and gathered meta-data from all posts
and comments up to November 2016. There are 635048 topics,
called subreddits, in total. Out of these we further consider 33 732.
We ignore singleton subreddits where no replies occurred at all and
also very small subreddits with less than 10 user interactions. For
each subreddit of sufficient size, we list every user—user interaction
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together with its time stamp, ignoring whether the contributions
were made as posts or comments. To that end, we group the entries
by who created a post (or comment), at what time, and in reply
to which parent post by the parent ID. In a subsequent step, we
construct a graph where users are connected to other users if they
have created a post in reply to the post of another user. We label
the connections with the time stamps of the interaction, but we do
not consider the direction of the link. For users A, B, and C, where
A creates a post and B and C reply, that would mean that (A, B)
and (A, C) are edges of the constructed graph. If user D replies to
what B posted, then (B, D) is also an edge.

C.1.2 StackExchange

We downloaded the StackExchange data dump with all posts from
all 320 communities until December 2016 from https://archive.
org/ and gathered meta-data from posts, answers, and comments.
For further processing, we use only those posts that have a user
ID assigned and are classified as either question, or answer, or
comment. This pruning is necessary since in the beginning of
StackExchange, comments could be made without an account.
Also, deleted users’ contributions are in the data dump with just
the user name but no ID. We ignore the user with ID -1, which
is a bot responsible for clean up tasks. As the time stamp for a
contribution, we consider the creation date and ignore dates of
later edits.

Every contribution, which can be either question, answer, or com-
ment, comes with information about who created it and when.
For answers and comments, we additionally know in response
to which other contribution a record was created for. From this
information, we construct graphs per community, where an edge is
formed between two users if one created a contribution in response
to the other user. Every edge is labelled with the corresponding
time stamp.

C.1.3 HealthBoards

The HealthBoards dataset was collected from the site https://www.
healthboards.com/ in 2013. We processed the meta-data of all
235 discussion boards, totalling 752 778 user contributions. The
information we use to construct the user interaction graph per
discussion board is who created a contribution in which thread at
what time. This means, there is an edge between two users in the
graph of one discussion board if both users have contributed to
the same thread. Every edge is labelled with the corresponding
time stamp of the interaction.


https://archive.org/
https://archive.org/
https://www.healthboards.com/
https://www.healthboards.com/

C.2 Edge Weight Distribution

We use unweighted data throughout the entire analysis. One
alternative for representing the data would be to weight each link
between users by the number of interactions they had within a
given time interval and consider this weight when calculating the
community model. A study comparing such an approach to ours
is beyond the scope of this work. We, however, suspect that little
additional information is gained by analysing weighted networks:
for StackExchange, we observe that about 2/3 of the edges have a
weight of 1, and 90 % of all edges are covered if we count edges of
weight 1, 2, and 3 (see Figure C.1).
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C.3 Different Time Aggregation Options

Each interaction in the datasets is labelled with its date. As for
the massive amount of data, it is computationally infeasible to
re-model each community after every new interaction. Therefore,
we chose monthly intervals to discretise the time axis as a trade-
off between computational effort and a fine-grained view on the
evolution of the communities.

This modelling decision, however, still leaves options for how to
treat each monthly time interval. While in Chapter 8, we present the
findings that consider each of these intervals individually — which
is in fact the most difficult setting — we also examined two other
options: a sliding window approach and an accumulative setting
where edges are never removed. Here, we compare these three
options against each other using the HealthBoards dataset, which
has the smallest communities on average. We chose this dataset
because smaller communities exhibit higher degrees of variance,
and thus, the smoothing effect of the two alternative options is
more pronounced. As a side effect, this dataset requires the least

C.2 Edge Weight Distribution 149

Figure C.1: Cumulative plot of the
fraction of edges covered with at most
weight x of all monthly time slices
of StackExchange (including meta-
communities).



150

Monthly

C Hyperbolic Communities on Question-Answer Sites

Accumulative

Sliding window

g
=

&

imber of nodes.

