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Abstract 

This thesis proposes a new machine learning model for predicting the corrosion rate of 3C 

steel in seawater. The corrosion rate of a material depends not just on the nature of the 

material but also on the material's environmental conditions. The proposed machine 

learning model comes with a selection framework based on the hyperparameter 

optimization method and a performance evaluation metric to determine the models that 

qualify for further implementation in the proposed models’ ensembles architecture. The 

major aim of the selection framework is to select the least number of models that will fit 

efficiently (while already hyperparameter-optimized) into the architecture of the proposed 

model. Subsequently, the proposed predictive model is fitted on some portion of a dataset 

generated from an experiment on corrosion rate in five different seawater conditions. The 

remaining portion of this dataset is implemented in estimating the corrosion rate. 

Furthermore, the performance of the proposed models’ predictions was evaluated using 

three major performance evaluation metrics. These metrics were also used to evaluate 

the performance of two hyperparameter-optimized models (Smart Firefly Algorithm and 

Least Squares Support Vector Regression (SFA-LSSVR) and Support Vector Regression 

integrating Leave Out One Cross-Validation (SVR-LOOCV)) to facilitate their comparison 

with the proposed predictive model and its constituent models. The test results show that 

the proposed model performs slightly below the SFA-LSSVR model and above the SVR-

LOOCV model by an RMSE score difference of 0.305 and RMSE score of 0.792. Despite 

its poor performance against the SFA-LSSVR model, the super learner model outperforms 

both hyperparameter-optimized models in the utilization of memory and computation time 

(graphically presented in this thesis). 

Keywords:  corrosion rate; super learner; selection framework; performance 

evaluation metrics; adaptive corrosion protection system 
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Chapter 1.  
 
Introduction 

Corrosion is defined as an irreversible interfacial reaction of a material with its 

environment, which results in the degradation of the material [1,2]. It is the gradual 

destruction of materials (usual metals) by chemical and electrochemical reactions with 

their environment. Corrosion is a critical factor considered in the design phase of 

infrastructures, not only for its implications in structural resistance but also for its 

importance in economic calculation. It implies costly maintenance in the stage of operation 

[3,4]. In 1949, corrosion's cost was equivalent to 2.5% of the U.S. Gross Domestic Product 

(GDP) [5,6]. In 1998, the total annual direct cost of corrosion as economic losses in the 

U.S. was broken down into five specific industries: $22.6 billion in infrastructure; $17.6 

billion in production and manufacturing; $29.7 billion in transportation; $20.1 billion in 

government; and $47.9 billion in utilities. In total, the sum of these costs is up to $276 

billion (ca. 3.2% of the US gross domestic product) [7]. In 2016, The National Association 

of Corrosion Engineers (NACE) International published the "International Measures of 

Prevention, Application, and Economics of Corrosion Technology (IMPACT)" that 

approximates global corrosion cost to be US$2.5 trillion, which is comparable to roughly 

3.4 percent of the global Gross Domestic Product (GDP) in USD [8].  

Corrosion-prone materials employed in the development of structures are regularly 

monitored, maintained, and replaced due to corrosion. An example of an infrastructure 

prone to corrosion is pipelines. Due to their large capacities, pipelines carry about 70% of 

fluids than the carrying capacity on land by roads and rails [9]. Corrosion of these 

structures represents severe environmental and economic problems. It leads to continual 

wearing and reducing pipelines' walls, causing leakage of potentially non-environment-

friendly fluids to the environment. Furthermore, explosions are triggered when fluids with 

flashpoints at or below nominal temperatures meet air at ambient temperature, resulting 

in devastating accidents.  

This thesis aims at developing a unique variant of a super learner machine learning 

model suitable for effectively predicting the corrosion rate of 3C steel in seawater at a high 

degree of accuracy & efficiency while consuming less computation time and memory. Five 

https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Gross_domestic_product
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supervised learning algorithms are implemented in building the super learner model to 

facilitate its estimation of the corrosion rate of a sample of 3C steel metal sample in 

seawater. The model's performance is evaluated and employed to compare (in terms of 

the corrosion rate prediction capability) with other models developed on the same dataset. 

This thesis not only covers a proof-of-concept for accurate corrosion rate prediction using 

machine learning but is expected to further serve as the foundation for the implementation 

of machine learning in corrosion protection studies and adaptive corrosion protection 

applications, respectively. 

