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Abstract

Several electromagnetic problems for verification purposes in computational elec-

tromagnetics are introduced. Details about the formulation of a generalized eigen-

value problem for non-lossy and lossy materials are provided to obtain a fast and

ready-to-use way of verification. Codes written using the symbolic toolbox from

MATLAB are detailed to obtain an arbitrary accuracy for the proposed problems.

Finally, numerical results in a finite element method code are presented together

with the analytical values to show the accuracy of the code proposed.
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1 | INTRODUCTION

In the last years, the capabilities of computational
resources have increased almost exponentially. The field
of computational electromagnetics (CEM) have also
benefited from this trend, solving large problems which
were unreachable a few years before.1,2

It is strongly advised that a testbench for automatic
testing is available with the development of new code
features, for example, Reference 3. For example, in the
context of the finite element method (FEM), small
changes in the assembly strategy,4,5 in the integration
rules,6 in the use of universal matrices to perform the
assembly,7 or in the use of different shapes (tetrahedra,8

triangular prisms,9 hexahedra,10 or even pyramids,11)
may introduce small numerical errors which might not
be detected in real-life applications, where the requested
accuracy is not so high. This testbench can also be used
for using new finite element suites in electromag-
netics.12,13 These suites have a wide range of applica-
tions and running a testbench to assess their
performance is advisable. Finally, new approaches such
as serendipity space of functions,14 or isogeometric basis

functions,15 could also benefit from a standard
testbench.

The intensive research in FEM for electromagnetics
in the 90s provided with a number of cavity problems
that can be used for testing an electromagnetic code.16,17

These problems may be used for different methods as
well,18,19 and are a good starting point to test, for exam-
ple, a FEM code since only stiffness and mass matrices
need to be constructed. The solution may be obtained
with the application of an eigenvalue solver, for example,
Reference 20. However, when these problems were for-
mulated, high accuracy was not necessary due to compu-
tational limitations. Thus, it is hard to find expressions
and analytical values ready to use for the FEM practi-
tioner, which is critical when using high order basis func-
tions where high accuracies are obtained with a relatively
small number of unknowns: now, accuracies close to the
machine precision are achievable with good code prac-
tices in a personal laptop. To obtain arbitrary accuracy
for the analytic solution, many commercial symbolic
mathematical tools are readily available.21,22 Here, the
symbolic toolbox of MATLAB,23 based on MuPAD,24

is used.
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In this communication, a set of eigenvalue problems
which can be used to test electromagnetic codes is pro-
posed. Specifically, four tests are suggested: first, a rectan-
gular cavity which is the most straightforward test for
stiffness and mass matrices; second, a half-filled cavity
which introduces a problem with two different materials;
third, a lossy half-filled cavity which tests a basic formu-
lation with losses; and finally, a circular cavity which
introduces curved elements in the equation. These tests
are not randomly chosen: the first test is one of the most
used in the literature due to the easiness of its formula-
tion. The second one, which requires a transcendental
equation to be solved, tests the use of different materials
in the equation. The third test shows one possible way to
introduce losses in electromagnetic simulations, and it is
easy to use since the same transcendental equation (but
with losses) needs to be solved. Finally, the fourth prob-
lem is a circular cavity which is easy to formulate but
Bessel functions might introduce some problems with
arbitrary resolution.25 Note that these eigenvalue prob-
lems have already been tested in the community, but as
far as the author knows, the solution with arbitrary accu-
racy has not been made public. As already commented,
to use analytical results with a single-precision accuracy
was enough some years ago; however, with the use of
higher-order basis functions being more and more fre-
quent due to the new computational capabilities (eg, Ref-
erences 8 and 11), more accurate results are mandatory.
Thus, the goal of this paper is to save time for CEM prac-
titioners with the availability of these results.

The paper is structured as follows: in Section 2, a possi-
ble formulation to solve these cavities is detailed; in Sec-
tion 3, the derivation of the analytical results and codes to
obtain them with arbitrary accuracy are provided; in Sec-
tion 4, the analytical values for the dominant modes and
numerical results using a FEM code are presented; finally,
in Section 5, conclusions from this paper are drawn.