2000 2

0
Jan 04 Jan 06 Jan 12

time

(a) Beauty & Cosmetics community

Jan 02 Jan 08 Jan 10

A

Jan 08 Jan 10 Jan 12 Jan 02 Jan 04 Jan 06 Jan 08 Jan 10 Jan 12

time

Jan 04 Jan 06

time

number of nodes

Jan 04 Jan 06 Jan 08 Jan 12

time

Jan 02 Jan 10

(b) Exercise & Fitness community

2
2

cti
o
3

o1
number of nodes
fraction

o
S

2 3
s 8

Jan 02 Jan 04 Jan 06 Jan 08 Jan 10 Jan 12 Jan 02 Jan 04 Jan 06 Jan 08 Jan 10 Jan 12

time

time

——members

number of nodes

Jan 06 Jan 08 Jan 12

time

Jan 02 Jan 04 Jan 10

(c) Foot Problems community

Jan 12 Jan 02 Jan 04 Jan 06 Jan 08 Jan 10 Jan 12

time

Jan 08 Jan 10

time

Jan 04 Jan 06

Figure C.2: Comparison of time development using different time aggregation options after the example of selected
HealthBoards communities. Modelling results for all further communities for the respective time aggregation option are

displayed in Figures C.15 to C.17.

amount of computation, which is advantageous as particularly the
accumulative setting yields substantially larger communities to be
modelled in every time step.

C.3.1 Monthly

When considering the interactions of users in every month indi-
vidually, the data of one time step is independent of data from
the previous time steps. As detailed in Chapter 8, even in this
hardest setting, where the variance of the model parameters is the
highest (compare Table C.1 and Figure C.3), we are able to identify
the common pattern of a small group of users who are constantly
responsible for the majority of the social interactions throughout
each time line.

C.3.2 Sliding Window

For aggregation in a sliding window fashion, we consider all the
interactions of the current month plus those of the preceding
eleven months. With this window of one year, we go along the time
dimension of the communities and compute the model month by
month.

Examples of the model evolution over time can be seen in Fig-
ure C.2 in the middle column. Compared to the set-up where
every month is regarded individually, we observe less fluctuation



C.3 Different Time Aggregation Options

monthly sliding window accumulative

average SD average SD average SD

average y 0.246 0.044 0165 0.041 0.143 0.036
avg. of SD of y 0.160 0.075 0.062 0.032 0.065 0.030
average H 0.071 0.081 0.002 0.009 0.005 0.008

avg. of SD of H 0.134 0.100 0.007 0.022 0.031 0.037
average slope of y —0.000 0.000 —0.000 0.000 —0.000 0.000
RMSE of fit 0.155 0.067 0.057 0.031 0.053 0.026
avg. correlation 1.000 0.000 1.000 0.000 1.000 0.000
p-value of corr.  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

in the parameters H and y. This is expected for two reasons: First,
the sliding window smooths the differences in the data from one
month to the next. Second, as for every time step, the interactions
of one year are aggregated, the effective size of the community
for which the model is computed is much larger, and the model
thus becomes more stable. Importantly, we observe the constant
behaviour of the model parameters. This impression is backed up
by the statistical analysis of all the model parameters summarised
in Table C.1 (and Figure C.3): we verify that the size of the com-
munity core, indicated by the parameter y, is near constant over
time; furthermore, approximately 20 % of the community members
constitute the core.

C.3.3 Accumulation Over Time

We analyse the community structure evolution when accumulating
all interactions from the beginning of the time series to the current
month. As observable in Figure C.2 in the rightmost column, the
number of interactions steadily grows while the relative core size
remains constantly small. Statistics summarising all datasets are
given in Table C.1 (and Figure C.3). This analysis confirms what
we observed with the monthly time steps and with the sliding
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(a) Distribution of the core size y (b) Distribution of tail height H

Table C.1: Statistics of model param-
eters for different time aggregation
options on the HealthBoards data set.
We consider only communities with
more than 100 nodes in total that cover
a time span of more than 12 months.
The correlation is computed between
the data and the constant model after
transforming the variable space (as
explained in Section 8.5).

Figure C.3: Distribution of the model
parameters H and y on the Health-
Boards data using different time ag-
gregation approaches.
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Figure C.4: Distribution of the slope
parameter of the fitted models.

window approach: the relative size of the core of each community
is constant and has approximately 20 % of the size of the whole
community.

Thus, we conclude that our results, are not dependent on the way
the data is aggregated, suggesting that the patterns we observe are
a truly inherent property of the user interaction data.

Admittedly, for the HealthBoards data, the sliding window setting
would lead to cleaner looking results in the sense that fluctuations
would be smoothed, thus only leaving the potentially interesting
discontinuities in the core size. Analysing these further might be
interesting for practitioners. We nevertheless decided to use the
monthly set-up as a common data preparation procedure for all
the examined data sets. This decision not only accounts for the
size of StackExchange and Reddit communities, but also opposes
the argument that the observed schema of intra-interaction would
be a result of the data preparation.