1.1. Contributions to the field of corrosion rate research 

Research in corrosion rate measurement has advanced greatly over the years, especially 

with machine learning. The dataset employed in this thesis has been used in the past to 

develop machine learning models to predict the corrosion rate of 3C steel metal samples 

[10,11]. These models have successfully provided corrosion rate predictions but with 

limitations in memory consumption and computation time. This thesis builds on these 

limitations by generating corrosion rate predictions of 3C steel metal sample in different 

seawater conditions via the following contributions: 

i. Development of a machine learning model that not only predicts the corrosion 

rate of the 3C steel metal sample at a high degree of accuracy but does so 

while efficiently utilizing memory at less computation time. 

ii. Development of a machine learning model possessing a generalization 

comparable with the generalization of the models of previous works 

developed on the same dataset.  

iii. Development of a system that can estimate the corrosion rate that the ACPS 

can utilize to protect electrical tower grillages erected under seawater. 

1.2. Objectives  

The research's overall objective is to develop a machine learning model that accurately 

predicts 3C steel metal samples' corrosion rate under different environmental conditions. 

To meet this overall objective, the following sub-objectives must also be met: 
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i. Acquire a satisfactory amount of data from which the training and test 

datasets are extracted. 

ii. Develop a framework that will help efficiently and technically unique machine 

learning algorithms that will best suit the super learner model's architecture 

for predicting the corrosion rate of 3C steel metal samples.  

iii. Evaluate and compare the super learner model's performance with other 

models using R-Squared, Root Mean Square Error (RMSE), and Mean 

Squared Error (MSE). 

iv. Evaluate the memory consumption and computation time of the model with 

other models developed on the same dataset. 

1.3. Limitations  

This thesis's primary limitation is the lack of sufficient training data to meet a near-perfect 

prediction accuracy. This is due to the loss and misplacement of the majority of the 

equipment required to replicate the 3C steel metal corrosion rate experiment during the 

relocation of CIBER lab due to SFU Applied Sciences Building renovations. 

1.4. Thesis Outline 

This thesis is presented as follows: 

Chapter I covers the contributions, objectives, and limitations of the thesis. 

Chapter II motivates the specific research objectives, summarizes the relevant literature 

and the recent works related to the study. 

Chapter III covers the materials and methodologies employed in the thesis. The study 

parameters and test methods are given briefly in this chapter. 

 

Chapter IV covers the results and discussions in which the analysis of test results, tables, 

and figures are presented. 

 

Chapter V covers the conclusion and recommendations of the work 
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Chapter 2.  

Background 

Corrosion is a phenomenon that has had very devastating effects over the years 

in different parts of the world and other areas of the engineering industry. Aside from 

structural and financial losses, lives have also been lost due to corrosion-fueled disasters. 

These losses can be prevented through corrosion rate estimates since corrosion rate has 

become a key parameter implemented in corrosion protection research. 

2.1. 3C Steel 

3C steel is a form of carbon steel with carbon content ranging from 2.8% to 3.2% 

[12]. It is the most popular engineering structural material implemented largely in offshore 

engineering especially in the construction of underwater pipelines [13]. Other fields where 

it finds application includes, chemical processing, petroleum production and refining, and 

pipelines, etc. This variant of carbon steel not only possesses good mechanical, physical, 

and chemical properties, but also possesses characteristics, such as plastic, toughness, 

welding performance, stamping, and cutting performance, etc. [14]. With rise in offshore 

applications this form of steel finds itself as well as its increasing tonnages, the need for 

corrosion monitoring is paramount. 

2.2. Seawater Corrosion and its effects 

Corrosion is aggressive on metals regardless of its environment (commonly land 

(soil) and seawater), leaving behind devastating effects. Over the years, corrosion has led 

to catastrophic impacts, especially on structures built for land services. 

