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Abstract 

The neuron-specific kinesin, KIF1A, is involved in the transport of cargos critical for 

neuronal function such as synaptic vesicle precursors and dense-core vesicles. Notably, 

mutations in KIF1A are implicated in the pathogenesis of neurological disorders such as 

hereditary spastic paraplegia. Therapies that specifically target KIF1A do not currently 

exist. I developed a high-throughput, phenotypic screen for small molecule modulators of 

KIF1A. I used two-color fluorescent imaging to identify a cell-based, phenotypic assay 

that allows for characterization of the inactive, autoinhibited form of KIF1A and the active 

form of KIF1A. When expressed in COS-7 and SK-N-SH cells, wild-type KIF1A-GFP is 

diffusely distributed and does not co-localize with the microtubule marker EB3-mKate2. 

The hyperactive mutant V8M KIF1A-GFP does co-localize with microtubules and 

distributes peripherally. These findings support the feasibility of a functional assay to 

distinguish between the active and inactive forms of KIF1A in a high-throughput 

screening format.  

Keywords:  KIF1A; Neuronal Transport; Neurodegenerative Disorders; Assay 

Development; High-throughput screen; Drug discovery 
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Chapter 1. Introduction 

Portions of the following chapter have been published in Frontiers in Cellular 

Neuroscience under the following reference: Gabrych et al. (2019) Going Too Far Is the 

Same as Falling Short†: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. 

Front Cell Neurosci. 2019 Sep 26;13:419. doi: 10.3389/fncel.2019.00419. Copyright © 

2019 Gabrych, Lau, Niwa and Silverman. Aforementioned material was not modified. 

This is an open-access article distributed under the terms of the Creative Commons 

Attribution License (CC BY). The use, distribution or reproduction in other forums is 

permitted, provided the original author(s) and the copyright owner(s) are credited and 

that the original publication in this journal is cited, in accordance with accepted academic 

practice. No use, distribution or reproduction is permitted which does not comply with 

these terms. https://www.frontiersin.org/legal/copyright-statement.  

Neurons are highly polarized cells comprised of morphologically, biochemically, 

and functionally distinct extensions of the cell body: the axon and dendrites. Establishing 

and maintaining these unique domains depends on the bidirectional transport of cargos 

within these microtubule-based structures. Active transport utilizes motor proteins, 

namely the kinesin superfamily (KIFs) for anterograde transport, and cytoplasmic dynein 

for retrograde transport. When any aspect of this process is dysregulated the resulting 

“transportopathy” contributes to neurological disorders, such as Huntington’s, 

Alzheimer’s, and Parkinson’s disease (Millecamps & Julien, 2013). Hereditary spastic 

paraplegias (HSPs) are also a family of such transport-related diseases with over 80 

spastic gait genes (SPG), specifically characterized by lower extremity spasticity. HSPs 

may present in both pure and complicated forms where the former is primarily limited to 

progressive lower-extremity spastic weakness and the latter also includes symptoms 

such as ataxias and cognitive impairments (Blackstone, 2018). Inheritance patterns can 

be autosomal dominant, autosomal recessive, X-linked, or of mitochondrial (maternal) 

inheritance (Hedera, 2018). Dominant de novo mutations have also been described 

(Hedera, 2018). Multiple genes in the trafficking pathway related to microtubule function 

and organelle biogenesis are representative disease loci, such as Spastin (SPG4) and 

adaptor protein-4 (AP-4; SPG47), respectively (Hazan et al., 1999; Marras et al., 2016). 

Notably, kinesins are also causal in HSP, specifically mutations in Kinesin-I/KIF5A 
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(SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58; 

Blackstone, 2018). 

HSP-related kinesin mutations have primarily been documented by clinical 

symptoms and gross pathology combined with medical imaging such as MRI (Lee et al., 

2015; Roda et al., 2017). Furthermore, many thorough studies have previously detailed 

the inheritance patterns and gene mutations in KIF5 (Liu et al., 2014) and kinesin-3 

family members (Oteyza et al., 2014; Lee et al., 2015). The structure and function of 

these kinesins have also been reviewed at length by Hirokawa et al., 2009, and Siddiqui 

& Straube, 2017, in addition to how HSP mutations impair motor function (Ebbing et al., 

2008; Kawaguchi, 2013; Oteyza et al., 2014; Lee et al., 2015; Niwa et al., 2016; Cheon 

et al., 2017). These mutations lead to the loss of motor motility or the inability to pause at 

sites of capture such as at synapses. Unfortunately, due to the homology of the affected 

domains, motor domain-specific therapeutics are difficult to develop. Another avenue 

exists to understand the downstream effects of motor impairment by proxy of the motors’ 

cargo function. No histopathological and little cell biological data assessing perturbations 

in cargo localization allowing one to infer how mutations in kinesin-3 contribute to HSPs 

exist. As such, discovery and development of targeted therapeutics and tool compounds 

is difficult, and to date no therapeutics that target transport kinesins exist.  

High-throughput screening provides a platform for large-scale assaying of novel 

and pre-existing compounds on known pathological phenomena using robotics, platform-

specific software, and optimized and validated assays. However, for reliable data 

regarding effects of the compounds and biologics on pathological events present in 

transport motor-based neurological disorders, robust functional assays must be 

developed. Fortunately, functional assays exist that probe a variety of domains and their 

actions for transport-based kinesins including ATPase activity, microtubule binding, and 

translocation along microtubules. As such, high-throughput screening may serve as a 

viable platform for discovering novel compounds and biologics that may alleviate the 

deleterious physiological phenomena seen in transport-based neurological disorders. 

In this chapter, I will begin by providing a comprehensive overview of neuronal 

transport including the components critical for its proper function and how regulation via 

external factors affect transport. I follow this portion by talking specifically about the 

neuronal-enriched kinesin-3 family member, KIF1A, which has a variety of critical roles 
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in proper neuronal development, maintenance, and viability. KIF1A’s structure, function 

and regulation will be discussed along with its role in KIF1A-associated neurological 

disorders (KAND), specifically HSP. Furthermore, I will discuss known functional assays 

that probe a variety of critical parameters in the functioning of transport motors and 

overview the current literature regarding high-throughput screening and kinesin motors. 

Lastly, I will introduce an outline of my research objectives which revolved around the 

design and validation of a high-throughput screen for small molecule modulators of the 

neuron-enriched kinesin-3 family member, KIF1A.  

 

1.1. Overview of Neuronal Transport 

Microtubule-based intracellular transport is required by all eukaryotic cells for 

proper spatiotemporal delivery of organelles, mRNA and soluble proteins. Intracellular 

transport is particularly critical for neurons due to their extreme morphological 

dimensions, polarity, and need for efficient communication between the cell body and 

distal processes (Bentley & Banker, 2016). Cytosolic and cytoskeletal proteins, such as 

neurofilaments, tubulin, and tau are moved from the cell body by slow transport, ranging 

from 0.2 to 2.5 mm per day (Roy, 2014). Slow transport is an essential aspect to 

neuronal function, and defects in this process contribute to an array of pathologies 

including Charcot-Marie-Tooth, amyotrophic lateral sclerosis, and Parkinson’s disease 

(Yuan et al., 2017). This form of transport is mechanistically distinct utilizing primarily 

kinesin-1 family members and not kinesin-3 (Hirokawa & Tanaka, 2015). By contrast, 

membranous organelles are moved to the axon terminals by fast transport, which can 

exceed 400 mm per day (Hirokawa & Tanaka, 2015). Because the axon is largely devoid 

of biosynthetic machinery, it relies on anterograde axonal transport to supply axon 

terminals with cargos such as synaptic vesicle precursors (SVP), dense core vesicles 

(DCV), and other Golgi-derived proteins and lipids. Retrograde transport from distal 

portions of the neuron is of equal importance to prevent accumulation of toxic 

aggregates by clearing recycled or misfolded proteins (Hinckelman et al., 2013; 

Millecamps and Julien, 2013), as well as supporting synapse-cell body communication 

by signaling endosomes ferrying trophic signals (Olenick et al., 2019). This bidirectional 

intracellular transport is driven by kinesin and cytoplasmic dynein motor proteins that use 
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ATP hydrolysis to provide the energy to transport cargos anterogradely towards the 

synapse or retrogradely towards the cell body, respectively (Figure 1.1).  

 

Figure 1.1. Schematic of bidirectional, intraneuronal transport. 
The bidirectional transport of cellular cargos via motor proteins is important for the development, 
maintenance, and viability of neurons. The kinesins drive anterograde transport of cargos such as 
SVPs and DCVs from the soma to the axon, while dynein drives retrograde transport of cargos 
such as mitochondria from the axon and the dendrites towards the soma.  

 

The kinesins are a superfamily of microtubule-based motors consisting of 15 

families, totalling 45 KIF-encoding genes (Figure 1.2A; Hirokawa et al., 2009). The 

domain structure remains relatively consistent in each kinesin, generally consisting of a 

motor domain and a coiled-coil domain (Endow et al., 2010). Gene-specific domains are 

present such as the pleckstrin homology domains of the kinesin-3 motors KIF1A and 

KIF1Bβ, the PX domain of KIF16B, or the CAP-Glycine domain of KIF13B (Steinmetz 

and Akhamanova., 2008; Xue et al., 2010). Furthermore, the kinesins can be subdivided 

into three categories based on the terminus at which their motor domain is located and 

thus their directionality of transport along microtubules (Figure 1.2B; Hirokawa et al., 

2009). The N-kinesins, which include my protein of interest, KIF1A, have their motor 

domain located at their amino terminus and thus translocate towards the plus-end of 

microtubules. Conversely, C-kinesins, such as the mitotic motor KIFC3, contain their 

motor domain at their carboxy terminus and move towards the minus end of 

microtubules. Interestingly, the third category of kinesin, the M-kinesins such as KIF2A, 

contain their motor domain neither at the amino nor carboxy terminus and function in the 

depolymerization of microtubules.  
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Figure 1.2. The kinesin superfamily of proteins. 
A) A phylogenetic tree of the 15 kinesin families including all 45 KIF-encoding genes. B) A 
schematic representation of the N-, M-, and C-kinesins and their respective domains. N-kinesins 
are defined by their motor domain at the amino-terminus. The M-kinesin are defined by their 
motor domain at neither terminus. The C-kinesins are defined by their motor domain at the 
carboxy-terminus. (Hirokawa et al., 2009). 

Although motor domains and certain coiled-coil domains remain highly conserved 

across kinesin families, the number of coiled-coil domains and kinesin-specific domains, 

as mentioned previously, differ giving rise to differences in motor properties and 

specificity of cargos. In terms of motor properties, ATPase efficiency (as defined as step 

per second), motor regulation via activation, and regulation of motor activity by kinases, 

GTPases, and phosphatases differ between kinesins, even those belonging to the same 

family (Hirokawa et al., 2009; Verhey and Hammond., 2009; Siddiqui and Straube., 
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2017; Gan et al., 2020). The ATPase domain, for example, is highly conserved between 

all kinesins with little variation in sequence, however, ATPase step-rate, a measure of 

how many steps a kinesin can take per cycle of hydrolysis, between kinesins can vary 

(Song et al., 2001; Bergnes et al., 2005). Furthermore, even though KIF1C and KIF1A 

belong to the same family and are both autoinhibited in vitro and in vivo, the distinct 

structure and number of their coiled-coil domains results in differences in how 

autoinhibition and release of that autoinhibition occurs (Soppina et al., 2014; Siddiqui et 

al., 2019). Notably, even with differing domains, there is overlap between functionality 

and specificity of cargo binding. For example, the neuron-enriched KIF1A, KIF1C, and 

the conventional kinesin-1 are able to transport dense-core vesicle cargo which contains 

molecules such as brain-derived neurotrophic factor (BDNF) and neuropeptide-Y (NPY) 

critical for neuronal function, previously thought to be a sole cargo of KIF1A (Gauthier et 

al., 2004; Lim et al., 2017; Stuchi et al., 2018). This overlap in function has interesting 

implications in neuronal disorders where cargo transport is interrupted, such as in HSP, 

as the redundancy of this cargo transport may reduce the severity of effects that may 

have been caused by complete ablation of proper delivery of the cargo. Cargo overlap is 

not limited to just neuron-specific factors but may also include critical cellular organelles 

such as mitochondria and lysosomes (Figure 1.3; Pilling et al., 2006; Farias et al., 2017). 

Furthermore, membranes and lipid droplets are transported by kinesins (Pollock et al., 

1999; Shubeita et al., 2008). It is important to note that kinesins are not limited to 

transport and include functions in microtubule depolymerization and various mitotic 

events which shows just how critical this family of motor proteins is to proper cellular 

functioning (Hirokawa et al., 2009). Therefore, it is no surprise that dysfunction of 

kinesins are implicated and causal in a variety of disorders such as ciliopathies, cancer, 

and neurological disorders such as Huntington’s, Alzheimer’s and HSP. 

Dynein on the other hand, is the retrograde transport counterpart to the transport 

kinesins. Dynein is composed of two heavy chains, two light chains, two intermediate 

light chains, and two light intermediate chains. Importantly, dynein’s mobility on 

microtubule tracks is heavily regulated by dynactin, a multi-subunit protein complex 

(Reck-Peterson et al., 2018). The dynein-dynactin complex traffics a variety of cargos 

including organelles such as mitochondria and lysosomes, macromolecules, and various 

vesicular cargos (Figure 1.3; Reck-Peterson et al., 2018). Interestingly, dynein and 

kinesins work in a coordinated fashion to orchestrate the movement of a variety of 
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vesicular and non-vesicular cargos (Gennerich and Vale, 2009). KIF1A, for example, is 

regulated by dynein through the p150 subunit of the dynactin complex (Chen et al., 

2019). Furthermore, bidirectional transport BDNF, a critical neuronal cargo trafficked by 

KIF1A, KIF1C and kinesin-1, is disrupted when dynactin’s interaction with 

carboxypeptidase-E, a possible cargo adaptor for KIF1A, is altered (Park et al., 2008). 

Moreover, bidirectional transport by KIF1A and the dynein/dynactin complex is integral in 

the circulation of DCV-based cargos in Drosophila needed for proper synaptic 

distribution of DCV contents (Moughamian and Holzbaur., 2012; Wong et al., 2012). To 

underscore the importance of this motor complex in neurons, mutations in the DYNC1H1 

gene encoding dynein heavy chain are causal in motor neuropathies such as Charcot-

Marie-Tooth (CMT) disease and dominant spinal muscular atrophy with lower extremity 

predominance (SMA-LED) that show closely related symptomology to KAND disorders 

(Eschbach et al., 2013; Hoang et al., 2017).  

Notably, axonal and dendritic transport tends to be conflated in the literature. 

Although mechanistically related, there are key features that distinguish the axon from 

dendrites that affect transport. For example, dendrites contain microtubules of mixed 

polarity, whereas the axon contain microtubules of plus-end out orientation (Figure 1.3). 

Additionally, post-translational modifications on tubulin monomers have region-specific 

effects on kinesins. Several recent reviews delineate distinguishing features between 

axonal and dendritic transport (Maeder et al., 2014; Nirschl et al., 2017; Kelliher et al., 

2019). 

Although seemingly straightforward, the regulation of transport is extremely 

complex. For example, the Golgi apparatus is the primary site responsible for the 

maturation of membrane-bound and secreted proteins, and their subsequent 

segregation into specific organelles based on sorting signals (Bentley & Banker, 2016). 

Once transport vesicles are formed, they bind to motors typically utilizing a motor-cargo 

adaptor that can include small GTPases, scaffolding proteins, or the cargo itself (Figure 

1.3). This step of motor-cargo recruitment is complex as there are dozens of post-Golgi 

cargos and as many transport motors. Although motors are capable of “multi-tasking”, in 

that one motor is capable of binding several different cargos, specific motors bind only a 

subset of cargos (Maday et al., 2014). Furthermore, many neuronal cargos eventually 

display a polarized distribution, for example, presynaptic proteins are delivered to the 

axon, and postsynaptic receptors, such as glutamate receptors are trafficked to 
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dendrites (Figure 1.3; Bentley & Banker, 2016). Thus, neurons tightly regulate this 

delivery either by indirect transport mechanisms where cargo may travel into both the 

axon and dendrite, yet fuses and is retained in the correct membrane, which is typical of 

the axon. By contrast, dendritic proteins are dependent upon directed transport where 

motors either recognize dendritic microtubules or are excluded from the axon by a filter 

located in the axonal initial segment (Gumy & Hoogenraad, 2018). Finally, neuronal 

cargos may be generated at other locations within the cell. For example, 

autophagosomes are formed in the distal axon and undergo a series of fluctuating 

transport dynamics from bidirectional in the distal axon towards a bias of retrograde, 

dynein-based transport towards the cell body (Stavoe & Holzbaur. 2019). Mitochondria, 

which are distributed throughout the neuron undergoing fusion, fission, and remodeling, 

also travel bidirectionally in both axons and dendrites (Figure 1.3; Saxton & Hollenbeck, 

2012). Taken together, HSP-related kinesin mutations, and those found in other disease 

states, will reduce the efficacy of active transport and perturb cargo delivery, ultimately 

leading to neuronal dysfunction. 
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Figure 1.3. Intracellular transport of cargos in neurons. 
A variety of motor proteins drive the transport of heterogeneous cargos intraneuronally. Kinesins, 
such as KIF1A and kinesin-1, drive anterograde transport of cargos including organelles, RNA 
granules, and SVPs. Cytoplasmic dynein drives retrograde transport of cargos such as AMPA 
and Glycine receptor containing vesicle populations. Differential distribution of cargos is driven 
and determined by different adaptors, motor proteins, and differential orientations of microtubule 
populations between axons and dendrites. (Hirokawa et al., 2010). 
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1.2. KIF1A Structure and Function 

KIF1A carries a number of critical cargos, including synaptic vesicle precursors, 

dense core vesicles, and BACE-containing vesicles all of which will be explored in 

greater depth in the following section (Figure 1.4A). KIF1A is generally similar in overall 

domain structure to the well-studied conventional kinesin (KIF5), but with important 

distinctions. KIF1A, a neuron-enriched motor, belongs to the Walker-type ATPase family: 

ATPase’s defined by a conserved phosphate-binding loop (P-loop) containing Walker A 

and Walker B motifs (Hirokawa et al., 2009). The entire kinesin-3 family motor domain 

sequence is highly conserved with KIF1A being no exception. The motor domain (MD) is 

composed of both a catalytic core in which the N-terminal half acts as the ATP catalytic 

center with the P-loop forming the nucleotide-binding pocket, while the C-terminal half 

acts as the MT-binding surface (Hirokawa et al., 2009). The MD is connected via a 

flexible neck linker (NL) to a neck coil domain (NC), which is followed by the coiled-coil 1 

(CC1), forkhead-associated (FHA), coiled-coil 2 (CC2) and coiled-coil 3 (CC3) domains, 

respectively. There is also a pleckstrin homology (PH) region which acts as a C-terminal 

lipid-binding domain (Figure 1.4A). Furthermore, KIF1A contains an insert of positively-

charged lysine residues in loop 12, an area between the NC and CC1 domain, known as 

the K-loop, which is also conserved across the kinesin-3 family (Hirokawa et al., 2009). 