2 | FORMULATION

A double curl-wave equation may be used to determine
the boundary value problem in a given domain Ω
through

=× μ−1
r =×Eð Þ−k20εrE= 0 ð1Þ

where μr and εr are the magnetic permeability and elec-
tric permittivity of the material respectively, E is the elec-
tric field and k0 stands for the wavenumber. To close the
domain, a Dirichlet boundary condition is set on the
walls of the cavity ∂Ω with

n̂×E= 0 on ∂Ω: ð2Þ

If a FEM problem is used to solve this problem, after
the application of the Galerkin method the following var-
iational formulation may be obtained,

=×w,μ−1
r =×E

� �
Ω−k20 w,εrEð ÞΩ = 0, ð3Þ

where w is the test function belonging to the same space
as the electric field, that is,26

H curl,Ωð Þ≔ w� L2 Ωð Þ½ �3j=×w� L2 Ωð Þ½ �3� �
, ð4Þ

with L2(Ω) as the space of square-integrable functions
over Ω. Inner products (w, x) are defined on a domain
Ω as

w,xð ÞΩ =
ð
Ω
w�x dΩ ð5Þ

Note that an equivalent formulation with the mag-
netic field H may also be used.

The discretization of this problem leads to the follow-
ing matrix equation,

K−k20M
� �

v=0, ð6Þ

which corresponds to a generalized eigenvalue problem
with k20 and v as eigenvalues and eigenvectors, respec-
tively. The matrices K and M are the so-called stiffness
and mass matrices (for FEM practitioners), which can be
defined elementwise with

Mij = w j,εrw j
� �

, ð7Þ

K ij = =×wi,μ−1
r =×w j

� �
: ð8Þ

This formulation is valid to get the cutoff frequency of
the different modes for the rectangular, half-filled, and
circular cavities. However, for the lossy cavity, an addi-
tional step into the formulation might be introduced (see,
eg, Reference 19). Now, a modified electric permittivity ε0r
is used,

ε0r = εr− j
ση0
k0

, ð9Þ

where η0 is the characteristic impedance of vacuum, σ is
the conductivity of the material, and j is the imaginary
unit. From Equation (10), and with v = jk0,
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K + ν2 + ν
ση0
εr

� �
M

� �
v= 0, ð10Þ

and unfolding v into v1 and v2 = v1,

K 0

0 I

� �
v1
v2

� �
= ν

−
ση0
εr

M −M

I 0

 !
v1
v2

� �
ð11Þ

follows, where I corresponds to the identity matrix.

3 | ANALYTICAL RESULTS WITH
ARBITRARY ACCURACY

Here, the analytical results are shown first and, then, the
code in MATLAB is provided.

3.1 | Rectangular cavity

This cavity is a good starting point since it is the most
straightforward problem that can be solved. The analyti-
cal wavenumber may be obtained by,27

k20,anal =
mπ

a

� 	2
+

nπ
b

� 	2
+

pπ
c

� 	2
,8 p>0,m,n≥0

p≥0,m,n>0



ð12Þ

where the first line of constraints refer to the transversal
electric (TE) modes, and the second line of constraints
apply to the transversal magnetic (TM) modes. Geometrical
parameters a, b and c are shown in Figure 1. To get results
with arbitrary accuracy, MATLAB code shown in Figure 2
is used. Note that the use of the symbolic package is manda-
tory to use the functions vpa and digits. Also, in order not to
affect other parts of the code which execute that function,
the variable digitsOld is used to restore the previous resolu-
tion. The output variable indices allow identifying the mode
of a given k0, showing in the fourth index if it corresponds
to a TE mode (−1) or a TM mode (−2).

3.2 | Half-filled cavity

To obtain the analytical result, the analysis for partially
filled waveguides from Reference 27 is followed. Geomet-
rical parameters and layout are shown in Figure 1. The
potential functions for the TEz components are, for the
dielectric region

FIGURE 1 The four

cavities solved in Section 3: A,

Rectangular cavity; B, Half-filled

cavity; C, Lossy cavity; D,

Circular cavity
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Fd
z x,y,0≥z≥hð Þ=Ad

mncos βxdxð Þsin βzdzð Þ×
Cd
3cos βydy

� 	
+Dd

3sin βydy
� 	h i

,
ð13Þ

while for the remaining part of the cavity,

F0
z x,y,h≥z≥að Þ=A0

mncos βx0xð Þsin βz0z
� �

×

C0
3cos βy0y

� �
+D0

3sin βy0y
� �� �

,
ð14Þ

with

βxd = βx0 =
mπ

c
,8m≥0

β2d = β2xd + β2yd + β2zd =ω2μdεd,

β20 = β2x0 + β2y0 + β2z0 =ω2μ0ε0,

ð15Þ

where ω is the angular frequency, βi is the propagation
constant in the i-th component and εd, μd are the electric
permittivity and magnetic permeability of the dielectric
material respectively. Additional boundary conditions
must be imposed,