In Appomattox, Virginia, a 30-inch natural gas pipeline failed in 2008, thereby 

causing an explosion that led to families being evacuated, roads closed, destruction of 

houses, and injured persons [15]. Elsewhere, investigations showed that pitting corrosion 

on the external walls of a 24-inch pipeline in Clark County, Kentucky, led to the emission 

of approximately 43,000 MSCF of natural gas. Although there were no deaths or injuries 

recorded, damages occurred to homes and properties due to the explosion caused by gas 

emission [16]. Massive property damage worth $25,000 (per household) and more was 
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recorded due to the explosion resulting from corrosion wearing out 75% of the natural gas 

pipeline wall. The Missouri pipeline underwent failure, which led to approximately 13.5 

million CF of natural gas [17]. In 2010, another incident was caused by corrosion in Green 

River, Wyoming. Pressure in the corroded pipeline caused the pipe to rupture and spill 

about 84,000 gallons of crude oil. The oil leaked into an irrigation ditch and contaminated 

the soil [18]. These accidents have had costly and detrimental effects on the environment, 

economy, and occupants' livelihood within the casualties' locations.  

These numerous damages caused by corrosion can also occur to structures, 

ships, and other equipment used in seawater service, as seen when the oil tanker Erika 

broke in two and sank in the Bay of Biscay, destructive corrosion of the internal structure 

of the vessel [19]. Furthermore, the collapse of the Point Pleasant bridge that connects 

West Virginia and Ohio, known as the Silver Bridge, was due to stress corrosion within the 

bridge construction and bridge chain compound [20]. From these examples, the damage 

to these structures can be attributed to seawater contact, leading to corrosion. Corrosion 

by seawater is an electrochemical process during which all metals and alloys in contact 

with seawater develop a specific electrical potential (or corrosion potential) at a particular 

seawater pH [21]. Because seawater is rich in natural electrolytes and highly corrosive, 

metals and alloys corrode inevitably in this environment.  

 

Figure 1 Regions of change on a metal sample [21] (permission for use has been 
requested from the publisher) 
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Using figure 1 above, the metamorphosis of a metal sample in a seawater environment is 

illustrated, showing the regions where the metal will freely corrode, to the region of 

passivation where stable oxide or other films form, and the corrosion process is stifled; the 

region of pitting corrosion where the corrosion potential of the metal exceeds that of its 

oxide; and the region of immunity where the metal sample is safe for use [21].   

Corrosion resistance in metals is classified according to the source of resistance. 

Some metals can resist corrosion by themselves without a source of protection, e.g., such 

as an oxide film. Aluminium and galvanized steel are examples of corrosion-resistant 

metals in use today. Another class of corrosion resistive metals is those metals that require 

a source of protection for them to resist corrosion. This source of protection is the presence 

of an oxide film. If possessing self-healing and stable properties gives the metal a high 

corrosion resistant property, e.g., the oxide films coated on stainless steel titanium [22]. 

Regardless of these attractive properties, oxides with stable properties are still susceptible 

to degradation due to attacks from aggressive hydrochloric acid concentrations present 

and developed in chloride environments. These large chloride concentrations are present 

in seawater, making it the most effective corrosion-enhancing electrolyte amongst liquids 

[23]. 

Corrosion within seawater differs significantly from corrosion on land due to the 

influence that seawater characteristics play in metal corrosion law. In other words, there 

exist characteristics of corrosion in seawater. 

Firstly, galvanic corrosion is induced when two dissimilar metals in contact within 

seawater. In this seawater corrosion characteristic, the two dissimilar metals must remain 

in electrical contact under a medium of high conductivity and low corrosion resistance (i.e., 

seawater). During this electrical contact, one of the metals assumes the position of the 

anode and corrodes faster than it usually would as a standalone metal. In contrast, the 

other metal in the contact assumes the position of the cathode and corrodes slower than 

it usually would as a standalone metal [21]. 

Furthermore, a vast amount of chlorine in seawater makes passive metals prone 

to various localized corrosion forms in seawater, ranging from pitting corrosion to crevice 

corrosion to stress corrosion. These localized corrosion forms in seawater vary from one 
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sea zone (sea zones: atmospheric zone, splash zone, tidal zone, immersion zone, and 

sea area) to another but are predominant in the splash zone [24]. An ever-constant 

presence of oxygen in the seawater atmosphere around the splash zone leads to an 

increase in salt attack's aggressiveness from seawater. The differential concentration of 

oxygen dissolved at the splash zone creates a cell in which attack is dominant where 

oxygen concentration is lowest, leading to structural deformities, e.g., crevices, in the 

metal sample, the hidden start points of seawater corrosion [25]. As seen in figure 2, these 

crevices are anodic and acidic because they permit more water and chloride from 

seawater while excluding oxygen. 