This region allows for enhanced binding to the C-terminal region of tubulin known as the 

E-hook (glutamine rich). As a result, KIF1A undergoes super-processive movement 

making it especially efficient for long-range axonal transport (Soppina et al., 2014).  



11 

 

Figure 1.4. Cargoes, structure, and regulation of KIF1A. 
A) KIF1A is a homodimer that traffics a number of cargos (box; right) from the soma to distal 
portions of axon including synapses. Below, a schematic indicates the domains identified in 
KIF1A (Gabrych et al., 2019). B) Diagram of activation steps of KIF1A. KIF1A exists as a soluble, 
inactive monomer which upon cargo binding results in a dimerization and activation of the motor. 
(Gabrych et al., 2019). 

Regulation of KIF1A is complex and not fully understood. Competing models 

have posited that KIF1A is a motile monomer (Okada et al., 1995), an autoinhibited 

dimer (Hammond et al., 2009; S. Niwa, Pers. Comm.), or monomers that dimerize on the 

cargo membrane (Tomoshige et al., 2002; Soppina et al., 2014). The current model 

demonstrates activation of KIF1A is dependent on a monomer to dimer transition at the 

cargo surface (Figure 1.4B; Soppina & Verhey., 2014). This process involves relief of 

autoinhibition, a regulatory mechanism seen in other KIFs. The formation of the dimer at 

the cargo surface depends on an interaction between the NC and CC1 domains. To form 

a dimer, an intramolecular interaction between the NC and CC1 domains must be 

relieved (Figure 1.5A; Soppina & Verhey, 2014). In the case of synaptic vesicle 

precursors, relief of autoinhibition involves interactions with the GTPase ARL-8 and CC 

domains of UNC-104/KIF1A (Niwa et al., 2016). The dimer forms via an intermolecular 

reaction between the NC domains of the monomers and allows for motility. The catalytic 

core, a region containing several pathogenic mutations in KIF1A, is regulated by switch 
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II, a part of the C-terminal MT-binding surface (Hirokawa et al., 2009). This works in 

concert with the NL, with the complex acting as an actuator to produce mechanical work. 

Switch I, a segment between the P-loop and switch II, links, and therefore regulates, the 

switch II-NL complex via the nucleotide state of the binding pocket (Figure 1.5B; 

Hirokawa et al., 2009).  

 

Figure 1.A. KIF1A structure and regulation. 
A) A schematic representing the domains involved in the autoinhibitory regulation of KIF1A. The 
NC and CC1 interact to form an autoinhibited monomer. Upon binding of cargo autoinhibition is 
relieved and interactions between the NC and CC1 domains of monomers allow for formation of a 
processive dimer that can bind to microtubules and begin transport. (Soppina et al., 2014). B) A 
representative image KIF1A motor domain’s catalytic core. Switch II acts in concert with the neck 
linker (green and white rod) to produce mechanical work. Switch I links the P-loop and switch II 
regulating the Switch II-neck linker complex through the nucleotide state of the binding pocket 
(red and grey; Hirokawa et al., 2009). NC, neck-coil; CC,coil-coil; FHA, Forkhead association; PH, 
Pleckstrin homology.  

Cargo binding is an essential aspect to motor-driven transport and has been 

reviewed extensively (Karcher et al., 2002; Vale, 2003; Ross et al., 2008; Bentley & 

Banker, 2016; Hayashi et al., 2019). Knowledge on KIF1A cargo binding and how it 

relates to motor function is still not well characterized, but certain mechanisms have 

been elucidated. One of the first mechanisms identified for KIF1A cargo interactions 

entails the C-terminal PH domain binding to phosphatidylinositol-4,5-bisphosphate 

(PI(4,5)P2) on synaptic vesicles in C. elegans neurons (Klopfenstein et al., 2004). 

However, protein-protein interactions lend specificity to cargo recognition and regulation. 

For example, the GTPase Rab3a regulates the binding of synaptic vesicle precursors 

(SVP) to KIF1A in a DENN/ MADD dependent mechanism (Niwa et al., 2008). 

DENN/MADD acts as a Rab3-effector, allowing for transport of SVPs down the axon. A 
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shift in the nucleotide state of Rab3 releases SVPs at the synapse. For DCVs, a few 

mechanisms have been described that may account for their trafficking. One such 

mechanism involves carboxypeptidase E (CPE), a transmembrane protein needed for 

neuropeptide processing, where it also acts as a cargo adaptor (Park et al., 2008; Ji et 

al., 2017). The cytoplasmic tail of CPE binds the dynein activator dynactin. Dynactin also 

recruits KIF1A, thereby creating a mechanism to potentially regulate the bidirectional 

transport of DCVs. Another mechanism implicated liprin-α as a possible KIF1A adaptor 

(Shin et al., 2003), however recent findings indicate that liprin-α, in addition to TANC2, 

act to capture KIF1A at specific sites (Stucchi et al., 2018). Instead, the PH domain, in 

concert with calmodulin (CaM), dictates binding and movement of DCVs in response to 

increases in Ca2+ concentrations through direct binding to the KIF1A stalk domain 

(Stucchi et al., 2018). Taken together, mutations that affect any one of the various cargo-

binding and regulatory domains may lead to dysregulation of KIF1A-mediated cargo 

delivery.  

KIF1A ferries a diverse set of cargos from the neuronal soma to distal locations 

located within the axon (Figure 1.4A). The proteins that KIF1A transports are involved in 

a host of processes that are critical for neuronal development, maintenance, and 

viability. Such processes include synapse formation and maintenance, autophagy, glial 

support of myelination, APP processing, neurite outgrowth and pathfinding, ion channel 

regulation, and more. Dysregulation of this transport may lead to a host of neurological 

disorders and potential pathways have been discussed at length (Gabrych et al., 2019). 

Generally, KIF1A cargos can be classified into three groups based on how they are 

packaged and delivered; SVP-mediated cargo, DCV-mediated cargo, and 

unconventional cargos that are not known to be packaged in DCV or SVP vesicles.  

The first cargo identified for KIF1A was the synaptic vesicle precursors (SVP), a 

Golgi-derived organelle containing essential proteins required to build synapses and 

regulate synaptic vesicle release. KIF1A/UNC-104 misdelivery of SVPs alters the size 

and density of synapses in model organisms such as C. elegans and mice (Yonekawa et 

al., 1998; Niwa et al., 2016). SVPs are required in every neuron in the body, thus, KIF1A 

mutants may have broad effects on HSP patients. KIF1A traffics SVPs involved in 

various aspects of vesicle fusion and release, in particular, synaptotagmin-1 (syt-1), 

VAMP2, and synaptophysin (Okada et al, 1995; Yonekawa et al, 1998; Sgro et al, 2013). 

These proteins are expressed in all cells undergoing synaptic vesicle exocytosis, 
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therefore, any form of disruption may cause widespread synaptic dysfunction. Notably, 

when synaptophysin, an integral membrane protein localized to synaptic vesicles, is 

knocked out, mice closely mimic KAND disorders as epilepsy, hypotonia, and X-linked 

intellectual disability (Harper et al, 2017). The neurexins, which are single-pass 

transmembrane proteins acting as cell-adhesion molecules that are derived from three 

genes (Nrxn 1-3), are another set of KIF1A-trafficked cargos. They are mainly 

concentrated at presynaptic sites and broadly function in neurite outgrowth, 

synaptogenesis, and synaptic maturation (Dean et al, 2006; Gjorlund et al, 2012; 

Krueger et al, 2012; Gokce & Sudhof, 2013). Furthermore, mutations in neurexins are 

linked to several neurodevelopmental and psychiatric disorders such as autism, 

epilepsy, and mental retardation, mimicking what is seen in KAND (Kasem et al, 2018).  

The second cargo identified for KIF1A/UNC-104 in C.elegans was the dense-

core vesicle (DCV) (Zahn et al., 2004). This finding was subsequently confirmed in 

Drosophila, and rodent models (Barkus et al., 2008; Lo et al., 2011; Kondo et al., 2012). 

DCVs are Golgi-derived vesicles typified by the presence of granin family members, 

such as chromogranin A and B. DCVs contain a host of proteins necessary for proper 

neuronal development, function, and viability. Examples of cargos include neurotrophic 

peptides such as BDNF and NPY, both essential for a multitude of neuronal functions 

(Dieni et al., 2012; Russo, 2017). An additional cargo of note is pro-opiomelanocortin 

(POMC), a precursor polypeptide which can be cleaved into a host of physiological 

important peptides including a-MSH, ACTH, and endorphins (Cawley et al., 2016). 

Lastly, DCVs contain a host of other cargos including, proteases, protease inhibitors, 

and membrane proteins such as tissue plasminogen activator (tPA), neuroserpin, and 

vesicular monoamine transporter 2 (VMAT2), respectively (Nirenberg et al., 1995; 

Lochner et al., 1998; Ishigami et al., 2007). Despite the potential heterogeneity of DCVs 

across different neuron types, they share KIF1A transport mechanisms. As such, 

dysfunctional KIF1A-mediated DCV transport may lead to pathogenesis in neurons. To 

highlight the importance of these DCV cargos it is critical to state that abrogation of 

neurotrophins such as BDNF and NPY can result in severe motor impairment or death in 

mouse models (Ernfors et al., 1994; Duarte-Never et al., 2015). Furthermore, 

mislocalization of DCV cargos such as the secreted peptide, nerve growth factor (NGF) 

may result in differing effects within neurons such as apoptosis-induced axonal and 

somal degeneration or axonal pruning (Geden and Deshmukh., 2016; Geden et al., 
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2019). Neurotrophin-3 (NT-3), another DCV cargo and secreted peptide, is critical for 

corticospinal tract axon collaterization in the developing nervous system, a nervous 

system tract consistently affected in KAND underpinning the importance of KIF1A-

mediated cargo delivery (Schnell et al., 1994).  

Unconventional KIF1A cargos that do not appear to be packaged in DCVs or 

SVPs also exist and play important roles in neuronal development, function, and 

survival. Tropomyosin receptor kinase A (TrkA), a receptor with a high affinity for NGF, 

binds NGF, and the TrkA-NGF complex is internalized and trafficked retrogradely to 

stimulate a PI3K-dependent signalling cascade that promotes neuronal survival (Marlin 

& Li, 2015; Tanaka et al., 2016). The high degree of TrkA expression within the dorsal 

root ganglion (DRG) primary afferent nociceptor sensory neurons may underlie the 

pathology seen in the KIF1A-dependent disorder HSAN II (Verge et al, 1992). Using 

KIF1A-haploinsufficient mouse models, Tanaka et al. demonstrated that mice not only 

developed sensory neuropathy with an attenuated pain response similar to that seen in 

HSAN II patients, but using live imaging studies in DRG sensory neurons that TrkA 

trafficking to distal axons and sensory neuron survival was significantly reduced (Tanaka 

et al, 2016). The loss of sensory neuron survival is consistent with KIF1A-knockout 

mouse models, which also display decreased sensory neuronal survival (Yonekawa et 

al, 1998). Additionally, a study found that in C.elegans KIF1A/Unc-104 transports ATG-9, 

an autophagy-related protein, to neurite tips and was critical for cytoskeletal organization 

and synaptic architecture (Stavoe et al., 2016). In vertebrates, ATG-9A deficient neurons 

show reduced neurite outgrowth, and in ATG-9A knockout mice signs of 

neurodegeneration are seen, including spongiosis of nerve fibers in both axonal 

terminals and axons (Yamaguchi et al., 2018). Notably, KIF1A also traffics ß-Secretase 

(BACE1), an aspartyl protease that regulates critical processes including neuronal 

growth, function, repair, and myelination by processing a number of essential proteins 

(Hung & Coleman, 2016; Yan, 2017). One notable substrate of BACE1 is the amyloid 

precursor protein (APP), where BACE1 cleavage leads to formation of amyloid beta 

(Aß), a by-product notable in the pathogenesis of Alzheimer’s disease (Puzzo et al., 

2008). BACE1 also cleaves the cell adhesion molecule Neuregulin-1 (NRG1) (Willem, 

2016). NRG1 is critical in regulating PNS myelination, development of Schwann cells, 

and development of muscle spindles, processes affected in KAND (Fleck et al., 2012). 
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Clearly, KIF1A transports critical cargos that are implicated in pathological events seen 

in a host of neurological disorders.  

1.3. KIF1A in Neurological Disorders 

KIF1A mutants are causal in a group of neurological disorders under the 

umbrella term, KIF1A-associated neurological disorders (KAND). These consist currently 

of hereditary spastic paraplegia (SPG30 in the case of KIF1A; HSP), hereditary sensory 

autonomic neuropathy type 2C (HSAN 2C), and progressive encephalopathy with 

edema, hypsarrhythmia, and optic atrophy (PEHO syndrome; Gabrych et al., 2019). 

HSP is specifically characterized by lower extremity spasticity, however, it can occur in 

both pure and complicated forms (Blackstone, 2018). The pure form is limited to 

progressive lower-extremity spastic weakness, while the complicated form may include 

symptoms ranging from optic nerve impairment, to ataxias, to an array of cognitive 

impairments (Blackstone, 2018). Inheritance patterns can include autosomal dominant, 

autosomal recessive, X-linked, or mitochondrial inheritance (Hedera, 2018). Dominant 

de novo mutations may arise, however, these are rare as compared to inherited disease 

(Hedera, 2018). HSAN 2C is a less commonly seen disorder in KIF1A mutants that 

results in progressive loss of sensation in the hands and feet, with symptomology 

beginning at the fingers and toes seen as inflammation (Kurth et al., 2010). Loss of 

sensation may include pain, temperature and positional disturbances. Notably, sensory 

loss is due to a progressive degeneration of the sensory nerves, particularly myelinated 

fibers, with little to no loss in unmyelinated fibers (Hilz, 2002). Importantly, although 

degeneration of sensory nerves is seen, the disorder itself is not progressive. There is 

also autonomic involvement which manifests as severe feeding problems and apnea. 

PEHO syndrome, in addition to the pathos indicated in its name, presents in early life as 

infantile spasms, seizures, and may progress to severe intellectual deficits, and 

developmental pathologies such as tapered fingers and facial dysmorphisms. PEHO is 

an autosomal recessive and dominant disorder that presents as a progressive 

neurodegenerative disorder (Chitre et al., 2018). Similar to SPG30 and HSAN2C, 

developmental pathologies are seen which lends credence to the fact that these 

disorders are not strictly degenerative but may have an underlying dysfunctional 

developmental component. KIF1A mutants may affect a wide array of neuronal subtypes 

ranging from cortical neurons, to upper motor neurons, as well as sensory neurons 
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(Parodi et al., 2017). How different mutations affect different neuronal subtypes 

specifically is currently unknown. Even more notably, the same mutations may affect 

individuals differently leading to a discrepancy in symptomology between individuals. As 

with many other neurodegenerative disorders, HSP and HSAN 2C is neither treatable 

nor curable with current therapies. Rather, treatments center on relieving symptomology, 

such as the use of intrathecal Baclofen, and botulinum toxin injections to reduce 

spasticity, along with physical therapy for general motility and maintenance of strength 

(Fink, 2013; Bellofatto et al., 2019). To target the underlying pathophysiology in kinesin-3 

motor-mediated HSP and HSAN2C, therapeutics would have to be mutation specific, as 

mutants exhibit loss-of-function or hyperactivity as is explained extensively in the 

following section.  

1.4. KIF1A Disease Causing Mutations 

SPG-30 causing KIF1A mutations are found in the motor, regulatory, and cargo 

binding regions (Figure 1.6). As such, specific mutations may differentially affect KIF1A 

function depending on the domain. For example, E253K affects ATPase activity within 

the motor domain, while the Q632* deletion mutant removes the CC2, CC3, and PH 

domains critical for regulation and cargo binding (Nieh et al., 2015; van de Warrenburg 

et al., 2016). The consequent changes in KIF1A function are ultimately mislocalization of 

cellular cargos via distinct mechanisms, including failure to properly regulate KIF1A 

motility and to bind to cargo. The extent and severity of SPG-30 symptomology is 

dictated by the patient’s genotype and the resulting changes in KIF1A amino acid 

residues.  
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Figure 1.5. Amino acid changes in KIF1A in HSP and related disorders in humans. 
A schematic of amino acid changes in KAND based on their structural location in KIF1A. Most 
mutations currently known are situated in the motor domain of KIF1A with only a few in regulatory 
and cargo binding regions of the motor (Gabrych et al., 2019). NC, neck-coil; CC,coil-coil; FHA, 
Forkhead association; PH, Pleckstrin homology. 