C.4 Constant Model versus Higher Order
Polynomials

We validate that the constant model is an appropriate model to
describe the time evolution of the core size . To that end, we fit
polynomials to each time line, take the best, and compare its quality
to that of the constant model. For fitting the polynomials, we use
Matlab’s polyfit function and optimise once for the Bayesian
information criterion (BIC) and once for the sum of squares error
(SSE). We evaluate the models with respect to the mean square
error (MSE).

First of all, we notice that although we permit polynomials up
to degree nine, the best models are never more complex than a
first order polynomial. Often, the best model is exactly a constant
model. In some cases, it is linear with a small slope in addition

0.0015 0.0015
0.001 0.001
0.0005 0.0005
% E a E
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(a) Optimization for BIC (b) Optimization for SSE
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to the intercept. Figure C.4 shows the distribution of slopes in
the best models of each community and per dataset. Notice that
a slope of around 0.001, which is what we observe for the most
extreme outliers in the Reddit data, would alter the parameter y
by 0.1 after 8.3 years. There is almost no difference between the
results of optimization for BIC and for SSE.

In Chapter 8, we claim that the constant model is a good fit for
every analysed community. To assess how much this simplification
impacts the model quality, we compare the MSE of each best model
to that of each respective constant model. The distributions are
visualised in Figure C.5. We notice that the difference in MSE
is typically negligibly close to zero, suggesting that the constant
model is sufficient to explain the data.

C.5 Reputation of the Core Members

The StackExchange users gain or lose reputation points based on
the quality of their interactions. Reputation determines a user’s
privileges within the system and reflects familiarity with the site
as well as subject matter expertise. One might assume that the
community cores identified by the hyperbolic model predomi-
nantly consist of highly reputed members. To see whether this
assumption is true, we compare the hyperbolic model results to
the result obtained from purely analysing the reputation scores of
each user. To that end, we use the model of the last time step of
every StackExchange community and compare its ranking of the
users, which is the degree order of the nodes, to the ranking of the
users by their reputation.

Supported by a Pearson correlation test, we observe a mediocre
connection between the rankings. The mean correlation is 0.4 with
a noticeable SD of 0.33 (see Figure C.6). This finding shows that an
analysis of the reputation is not enough to identify the community

Figure C.5: Distribution of the MSE
of linear models fitted to each commu-
nity in comparison to that of constant
models. Models where obtained after
optimization for BIC.
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Figure C.6: Distribution of Pearson
correlation coefficients calculated for
every StackExchange community be-
tween the users ordered by their rep-
utation score and ordered by their
activity (i.e. node degree) in the last
month of the time series. We dis-
play the distribution within the meta-
communities separately.
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core. The low but positive correlation between activity and reputa-
tion underlines that reputation is gained through activity, but the
activity of a user cannot be inferred from the user’s reputation.

C.6 Numeric Results for Fitting Community
Models and Core Stability

In Chapter 8, we argue that the shape of the community models
remains constant throughout time and despite changes in commu-
nity size in each of the data sets. In particular, we state that the
slope of the line fitted to ) over its time and size evolution is 0 (see
Sections 8.5 and 8.6). Furthermore, we observe that a substantial
fraction of users remains in the core of the community from one
time step to the next (see Section 8.7).

Table C.2 shows supporting statistics and summarises the amounts
of overlap we observe between the cores.

While the averages and SDs of the model parameters as well as the
fit of a linear function on the time evolution of y are straightforward
to compute, the p-values to assess the significance of the results
require further explanation: the p-values of the coefficients in the
linear regression are very high. This is unsurprising since the
tested null hypothesis for the slope coefficient is ‘the slope is equal
to 0". We find no evidence against this hypothesis. In an additional
test, explained in Section 8.5, we assess the correlation between
the parameter y over time and community size and a constant
function to confirm the significance.
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Table C.2: Statistics of model parameters. We consider all communities with more than 100 nodes in total that cover a time
span of more than 12 months. Linear regression is computed with respect to time and community size. The correlation is
between the data and the constant model after transforming the variable space. Core overlap is computed between time-wise
subsequent cores and cores 2, 4, and 8 months apart.