 

Figure 2 Corrosion starting from a developed crevice on a metal surface [21] 
(permission for use has been requested from the publisher) 

 

Consequently, the non-uniformity in metals' physical properties and chemical 

properties leads to varying potential on different parts of the metal surface, which 

influences the corrosion rate. Parameters such as dissolved oxygen, salinity, pH, 

oxidation-reduction potential, temperature, conductivity, etc., are significant factors that 

influence and amplify the corrosion rate (and in turn the corrosion) of metals in seawater. 

Some of these parameters are used in the generation of the dataset employed in 

developing the super learner model.  

In the case of carbon steel under water, stress corrosion cracking and the 

significant factors influencing corrosion rate are the characteristics that both contribute to 

the gradual degradation of carbon steel under seawater. This is because stress corrosion 

cracking is induced from the combined influence of the corrosive environment (developed 

through the amplification of the corrosion rate by the parameters) and tensile stress. This 

tensile stress could be in the form of residual stress (due to grinding, welding, machining, 

etc.) of directly applied stress on the carbon steel [25].  
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A study conducted by the National Association of Corrosion Engineers (NACE) 

showed that the effective implementation of corrosion protection methods could save 

between 15-35% of the cost of damage to corrosion-prone structures worldwide [26]. 

Accurate determination of the corrosion rate of structures (erected on the soil surface) and 

subsequent protection is being done using an advanced cathodic protection system known 

as the Adaptive Corrosion Protection System (ACPS). This device adaptively protects 

corroding metal using its corrosion potential and corrosion current. This ACPS cannot be 

applicable in providing corrosion protection for 3C steel metal structures erected within 

seawater due to the dissimilarity in parameters causing corrosion in soil and seawater. 

Furthermore, this device is characterized by a slow polarization curve whose accuracy in 

determining the corrosion potential and current is negatively influenced by the wear and 

tear of the ACPSs’ hardware. Therefore, for accurate determination of the corrosion rate 

of 3C steel metal in seawater (which can be further employed in providing corrosion 

protection to the metal sample), a machine learning model that accurately estimates the 

corrosion rate of the metal sample should be implemented.  

2.3. Metamorphosis of Corrosion Rate Estimation 

The corrosion rate is the speed at which a sample metal fails in a specific 

environment. The rate is hugely dependent upon the environmental conditions and the 

type & condition of the metal. The methods employed in determining the corrosion rate of 

metals have evolved over the years, from the conventional methods for determining 

corrosion rates (gravimetric method and the electrochemical method) to the use of 

machine learning to predict the corrosion rates of metal samples.  

 

 

Figure 3 Evolvement of corrosion rate determination 
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2.3.1. Conventional methods 

The gravimetric method, also known as metal loss measurement, is the oldest 

technique widely used in the industry.  This technique represents global corrosion rates in 

the system. It works by calculating the weight loss of the sample undergoing corrosion (in 

the assumption that corrosion is uniform) over long periods of time. This method is time-

consuming (due to the time it takes for the effects of corrosion to be pronounced) but its 

accuracy depends on precise weight measurements of the metal sample under corrosion 

[27]. 

The electrochemical method was developed to address the limitations faced by the 

gravimetric method. It involves using an electrochemical signal (developed when a metal 

sample undergoes corrosion in an aqueous system) as a primary source of information to 

relate the rate of corrosion to the potential, current and electric charge of the metal sample 

undergoing corrosion. This technique is subdivided into three techniques: linear 

polarization, Tafel extrapolation, and electrochemical impedance spectroscopy.  

The Linear Polarization method is a technique that uses known Tafel parameters 

to convert the polarization resistance (resistance of the metal to oxidation during the 

application of external potential) into the corrosion rate, which is inaccurate due to errors 

in the Tafel parameters from polarization measurements [28].  

Tafel extrapolation is a mathematical technique utilized to estimate corrosion 

current and corrosion potential for corrosion rate. The Tafel extrapolation method provides 

a simple and straightforward method to determine corrosion rate using the Tafel 

parameters. Its primary disadvantage is that this method requires the use of a wide range 

of voltage to polarize the material undergoing corrosion to extract the corrosion rate of the 

material, so the measurement is not only time consuming but also alters the surface 

conditions of the material (e.g., permanent change or surface damage), [29].  