Loss-of-function mutations in the motor domain of KIF1A constitute the vast 

majority of SPG-30 cases. They affect a variety of structural domains such as those 

critical for ATP hydrolysis, generation of mechanical force (Switch I and II), and 

microtubule binding (loop L8). Some examples include mutations that reside in Switch I 

(R216C) and Switch II (E253K), as well as mutants that destabilize loop L8 (R316W) 

(Lee et al., 2015; Nieh et al., 2015). The vast majority of KIF1A mutants have not been 

analyzed for function, but a subset results in impaired motility and/or an altered 

distribution compared to wild type, where the motor accumulates proximally. For 

example, the Switch II mutant E253K, and the ATP-binding cassette mutant T99M, have 

drastically reduced motility and are unable to reach the distal portions of the axon (Nieh 

et al., 2015; Cheon et al., 2017). This suggests that the inability to traffic cargos into the 

axon may underlie downstream pathogenesis in SPG-30. Surprisingly, gain-of-function 

mutations in KIF1A are also seen in SPG-30. Using single molecule assays, Chiba et al., 

recently demonstrated, that three KIF1A mutants causal in SPG-30 (V8M, R350G, 

A255V) had higher landing rates on MT’s, along with a greater velocity than WT KIF1A 

in two of the three mutations (A255V had similar velocity to WT) (Chiba et al., 2019). 
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Notably in two of the mutants (V8M, A255V), SVPs accumulated at the axonal tips of 

C.elegans ALM neurons, suggesting that excessive cargo accumulation may be 

pathogenic. 

Moreover, an interplay between a variety of factors influence the pathogenicity of 

the mutation including the functional domain, the amino acid properties, and heritability 

patterns. Conserved amino acid changes, such as the A255V mutant, tend to result in 

less severe effects on motor motility, which is reflected in reduced severity of 

symptomology (Nieh et al., 2015; Cheon et al., 2017). Mutants in which the residue 

properties are drastically changed, such as that in the E253K mutant, show much more 

severe motor motility changes, leading to complicated SPG-30 (Nieh et al., 2015; Cheon 

et al., 2017). Some SPG-30 loci have multiple different amino acid changes, for 

example, R216 mutations can be either a histidine, proline, or cysteine leading to 

differing clinical symptoms (Lee et al., 2015; Nieh et al., 2015; Travaglini et al., 2018). 

However, it is important to note that without histopathological samples, the link between 

changes in motor properties and symptomology is tenuous. Furthermore, prediction of 

the presentation of the disease based on the mutation is difficult. This is exemplified by 

the A255V mutant, as it causes both the pure and complicated forms of SPG-30 where a 

patient’s genetic background will affect how the mutations manifest physiologically 

(Erlich et al., 2011; Klebe et al., 2012). Lastly, it is important to note that mutations 

implicated in complicated SPG-30, such as T99M and E253K, are causal in PEHO 

syndrome suggesting a similar etiology between the disorders (Lee et al., 2015; Nieh et 

al., 2015; Samanta & Gokden, 2019). Furthermore, a mutation exclusive to PEHO 

syndrome, E148D, presents with symptomology akin to complicated SPG-30, further 

suggesting that the etiology of these KIF1A-related disorders may be similar (Ohba et 

al., 2015).  

Mutations that implicate regulatory and cargo binding regions of KIF1A are both 

causal in pure and complicated forms of SPG-30 and HSAN-IIC. Presently, no studies 

exist that assay the motility, regulatory, or cargo binding capabilities of these KIF1A 

mutants. However, mutations in the KIF1A PH domain lead to reduced cargo binding in 

C. elegans’ neurons (Klopfenstein et al., 2004). Thus, disease loci that likely truncate the 

cargo binding domains of KIF1A, such as the pure SPG-30 Q632* mutant, might result in 

in a complete absence of cargo binding and delivery (van de Warrenburg et al., 2016). 

Despite such changes to KIF1A in SPG-30, patients can live for decades with this 
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disorder implying there is some redundancy in KIF1A function. One example may be that 

DCVs can be transported in tandem or by alternate motors such as KIF1C and KIF5 

(Gauthier et al., 2004; Lim et al., 2017; Stuchi et al., 2018). The fidelity of cargo delivery 

may be altered when the complement of neuronal kinesins are shifted. 

1.5. Functional Assays for Transport Kinesins 

Biological assays that probe a host of parameters that constitute the functioning 

of a kinesin are integral for understanding transport motors and their roles in proper 

biological functioning and disease. In kinesins, the parameters that underlie its behavior 

as a transport motor fall under a few general categories; enzymatic function of the motor 

domain which underlie processivity, kinesin autoinhibitory regulation, and general 

transport parameters such as velocity, run length and pause duration. Fortunately, 

biophysical, biochemical, and cell biological assays that probe these functional 

parameters have been well-developed and used widely. 

ATPase assays exist that examine functional parameters of the kinesin motor 

ATPase domain such as ATP hydrolysis rates, efficiency of an ATPase in driving a 

motor, and ability to bind microtubules as a function of ATP concentration. Typically, 

these assays are absorbance-based and rely on the catalyzed reaction between 

inorganic phosphate (a by-product of ATP hydrolysis) and another molecule, such as 

MESG (2-amino-6-mercapto-7-methylpurine ribonucleoside) in the case of an ELIPA 

(enzyme-linked inorganic phosphate assay), to cause a detectable absorbance shift 

relative to the amount of inorganic phosphate produced (Figure 1.7A; Webb., 1992). 

Conversely, assays exist that allow for assaying of ADP produced from ATP hydrolysis 

by converting ADP into a luminescent signal through an enzymatically coupled kinase 

and luciferase-based reaction (Figure 1.7B; Zegzouti et al., 2010). Many of these 

assays, such as the ELIPA mentioned previously and ADP-Glo assays exist 

commercially from companies such as Cytoskeleton Inc. and Promega and therefore are 

easily accessible and have been utilized in many experimental contexts, including high-

throughput screens (Kadakkuzha et al., 2014). In a disease context, these assays 

constitute a robust method for detecting changes in ATPase domain activity when 

mutations are introduced in the motor domain of transport kinesins such as KIF1A. For 

example, the T99M SPG30-causing mutant is found within the ATP-binding cassette of 

KIF1A would benefit from this type of assay as it has been shown to have decreased 
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motility compared to wild-type KIF1A, but the cause is not yet known (Nieh et al., 2015; 

Cheon et al., 2017). In silico studies show that the T99M mutant affects ATP binding and 

ultimately an in vitro ATPase assay may show a reduction in ATPase efficiency 

experimentally (Nieh et al., 2015). 

 

Figure 1.6. Schematic representation of common ATPase assays. 
A) A schematic representation of an ELIPA ATPase assay. MESG is catalytically converted to 2-
amino-6-mercapto-7-methyl purine in the presence of inorganic phosphate, a byproduct of ATP 
hydrolysis, causing a detectable absorbance shift from 330 to 360 nm. (Kadakkuzha et al., 2014) 
B) A schematic representation of an ADP-based ATPase assay. ADP produced as a byproduct of 
ATP hydrolysis is converted to a luminescent signal through an enzymatically-coupled kinase and 
luciferase-based reaction. ATP is depleted using a specific reagent (ADP-Glo™) following 
hydrolysis and a luciferase-based detection reagent is used to detect newly synthesized ATP. 
(Kadakkuzha et al., 2014).  

Assays that probe the autoinhibitory regulation of transport kinesins are 

invaluable in assessing activation and inhibition of motors as a whole. Motors such as 

KIF1A, KIF1C, and kinesin-1 are found in vitro and in vivo in either an autoinhibited 

monomeric or dimeric form (Hammond et al., 2009; Siddiqui et al., 2019). This is seen in 

cells as a diffuse, soluble phenotype. Conversely, upon binding of a cargo or regulation 

by certain factors such as GTPases or kinases such as CaMKII, autoinhibition is relieved 

and the motor is bound to the microtubule. In cells, this is seen as a microtubule-bound, 

tubular phenotype, with typical peripheral accumulation of the motor due to its ability to 

translocate along microtubules (Figure 1.8; Hammond et al., 2009; Niwa et al., 2016). In 

fact, due to the robust nature of this assay in determining whether the motor itself is 

activated or not, I utilized this assay in the high-throughput screen I developed and 
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optimized as my thesis project. The degree of microtubule-binding and peripheral 

accumulation can be related to the extent of motor activation and has been used 

extensively in studies that probe autoinhibitory regulation in transport kinesins (Cai et al., 

2007; Hammond et al., 2009; Niwa et al., 2016).  

 

Figure 1.7. Microtubule-binding assay. 
Microtubule-binding assays utilize the inherent autoinhibition and relief of autoinhibition of 
kinesins such as KIF1A and KIF1C to assess activation of the motor through microtubule binding. 
Motors that are autoinhibited such as the wild-type KIF1A, present as a soluble, diffuse signal in 
vitro. Upon relief of autoinhibition, motors such as the truncated motor domain of KIF1A, bind to 
microtubules and result in a tubular phenotype. (Soppina et al., 2014; Niwa et al., 2016). 

The most common assays seen for probing kinesin activity, particularly in a 

neuronal context, are transport assays that utilize particle tracking and kymograph 

analysis, which allow for determination of parameters such the velocity of the motor, 

on/off rate, pause duration, and run length. These studies are incredibly useful in 

tracking cargo trafficking via molecular motors over variable distances over a 

predetermined period of time. Furthermore, these assays are integral for understanding 

the aforementioned parameters of the motor in an environmentally specific context. For 

example, using a microtubule-gliding assay, an assay in which the motor is affixed onto 

a glass surface and ATP and microtubules are supplied, one can assess motor velocity, 

on/off rate, pause duration, and run length in an environment completely devoid of 

external factors such as kinases, phosphatases, GTPases, chemical signals, and more 

(Figure 1.9; Lopes et al., 2019; VanDelinder et al., 2019; Kaneko et al., 2020). 
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Furthermore, one can alter the properties of the microtubules, such as supplying the 

motor with acetylated or tyrosinated microtubules, post-translational modifications known 

to affect a variety of motor parameters. Ultimately, this type of transport assay gives one 

complete control of the motor’s environment. Conversely, using fluorescently-tagged 

motors and potential or known cargos, one can assess transport parameters in cells 

where the environment is more akin to that in vivo (Stucchi et al., 2018; Gan et al., 

2020). One can assess how transport is affected under pathological conditions, such as 

by introducing Aβ to simulate Alzheimer’s disease conditions, mutant α-synuclein to 

simulate Parkinson’s disease conditions, or even introduce a mutant motor such as the 

SPG30 KIF1A mutants to see how the mutant motor functions in a cellular environment 

(Saha et al., 2004; Ramser et al., 2013; Chiba et al., 2019). Ultimately, this is a powerful 

way to study motors in a physiological context, albeit being more complex to analyse 

than the previously mentioned assays. As such, the use of these types of assays in drug 

discovery is uncommon but is increasing.  

 

Figure 1.8. Microtubule-gliding assay. 
A schematic representation of a microtubule-gliding assay. Motor proteins are affixed onto a glass 
surface and supplied with microtubules and ATP. Motor proteins will then move microtubules in a 
unidirectional manner allowing for assessment of motor properties such as run length, velocity, 
and on-off rate. (Korten and Diez., 2008). 

A unique assay that is incredibly powerful in terms of assaying a kinesins ability 

to transport cargo is the Golgi/peroxisome-dispersion assay (Figure 1.10; Kapitein et al., 

2010; Schimert et al., 2019; Gan et al., 2020). In this assay, a kinesin is tagged with a 

fluorescent protein along with a rapamycin-binding (FRB) domain and is co-expressed 

with a fluorescently-tagged, peroxisome-targeted (PEX), or Golgi-targeted (GMAP-210), 

FK506 binding protein (FKBP). Upon addition of rapamycin, dimerization occurs 

between the FRB and FKBP domain and the motors are targeted towards the 
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peroxisome or Golgi depending on what targeting sequence is expressed. Motors then 

redistribute either cargo to the cell periphery. This allows one to determine how 

efficiently motor activation occurs when bound to cargo, how well it can redistribute 

cargo, and parameters such as run length, velocity, on/off rate, and pause duration.  

 

Figure 1.9. Peroxisome/Golgi-dispersion assay. 
A motor protein is tagged with a fluorescent protein along with a rapamycin-binding (FRB) domain 
and is co-expressed with a fluorescently-tagged, peroxisome-targeted (PEX), or Golgi-targeted 
(GMAP-210), FK506 binding protein (FKBP). Upon addition of rapamycin, dimerization occurs 
between the FRB and FKBP domain and the motor proteins are targeted towards the peroxisome 
or Golgi depending on what targeting sequence is expressed. Motor proteins are then 
redistributed either cargo to the perinuclearly or to the cell periphery depending on directionality 
of the motor protein. (Kapitein et al., 2010).  

 

1.6. High-Throughput Screening of Kinesins in Drug 
Discovery 

High-throughput screening is an experimental platform for large-scale assaying 

and discovery of pre-existing and novel drug effects on biological phenomenon using 

robotics, platform-specific software, and optimized and validated assays. The 

developmental pipeline of a high-throughput screen involves seven main components; 

target identification, assay development and optimization, assay validation, a pilot 

screen, a primary screen, confirmation and validation of hits (molecules that confer the 

expected change in the assay), and orthogonal assaying and hit optimization (Figure 

1.11; Sittampalam et al., 2004). Designing a robust high-throughput screen that 

accurately allows for discovery of new therapeutic and tool compounds depends greatly 

on the quality of the biological assay used for drug screening. The Assay Guidance 

Manual by the NIH is a key resource regarding assay development and optimization for 
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high-throughput screening (Sittampalam et al., 2004). Succinctly, parameters that 

constitute a high-quality assay include optimized assay reagents such as plasmids, cell 

lines and chemical reagents. Moreover, a viable high-throughput assay needs an optimal 

signal to noise ratio, robust analyses, positive and negative controls, good plate design 

to identify systemic errors, and potential for streamlined automation of the assay 

pipeline.  

 

Figure 1.10. Schematic of a high-throughput screening workflow. 
A schematic of a high-throughput screening workflow. Assay design, optimization and validation 
is key to developing a robust screen. A pilot screen precedes the primary screen and allows for 
further optimization and validity testing. A primary screen follows with subsequent hits needing to 
be confirmed with orthogonal and secondary assays. (Rockefeller University, HTSRC, 2019). 

The assay must be validated by means of a measure of the assay’s 

performance. Many traditional measurements exist including signal to noise ratios, signal 

to background ratios, and the most commonly used measurement: the Z’-factor 

(Sittampalam et al., 2004, Inglese et al., 2007). The Z’ is a measure of the separation 

window between the positive and negative control data and ranges between the value of 

0 and 1, with higher values indicating a more robust assay, 1 being the ideal assay 

(Figure 1.12). Generally, various assays have recommended Z’-factors to be considered 

a valid assay. For example, in a cell-based, phenotypic screen, an assay above 0.2 is 

considered valid for high-throughput screening, as these types of assays typically 

describe complex biological phenomenon with complex analyses to go with them 

(Sittampalam et al., 2004). Conversely, assays that are generally less complex with 

analyses that are relatively standardized such as nuclear translocation assays, typically 

show Z’ of 0.7 or greater (Sittampalam et al., 2004). This does not mean that an assay 

with a Z’ of less than the recommended measure will not identify hits, however, it does 

mean that the reliability of those hits will not be as robust as that of a higher Z’ assay. 

Following validation by generation of a Z’-factor, a pilot screen is typically done using a 

pre-determined chemical or biologic library to screen for problems in assay design and 

analysis shortfalls as full-scale primary screens are generally a high-cost, low-reward 

endeavour. Primary screens follow, barring problems with the pilot screen, followed by 
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identification of hits, dose-response curve generation, and orthogonal assays to confirm 

hits and generate lead compounds.  

𝑍′ = 1 −
3(𝜎𝑝 + 𝜎𝑛)

|𝜇𝑝 − 𝜇𝑛|
 

 

Figure 1.11. Z’ equation and schematic 
Z’, or Z-factor, is a statistical parameter that measures statistical effect size. In high-throughput 
screening it is used as a measure to evaluate the robustness of the assay being used. It 
measures the separation between three times the standard deviation of the positive and negative 
control signal. (Zhang et al., 1999). σp, standard deviation of positive control; σn, standard 
deviation of negative control; μp, mean of positive control; μn, mean of negative control.  

High-throughput screens involving kinesins are abundant, however, they 

generally involve mitotic kinesins such as Eg5 and KIFC1. Indeed, the first kinesin to be 

screened for possible modulators was the mitotic kinesin EG5 (Mayer et al.,1999). This 

particular screen was a phenotypic screen that used two assays; one whole-cell 

immunofluorescence assay, which exploited a post-translational modification on a 

nucleolar protein that is phosphorylated during mitosis, and a second that identified 

changes in mitotic spindle conformation. Notably, it identified a molecule, Monastrol, that 

acted on helix α2/loop L5 and helix α3 which composed a specific inhibitor binding 

pocket of Eg5 that allosterically inhibited its ATPase activity (Tcherniuk et al., 2010). 

Despite the high degree of sequence conservation seen in the motor domain of kinesins, 

Monastrol was able to bind an Eg5-specific region showing that the motor domain may 

still be a viable target in other kinesins (Bergnes et al., 2005). Interestingly, this gave rise 

to a host of screens that attempted to exploit potential specific regions in the motor 

domains of kinesins, although these screens mainly targeted the highly conserved 
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ATPase domain. One such example is that of the mitotic motor KIFC1, in which 

scientists at AstraZeneca used a Malachite Green ATPase assay and followed up hit 

identification with structural activity studies (SAR) to generate a variety of compounds 

that act as specific inhibitors of KIFC1 ATPase activity (Yang et al., 2014). Another 

example includes the transport motor KIF5B, in which two ATPase assays; one that 

measured inorganic phosphate levels, and an orthogonal assay which measured ADP 

levels, was used to identify hits from the Library of Pharmacologically Active Compounds 

(LOPAC) library of compounds (Kadakkuzha et al., 2014). Although activators and 

inhibitors of ATPase activity were found for this transport kinesin, follow up studies have 

not been published and therefore it is unknown whether these hits were confirmed as 

lead compounds and specific to KIF5B.  