Ex
d 0≥ x≥ c,y=0,0≥ z≥hð Þ = 0,

Ex
d 0≥ x≥ c,y= b,0≥ z≥hð Þ = 0,

Ex
0 0≥ x≥ c,y=0,h≥ z≥að Þ = 0,

Ex
0 0≥ x≥ c,y= b,h≥ z≥að Þ = 0:

ð16Þ

Following a similar procedure as with rectangular
cavities, it may be obtained that

FIGURE 2 Code used in

Section 3.1

4 of 10 AMOR-MARTIN



D0
3 =Dd

3

βyd = βy0 =
nπ
b
,8n≥ 0

ð17Þ

Thus, as with partially filled waveguides, a transcen-
dental equation have to be solved which is

βz0
μ0

cot βz0 b−hð Þ� �
+
βzd
μd

cot βzdh
� �

=0, ð18Þ

given that βz0 = βzd = k0, anal. Using Equation (15) and
considering that μd = μ0,

ϕ 1ð Þcot ϕ 1ð Þ c−hð Þð Þ= −ϕ εrð Þcot ϕ εrð Þhð Þ, ð19Þ

follows, with

φ εrð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εrk

2
0,anal−

mπ

a

� 	2
−

nπ
b

� 	2
:

r
ð20Þ

Regarding TMz modes, a similar analysis leads to

βz0
ε0

tan βz0 b−hð Þ� �
+
βzd
εd

tan βzdh½ �=0: ð21Þ

For TE modes, the couple m = n = 0 is forbidden,
and for TM modes, m ≥ 1, n ≥ 1.

The MATLAB code shown in Figure 3 is used to
obtain the results with arbitrary accuracy.

Note that there are two modes of operation. First, a
suitable guess needs to be provided due to the infinity
number of solutions. Invoking

getKcFromHalfFilledCavity a,b,c,h,epr,1,0, true, 300, 900½ �ð Þ

returns the figure shown in Figure 4, where it may be
seen that exist three solutions in the range of k0 = [300,
900]m−1: around k0 = 300m−1, k0 = 600m−1 and
k0 = 800m−1. These modes correspond, respectively, to
TEz

101, TE
z
102, and TEz

103. With that, now

getKcFromHalfFilledCavity a,b,c,h,epr,1,0, true,300,32ð Þ

may be called to obtain k0 for TEz
101 with the desired

accuracy (in the example, 32 significant digits).

3.3 | Lossy cavity

Now, the material used in Section 3.2 is changed for a
lossy material with a finite conductivity σ. The analyti-
cal results obtained in Section 3.2 hold if ε0r from (9)
instead of εr is used. This leads to the code shown in
Figure 5.

FIGURE 3 Code used in

Section 3.2
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A similar procedure may be used to get estimates and
obtain the full accuracy solutions.

3.4 | Circular cavity

The analytical values for the wavenumber in TE modes
are,27

k20,anal =
χ0mn

ρ

� �2

+
pπ
h

� 	2
,8m≥ 0,n,p>0 ð22Þ

where χ0mn represents the n-th zero of the derivative of
the Bessel function Jm of the first kind of order m. For
TM modes,

k20,anal =
χmn

ρ

� �2

+
pπ
h

� 	2
,8m,p≥0,n>0 ð23Þ

where χmn stands for the nth zero of the Bessel function Jm of
the first kind of orderm. Similarly to Section 3.1, a code as in
Figure 6 may be written. The most intrincated aspect to take
into account to obtain an arbitrary accuracy for this cavity is
in the computation of χmn and χ0mn . Indeed, in Reference
25, a detailed review of all the inaccuracies that may
occur in this computation with a number of different mathe-
matical libraries is shown. However, with reasonable
guesses, theMATLAB code written in Figure 7 has proven to
be accurate. This code uses only standard libraries from the
symbolic package of MATLAB. The function getGuess
returns the solution with an accuracy of two digits widely
present in the literature (see, eg, Reference 27).