The electrochemical impedance spectroscopy method is more advanced than the 

linear polarization method due to its ability to study highly resistive structures (such as 

coatings and linings) and corrosion in a low conductive solution [30]. The major 

disadvantage of this method is its requirement of previous knowledge of Tafel parameters 

[31]. Although this requirement can be closely modeled to machine learning algorithms, 
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the Tafel parameters do not consider the empirical observation of major environmental 

corrosion influencers. 

Many researchers have attempted to use all these estimation techniques to predict 

corrosion. One study identified the effects of applying gravimetric and electrochemical 

methods to pure magnesium and Z31 magnesium/aluminum alloys [32]. Results from this 

study showed inconsistencies between the corrosion rate values evaluated by both 

methods. The gravimetric method was time-consuming and inaccurate due to the 

dependence of its accuracy on correct weight measurements. In contrast, the 

electrochemical technique provided information on just the instantaneous corrosion rate 

(or corrosion resistance). 

In another study, an experiment to demonstrate the electrochemical method's 

weak estimation power was carried out. They used an extensive series of studies reporting 

proof of direct chemical reaction of H2O molecules with the metallic surface without the 

interference of electron transfer reactions [33]. Subsequent studies provided further details 

on the unusual chemical dissolution of metals [34,35]. The researchers proposed a 

numerical simulation to predict the corrosion rate of steel in concrete based on equivalent 

electrical circuit models. This method allowed for a quantitative prediction of microcell 

action in reinforced concrete. However, this model results in misleading corrosion rate 

prediction in several cases. It is based solely on the driving voltage, the concrete 

electrolyte's resistivity, and the passive steel's polarization behavior without considering 

direct environmental factors [36]. The inaccuracies in the corrosion rates generated by 

these techniques have made the need for a system to deliver accurate corrosion rate 

estimates was imperative. 

2.3.2. Utilization of Machine Learning in Corrosion Rate Prediction 

With recent advancements in machine learning, several machine learning 

techniques have been implemented to develop models capable of predicting other 

parameters, e.g., soil resistivity, corrosion current, temperature, etc., contributing 

significantly to corrosion. There are only very few models developed to predict corrosion 

rate. As compared to protection hardware, these machine learning models are not only 

non-destructive (as they do not require a constant supply of large current) but also 

consider the empirical observations of environmental factors that directly influence 
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corrosion rate. However, these models have been plagued with poor generalization, loads 

of error, and enormous training and prediction time, causing memory issues. 

Wen, et., al. [10] developed a model using a support vector regression approach 

combined with particle swarm optimization for its parameter optimization, forming a 

support vector regression with leave-out cross-validation (SVR-LOOCV). The model was 

developed to predict the corrosion rate of 3C steel under five different seawater 

environment parameters (temperature, dissolved oxygen, salinity, pH value, and 

oxidation-reduction potential). The prediction results highlighted its limited generalization 

ability and the volume of errors in its predictions after using this model. The results also 

highlighted the high bias and low variance characteristics of the model as the model failed 

to capture the complexity of the dataset. Poor implementation of metaheuristics added to 

the model introduced a difficulty in parameter tuning due to the lack of resources needed 

to identify the optimal settings for the support vector regression algorithm's parameters. 

This, therefore, leads to inefficient utilization of memory at increased computation time 

consumption. 

The behavior of 3C steel was also studied in relation to its corrosion rate under the 

five different seawater environment parameters (temperature, dissolved oxygen, salinity, 

pH value, and oxidation-reduction potential) [11]. The researchers developed a 

metaheuristic known as the smart firefly algorithm. A metaheuristic is a high-level 

procedure designed to find, generate or select sufficiently good solution to an optimization 

problem. This was implemented with the least squares support vector regression model 

to form the SFA-LSSVR. After training and testing, the model outperformed the other 

models (i.e., voting, bagging, and tiering models) developed by the researchers, but was 

significantly flawed by its overfitting feature. This implies that the model learned the 

training data properly but performed poorly on test data. Aside from overfitting, poor 

memory utilization and excess computation time are experienced just like the previous 

model due to the model's inferior implementation of metaheuristics.  