More recently, newer screens have been published which include transport 

kinesins such as kinesin-1 and, dynein. Interestingly, the kinesin-1 screen employed a 

novel FRET-based assay that identified molecules that disrupt the interaction between 

kinesin-1 and short linear peptide motifs in organelle-specific cargo adaptors (Randall et 

al., 2017). As mentioned previously, regulation via cargo adaptors constitutes one 

regulatory pathway for relief of autoinhibition of kinesins, and to date, no known 

compounds specifically target these interactions. This screen identified a small molecule, 

Kinesore, as an in vitro inhibitor of the kinesin light-chain and lysosomal cargo adaptor 

SKIP. In turn, this molecule allowed for a conformational change that led to motor 

activation. Another interesting assay was utilized in a dynein screen and employed a 

peroxisome-distribution assay (Kapitein et al., 2010; Schimert et al., 2019; Vincent et al., 

2020). This screen identified several potential activators and inhibitors of dynein-based 

cargo transport that seem to be independent of microtubule-based effects. This would 

lead further credence to the idea that small molecules may be able to directly target 

transport motors. Taken together, compounds have been found that specifically affect 

the various domains and regulatory mechanisms of the transport motors kinesin-I and 

dynein. As such, it may be possible to find small molecule compounds or biologics that 

directly target KIF1A and its disease-causing mutants leading to potential tool compound 

and therapeutic development. 
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1.7. Project Overview 

The overarching goal of my thesis was to develop a high-throughput screen for 

small molecule modulators of the molecular motor, KIF1A. As KIF1A is neuron-enriched, 

with low expression in other organ systems, therapeutics that specifically target KIF1A 

would potentially have minimal off-target effects. To accomplish this, I developed and 

optimized an assay that allows one to distinguish between inactive, autoinhibited KIF1A 

and the active, microtubule-bound KIF1A. In its inactive form, KIF1A exists in an 

autoinhibited, monomeric form, although some research indicates it also may exist in an 

autoinhibited dimer conformation. This autoinhibited form, when expressed in cells, is 

seen as a soluble, diffuse signal. Upon activation through cargo binding or by 

introduction of a hyper-activating mutation such as the V8M mutation, KIF1A binds the 

microtubules and transports to the cell periphery. I had three major goals in terms of 

developing this high-throughput screen. 

1) Develop and optimize a cell-based, phenotypic assay for a high-content, high-

throughput screening platform. 

This goal consisted of generation and validation of required reagents and cell 

lines, i.e. plasmids, cell lines (neuronal and non-neuronal), identification of 

positive and negative controls for downstream determination of Z-score, 

identification of phenotypes (soluble and diffuse signal versus peripherally 

accumulated and microtubule-bound, tubular signal), and generation of stable 

cell lines expressing my positive and negative controls.  

2) Generate a robust, high-throughput analysis for peripheral accumulation of 

KIF1A and colocalization of KIF1A and the microtubule marker EB3.  

For robust assaying of activated versus non-activated phenotypes, image 

analyses must be optimized for the phenotype one wishes to assess. This 

includes segmentation of cells, accurate identification of parameters that 

represent the phenotype being assayed (e.g. mean fluorescence intensity, 

Pearson’s correlation coefficient, etc.), background subtraction, and identification 

of primary and secondary structures within cells. In this case, I was able to 

generate an analysis that allows for identification of raw and normalized 

fluorescence intensity levels in segmented areas of the cell.  
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This work is significant as currently there are no known therapeutics or 

cell-permeable tool compounds that exist for KIF1A. This phenotypic screen 

allows for relatively low-cost, high-throughput assaying of small molecule 

modulators of KIF1A and allows for multiple parameters of KIF1A function to be 

assessed including activation, microtubule-binding capacity, and efficiency of 

transport. Ultimately, I hope this high-throughput screen yields KIF1A-specific hit 

compounds that can be developed into lead compounds for clinical testing or 

experimental use. 
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Chapter 2. Materials and Methods 

2.1. Plasmid Generation 

Wild-type (WT) KIF1A-GFP and V8M mutant KIF1A-GFP cDNA’s were excised 

from pEGFP-N1-KIF1A-GFP and pEGFP-N1-V8M-KIF1A-GFP (a kind gift from Dr. 

Shinsuke Niwa, Tohoku University) using EcoRI and NotI restriction endonucleases 

(New England Biolabs, Ipswich, MA, USA). pTetOne Doxycycline-On (Takara Bio, 

Kyoto, Japan) and pEF-GFP (Addgene: #11154) vectors were digested using EcoRI and 

NotI restriction endonucleases and subsequently treated with Quick calf intestinal 

alkaline phosphatase (Quick CIP; New England Biolabs, Ipswich, MA, USA) to prevent 

subsequent self-ligation of vector. Restriction fragments were size separated by agarose 

gel electrophoresis and desired fragments excised and purified using QIAquick Gel 

Extraction Kit (Qiagen, Venlo, Netherlands). Wild-type KIF1A-GFP and V8M mutant 

KIF1A-GFP fragments were ligated with both pTetOne Doxycycline-On and pEF-GFP 

vector fragments using T4 DNA Ligase (New England Biolabs, Ipswich, MA, USA) at 

16°C overnight. High-efficiency DH5α competent E.coli (New England Biolabs, Ipswich, 

MA, USA) were transformed by chemical transformation. 10 μL ligated DNA mixture was 

added to 50 μL E.coli on ice and incubated for 2 minutes. The mixture placed in 42°C for 

30 seconds and returned to ice for 5 minutes. 950 mL LB media was added and placed 

in an incubating shaker for 60 minutes at 37°C at 250 rpm. 100 μL of mixture was 

spread onto ampicillin agar plates for both pTetOne Doxycycline-On and pEF-GFP 

vectors and incubated for 16 hours. Colonies from each condition were picked and 

placed in liquid LB cultures containing 1:1000 dilution of 100ug/mL ampicillin and placed 

in an incubating shaker for 16 hours at 37°C at 250 rpm. Plasmids were extracted using 

QIAprep Spin Miniprep Kit (Qiagen, Venlo, Netherlands) and cloned plasmids were 

subsequently confirmed by sequencing and agarose gel electrophoresis via restriction 

digestion using SacI, EcoRI, and NotI restriction endonucleases (New England Biolabs, 

Ipswich, MA, USA). The microtubule marker, EB3-mKate2, was a kind gift from Julian 

Guttman, Simon Fraser University. 
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2.2. Cell Culture and Transient Transgene Expression 

COS-7 cells were grown and maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) and 10% fetal bovine serum (FBS) at 37°C/5% CO2 conditions. SK-N-SH cells 

were grown and maintained in Eagle’s Minimum Essential Media (EMEM) and 10% FBS 

at 37°C/5% CO2 conditions. For phenotypic assessment in COS-7 and SK-N-SH, 150 

000 cells were plated onto glass coverslips in a 6 cm dish and incubated overnight at 

37°C, 5% CO2 conditions. The following day, transient transfections were carried out 

using liposomal-mediated gene delivery or through electroporation. For liposomal-

mediated gene delivery, jetPRIME transfection reagent (Polyplus-transfection SA, New 

York, NY, USA) was used. 2μg total of plasmids were mixed with 200μL jetPRIME buffer 

with subsequent addition of 4μL jetPRIME reagent. The mixture was incubated for 10 

minutes at room temperature and added to cells in serum-containing media. Cells were 

incubated at 37°C/5% CO2 conditions for 4 hours, after which media was exchanged and 

cells re-incubated at 37°C/5% CO2 conditions for 24 hours. For gene delivery through 

electroporation the Amaxa Cell Line Nucleofector Kit V (Lonza, Basel, Switzerland) with 

corresponding Amaxa Nucleofector IIb (Lonza, Basel, Switzerland) was used. Cells were 

detached using HyClone Trypsin, 0.25% (Danaher, Washington D.C., USA) and 

resuspended in the respective media. 1 x 106 cells were isolated and spun down at 

200xg for 10 minutes at room temperature. Cells were resuspended in 100 μL 

Nucleofector solution and 2μg total plasmid was added to the mixture. Suspensions 

were transferred to cuvettes and electroporated with the respective programs (W-001 for 

COS-7 and X-005 for SK-N-SH). Cells were subsequently resuspended in 500 μL of 

their respective medias, plated, and incubated for 24 hours at 37°C/5% CO2 conditions. 

2.3. Doxycycline-Inducible KIF1A Expression 

To assess doxycycline-inducible KIF1A expression at various times and 

concentrations, 150 000 COS-7 cells were plated onto glass coverslips in a 6 cm dish 

and incubated overnight at 37°C, 5% CO2 conditions. The following day, transient 

transfections were carried out using jetPRIME transfection reagent (Polyplus-

transfection SA, New York, NY, USA) for liposomal-mediated gene delivery. 2μg total of 

pTetOne-WT-KIF1A-GFP were mixed with 200μL jetPRIME buffer with subsequent 

addition of 4μL jetPRIME reagent. The mixture was incubated for 10 minutes at room 
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temperature and added to cells in serum-containing media. Cells were incubated at 

37°C/5% CO2 conditions for 4 hours, after which media was exchanged and cells were 

allowed to express 24 hours. Subsequently, media was removed and replaced with three 

dilutions of 1mg/mL stock doxycycline (1:10000, 1:5000, 1:1000). Cells were allowed to 

express for 4, 8, and 24 hours post-induction of transgene expression via doxycycline 

addition. Following those time points, glass coverslips with adhered cells were removed 

and washed with 1 x Dulbecco’s Phosphate Buffered Saline (dPBS). dPBS was removed 

and cells were fixed with 4% paraformaldehyde (PFA) solution for 15 minutes at 37°C. 

PFA was removed and cells were washed two times in one minute intervals with dPBS. 

Cells were subsequently incubated at room temperature for 5 minutes with a 300 nM 

4′,6-diamidino-2-phenylindole (DAPI) solution in dPBS for staining of nuclei. Cells were 

washed with dPBS 3 times in 5 minute intervals and mounted using elvanol and 

subsequently imaged using widefield fluorescence microscopy. 

2.4. Lentiviral Transduction and Stable Cell Line Generation 

Lentiviruses were generated and packaged by Applied Biological Materials 

(Applied Biological Materials Inc, Richmond, BC, Canada) with a custom made EB3-

mKate2 plasmid generated by Applied Biological Materials (Applied Biological Materials 

Inc, Richmond, BC, Canada). For transduction of both cell lines, COS-7 and SK-N-SH, 

cells were detached using HyClone Trypsin, 0.25% (Danaher, Washington D.C., USA) 

and resuspended in their respective media. Cells were plated at 10000 cells per well of a 

12-well plate and incubated overnight at 37°C/5% CO2 conditions. Media was removed, 

and a mixture containing 8μg/mL of polybrene, media corresponding to the cell type, and 

differing multiplicity of infections (MOIs) of lentiviruses (titre of 1 x 106) totalling 1 mL was 

added. Plates containing cells and lentiviral mixtures were subsequently spun down at 

800g for 60 minutes at room temperature and incubated at 37°C/5% CO2 conditions for 8 

hours. Following incubation, lentiviral media was exchanged for media corresponding to 

the cell line transduced and incubated for 24 to 48 hours at 37°C/5% CO2 conditions. 

Cells were subsequently assessed for transduction using fluorescence microscopy.  

For the generation of polyclonal stable cell lines, transduced cells underwent a 

media exchange for selection media containing predetermined killing concentrations of 

puromycin (0.8μg/mL for COS-7; 0.7μg/mL for SK-N-SH). Selection media was 

exchanged every 72 hours and cells were regularly assessed for fluorescence-
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expressing colonies. Once formed and sufficiently dense, colonies were detached using 

HyClone Trypsin, 0.25% (Danaher, Washington D.C., USA), resuspended in their 

respective selection media and expanded in progressively higher surface area flasks. 

Cells were regularly assessed for fluorescence using fluorescence microscopy. Once 

sufficiently expanded, polyclonal lines were frozen down in a 5% DMSO-containing 

solution of their respective non-selection media. 

2.5. Immunoblotting of Endogenous and Expressed KIF1A 

COS-7 cells transfected with pEF-KIF1A-GFP, pEF-V8M-KIF1A-GFP, pTetOne 

KIF1A-GFP and pTetOne V8M-KIF1A-GFP, along with non-transfected COS-7, HeLa, 

and SK-N-SH cells were lysed in ice-cold radioimmunoprecipitation assay (RIPA) buffer 

(50 mM Tris;pH 7.5, 5 mM EDTA, 150 mM NaCl, 1% Triton X-100) containing Roche 

cOmplete protease inhibitor cocktail (Hoffman-La Roche AG, Basel, Switzerland). 

Primary hippocampal neuronal cell lysates were previously prepared (Gan et al., 2020). 

For detection of endogenous KIF1A, total protein isolated from cell lysates (15μg) were 

separated on a precast 4-15% gradient gel (Bio-Rad Laboratories, Hercules, CA, USA) 

and subsequently transferred to a PVDF membrane. Membranes were blocked using a 

3% BSA solution in TBS-Tween and blotting was performed using primary antibodies in 

blocking solution against KIF1A (1:500; BD Transduction Laboratories, Franklin Lakes, 

NJ, USA) and the loading control, GAPDH (1:1000; Novus Biologicals, Centennial, CO, 

USA; catalog #NB300-327). Immunoreactive bands were visualized using enhanced 

chemiluminescent substrate (SuperSignal West Pico PLUS Chemiluminescent 

Substrate: ThermoFisher Scientific, Waltham, MA, USA) for detection of peroxidase 

activity from HRP-conjugated secondary antibodies (1:20000; Bio-Rad, Hercules, CA, 

USA). Blotting was performed in triplicate using two different cell lysate samples. 

Protocols were identical for transfected COS-7 lysates, but primary antibodies against 

GFP (1:2000; Invitrogen, Waltham, MA, USA) and the loading control β-actin (1:1000; 

Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used.  

2.6. Fluorescent Microscopy 

For imaging of cellular phenotypes and doxycycline-inducible expression studies, 

following transfection, glass coverslips with adhered cells were removed and washed 
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with 1x dPBS. dPBS was removed and cells were fixed with 4% PFA solution for 15 

minutes at 37°C. PFA was removed and cells were washed two times in one minute 

intervals with dPBS. Cells were subsequently incubated at room temperature for 5 

minutes with a 300 nM 4′,6-diamidino-2-phenylindole (DAPI) solution in dPBS for 

staining of nuclei, washed with dPBS 3 times in 5 minute intervals and mounted using 

elvanol. Cells were imaged using a wide-field fluorescent microscope (Leica, DMI, 

6000B; Leica, Wetzlar, Germany) equipped with a CCD camera (Hamamatsu ORCA-

ER-1394; Shizuoka, Japan). Images were captured at 400X magnification with a 

40X/0.9NA lens.  

For screening of stable cell line fluorescence, growth media was removed and 

replaced with pre-warmed 1x dPBS. Cells were subsequently imaged using a wide-field 

fluorescent microscope with integrated CMOS cameras (EVOS M7000 Imaging System; 

ThermoFisher Scientific, Waltham, MA, USA) at 200X magnification using a 20X/0.4NA 

long working distance (LWD) lens.  

2.7. Image Analysis 

All images acquired were analyzed using CellProfiler 3.0 cell image analysis 

software (McQuin et al., 2018). A custom fluorescence intensity distribution analysis 

pipeline was constructed as follows. A greyscale image of the green channel 

corresponding to KIF1A-GFP variants was imported along with a greyscale image of the 

blue channel corresponding to DAPI (nuclei). Segmentation was done using an 

automatic global thresholding strategy. Primary objects (nuclei) were identified using 

automatic global thresholding utilizing a minimal cross entropy strategy and Gaussian 

smoothing with a sigma of 1. Nuclei were determined to have a range of diameters from 

60 to 160 pixel units and separated by shape. Objects outside this range were discarded 

and holes filled following thresholding and declumping. Secondary object (cytoplasm) 

detection was accomplished using an automatic global thresholding strategy utilizing an 

Otsu three-class method to move objects below the threshold to the background. No 

smoothing was applied, and thresholding was corrected by a factor of 0.6. Secondary 

objects touching the border of the image were discarded along with associated primary 

objects. Object intensity and object intensity distribution modules were used to identify 

the mean fluorescence intensities across the cytoplasm as well as the distribution of the 

fluorescence intensities across the cytoplasm. Fluorescence intensity distribution was 
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determined using 4 radial sections (bins) of the cytoplasm automatically scaled for cell 

size, beginning from the edge of the associated primary object (nuclei). Values for mean 

fluorescence intensity, fraction at a distance (FraAtD) of the outermost bin, mean fraction 

at a distance (Mean FracAtD) of the outermost bin, and radial coefficient of variation 

(Radial CV) of the outermost bin were exported to a Microsoft Excel (Microsoft, 

Redmond, WA, USA) spreadsheet. FraAtD is defined as the fluorescence intensity in the 

specified bin divided by the total fluorescence. Mean FracAtD is defined as FraAtD 

normalized by the amount of pixels within the specified bin. Radial CV is defined as the 

ratio of the standard deviation of pixel intensities to the mean, or the variability in pixel 

intensity distribution across the specified bin. Objects whose diameters were below 80 

μm or exceeded 300μm were filtered out in Excel as these were considered artifacts or 

dying cells.   