averages standard deviations

Reddit StackExchange HealthBoards  Reddit StackExchange HealthBoards

forums meta forums meta
average y 0.242 0145 0.267  0.246 0.060 0.034 0.039 0.044
avg. of SD of y 0132 0.054 0.119 0.160 0.053 0.024 0.046 0.075
average H 0.065 0.011  0.057  0.071 0.060  0.009 0.034 0.081
avg. of SD of H 0124 0.026 0.090 0.134 0.082  0.029 0.048 0.100
Regression on time as x-axis
avg. slope of y —0.000 -0.000 -0.000 —0.000 0.000  0.000 0.000 0.000
avg. p-value of slope 0.312  0.123  0.363  0.224 0.313  0.228 0.309 0.304
RMSE of fit 0.128  0.048 0.118 0.155 0.054 0.021 0.047 0.067
avg. correlation 1.000  1.000  1.000 1.000 0.000  0.000 0.000 0.000

p-value of correlation<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Regression on size as x-axis

avg. slope of y -0.001 -0.000  0.000  0.007 0.003  0.000 0.004 0.014
avg. p-value of slope 0.277  0.071  0.287  0.142 0.300  0.020 0.325 0.234
RMSE of fit 0128 0.046 0.117 0.155 0.055 0.177 0.047 0.072
avg. correlation 1000  1.000 1000  0.999 0.000  0.000 0.000 0.003

p-value of correlation<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Average core overlap

1 month apart 0397 0.564 0.603  0.467 0135 0.072 0.063 0.141
2 months apart 0.358 0.494 0.557  0.410 0138  0.078 0.068 0.157
4 months apart 0.334 0443 0.531 0.362 0.147  0.080 0.069 0.161
8 months apart 0315 0.391 0493  0.321 0.161  0.082 0.075 0.165

C.7 Regression with Respect to Community
Size

Figure C.7 provides additional insights for the distributions of
slopes summarised as boxplots in Figure 8.7. We observe that for
communities with a sufficient average monthly size, there exists
very little variation in the slope. Outliers primarily occur when
the communities have too few members to derive a reliable model.
It appears that the regression on community size as the x-axis is
more severely affected, showing stronger deviations from zero in
the slope than when the regression is computed on time as the
x-axis.

It appears to be a particularity of the HealthBoards data that outliers
for the slope of y with respect to the community size show primarily
positive values, while being much more evenly spread in the other
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Figure C.7: Scatter plots of the slope for y versus the average monthly community size. Note that axes are not scaled to a

common size.
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data sets (compare Figure 8.7b). It seems more likely that this
observation is an artefact of inaccurate hyperbolic models on such
small data — on average, below 20 nodes — rather than a hint on a
special pattern where the smallest of the analysed HealthBoards
communities have an actual tendency to grow larger cores as their
sizes increase.

C.8 Time Evolution of All Communities

We display the time evolution of the communities of Reddit in
Figures C.8 to C.13, of StackExchange in Figure C.14, and of Health-
Boards in Figure C.15.

Figures C.16 and C.17 show the time evolution for the HealthBoards
communities when using the accumulative and sliding window
time aggregation approaches, respectively. As for the number of
individual communities, we display only the larger ones with
sufficient size in these collages and encourage the interested reader
to zoom in using the electronic version of this document.
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Figure C.8: Time evolution graphs of all Reddit communities starting with A, B, C, or a non-letter. In every diagram, the
x-axis indicates time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.9: Time evolution graphs of all Reddit communities starting with letters D-G. In every diagram, the x-axis indicates
time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.10: Time evolution graphs of all Reddit communities starting with letters H-L. In every diagram, the x-axis indicates
time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.12: Time evolution graphs of all Reddit communities starting with letters Q-S. In every diagram, the x-axis indicates
time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.13: Time evolution graphs of all Reddit communities starting with letters T-Z. In every diagram, the x-axis indicates
time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.14: Time evolution graphs of all StackExchange communities. In every diagram, the x-axis indicates time, the left
y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.15: Time evolution graphs of the HealthBoards communities with monthly time aggregation. In every diagram, the
x-axis indicates time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective community.
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Figure C.16: Time evolution graphs of all HealthBoards communities with accumulative time aggregation. In every diagram,
the x-axis indicates time, the left y-axis the model parameters H and y, and the right y-axis the size of the respective
community.
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Figure C.17: Time evolution graphs of all HealthBoards communities with sliding window time aggregation. In every
diagram, the x-axis indicates time, the left y-axis the model parameters H and y, and the right y-axis the size of the

respective community.
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