Although the prediction of the corrosion rate of 3C steel in seawater is a regression 

problem, a useful classification-based model effectively and accurately predicted 

corrosion rate in severe, moderate, and minor corrosion rate was developed. The work 

analyzed supervised learning algorithms' suitability to estimate corrosion rate causing 

corrosion in oil pipelines [37]. Compared to other works, this model is highly flawed due to 
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the lack of structure required to serve as a foundational algorithm towards corrosion 

protection. Aside from its output's user-friendly nature, its text-based output cannot give 

the certainty of corrosion rate as a numerical output would deliver.  

In this thesis, a variant of the super learner model is developed, which addresses 

the issues encountered by the models mentioned in the prior paragraphs, learns the 

training data, and delivers prediction estimates at a swift computation time with fewer 

memory requirements. 

 

2.4. Super Learner and its Constituents 

Machine learning is a branch of artificial intelligence (AI) that offers systems the 

ability to learn and improve from experience without being explicitly programmed 

automatically. It deals with the design and development of algorithms that allow computers 

to develop behaviors based on empirical data [38]. Machine learning concentrates on the 

design of programs that can read and learn data. 

The learning process begins with observations or data, such as examples, direct 

experience, or instruction (known as training data) to look for patterns in data and estimate 

the unknown relationship between input and target parameters using known examples. 

The relationship is then used to estimate outputs for new inputs. Machine learning is split 

into supervised, unsupervised, and reinforced learning [39]. Supervised learning is 

employed in solving classification and regression problems. A major difference between 

these two types of problems is the nature of their outputs. Classification problems have 

nominal outputs, while regression problems have numerical outputs [40]. Supervised 

learning aims to develop a model from the training data that can be used to predict future 

responses [41]. There are several forms of supervised learning-based machine learning 

algorithms. They include regression analysis, ensemble methods, decision trees, support 

vector machines, neural networks, etc.  

Early machine learning enthusiasts were faced with merging single prediction from 

individual models into one powerful model with superior prediction accuracy than the 

individual models. In 1992, a prediction model named stacking was developed [42]. This 

model constituted several low-level prediction algorithms combined to form a high-level 
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model with a prediction accuracy far better than the individual low-level algorithms' 

prediction accuracy. This model's prediction strength was tested by implementing the 

model in a regression problem that generated higher prediction accuracy results. 

Additionally, the model’s architecture was exploited to improve prediction accuracy by 

placing certain boundaries on the higher-level model [43].  

The term “Super Learner” was coined on the foundation of an improved model 

featuring not just a large library of diverse algorithms to enhance performance while 

creating the best-weighted combination of candidate algorithms to improve performance 

further, but also a model performing far better than the best individual algorithm [44,45]. 

The super learner is a general loss-based learning method designed to find the optimal 

combination of a collection of prediction algorithms. The super learner algorithm combines 

the algorithms (as base learners) by minimizing the cross-validated risk. This implies that 

the model takes care of the problem of overfitting by implementing k-fold cross-validation. 

The super learner framework is built on the theory of cross-validation and allows for a 

general class of prediction algorithms to be considered for the ensemble [46].  

The super-learner model is a variation of stacking or k-fold cross-validation where 

individual models would be trained on k-fold data split. A final meta-model would then be 

trained on their output, also called an out-of-fold prediction from each model. Overall, the 

super learner is an important tool implemented in a very limited number of studies to 

reduce parametric assumptions, boost predictive accuracy, and avoid overfitting [47]. 

In this thesis, a variant of the super learner model was developed strictly to predict 

3C steel metal's corrosion rate in seawater using five algorithms chosen by the developed 

selection framework. All five algorithms are trained, tested individually on the same 

dataset, and compared with the super learner model; they are combined to create five 

other algorithms trained and tested on the same dataset. These five selected algorithms 

performed the best individually on the same dataset to be put forward by the selection 

framework for implementation in developing the super learner model. The algorithms 

chosen by the developed selection framework are: 

i. Linear regression 

ii. Ridge regression 

iii. Lasso regression 
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iv. Support vector regression using the polynomial kernel 

v. Extra Gradient Boosting 

 

 

Figure 4 Development process of the super learner model [47] (permission 
for use has been requested from the publisher) 

 

2.4.1. Linear Regression 

This is the simplest and basic form of regression used for predictive analysis. In 

linear regression, the independent and dependent variables are continuous and linear 

[48]. Linear regression can be classified into simple linear regression and multiple linear 

regression [49]. Simple linear regression analysis assumes a linear relationship between 

the independent variable (x) and the dependent variable (y). Equation (3) is the fitting line's 

mathematical representation for a simple linear regression [50,51].  

𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑎𝑎 +  𝜀𝜀                                                (3) 

Where Y is the dependent variable, whose value depends proportionally to x 

a and b are the unknown coefficients, and 𝜀𝜀 is the error term. 
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A study highlighted how multiple linear regression analysis assumes a linear 

relationship between multiple independent variables (𝑎𝑎1, 𝑎𝑎2, ..., 𝑎𝑎𝑛𝑛) and dependent 

variables (y), which calculates the effects of each independent variable (β) [52,53] as 

shown in equation (4). 

 

𝑦𝑦 =  𝛽𝛽𝑜𝑜 +  𝛽𝛽1𝑎𝑎1 +  𝛽𝛽2𝑎𝑎2 … … 𝛽𝛽𝑛𝑛𝑎𝑎𝑛𝑛 +  𝜀𝜀                           (4) 

 
where, n = number of observations, Y = dependent variable, 𝑎𝑎1−𝑛𝑛= independent variables, 𝛽𝛽𝑜𝑜 = constant term, 

and 𝜀𝜀 = the model’s error term.  

 

Although the model is simple, in some cases, it is shown to produce quite good 

results, as well as very fast predictions due to its simple form [54]. Also, the input variables 

in multiple linear regression are susceptible to noise data or contain unnecessary 

information, reducing the predictive power of regression analysis [55]. In this study, the 

LinearRegression module is used to fit the linear model with coefficients to minimize 

the residual sum of squares between the observed targets in the dataset and the targets 

predicted by the linear approximation. This thus forms a function called upon by the super 

learner model for training and testing. 

2.4.2. Ridge Regression 

Ridge Regression is a machine learning algorithm for analyzing multiple regression 

data that suffer from overfitting and multicollinearity (a situation in which two or more 

dependent variables in a multiple regression model are highly linearly related) [56]. Ridge 

regression is a member of the family of penalized regression approaches because it 

shrinks the regression coefficients towards zero by imposing a penalty (using a shrinkage 

parameter).  Multicollinearity amongst the training data leads to unbiased estimates with 

very large variances meaning estimates are very far from the true value [57]. Ridge 

regression gives more reliable estimates by adding the shrinkage parameter or penalty 

term to the regression estimates in equations (5) & (6).  

 

                𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) = ∑ (𝑦𝑦𝑖𝑖 − �𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑎𝑎𝑖𝑖1 … . +𝛽𝛽𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝�)2𝑛𝑛
𝑖𝑖=1                      (5) 
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    𝑠𝑠(𝛽𝛽, 𝜆𝜆) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) + 𝜆𝜆∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=1                                                            (6) 

 
Where, 

𝜆𝜆 ≥ 0: shrinkage parameter which controls the amount of shrinkage applied to the estimates 

𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) = sum of squared residuals 

𝜆𝜆∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=1  :  ridge penalty 

 

Tikhonov regularization tries to find estimates that fit the data reasonably well by 

making the 𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) small, while the ridge penalty is also small when the estimates 

(𝛽𝛽1 … … .𝛽𝛽𝑝𝑝) are shrunken approximately to zero. In terms of controlling the amount of 

shrinkage parameter, 𝜆𝜆, when 𝜆𝜆 = 0, ridge regression becomes least squares estimation, 

but as 𝜆𝜆 gets larger, the ridge coefficient estimates, ‖𝛽𝛽𝑅𝑅(𝜆𝜆)‖22 shrinks towards zero. 

Nevertheless, the ridge penalty in (2.5) will shrink all the coefficient estimates towards 

zero, but it will not set any of them exactly zero. Hence, ridge regression has the 

disadvantage of including all the predictors in the final model [58].  

One study presented ridge regression as a means of estimating regression 

coefficients with smaller mean-square error than their least-squares counterparts when 

predictors are correlated [59]. In another study on the penalized ridge regression 

approaches, ridge regression stood apart as the approach that offered the best predictive 

performance [60].  In a comparative study, the penalized and unpenalized regression 

methods for predicting complex disease were compared, resulting in ridge regression 

outperforming other prediction methods in diverse disease phenotypes [61]. In this study, 

the Ridge module is used to solve the regression model. The loss function is the linear 

least-squares function. Regularization is given by the l2-norm fit, forming a function with 

adjusted hyperparameters be freely called upon by the super learner model for training 

and testing. 