A custom colocalization and overlap analysis pipeline was constructed as 

follows. A greyscale image of the green channel corresponding to KIF1A-GFP variants 

was imported along with a greyscale image of the red channel corresponding to EB3-

mKate2. A Laplacian of Gaussian (LoG) filter was applied to both images to enhance 

edges of cellular structures to help identify tubular structures. The sigma of the Gaussian 

function was applied automatically. Following LoG processing, a morphological 

operation module was applied to both images consisting of an erosion and dilation 

function to return parts of the image with linear structures. A line length of 2 was chosen 

to reflect the average width of tubular structures within cells. An automatic global 

threshold utilizing a minimum cross entropy strategy was then applied to the resulting 

images for binarization. Images were not smoothed (Gaussian of 0) and no threshold 

correction was applied. A colocalization module was run across the entire masked image 

using a 15 percent of max intensity threshold to identify the Pearson’s correlation 

coefficient for quantification of correlation. An image overlap module was run alongside 

the colocalization module to generate an F-factor for quantification of the degree of 

overlap of binarized pixels in red and green channels. Pearson’s correlation coefficient is 

defined as the covariance between pixels in the red and green channels divided by the 

sum of their standard deviations. F-factor is defined as two times the product of the 

precision and recall divided by the sum of the precision and recall. The precision is 

defined as the number of true positive pixels divided by the sum of the number of true 

positive pixels and false positive pixels. The recall is defined as the number of true 
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positive pixels divided by the sum of true positive pixels and false positive pixels. Values 

are exported to a Microsoft Excel spreadsheet.  

2.8. Statistical Analysis 

Data obtained from all experiments was exported to a Microsoft Excel 

spreadsheet and imported to GraphPad Prism 9 (GraphPad Software, San Diego, CA, 

USA) for further analysis. For doxycycline-induced KIF1A expression experiments, data 

was presented as mean ± SEM. All experiments were performed on at least 5 cells from 

three independent cultures. All statistical analyses were performed using one-way 

ANOVAs with Tukey’s post hoc tests, comparing 4 hour conditions with 8 and 24 hour 

conditions. For fluorescent intensity distribution experiments assessing the peripheral 

accumulation in COS-7 and SK-N-SH cells, data was presented as mean ± SEM. All 

experiments involving constitutively-active plasmids were performed on at least 15 cells. 

All experiments involving doxycycline-inducible plasmids were performed on at least 3 

cells. All statistical analyses were performed using a two-tailed unpaired Student’s t-test.  
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Chapter 3. Results 

3.1. Characterization of Cellular Phenotypes 

3.1.1. Endogenous KIF1A Expression and Confirmation of Cloned 
Plasmids 

My goal was to design a high-throughput screen for small molecule modulators of 

the molecular motor KIF1A based on an assay that allows for one to easily distinguish 

between an activated and non-activated motor. KIF1A is present in an autoinhibited form 

that presents as a diffuse, cytoplasmic signal in vivo, and upon activation, KIF1A binds 

to microtubules resulting in a tubular phenotype in vivo (Hammond et al., 2009). 

Furthermore, upon activation KIF1A distributes peripherally to cell edges and distal 

neurites (Lee et al., 2015; Chiba et al., 2019; Kaur et al., 2020). To begin designing a 

microtubule-binding and peripheral accumulation assay optimized for a high-throughput 

screen, I characterized a suitable positive and negative control, cell lines and plasmid 

constructs. For the positive control, ideally a chemical control would be used; however, 

no such compounds are currently known to activate KIF1A. One potential compound, 

kinetin, was tested but did not yield the desired phenotypes (Appendix, Figure A1.). The 

motor mutant V8M hyperactivates KIF1A resulting in peripheral accumulation and 

microtubule-binding (Niwa et al., 2016; Chiba et al., 2019). As such, I tested the V8M 

mutant as a potential positive genetic control. For the negative control, I used WT KIF1A 

as it is monomeric, soluble, and diffuse in the cytoplasm (Hammond et al., 2009). 

Desired cell lines need to have a flat morphology and large cytoplasm for clear 

identification of peripheral KIF1A aggregates and identification of tubular structures (Cai 

et al., 2007). Two cell lines were chosen that fit these criteria: a neuronal cell line, SK-N-

SH, and a non-neuronal cell line, COS-7. A neuronal cell line was chosen as it may allow 

for the discovery of more physiologically relevant hits. Paradoxically, this could also be a 

hinderance in hit discovery due to the potential off-target effects on neuron-specific 

factors that may affect KIF1A function as it is a neuron-enriched motor. For this reason, 

a non-neuronal cell line was also chosen as it removes that potential conflating factor in 

downstream hit validation. Furthermore, the COS-7 cell line has been used extensively 

for microtubule-binding studies due to its ease of transfection and large cytoplasm 

(Hammond et al., 2009; Niwa et al., 2016).  
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Due to the dimeric nature of active KIF1A, endogenous KIF1A monomers may 

dimerize with the transiently expressed KIF1A-V8M and interfere with the functionality of 

the assay. As such, I conducted an immunoblot on whole cell lysates to determine if the 

cell lines I chose endogenously express KIF1A. COS-7 did not express KIF1A, however, 

the SK-N-SH immunoblot showed two bands at around 200 and 215 kDa (Figure 3.1A). 

Splice variants of KIF1A exist with 3 isoforms that have been defined and 13 potential 

isoforms which explains the second band on the immunoblot (The Uniprot Consortium, 

2019). I immunoblotted primary neuron lysate as a positive control, HeLa cells as a 

negative control, and GADPH as a loading control. Ultimately, phenotypic 

characterization, i.e., motor distribution, is needed to determine if the endogenous KIF1A 

affected V8M phenotypes in SK-N-SH cells. 

Table 3.1. Cloned KIF1A-GFP Plasmids and Expected Cellular Phenotypes 

Plasmid Expected Phenotype 

pEF-WT-KIF1A-GFP Soluble, Diffuse 

pEF-V8M-KIF1A-GFP Peripherally Accumulated, Microtubule-
Bound 

pTetOne-WT-KIF1A-GFP Soluble, Diffuse 

pTetOne-V8M-KIF1A-GFP Peripherally Accumulated, Microtubule-
Bound 

Summary of all KIF1A plasmids that were cloned along with the phenotypes expected to be seen when expressed in 
COS-7 and SK-N-SH cells. pEF plasmids drive transgene expression through a human EF1α promoter. pTetOne 
plasmids drive transgene expression through a CMV promoter.  

Next, I successfully cloned four separate plasmids containing both the positive 

control KIF1A-V8M mutant and the negative control WT KIF1A (Table 3.1). To assess 

whether the plasmids drive expression of the cloned transgenes, cells were transfected 

via a liposomal-mediated gene delivery method and allowed to express for 24 hours. 

Cell lysates were generated from cells expressing the constitutively-active pEF plasmids. 

For doxycycline-inducible plasmids, 24 hours post transfection medium was exchanged 

for medium containing a 1:1000 dilution of 1 mg/mL doxycycline stock and allowed to 

express for 24 hours and cell lysates were harvested. Lysates were immunoblotted and 
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all four constructs showed strong bands at approximately 240 kDa, the expected size of 

a KIF1A-GFP fusion construct (3.1B). This confirmed the size of all four fusion proteins. 

In the upcoming sections, I group results based on the characterization of the cellular 

phenotypes seen for each of the KIF1A variants. 

 

Figure 3.1. Representative immunoblots for endogenous KIF1A expression and 
verification of functionality of cloned plasmids 

A) KIF1A is undetectable in COS7 cells. Immunoblot analysis of endogenous KIF1A 
expression in neuronal and non-neuronal cells. KIF1A is detectable in primary hippocampal 
neurons and SK-N-SH lysates. A second band is detected in the SK-N-SH cells which may 
indicate the presence of a KIF1A isoform, for which at least five have been identified 
(https://www.ncbi.nlm.nih.gov/genbank/). B) All four plasmids (pEF and pTetOne vector 
backbones) express the associated wild-type (WT) and V8M mutant KIF1A. Lane three is left 
intentionally blank. Note the absence of KIF1A in COS-7 (Figure 3.1A). 

3.1.2. Phenotypic Characterization of pEF Constructs in COS-7 and 
SK-N-SH 

To ask whether the constitutively-active WT- and V8M-KIF1A-GFP constructs 

were suitable controls for the peripheral accumulation assay, I wanted to determine 

whether there was any difference in the degree of peripheral accumulation between 

them. To accomplish this, I transfected COS-7 and SK-N-SH cells seeded onto glass 

coverslips with the WT- and V8M-KIF1A-GFP constructs. Following 24 hours of 

expression, cells were fixed and mounted onto glass slides and imaged using a 

https://www.ncbi.nlm.nih.gov/genbank/
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widefield, fluorescent microscope. Images were subsequently analyzed using a custom 

CellProfiler pipeline that allowed for determination of the fluorescence intensity 

distribution across four radial cross sections of each cell. Graphs were generated that 

showed the fraction of the total intensity in the outermost cross section (FracAtD), along 

with the fraction of the total intensity normalized for the number of pixels in the specified 

cross section (Mean FracAtD). Mean FracAtD was used to normalize for the varying 

sizes between cells.  

For COS-7, WT-KIF1A-GFP weak fluorescence accumulates at the cell periphery 

(Figure 3.2A). However, V8M-KIF1A-GFP is distributed and accumulates in protruding 

cell processes (Figure 3.2A). V8M-KIF1A-GFP had significantly more (p<0.05) peripheral 

accumulation as compared to WT-KIF1A-GFP (Figure 3.2C), even when normalized for 

cell size (Figure 3.2D). This result shows that active KIF1A peripherally accumulates 

distally and may be suitable as a potential assay for KIF1A activation in COS-7 cells.  

For SK-N-SH, WT-KIF1A-GFP accumulation in the cell periphery was seemingly 

reduced (Figure 3.3A) when compared to KIF1A-V8M-GFP as the latter was readily 

seen distributed in protruding cell processes (Figure 3.3B). However, when quantified, 

there was no significant difference between the WT- and V8M-KIF1A (Figure 3.3C), 

even when normalized for differing cell sizes (Figure 3.3D).  

Next, I wanted to confirm that activation of KIF1A results in a microtubule-bound 

phenotype that may be subsequently quantified. For this, I would look for colocalization 

of KIF1A with a microtubule-marker. I co-transfected either the constitutively-active WT- 

or V8M-KIF1A-GFP constructs along with the microtubule marker EB3-mKate2. Cells 

expressed for 24 hours after which they were fixed, mounted and imaged using 

fluorescence microscopy.  

For COS-7, in the WT-KIF1A-GFP, a diffuse signal was seen throughout the cell 

with no clear colocalization of the KIF1A with EB3 (Figure 3.2B). However, V8M-KIF1A-

GFP accumulated distally and showed a tubular phenotype that colocalized with EB3 

(Figure 3.2B). Although visually the microtubule-bound phenotype was clear, 

quantification of colocalization and degree of overlap was not performed as the analysis 

is being optimized and be pursued in future studies (Figure 3.9). This result shows that 



41 

active KIF1A binds microtubules in the peripheral regions of COS-7 and may be suitable 

as a potential assay for KIF1A activation. 

For SK-N-SH, in the WT-KIF1A-GFP, a diffuse signal was seen throughout the 

cell with no clear colocalization of the KIF1A with EB3, albeit slight peripheral 

accumulation at distal tips (Figure 3.3B). However, the V8M-KIF1A-GFP accumulated 

distally and showed a tubular phenotype that colocalized with EB3-mKate3 (Figure 

3.3B). Although visually the microtubule-bound phenotype was clear, quantification of 

colocalization and degree of overlap was not performed as the analysis is in progress 

(Figure 3.9). This result shows that active KIF1A binds microtubules in the peripheral 

regions of SK-N-SH cells and may be suitable as a potential assay for KIF1A activation 

in SK-N-SH cells. 
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Figure 3.2. Peripheral accumulation and microtubule-binding using pEF 
constructs in COS-7 cells. 

A) Representative image of COS-7 cells expressing wild-type (WT)-KIF1A-GFP and V8M-KIF1A-
GFP. V8M-KIF1A-GFP shows peripheral accumulation while the WT-KIF1A-GFP shows a diffuse 
signal. White arrows identify peripheral accumulation of KIF1A. Scale bar:10μm. B) 
Representative image of COS-7 cells expressing WT-KIF1A-GFP and V8M-KIF1A-GFP with 
EB3-mKate2. V8M-KIF1A-GFP shows colocalization with EB3-mKate2 while WT-KIF1A-GFP 
does not. White arrows identify microtubule colocalization. Scale bar:40μm. C) Fraction at 
distance (FracAtD) of WT-KIF1A-GFP compared to V8M-KIF1A-GFP. V8M-KIF1A-GFP shows a 
significant difference in peripheral accumulation. *p<0.05. n=36 cells, WT; n=23 cells, V8M D) 
Mean fraction at distance (Mean FracAtD) of WT-KIF1A-GFP compared to V8M-KIF1A-GFP. 
V8M-KIF1A-GFP shows a significant difference in peripheral accumulation normalized for cell 
size. *p<0.05. n=36 cells, WT; n=23 cells, V8M 
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Figure 3.3. Peripheral accumulation and microtubule-binding using pEF 
constructs in SK-N-SH cells. 

A) Representative image of SK-N-SH cells expressing wild-type (WT)-KIF1A-GFP and V8M- 
KIF1A-GFP. V8M-KIF1A-GFP shows peripheral accumulation while WT-KIF1A-GFP shows a 
diffuse signal. White arrows identify peripheral accumulation of KIF1A. Scale bar:10μm. B) 
Representative image of SK-N-SH cells expressing WT-KIF1A-GFP and V8M-KIF1A-GFP with 
EB3-mKate2. V8M-KIF1A-GFP shows colocalization with EB3-mKate2 while the WT-KIF1A-GFP 
does not. White arrows identify microtubule colocalization. Scale bar:40μm. C) Fraction at 
distance (FracAtD) of WT-KIF1A-GFP compared to V8M-KIF1A-GFP. V8M-KIF1A-GFP shows no 
significant difference in peripheral accumulation. ns: p>0.05. n=11 cells, WT; n=14 cells, V8M D) 
Mean fraction at distance (Mean FracAtD) of WT-KIF1A-GFP compared to V8M-KIF1A-GFP. 
V8M-KIF1A-GFP shows no significant difference in peripheral accumulation normalized for cell 
size. ns: p>0.05. n=11 cells, WT; n=14 cells, V8M 

 

3.1.3. Doxycycline-Inducible KIF1A Time-Course and Concentration 
Study 

Doxycycline-inducible systems (i.e., pTetOne) allow for transcriptional control of 

transgenes through addition of tetracyclines such as doxycycline. Advantages of using 

such promoters include temporal control of transgene expression, as well as the amount 

of transgene expression one wishes to see, which is particular useful where high levels 

of expression result in toxicity of the cell (Wüst et al., 2020). I wanted to utilize such a 

system to see how finely I can control KIF1A expression so that I could reduce 

background within cells, increasing my signal to noise ratio for easier identification of 

cellular phenotypes. For this, I needed to assess whether doxycycline-induced 
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expression of KIF1A was altered at different concentrations of doxycycline, and whether 

the expression time would affect KIF1A expression in such a system.  

To assess whether expression differs at different time points after addition of 

doxycycline, COS-7 cells were transfected with doxycycline-inducible plasmids 

containing the wild-type KIF1A-GFP transgene and allowed to express for 24 hours at 

which point differing concentrations of 1 mg/mL doxycycline stock solution was added 

(1:10000, 1:5000, 1:1000). Following addition of doxycycline, cells were allowed to 

express the transgene for four hours, eight hours, or 24 hours. Subsequently, cells were 

fixed, mounted on glass slides and imaged using fluorescent microscopy. At four hours, 

only endogenous staining was seen at all dilution factors (Figure 3.4A). However, at 

eight hours and 24 hours, expression of KIF1A-GFP was seen (Figure 3.4A). At the eight 

and 24 hour time points, mean fluorescent intensities were significantly increased across 

all conditions as compared to all four hour conditions (Figure 3.4B). Furthermore, there 

was significant increases in the variation of fluorescent intensities across cells in each 

eight and 24 hour time point as compared to all four hour conditions (Figure 3.4C). In 

addition, eight and 24 hour conditions were compared to see whether there were 

significant differences in fluorescent intensities and radial distributions of fluorescence. 

All 24 hour conditions had significantly higher mean fluorescent intensities as compared 

to the eight hour 1:1000 condition (Figure 3.4D). Moreover, a significant difference was 

seen between the eight hour 1:10000 condition and the 24 hour 1:1000 condition. No 

significant differences were seen in the radial distributions of fluorescence intensities 

across all conditions (Figure 3.4E). Ultimately, the doxycycline-inducible construct acts 

as expected with increasing concentrations and time periods generally resulting in an 

increase of KIF1A expression. However, for the proposed assays, this plasmid seems to 

have no benefit as compared to the constitutively-active construct since expression 

levels do not seem to influence the phenotype of KIF1A. Furthermore, transgene 

expression is still reliant on transcription and translation leading to a lag time in protein 

production which confers no benefit over constitutively-active constructs. 
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Figure 3.4. Time-course and concentration dependent expression by doxycycline-
inducible constructs. 
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A) Representative images of pTetOne wild-type KIF1A-GFP transfected COS-7 cells at differing 
time points (4, 8 and 24 hours) and dilutions of 1mg/mL doxycycline stock solution (1:10000, 
1:5000, 1:1000). At 4 hours, no expression is seen at all dilutions, while at 8 and 24 hours 
expression of KIF1A-GFP is seen. Expression seems to increase at increasing concentrations of 
doxycycline and longer time points. Scale bar:10μm. B&C) Comparison of mean fluorescence 
intensity (mean IU) and radial coefficient of variation (radial CV) between 4 hours of expression 
and 8 and 24 hours at all dilutions. All time points and dilutions showed significant differences in 
mean fluorescence intensity. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 when compared to 4h 
1:10000 dilution, +p<0.05, ++p<0.01, +++p<0.001, ++++p<0.0001 when compared to 4h 1:5000 
dilution, $p<0.05, $$p<0.01, $$$p<0.001, $$$$p<0.0001 when compared to 4h 1:1000 dilution. n ≥ 6. 
D&E) Comparison of mean fluorescence intensity (mean IU) and radial coefficient of variation 
(radial CV) between 8 and 24 hours at all dilutions. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
n ≥ 6 cells. 