4 | NUMERICAL RESULTS

To justify the need for high accuracy solutions, a FEM
code has been used following the formulation presentedFIGURE 4 Solution for the range k0 = [300, 900] for Equation (19)

FIGURE 5 Code used in

Section 3.3
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FIGURE 6 Code used in

Section 3.4

FIGURE 7 Code used in

Figure 6
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in Section 2. Also, for convenience, the code has been
uploaded in Reference 28. The discretization is intro-
duced through triangular prisms due to the characteris-
tics of all the cavities presented in this communication
(which can be meshed through structured meshes). The
mesher used is gmsh,29 since it provides high-order
curved meshes for simplices. The procedure followed in
this paper is, first, generate a 2D mesh with triangles
and, then, extrude that mesh in the structured direction.
The solver used to get the solution from the system of
equations is a direct LU solver in order not to have any
error due to the use of iterative solvers. Also, the integra-
tion rules used are enough to get accurate to machine
precision (in this case, double precision) results. The
number of layers is chosen to have elements close to reg-
ular prisms. Basis functions for p = 4 from Reference 11
have been used, so results close to double precision are
obtained. The eigenvalue sparse solver is the MATLAB
implementation of ARPACK.20

For the rectangular cavity, the analytical results for
the first four resonant modes with a resolution of 16 sig-
nificant digits are included in Table 1 given a = 0.01 m,
b = 0.0075 m, and c = 0.005 m. For the FEM solution,
356 876 unknowns for 3296 elements with an average
edge length of 0.65 mm were necessary. It can be seen
the high accuracy provided by the FEM code, which
agrees with the analytical results.

The same results are shown in Table 2 for the half-
filled cavity with geometrical parameters of a = 0.01 m,

b = 0.001 m, c = 0.01 m, h = 0.005 m and εr = 2. Regard-
ing the FEM simulation, 240 028 unknowns for 2100 ele-
ments with an average edge length of 0.48 mm
were used.

With respect to the lossy cavity, a = 0.02286 m,
b = 0.02286 m, c = 0.01016 m, h = 0.01143 m, εr = 2 and
σ = 1S/m have been used. The analytical results and the
FEM results are shown in Table 3, showing a good agree-
ment. For the FEM simulation, 688 elements with an
average length of 5.65 mm have been used, obtaining
154 344 unknowns.

Finally, a circular cavity with ρ = 1 m and h = 0.5 m
has been simulated, showing in Table 4 the analytical
values and the simulation results obtained from the FEM
code. For this, a fourth-order geometric mesh has been
generated with 516 elements, with an average length of
0.19 m, leading to a problem with 58 172 unknowns.

5 | CONCLUSIONS

In this communication, four different cavity problems
ready to use as a testbench in the CEM community have
been proposed. Details about the approach used to solve
the problem and the formulation used for a FEM code
have been presented. Also, mathematical codes based
on a symbolic toolbox have been included, providing

TABLE 1 Analytical and FEM results for Section 3.1

Mode k0, anal (m
−1) k0, FEM (m−1)

TM110 523.5987755982989 523.5987755954994

TM101 702.4814731040726 702.4814731055401

TM011 755.1448932759318 755.1448932818443

TM210 755.1448932759318 755.1448933141208

Abbreviations: FEM, finite element method; TM, transversal mag-
netic mode.

TABLE 2 Analytical and FEM results for Section 3.2

Mode k0, anal (m
−1) k0, FEM (m−1)

TEz101 353.7837746270816 353.7837746271084

TEz201 544.5048974571262 544.5048974588835

TEz102 599.7987417164069 599.7987417192613

TEz301 750.3144561169121 750.3144561537357

Abbreviations: FEM, finite element method; TE, transversal elec-
tric mode.

TABLE 3 Analytical and FEM results for Section 3.3

Mode k0, anal (m
−1) k0, FEM (m−1)

TEz101 137.8767675996847+
80.99383192059738i

137.8767676507687+
80.9938318794768i

TEz201 225.1186934508449+
86.94553938560484i

225.1186946175216+
86.9455389264532i

TEz011 247.8733488761241+
88.02137628504226i

247.8733494478111+
88.0213763074423i

TEz111 267.3250562043701+
88.79947416219282i

267.3250567462096+
88.7994741360851i

Abbreviations: FEM, finite element method; TE, transversal elec-
tric mode.

TABLE 4 Analytical and FEM results for Section 3.4

Mode k0, anal (m
−1) k0, FEM (m−1)

TEz101 2.404825557695773 2.404825558023451

TEz201 3.831705970207512 3.831705986521815

TEz102 5.135622301840683 5.135622426682891

TEz301 5.520078110286311 5.520078419608677

Abbreviations: FEM, finite element method; TE, transversal elec-
tric mode.
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arbitrary accuracy useful for high accuracy codes (such
as high order FEM). Finally, different examples have
been given and the accuracy of the results has been
shown with a FEM code with fourth-order basis
functions.
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