3.1.4. Phenotypic Characterization of pTetOne Constructs in COS-7 
and SK-N-SH 

To ask whether the constitutively-active WT- and V8M-KIF1A-GFP constructs 

were suitable controls for the peripheral accumulation assay, I wanted to determine 

whether there was any difference in the degree of peripheral accumulation between 

them. To accomplish this, I transfected COS-7 and SK-N-SH cells seeded onto glass 

coverslips with the WT and V8M KIF1A-GFP constructs. Following 24 hours of 

expression, media was exchanged for media containing doxycycline at a 1:10000 

dilution of 1mg/mL stock and allowed to express for 24 hours. A 1:10000 dilution was 

used as it provided similar expression levels to higher concentrations of doxycycline at 

the same time point (Figure 3.4D) and higher concentrations of doxycycline are cytotoxic 

(Ermak et al., 2003). Cells were fixed, imaged, and subsequently analyzed using a 

custom CellProfiler pipeline. 

For COS-7, WT-KIF1A-GFP weakly accumulates at the cell periphery (Figure 

3.5A). However, V8M-KIF1A-GFP distributes and accumulates in protruding cell 

processes (Figure 3.5A). When quantified, there was no significant difference in 

peripheral accumulation (Figure 3.5C), even when normalized for differing cell sizes 

(Figure 3.5D). Ultimately, this may be due to relatively low sample sizes (n=7, WT; n=9, 

V8M) as the phenotype is clear via visual assessment. This result shows that active 

KIF1A peripherally accumulates distally, however, this doxycycline-inducible construct 

may not be suitable for downstream peripheral accumulation assay development. Larger 

sample sizes would be needed to determine suitability for this peripheral accumulation 

assay.  
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For SK-N-SH, WT-KIF1A-GFP showed little accumulation in the cell periphery 

(Figure 3.6A). However, V8M-KIF1A-GFP was clearly distributed and accumulated in 

protruding cell processes (Figure 3.6A). When quantified, there was no significant 

difference in peripheral accumulation (Figure 3.6C), even when normalized for differing 

cell sizes (Figure 3.6D). Ultimately, this may be due to low sample sizes (n=3, WT; n=4, 

V8M) as the phenotype is clear via visual assessment. Conversely, as with the 

constitutively-active SK-N-SH, the irregular shape of the SK-N-SH cells may affect the 

output of the assay since the nucleus tends to be located close to the cell periphery. 

Furthermore, dimerization between the V8M mutant and endogenously expressed KIF1A 

may occur resulting in decreased motility and subsequent peripheral accumulation 

(Figure 3.1A). This result shows that active KIF1A peripherally accumulates distally, 

however, this doxycycline-inducible construct may not be suitable for downstream 

peripheral accumulation assay development. Higher sample sizes would be needed to 

determine suitability for peripheral accumulation assaying. 

Next, I wanted to confirm that activation of KIF1A results in a microtubule-bound 

phenotype. I co-transfected either the doxycycline-inducible WT- or V8M-KIF1A-GFP 

constructs along with the microtubule marker EB3-mKate2. Cells expressed the 

plasmids for 24 hours after which they were fixed, mounted and imaged using 

fluorescence microscopy.  

For COS-7, WT-KIF1A-GFP shows a diffuse signal throughout the cell with no 

clear colocalization of the KIF1A with EB3 (Figure 3.5B). However, V8M-KIF1A-GFP 

accumulates distally and shows a tubular phenotype that colocalizes with EB3-mKate2 

(Figure 3.5B). Although visually the microtubule-bound phenotype was clear, 

quantification of colocalization and degree of overlap was not performed as the analysis 

is in progress (Figure 3.9). This result shows that active KIF1A binds microtubules in the 

peripheral regions of the COS-7’s and may be suitable as a potential assay for KIF1A 

activation in COS-7 cells.  

For SK-N-SH, WT-KIF1A-GFP shows a diffuse signal throughout the cell with no 

clear colocalization of the KIF1A with EB3 (Figure 3.6B). However, the V8M mutant 

accumulates distally and shows a tubular phenotype that colocalizes with EB3-mKate2 

(Figure 3.6B). Although visually the microtubule-bound phenotype was clear, 

quantification of colocalization and degree of overlap was not performed as the analysis 
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is in progress (Figure 3.9). This result shows that active KIF1A binds microtubules in the 

peripheral regions of SK-N-SH cells and may be suitable as a potential assay for KIF1A 

activation in SK-N-SH cells. 
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Figure 3.5. Peripheral accumulation and microtubule-binding using pTetOne 
constructs in COS-7 cells. 

A) Representative image of COS-7 cells expressing doxycycline-inducible wild-type (WT) KIF1A 
and V8M mutant KIF1A. The V8M mutant KIF1A-GFP shows peripheral accumulation while the 
WT KIF1A-GFP shows a diffuse signal. White arrows identify peripheral accumulation of KIF1A. 
Scale bar:10μm. B) Representative image of COS-7 cells expressing WT KIF1A and V8M mutant 
KIF1A with EB3-mKate2. The V8M mutant KIF1A-GFP shows colocalization with EB3-mKate2 
while the WT KIF1A-GFP does not. White arrows identify microtubule colocalization. Scale 
bar:10μm. C) Fraction at distance (FracAtD) of WT KIF1A compared to V8M KIF1A. V8M KIF1A 
shows no significant difference in peripheral accumulation. ns: p>0.05. n=7 cells, WT; n=9 cells, 
V8M D) Mean fraction at distance (Mean FracAtD) of WT KIF1A compared to V8M KIF1A. V8M 
KIF1A shows no significant difference in peripheral accumulation normalized for cell size. ns: 
p>0.05. n=7 cells, WT; n=9 cells, V8M 
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Figure 3.6. Peripheral accumulation and microtubule-binding using pTetOne 
constructs in SK-N-SH cells. 

A) Representative image of SK-N-SH cells expressing doxycycline-inducible wild-type (WT) 
KIF1A and V8M mutant KIF1A. The V8M mutant KIF1A-GFP shows peripheral accumulation 
while the WT KIF1A-GFP shows a diffuse signal. White arrows identify peripheral accumulation of 
KIF1A. Scale bar:10μm. B) Representative image of SK-N-SH cells expressing WT KIF1A and 
V8M mutant KIF1A with EB3-mKate2. The V8M mutant KIF1A-GFP shows colocalization with 
EB3-mKate2 while the WT KIF1A-GFP does not. White arrows identify microtubule colocalization. 
Scale bar:10μm. C) Fraction at distance (FracAtD) of WT KIF1A compared to V8M KIF1A. V8M 
KIF1A shows no significant difference in peripheral accumulation. ns: p>0.05, n=3 cells, WT; n=4 
cells, V8M D) Mean fraction at distance (Mean FracAtD) of WT KIF1A compared to V8M KIF1A. 
V8M KIF1A shows no significant difference in peripheral accumulation normalized for cell size. 
ns: p>0.05, n=3 cells, WT; n=4 cells, V8M 

3.1.5. Stable Cell Line Generation 

Designing a cell-based, phenotypic assay suitable for high-throughput screening 

is reliant on reducing variability in your assay, particularly cell to cell variability, allowing 

for a robust Z’ (Figure 1.12; Macarron & Hertzberg, 2009). As such, generation of 

monoclonal stable cell lines is crucial as this allows for consistent expression levels of 

the proteins of interest, in this case, KIF1A and EB3. Furthermore, this is critical for 

downstream optimization of analysis parameters as you increase the amount of cell 

samples containing your proteins of interest thereby allowing for a more robust analysis 

and generation of Z’. I planned to generate eight total cell lines, four for both COS-7 and 

SK-N-SH (Table 3.2). 
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Table 3.2. Generation of Stably Expressing Monoclonal Cell Lines 

Cell 
line 

pEF-WT-
KIF1A-

GFP 

pEF-V8M-
KIF1A-GFP 

pTetOne-
WT-KIF1A-

GFP 

pTetOne-
V8M-KIF1A-

GFP 

EB3-
mKate2 

COS-7 X  

 

 

 

 

 

X 

 

 

X 

 

 

 

 

 

X 

  

 

X 

 

 

 

X 

  

 

 

 

X 

 

X 

SK-N-
SH 

X  

 

 

 

 

 

X 

 X 

 

 

 

 

 

X 

  

 

X 

 

 

 

X 

  

 

 

 

X 

 

X 

A table showing all potential stable cell lines I plan to generate. X demarks the transgenes that will be stably 
incorporated into COS-7 and SK-N-SH. Currently, I have generated polyclonal lines expressing EB3-mKate 2. 

To start, I wanted to begin by generating a monoclonal cell line with optimal 

expression levels for the microtubule marker EB3-mKate2 as every cell line generated 

would have this for the microtubule-binding assay. This would reduce the variability from 

cell to cell and between WT and V8M conditions of each cell line. To do this, lentiviruses 

were packaged with a custom generated EB3-mKate2 plasmid. Both COS-7 and SK-N-

SH were transduced with the lentivirus for 48 hours. Cells were subsequently screened 

for expression of fluorescence. Viral media was exchanged for selection media 

containing puromycin (0.8μg, COS-7; 0.7μg, SK-N-SH) and allowed to select and form 

colonies. Selection media was exchanged every three days and transduced cells were 

screened for fluorescence. Once fluorescent colonies grew to confluence, cells were 

seeded onto coverslips and imaged using fluorescent microscopy. Polyclonal cell lines 

expressing EB3-mKate2 were generated for both COS-7 and SK-N-SH cells (Figure 

3.7). Monoclonal cell lines are currently being generated. 
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Figure 3.7. Polyclonal SK-N-SH and COS-7 cells stably expressing EB3-mKate2.  
A representative phase and fluorescent image of polyclonal SK-N-SH and COS-7 cells stably 
expressing EB3-mKate2. Scale bar:100μm 

 

3.2. Generation of High-Throughput Analyses 

3.2.1. Fluorescence Intensity Distribution Analysis Workflow for 
Peripheral Accumulation Assay 

Automation of analyses is critical for a viable high-throughput workflow. I focused 

on generating a fluorescence intensity distribution analysis for assaying of peripheral 

accumulation of KIF1A. Primarily this analysis depends on accurate segmentation of 

cellular compartments, in this case, the nuclei and the cytoplasm. As KIF1A accumulates 
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peripherally, if the cytoplasm was not completely delineated including distal processes, 

high intensity fluorescence generated by aggregation of KIF1A would be excluded from 

the analysis. To accomplish proper segmentation, I generated a custom pipeline in 

CellProfiler. Primary objects, in this case nuclei, needed to be identified and segmented 

properly for the program to accurately apply automatic thresholds in downstream 

modules. Nuclei were identified by applying size exclusion whereby the average nuclei 

size diameter was identified and a percentage range was applied to include nuclei of 

differing sizes within that range (in this case 60 pixel units to 160 pixel units). An 

automatic threshold was then applied using a minimum cross entropy method whereby 

probability maps are applied to the object being identified to try to accurately outline it. A 

Gaussian smooth was needed at a sigma of 1 to allow proper distinguishing of nuclei.  

Once nuclei were properly identified, a second thresholding module was applied 

that utilized another form of automatic global thresholding, the Otsu three class method, 

in which pixels are separated into three classes, foreground, background, and middle. 

The option to move the middle pixels to the background was applied which allowed for 

robust identification of cellular cytoplasm. However, if the pixel intensities fell under a 

given range, unwanted portions of the cytoplasm were moved to the background. This 

can be seen in the “identify cytoplasm” portion of Figure 3.8 in which a portion of the 

orange highlighted cell was moved to the background due to the high degree of 

separation between pixel intensities between perinuclear cytoplasm, periphery, and the 

rest of the cell. Ideally, a whole cell stain would be used during the screen which would 

forego this segmentation issue.  

Lastly, after identification of the cytoplasm, two analyses were conducted: 

fluorescence intensity and fluorescence intensity distribution. The fluorescence intensity 

module gives a range of values including mean intensity (total intensity normalized by 

the amount of pixels in the cell), total intensity (total intensity in the cell), median, 

maximum, and more. For the fluorescence intensity distribution analysis, the cytoplasm 

is highlighted and segregated into a number of concentric rings named bins that can be 

scaled for cell size. For each bin, a range of values is given, including fraction at a 

distance (FracAtD; fluorescence intensity of a bin as a fraction of total intensity), mean 

fraction at a distance (Mean FracAtD; FracAtD normalized by number of picture in a bin), 

and radial coefficient of variation (Radial CV; measure of intensity differentials at 

different portions of a selected bin). Ultimately, this analysis is easily automated for a 
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high-throughput screening format and robust in terms of fluorescence distribution 

analysis. However, it would benefit from a whole cell stain to ensure almost perfect 

segmentation for even better analysis of peripheral distribution.  
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Figure 3.8. High-throughput fluorescent intensity distribution analysis workflow. 
A schematic of the fluorescent intensity distribution analysis workflow for peripheral accumulation 
analyses. Greyscale images of the green and blue channels are added and subsequently two 
sets of thresholds are applied to identify primary objects (nuclei) and secondary objects 
(cytoplasm). The cytoplasm is radially segmented (binned), and a heat map is generated with 
varying colors for differing fluorescent intensities. Values are output in CellProfiler and in an Excel 
spreadsheet. 

3.2.2. Colocalization and Overlap Analyses Workflow for Microtubule-
Binding Assay 

Unlike the fluorescence intensity distribution assay where segmentation is 

needed for large objects such as the cytoplasm, a robust colocalization analysis needs 

to be able to recognize distinct cellular objects such as puncta, or in the case of my 

assay, microtubular structures. These types of structures can be extremely hard to 

identify using traditional thresholding methods and as such, enhancements need to be 

made to identify these structures.  

I started the design of a custom pipeline on CellProfiler that allows for analysis of 

colocalization and overlap between KIF1A-GFP and EB3-mKate2. First, a Laplacian of 

Gaussian (LoG) function is applied to both greyscale images to be able to identify edges 

within the cell, such as the microtubules. The LoG function is ideal for detection of areas 

that exhibit rapid changes in intensity, such as the microtubules. It allows for detection of 

the complete microtubular structure since the microtubules have a relatively consistent 

intensity across their length with large drop offs of intensity along their edges. A large 

degree of noise is often seen along their length, as seen in the V8M-KIF1A-GFP mutant 

(Figure 3.3B), of which the LoG is sensitive to. As such, this function applies a Gaussian 

smooth on top of the edge detection to better identify areas of differing intensity. The 

values used for the LoG function are automatically generated by CellProfiler and seem 

to identify edges well.  

Next, a morphological function (openlines) is applied in which pixels around 

those edges are eroded to further reduce noise and then the final pixels that make up 

the edges are dilated allowing for easier identification of microtubular structures. A line 

length of two pixels seems to identify microtubular structures quite well. The line length 

is predetermined and is based on the minimum width of the microtubules (approximately 

2 pixels). Minimum width was chosen as due to the high degree of noise that is present 

near the microtubular structures, particularly along the periphery of the cell, an LoG 
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function may over process the image reducing average microtubule size (measured to 

be around 3 pixels). As such, using a width smaller than that of average allows for a 

larger number of microtubular structures to be detected. Unfortunately, this function also 

detects cellular structures such as edges of nuclei, the cell periphery, and vesicular-like 

structures within cells as these structures typically fall into the line length range of the 

microtubules. This is a detriment to the next step, in which a global threshold is applied 

to both morphed images to allow for binarization of the identified cellular structures. In 

this case, you can see that vesicular structures, cell edges, nuclei edges, and other 

artifacts are identified alongside the microtubules (Figure 3.9). Currently, this is the 

bottleneck in image processing as it disallows proper colocalization and overlap 

measurements. Currently, a sigma of 1 for the thresholding value seems to highlight 

microtubules the best while minimizing other foreground objects such as vesicular 

structures and cell edges. However, these objects are still present. Due to the 

identification of such vesicular structures, cell edges, nuclei edges, and other artifacts in 

both the KIF1A-GFP and EB3-mKate2 images, the degree of colocalization and overlap 

identified by the software is skewed high. Ultimately, for an analysis like this to be 

utilized for colocalization and overlap quantification, an ability to filter out unwanted 

structures would be needed.  
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Figure 3.9. High-throughput colocalization and overlap analysis workflow. 
A schematic for a high-throughput colocalization and overlap analysis workflow. Greyscale 
images for both red (EB3-mKate2) and green (KIF1A-GFP) channels are imported into 
CellProfiler. Both images are run through a Laplacian of Gaussian (LoG) function to enhance 
object edges for identification of microtubular structures. Morphological operations (erosion and 
dilation) that further enhance edges are run on both images. Subsequent thresholding allows for 
binarization of images. Binarized images are overlapped and colocalization and overlap analyses 
are run to identify degree of colocalization and overlap of images. Values are output in 
CellProfiler and in an Excel spreadsheet. 
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Chapter 4. Discussion 

4.1. Summary 

Neurons are highly polarized cells comprised of morphologically, biochemically, 

and functionally distinct extensions of the cell body: the axon and dendrites. Establishing 

and maintaining of these domains depends on the bidirectional transport of cargos within 

these microtubule-based structures. Active transport utilizes motor proteins, namely the 

kinesin superfamily (KIFs) for anterograde transport. When any aspect of this process is 

dysregulated the resulting “transportopathy” contributes to neurological disorders, such 

as Huntington’s, Alzheimer’s, and Parkinson’s disease (Millecamps & Julien, 2013). The 

kinesin-3 family member KIF1A is an anterograde motor that is enriched in neurons and 

functions in the transport of cargo such as DCVs and SVPs critical for neuron 

development, maintenance, and viability. Mutations in KIF1A are implicated in the 

pathogenesis of neurological disorders such as HSP. Unfortunately, tool compounds and 

therapies that specifically target KIF1A or transport-related disorders do not exist. One 

potential avenue for discovering such therapeutics and tool compounds is high-

throughput screening. High-throughput screening is a powerful platform that allows one 

to utilize various enzymatic and phenotypic assays to screen numerous small molecules 

and biologics for their effects on a given system.  

As such, my main goal of my project was to design a high-throughput screen for 

small molecule modulators of KIF1A. I focused on designing an assay that could robustly 

differentiate inactive, autoinhibited motors from active microtubule-bound motors. A 

microtubule-binding assay and peripheral accumulation assay were chosen as potential 

assays to be used in a high-throughput screen due to their extensive use in assessing 

motor activation (Hammond et al., 2009; Niwa et al., 2016). Two cell lines, one neuronal 

(SK-N-SH) and one non-neuronal (COS-7), were chosen for these assays due to their 

flat morphologies and large cytoplasm. I was able to generate four plasmids that 

incorporate a GFP-tagged, full length KIF1A motor (Table 3.1).  

Doxycycline-inducible plasmids were assayed for differences in expression at 

varying time points and concentrations to assess their suitability in reducing background 

noise due to overexpression of KIF1A. Significant differences were seen in expression 

levels in the eight and 24 hour conditions compared with that of the four hour condition, 
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in which little to no expression was seen (Figure 3.4). Furthermore, expression levels 

between all time points and concentrations were similar, except between the 1:1000 

eight hour condition and all 24 hour conditions, as well as 1:10000 eight hour time point 

and 1:1000 24 hour condition. Ultimately, doxycycline-inducible plasmids were 

determined to confer no benefit over constitutively-active plasmids in the context of my 

assays as expression times are similar between plasmids and expression levels 

generally were not significantly altered in most conditions.  

Two suitable controls were determined, a wild-type KIF1A for the negative 

control, and a hyperactive mutant, V8M KIF1A, for the positive control. I characterized 

the phenotypes of all four plasmids when co-expressed with EB3-mKate2, a microtubule 

marker, and found that in the wild-type conditions, motors displayed a diffuse localisation 

in the cytoplasm (Figure 3.2; 3.3; 3.5; 3.6). Conversely, in the V8M mutant motors 

peripherally accumulated and colocalized with EB3-mKate2 (Figure 3.2; 3.3; 3.5; 3.6). 

These phenotypes were visually seen in both COS-7 and SK-N-SH. However, when 

quantified, there was only a significant difference in peripheral accumulation between 

WT KIF1A and V8M KIF1A in one condition, COS-7 with pEF-KIF1A-GFP plasmids 

(Figure 3.2C and D). This may have been the result of lower sample sizes in the SK-N-

SH and pTetOne conditions. Conversely, in SK-N-SH, problems with the fluorescent 

distribution analysis may be a result of the irregular morphologies of SK-N-SH which 

situate the highly-fluorescent perinuclear area, close to the cell periphery. Moreover, 

there may be a decrease in the degree of transport due to hampering of the hyperactive 

V8M mutant by dimerization with endogenous KIF1A (Figure 3.1A). Microtubule-binding, 

although present in all V8M mutant conditions, was not quantifiable due to problems 

encountered in the design of the analysis. Ultimately, these results suggest COS-7 and 

pEF-KIF1A-GFP plasmids as optimal for downstream validation for high-throughput 

screening. 

Furthermore, I was able to generate two polyclonal COS-7 and SK-N-SH stably 

expressing EB3-mKate2 (Figure 3.7), with monoclonal colony generation being currently 

underway. Lastly, I was able to construct a high-throughput analysis pipeline using 

CellProfiler software that allows for accurate quantification of fluorescence intensity 

distribution across cells (Figure 3.8), as well as begin preliminary construction of a high-

throughput analysis pipeline for colocalization and overlap between the microtubule 

marker EB3-mKate2, and the variants of KIF1A-GFP (Figure 3.9).   
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4.2. Complications in Assay Design 

One major bottleneck encountered in optimizing the microtubule-binding and 

peripheral accumulation assays for a high-throughput screen was the development of 

stable cell lines incorporating the microtubule marker EB3-mKate2 and the constitutively-

expressed or doxycycline-on variants of KIF1A-GFP. In both cell lines, COS-7 and SK-

N-SH, similar problems regarding stable integration of the plasmid were seen. Post-

transfection and infection with the desired plasmid, cells were allowed to express the 

transgene and resistance-marker for 24 or 48 hours. Cells were assessed using 

fluorescence microscopy for expression of the transgene. Selection media was added, 

and transgene-expressing colonies allowed to form. Although stable colonies were seen 

to be forming, fluorescence microscopy showed an absence of fluorescence with only 

the occasional fluorescent cell being detected within the colony. 

Stable cell line generation depends on the incorporation of your construct into the 

cell’s genome. The efficiency of this incorporation depends on a host of factors, namely 

transfection efficiency, selection conditions and the stability of expression by your 

promoter. Several different transfection methods were used including liposome-mediated 

methods and electroporation, with consistent 80-90% transfection rates. In addition, 

selection conditions were chosen through a killing curve in which 100% of non-

transfected cells were dead after 4-5 days. Control cells plated alongside transfectants 

were 100% dead at the time of colony formation. This suggested that the resistance 

gene was incorporated and that the problem may lie in the expression or integration of 

the transgene. Interestingly, promoter-mediated silencing of transgenes during selection 

via methylation of the CpG islands of the promoter is often seen in constructs driven by 

the cytomegalovirus (CMV) promoter (Teschendorf et al., 2002; Brooks et al., 2004; 

Zuniga et al., 2019).  

Originally, a CMV-promoter driven construct was used for expression of the 

KIF1A-GFP variants and EB3-mKate2, which could possibly explain the absence of 

KIF1A-GFP or EB3-mKate2 expression. A variety of alternate promoters exist that are 

inherently more resistant to methylation-based silencing during stable cell lines formation 

such as the human eukaryotic translation elongation factor 1 (EF1α) and beta-actin (β-

actin) promoter (Teschendorf et al., 2002; Wang et al., 2017; Zuniga et al., 2019). 

Furthermore, promoters such as the EF1α promoter drive more consistent expression of 



67 

transgenes across cells compared to that of the CMV promoter (Wang et al., 2017). This 

is a benefit for my assay as consistent expression levels from cell to cell reduce 

variability in fluorescence intensity distribution, an output of my analysis. As such, I 

cloned the transgenes for the constitutively-expressed KIF1A wildtype and V8M variants 

into a new vector, one that is driven by the EF1α promoter. Furthermore, I wanted my 

stable cell lines to be derived from the same monoclonal population of EB3-mKate2 

expressing cells (both COS-7 and SK-N-SH) as this would reduce variability of 

expression levels across all stable cell lines allowing for more robust colocalization or 

overlap analysis between channels. However, the same problems were seen as that of 

the KIF1A variants since the transgene was driven by the CMV promoter. To ensure that 

the EB3-mKate2 transgene was stably incorporated into my cell lines, I employed a 

lentiviral-mediated strategy as lentiviral-mediated incorporation of transgenes decreases 

stable cell line generation times, and increases the stability and likelihood of integration 

events (Tandon et al., 2018). Furthermore, Applied Biological Materials (ABM, 

Richmond, BC) was employed to clone the transgene into an EF1α promoter driven 

plasmid to decrease the likelihood of promoter silencing, as well as package the 

lentivirus. Currently, polyclonal lines expressing EB3-mKate2 for both COS-7 and SK-N-

SH have been generated using lentiviral-mediated transgene delivery. Monoclonal cell 

line generation is currently ongoing. 

Unfortunately, due to unforeseen circumstances such as the COVID-19 

lockdown, reagent production and delivery times by ABM, as well as reagent quality 

(inadequate viral titers), the generation of stable cell lines has been the bottleneck in 

progression of this assay to a suitable high-throughput screening format. Downstream 

analyses including a high-throughput fluorescence distribution analysis, as well as a 

colocalization analysis, are dependent on stable cell line generation. Stable cell lines for 

my positive (V8M KIF1A-GFP) and negative (WT KIF1A-GFP) controls would allow me 

to generate images at the Center for High-Throughput Chemical Biology which would 

include a high number of dual-expressing cells (variant of KIF1A-GFP with EB3-mKate2) 

with consistent expression levels across cells. I have been unable to accomplish this 

using transient transfection methods as co-transfection yielded a low percentage of dual-

expressing cells with varying expression levels of the transgenes. Uniform expression of 

both fluorescent markers are critical for segmentation of the cytoplasm of the cells from 

the background and nuclei which is dependent on consistent thresholding: an image 
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analysis technique that benefits from compartmentalized fluorescent uniformity, 

particularly in a high-throughput format. With proper segmentation and consistent 

expression levels within control groups, optimization of a robust, high-throughput 

fluorescence distribution analysis and colocalization analysis could be achieved.  

One of the main problems seen currently in terms of the image analysis is that 

segmentation, although quite good at detecting cell edges when fluorescence intensity is 

uniform, can fall apart when a high degree of fluorescence is aggregated in the tips of 

processes that extend out from the cell (Figure 3.5A). Due to the discrepancy of the 

fluorescence intensities between the tip of the process and the main cell body, 

segmentation software will typically remove the highly intense portion and consider that 

as a separate object compared to the cell body. Particularly in the COS-7 cells which 

tend to accumulate the KIF1A-GFP in processes extended away from the cell body, this 

alters the values outputted by the fluorescence distribution analysis. It is a possibility, 

however, that automated segmentation still will not properly segment cytoplasmic 

regions in stable cell lines, particularly expressing the positive control V8M KIF1A-GFP 

mutant, as accumulation at the tips of processes may result in them being considered as 

a separate object. A solution for this is using a whole-cell live stain such as Cellomics 

Whole Cell Stain (Thermofisher, Waltham, MA, USA) which would demarcate the entire 

cell including the processes allowing for easy segmentation of the cytoplasm from the 

background. Another solution to this problem would be to expand the radial segments 

used in the fluorescence distribution analysis out past the cells borders (Kapitein et al., 

2010). Cell segmentation would not be needed in this case as one could use an average 

of the cell size to expand a non-scaled radial segment out from the nuclei, an easily 

segmented cellular compartment. This would allow for capture of peripheral aggregates 

in the protruding cell processes, albeit losing some accuracy as cell sizes may differ 

slightly. Conversely, use of a watershed method in which pixel values are treated as 

local topography may confer advantages over a complete cell segmentation strategy 

(Meyer, 1994). Using a watershed method, one can identify regions of high intensity 

corresponding to accumulations of KIF1A-GFP while disregarding regions of low 

intensity, such as the cytoplasm. Furthermore, this method would allow one to 

completely forgo segmentation and focus on the number and intensity of punctate 

KIF1A-GFP aggregates throughout the whole image. These outputs would correspond to 

the degree of peripheral accumulation seen. However, it is important to note that KIF1A-
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GFP intensities tend to be high perinuclearly, so a strategy such as excluding a defined 

region outside the nuclei or a highly optimized watershed based on average 

fluorescence intensities in KIF1A-GFP aggregates may be needed. 

 Another challenge is the segmentation of the microtubules in both the EB3-

mKate2 and positive control (V8M KIF1A-GFP). Although thresholding microtubule 

structures post erosion and dilation of a greyscale image is relatively simple to do, a 

number of Golgi- and ER- localized vesicular structures, along with cell edges and 

nuclear edges, are also eroded and dilated with them. Conversely, bleed through of 

microtubule structures could alter the analysis, however, this was tested for previously 

(Appendix; Figure A2.). Following binarization via thresholding and overlaying of the 

microtubule mask with the KIF1A image, colocalization and overlap (quantified via 

Pearson correlation coefficient and F-score) are affected due to the identical 

segmentation of vesicular and edge objects giving an unreliable correlation or overlap 

between microtubules and KIF1A (Figure 3.9). One way to overcome this would be by 

training a pixel-classifier, such as Ilastik or Cell Profiler Analyst, to identify microtubules, 

while ignoring vesicular and other structures. Pixel-classifiers work by assigning labels to 

pixels depending on the user-chosen pixel features such as intensity, texture 

descriptors, and edge filters. Following training by identifying key features and addition 

of a number of images that contain those features, the pixel-classifier can robustly 

identify complex structures that general thresholding would not be able to (Berg et al., 

2019). With stable cell lines generated, one would be able to accurately train a pixel-

classifier with a high number of cell images to identify microtubular structures and 

consequently import them into a colocalization analysis pipeline.  

4.3. High-throughput Assaying of KIF1A 

Established assays for transport kinesins and dynein have been adapted to high-

throughput screening formats including ATPase assays, FRET-based biochemical 

assays, and inducible-transport assays. So far, the only transport kinesin that has been 

probed for small-molecule modulators of its activity is the conventional kinesin, kinesin-1 

(also termed KIF5). The first assay, an ELIPA ATPase assay along with an orthogonal 

ADP-Glo ATPase assay, identified seven hits in total, three activators and four inhibitors, 

from the 1280 compound Library of Pharmacologically Active Compounds (LOPAC) 

library (Figure 1.7; Kadakkuzha et al., 2014). Following secondary screening only two 
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inhibitors and one activator were confirmed, a weak ATPase activator and a cysteine site 

modifier. Of note was the Z’ generated for this assay, 0.92, indicating this assay was 

quite robust in assaying kinesin-1 ATPase activity. The second assay was a novel 

FRET-based biochemical assay in which the authors exploited the interaction of a 

lysosomal cargo-adaptor, SKIP, with kinesin light-chain 2 (KLC2; Randall et al., 2017). 

The W-acidic-motif-peptide of SKIP relieves autoinhibition and allows for SKIP to bind to 

KLC2, thus inducing activation of the motor. As such, the authors wanted to find 

compounds that can induce relief of autoinhibition while simultaneously inhibiting SKIP 

binding thereby inducing activation in a SKIP-independent manner. Interestingly, the 

authors found a molecule from the Chemogenomic Library (Pfizer, New York, NY, USA) 

and Hit-2-Lead library (Chembridge, San Diego, CA, USA) which they named Kinesore 

that blocked the interaction between the W-acidic-motif-peptide of SKIP and KLC2, 

relieving autoinhibition and activating the motor. Notably, both these assays may be 

adapted to high-throughput assaying of small molecule compounds of KIF1A. For the 

ATPase assay mentioned above, the only difference would be one would need to purify 

the motor domain of KIF1A for use with commercially available ELIPA kits. The FRET-

based assay, however, is also adaptable for screening compounds that affect 

autoinhibition of KIF1A. KIF1A has multiple domains that regulate autoinhibition, in 

particular, the CC3 and PH domains, the NC and CC1 domains, as well as the CC1 and 

FHA domains (Huo et al., 2012; Wu et al., 2013; Ren et al., 2018). KIF1A autoinhibition 

is relieved through a variety of compounds that interact with various domains of KIF1A. 

For example, calmodulin (CaM), a Ca2+-binding protein, when bound to the CC3 domain 

in physiologically elevated Ca2+ conditions induces an increase in DCV binding and 

trafficking (Stucchi et al., 2018). In addition, ARL-8B, a GTPase, strongly activates 

KIF1A following binding of CC3 by relieving inhibition, presumably through relieving 

CC3-PH domain interactions (Niwa et al., 2016). As the FRET-based assay was 

dependent on seeing a reduction of FRET due to blockage of the SKIP-KLC2 interaction, 

one can develop an assay that applies the same concept to the KIF1A-binding regions of 

ARL-8B, and the ARL-8B-binding regions of the CC3 domain. Conversely, something 

similar may be done with CaM, applying the same concept as discussed above.  

Another transport-based assay strategy that could be adapted for a KIF1A-based 

high-throughput screen is the inducible Golgi/peroxisome dispersion assay (Figure 1.10; 

Kapitein et al., 2010; Vincent et al., 2020). Ultimately, this assay may yield a more 
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physiologically relevant set of hits that affect transport as this assay would be done in a 

particular cellular environment depending on the cell line one chooses. This has its 

benefits and drawbacks. For example, if this assay was run in a non-neuronal cell line 

such as COS-7, benefits would include the absence of possible neuronal specific factors 

that may affect KIF1A activity, absence of endogenous KIF1A, or absence of neuron-

enriched microtubule post-translational modifications (PTMs) which affect KIF1A function 

(Bai et al., 2008; Tischfield and Engle, 2010; Hawrylycz et al., 2012). This would yield 

more KIF1A-specific hits absent of any possible perturbations seen in a neuronal 

environment. However, the presence of neuronal specific factors may be a benefit. 

Perhaps one wants KIF1A to be perturbed via microtubules rich in neuron-enriched 

PTMs or neuron-specific factors to assess whether these affect the functionality of the 

hit, in which case a neuron-like cell line, such as SK-N-SH, can be used. These benefits 

also hold true for my microtubule-binding and peripheral accumulation assay which is 

why stable cell lines are being generated for both COS-7 and SK-N-SH cells. Notably, 

the Golgi/peroxisome dispersion assay has already been adapted to a high-throughput 

screening format including a robust analysis for discovery of small molecule modulator of 

dynein (Vincent et al., 2020). The concept behind the Golgi/peroxisome dispersion assay 

is the same for both dynein and kinesins, except that the dynein transports the 

peroxisomes retrogradely to perinuclear regions versus the kinesins which would 

distribute the peroxisomes or Golgi to the cell periphery. An interesting aspect of this 

high-throughput assay was that the authors used mean GFP spot size at the perinuclear 

region to assess the degree of activation or inhibition as opposed to the fluorescence 

intensity distribution of the puncta. This allowed the assay to assess the perinuclear 

aggregated puncta intensity and spot sizes and determine the extent of activation or 

inhibition without dealing with issues of segmentation of closely packed cells as I ran into 

in my analysis, instead dealing with the relatively straight forward segmentation of nuclei. 

This assay was deemed to be highly robust achieving a Z’ of 0.56. Ultimately, using this 

as an orthogonal assay, or even developing this as a primary assay for high-throughput 

screening of KIF1A if my assay does not generate a suitable Z’, would be a relatively 

low-cost and already proven way to confirm or generate hits.  

Another transport assay that could be feasibly translated to a high-throughput 

assay for small molecule modulators of KIF1A would be the platform developed by the 

Hermann lab, which allows for high-content organelle trafficking profiling in induced 
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pluripotent stem cell (iPSC)-derived neurons (Pal et al., 2018). In essence, neuronal 

progenitor cells (NPCs) are derived from iPSC’s in microfluidic chambers and 

subsequently matured into whatever neuronal type one desires and whose protocols are 

available for at the time. Following maturation, live cell imaging is conducted, and 

particles are tracked in the soma, proximal and distal axons or dendrites. The 

microfluidic chambers allow for identification and segmentation of neuronal regions such 

as the soma, as well as proximal and distal axons and dendrites. If one used a CRISPR-

Cas9 system to knock-in a fluorescently-tagged KIF1A into the iPSC’s, one could use 

this screen to identify, in a very physiologically relevant environment, modulators of wild-

type KIF1A transport activity. Even more importantly, one can knock-in a disease-

causing KIF1A mutant and differentiate the iPSC’s into a disease-relevant neuronal 

subtype such as an upper motor neuron or a glutamatergic neuron in the case of HSP. 

One would then have a very robust disease model in which you could assay for hits that 

would possibly specifically target that mutant and its downstream effects.  

4.4. Potential Therapeutics and Tool Compounds 

Currently, therapeutics for transport kinesins do not exist and tool compounds 

that allow for study of kinesin function are scarce. Broadly, compounds could be found 

that affect one or more of the three main domains of transport kinesins; the motor 

domain, regulatory domains, or cargo binding domains. At the moment, compounds 

found from high-throughput screens involving transport kinesins have found molecules 

that namely act on the motor domain. Kinesore, a kinesin-1 regulatory domain modulator 

is the only known confirmed modulator of a domain outside that of the motor domain 

(Randall et al., 2017). As high-throughput screens of small molecule libraries that target 

transport kinesins become more common, more compounds are becoming available that 

purportedly target kinesins. For example, in the kinesin-1 ATPase-based screen 

mentioned previously, two inhibitors and one activator were found (Kadakkuzha et al., 

2014). The activator, P1,P4 -Di(adenosine-50 ) tetraphosphate ammonium salt (Ap4A) is 

proposed to inhibit adenosine kinase activity in vitro and in vivo and affects numerous 

biological activities such as causing nitric oxide release and alterations in calcium levels. 

The authors, however, did not test whether this molecule is kinesin-1 specific, which 

would be unlikely due to the conservation of sequence of the ATPase domain across 

kinesins. If this holds true, this molecule may be useful as a tool compound for 
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increasing ATPase activity across kinesins thereby useful for modulation studies of 

various transport kinesins. Interestingly, Ap4A, when cleaved, produces ATP and ADP 

as a byproduct which may serve as a mechanism of action of this compound on the 

ATPase domain of kinesin-1 by increasing ATP pools locally around the motor 

(Guranowski and Blanquet., 1985). However, because Ap4a is a known modulator of 

Ca2+ levels in vitro and in vivo, such a compound would be rendered relatively useless 

for studies of KIF1A in neurons as KIF1A is heavily modulated by Ca2+-binding proteins 

such as CaM (Kadakkuzha et al., 2014; Stucchi et al., 2018). Furthermore, neuronal 

environments are sensitive to local and global changes in Ca2+ levels, with a variety of 

deleterious phenomena documented when Ca2+ homeostasis is altered (Gleichmann 

and Mattson., 2011; Tong et al., 2018; Glaser et al., 2019). An inhibitor of interest that 

was found was 4-chloromercuribenzoic acid which acts as a cystine active site modifier 

due to its interaction with free sulfhydryl groups (Kadakkuzha et al., 2014). Currently, no 

biochemical studies have been done that assess the effects of compounds of this class 

on the kinesin superfamily of proteins.  

The question, however, remains as to what compounds could be found that alter 

KIF1A activity in either an inhibitory or activating manner. Most likely a majority of hits 

would not be KIF1A or transport kinesin specific in general as many hits would most 

likely work on regulatory pathways that affect kinesins such as through kinase or 

phosphatase activity modulation. In addition, these hits may work on processes that 

affect transport such as microtubule destabilization and stabilization. It is also important 

to discuss how such compounds could alter activity downstream of KIF1A activity and 

consequently disease states.  

One possibility would be compounds that bind KIF1A-specific regions of the 

motor domain and allosterically regulate ATPase activity or microtubule-binding such as 

is seen with Monastrol in Eg5 (Figure 4.1A; Kapoor et al., 2000; Maliga et al., 2002). 

Although the structure and function of the motor domain is conserved across kinesins, 

motors such as Eg5 and KIFC1 have specific sequences within these highly conserved 

regions (Maliga et al., 2002; Yang et al., 2014). As such, it is not unreasonable to believe 

that an ATPase assay would uncover novel regulators of ATPase activity in KIF1A 

through either allosteric regulation of the nucleotide-binding pocket, or mechanical 

actuator regions such as Switch I/II. In addition, it is possible that certain compounds 

exist that act similar to the compound adenylyl-imidodiphosphate (AMP-PNP), a non-



74 

hydrolysable analogue of ATP used in various testing of kinesin function (Cai et al., 

2007; Kaul et al., 2011). Ideally, such a compound would be cell-permeable as currently 

membranes must be permeabilized for AMP-PNP to enter cells. Furthermore, 

microtubule-binding assays or microtubule-gliding assays could identify allosteric 

regulators or direct modulators of domains involved in microtubule-binding such as the 

neck linker or K-loop of KIF1A. A second, more complex region to assess and target 

compounds for, is the regulatory regions of KIF1A, which include the NC, CC1, FHA, 

and CC2 domains. As the autoinhibition seen in KIF1A and mechanisms that regulate 

this process are not well understood, assays that would allow for targeting of this domain 

via a small-molecule library or biologics would be difficult. Ultimately, secondary assays 

that specifically assess the autoinhibitory process would be needed to screen hits for this 

region. A possible type of compound that could, in theory, act as an activator, could be 

dimeric macrocyclic peptides (Figure 4.1B; Ito et al., 2015; Vinogradov et al., 2019). 

These biologics could theoretically induce the dimerization of the KIF1A monomers 

through cross-linking of regulatory domains such as the CC1 domains of separate 

monomers. How these types of molecules would overcome the inherent autoinhibition in 

wildtype KIF1A is unknown. However, in mutant KIF1A, where either the motor is 

inefficient due to an inability to stay on the microtubule tracks, or due to a reduced 

efficiency in the ATPase, increasing the pool of activated motors via macrocyclic 

peptide-induced dimerization could alleviate downstream effects of cargo transport 

insufficiencies. Lastly, the cargo-binding domain, which also has a regulatory function via 

the CC3-PH domain interaction, can be targeted for both inhibitory and activating 

compounds. FRET-based assays, as mentioned above, can be devised to allow for 

assessment of changes in interaction between the CC3 and PH domains of KIF1A. As 

such, discovered compounds may act similarly to that of Kinesore, in which they bind 

specific regulatory motifs of the KIF1A tail such as ARL8B or CaM binding sites, 

activating the motor in the process independent of regulatory proteins. Conversely, 

inhibition can occur via molecules that bind to regions adjacent to that of known 

regulatory sites of the tail domain that either competitively inhibit or allosterically inhibit 

binding of regulatory molecules.  
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Figure 4.1. Potential KIF1A-specific hit compounds.  
A) A schematic representing small molecule compounds working on various domains of KIF1A. 
Small molecule modulators of the domain may result in increased ATPase activity or increased 
microtubule on-rates resulting in activation of the motor. Conversely, they may inhibit the motor in 
similar ways. Small molecule modulators may also disrupt interactions between the CC3 and PH 
domains resulting in relief of autoinhibition and activation of motors (Gabrych et al., 2019). B) A 
schematic representing dimerized macrocycle peptides working to activate KIF1A monomers via 
forced dimerization (Ito et al., 2015; Gabrych et al., 2019).  

Another consideration when screening for compounds using a cell-based, 

phenotypic screen, would be the likely probability of getting false positive hits. These hits 

could make it look as if KIF1A itself is being modulated but instead affects KIF1A 

regulatory molecules such as glycogen synthase kinase 3 beta (GSK3β) or calmodulin 

kinase II (CaMKII) (Stucchi et al., 2018; Gan et al., 2020). Conversely, false positive hits 

could work on the microtubule network via destabilization or stabilization of the tracks. 
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As such, robust secondary assays are needed to confirm KIF1A-specificity of the hits. 

The assay I developed took into account the latter consideration by co-expressing the 

KIF1A variants with a microtubule marker EB3-mKate2. If molecules were to destabilize 

microtubules, a phenotype similar to that seen in fenbendazole-treated cells would be 

seen (Dogra et al., 2018). Conversely, stabilization of the microtubules could mimic 

phenotypes seen through paclitaxel treatment although my assay would not detect this, 

but the change in dynamics could affect transport (Yang and Horwitz., 2017). Although 

compounds that affect regulatory molecules and microtubules directly are needed as tool 

compounds and experimental treatments, particularly for certain types of cancers and 

neuropathology’s such as Alzheimer’s disease in the case of GSK3β, ultimately I was 

looking for KIF1A-specific compounds as this would minimize off-target effects in the 

body due to the neuron-enriched expression of KIF1A. 

Lastly, how would activators and inhibitors of KIF1A activity relieve pathological 

deficits seen in KAND? Previously, I reviewed an extensive list of possible pathological 

cargo-mediated processes that would result due to deficits in KIF1A function (Gabrych et 

al., 2019). A non-exhaustive list includes defects in synapse formation and maintenance, 

neuronal developmental, maintenance, and plasticity, autophagy disruptions, possible 

APP misprocessing and glial support of myelination (Figure 4.2). For example, in 

mutants that affect the ability of KIF1A to bind ATP, such as T99M, decreases motor 

activity (Nieh et al., 2015). Consequently, proper spatiotemporal delivery of important 

cargos such as the SVPs is impacted resulting in downstream consequences in the 

formation and maintenance of synapses. Indeed, SVP cargos such as synaptophysin, an 

adaptor critical for endocytic recycling and synaptic vesicle maturation, when knocked 

out, results in similar symptomology as complicated HSP patients including intellectual 

disability, epilepsy, and hypotonia (Becher et al., 1999; Schoch et al., 2001; Gordon and 

Cousin, 2013; Harper et al., 2017). Inability to deliver synaptophysin to maturing and 

matured synapses due to defects in motor activity may mimic knock-out phenotypes. In 

this case, activators that increase the availability of the binding pocket to ATP, or 

conversely, more strongly bind the microtubules via enhancements to K-loop function, 

would be ideal. If one found a regulatory region activating compound, such as a dimeric 

macrocyclic peptide that induced dimerization of a greater population of KIF1A motors, 

this could increase the available pool of active motors possibly compensating for the 

decrease in activity seen in a loss-of-function mutant. Conversely, in mutants that cause 
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hyperactivation of KIF1A, such as the V8M mutant, over-accumulation of cargo at 

synapses is often seen, suggesting excessive cargo accumulation may be pathogenic 

(Chiba et al., 2019). Conversely, due to the increased motility and on-rate of such 

mutants, KIF1A may not be able to stop at the proper synaptic site leading to mis-

delivery of cargo to different regions of the neuron. The DCV cargo, nerve growth factor 

(NGF), may give insights into how a hyperactivating mutation can cause a degenerative 

phenotype in affected neuronal populations of HSP patients. NGF is critical for 

neuroprotection against excitotoxicity, regulates axon outgrowth, and modulates 

receptivity to myelination (Kume et al., 2000; Turney et al., 2016). Compartmentalization 

of NGF is integral to how an axon responds to such a signal. When NGF is 

compartmentalized to the soma and proximal axon, axonal pruning occurs, whilst when 

contained in the distal axon, apoptosis-induced soma and axonal degeneration is seen 

(Geden and Deshmukh, 2016; Geden et al., 2019). If the hyperactivating mutant results 

in compartmentalization of NGF to the distal axon, it may result in the degeneration of 

the neuron as is seen in the upper motor neurons of HSP patients. As such, inhibitors 

that either reduce the efficiency of the motor through reduction in force output, 

microtubule on-rate, or disruption of regulatory processes, may allow for changes in 

localizations of cargos thereby altering spatiotemporal effects seen in neurons.  
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Figure 4.2. Summary of KIF1A cargos and potential cellular effects from trafficking 
defects. 

A list of KIF1A-transported cargos and the potential downstream cellular effects when trafficking 
is compromised by KIF1A mutants in neurons.  

 

4.5. Conclusion and Future Directions 

I sought to design a high-throughput screen of small-molecule modulators of 

KIF1A. Namely, I focused on designing an assay that could robustly differentiate 

inactive, autoinhibited, monomeric motors from active, dimeric, microtubule-bound 

motors. I generated four plasmids that incorporate a GFP-tagged, full length KIF1A 

motor (Table 3.1). I characterized the phenotypes of all four plasmids when co-

expressed with EB3-mKate2, a microtubule marker, and found that in the wild-type 

conditions, motors were soluble, and displayed a diffuse localisation in the cytoplasm. 

Conversely, in the V8M mutant, motors peripherally accumulated and colocalized with 
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EB3-mKate2. I further demonstrated this in two cell lines, one neuronal (SK-N-SH), and 

one non-neuronal (COS-7). I was able to generate two polyclonal COS-7 and SK-N-SH 

stably expressing EB3-mKate2, with monoclonal colony generation being currently 

underway. Lastly, I was able to construct a high-throughput analysis pipeline using 

CellProfiler software that allows for quantification of fluorescence intensity distribution 

across cells, as well as begin preliminary construction of a high-throughput analysis 

pipeline for colocalization and overlap between the microtubule marker EB3-mKate2, 

and the variants of KIF1A-GFP.  

Ultimately, my work sets the stage for downstream optimization of a microtubule-

binding and peripheral accumulation assay for a high-throughput screening format. 

However, a number of steps must be undertaken prior to using this assay in a high-

throughput screen. Future work will involve three major steps to ensure the assays 

viability. The first step is to generate monoclonal stable cell lines that co-express EB3-

mKate2 and one KIF1A-GFP variant per cell line, to reduce variability from cell to cell for 

analysis optimization. Secondly, fluorescence intensity distribution, colocalization, and 

overlap analysis optimization will need to be conducted on a large population of stable 

cell lines confirm proper segmentation and downstream analyses dependent on ideal 

segmentation. It is possible that segmentation will still be difficult to accomplish due to 

the varying intensities of signal in distal processes, therefore, a whole-cell stain will need 

to be chosen and validated for segmentation of whole cells. Lastly, once cells and 

analyses have been optimized, validation of the assay itself through generation of a Z’ 

will need to be done prior to proceeding to a pilot screen.  

My work is significant as it contributes another standardized transport-based 

kinesin assay optimized to a high-throughput screening format for either primary, 

orthogonal, or secondary screening. Secondly, the assay is relatively low-cost which 

allows labs with less resources to be able to conduct adjacent screens either with 

reagents I generated, or with alternate transport kinesins of interest. Thirdly, my assay 

may generate hits which affect multiple domains of KIF1A including the motor domain, 

regulatory domains, or cargo-binding domains. This is novel as currently, transport 

kinesin based high-throughput screens typically focus on the ATPase region within the 

motor domain.  
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Furthermore, the significance of potential hits extends to KIF1A-associated 

neurological disorders such as HSP and PEHO syndrome as there is currently no 

KIF1A-targeted therapeutics or tool compounds. Both loss-of-function and gain-of-

function motor mutants may result in aberrant subcellular localizations of essential 

neuronal cargos. These cargos play a variety of roles in the development, maturation, 

and viability of the nervous system, and many are implicated in other neurodegenerative 

disorders. To further our understanding of kinesin-3 motors roles in these disorders, 

cellular characterization of disease-related mutants needs to be carried out. Hits that are 

able to alter motility, regulatory, or cargo-binding properties of KIF1A allow for tool 

compound probing of disease-associated mechanisms of action.   

Overall, my work on developing an assay suitable for high-throughput screen of 

small molecule modulators of KIF1A sets the groundwork for potential discovery of 

KIF1A-specific hits and potential life-altering therapeutics for patients with KAND. 
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Appendix 

 

Figure A.1. Testing of a potential positive control, kinetin. 
Kinetin, a cytokine, was tested as a potential positive control. Kinetin is a cell-permeable cytokine 
that is converted to kinetin triphosphate (KTP), an ATP analogue, in cells (Hertz et al., 2013). I 
wanted to see whether KTP would stimulate an increase in activated KIF1A through microtubule-
binding and peripheral distribution. COS-7 cells were transfected with KIF1A-GFP and allowed to 
express for 24 hours. Kinetin was added at 25μM or 50μM concentrations and subsequently 
fixed, mounted and imaged at varying time points. Numbers above images represent time post-
kinetin addition when cells were fixed. No peripheral accumulation or microtubular phenotype was 
seen at any time point or concentration. Scale bar:10μm. 
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Figure A.2. Bleed-through testing of EB3 fusion constructs. 
Colocalization and overlap analyses require robust identification of cellular features such as 
microtubules. Bleed-through of fluorescence between fluorescent channels can mimic 
colocalization and overlap. I tested two fluorophores, mKate2 and mTagRFP, to see whether 
there is bleed-through from one channel to the next by imaging COS-7 cells transfected with 
either EB3-mKate2 or EB3-mTagRFP. No bleed through was seen at any exposure for EB3-
mKate2. EB3-mTagRFP did show bleed through at all three exposures tested. Scale bar:10μm. 

 