2.4.3. Lasso Regression 

Lasso Regression, also known as the least absolute shrinkage and selection 

operator, is a form of regression that deals with many predictor variables. Unlike ridge 

regression, this technique shrinks some coefficients while setting others to 0. The lasso 

estimates are defined as follows [62]. 
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𝐿𝐿(𝛽𝛽, 𝜆𝜆) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1                                    (7) 

Where, 

 𝜆𝜆 ≥ 0: tuning parameter, which controls the amount of shrinkage applied to the estimates. 

𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) : sum of squared residuals 

𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1  : lasso penalty 

 

The lasso estimator, 𝛽𝛽𝐿𝐿(𝜆𝜆) minimizes (2.6) over 𝛽𝛽 for a given 𝜆𝜆. The tuning 

parameter 𝜆𝜆 decides whether 𝛽𝛽𝐿𝐿(𝜆𝜆) is sparse or not (setting some coefficient estimates 

exactly to zero). When 𝜆𝜆 gets larger, ‖𝛽𝛽𝐿𝐿(𝜆𝜆) ‖ gets smaller, which results in a sparse 

solution [59].  

Lasso regression compensates for ridge regression’s inability to reduce the 

number of predictors in the final model [63]. This compensation is carried out by using the 

variable selection and shrinkage feature of the lasso penalty, which forces some of the 

coefficient estimates to be exactly equal to zero when 𝜆𝜆 is satisfactorily large [64]. In this 

thesis, the lasso() module is used to develop a function that forms part of the algorithms 

used to develop the super learner model. Its hyperparameters are changed to tune the 

model towards perfect prediction accuracy. The function is then freely called by the super 

learner model for training and testing. 

2.4.4. Support Vector Regression 

Support vector machine is a machine learning algorithm that implements a 

structural risk minimization principle to obtain a good generalization level. The 

foundational support vector machine algorithm solves the bipartition problem at the AT & 

T Laboratories [65,66]. A study conducted showed the application of kernel tricks 

facilitated the development of non-linear classifiers to maximize the margin of the 

hyperplanes [64]. Support vector machines are used in recognizing delicate patterns in 

complex datasets. SVM has two forms: support vector regression (SVR) and support 

vector classification (SVC). Support Vector Regression (SVR) is the most common 

application form of SVMs. Support Vector Regression is the form of support vector 

machine that utilizes a subset of training data to reduce the generalization error bound to 

achieve a generalized performance [68]. Support vector machines project the data into a 

higher-dimensional space and maximize the margins between classes or minimize the 
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error margin for regression [69]. A study successfully explained the mathematical 

derivation of the Support Vector Regression (SVR) model using the training data given as 

[70]: 

 
     [(𝑎𝑎1,𝑦𝑦1) … . . (𝑎𝑎𝑛𝑛,𝑦𝑦𝑛𝑛)]  ∈ 𝑋𝑋 ×  ℝ          (8) 

 
Where, 

𝑋𝑋 = space of the input pattern 

 

In support vector regression, the goal is to estimate the function f(x) with the most 

ℇ  deviation from the obtained targets 𝑦𝑦𝑛𝑛 for all the training data and at the same time as 

flat as possible. The case of linear function f has been described in the form as 

𝑓𝑓(𝑎𝑎) = (𝑤𝑤, 𝑎𝑎) + 𝑏𝑏    𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜔𝜔 ∈ ℝ,  𝑏𝑏 ∈ ℝ        (9) 

 
(..) represents the dot product in ℝ 

𝜔𝜔 = flatness parameter 

 

To achieve the flatness parameter, the Euclidean norm, i.e., ∥ 𝜔𝜔 ∥2. This can be 

written as a convex optimization problem.  

 

Minimize 1
2
∥ 𝜔𝜔 ∥2 

Subject to �𝑦𝑦𝑖𝑖 −
(𝑤𝑤, 𝑎𝑎𝑖𝑖) − 𝑏𝑏 ≤  ℇ 

(𝑤𝑤, 𝑎𝑎𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤  ℇ               (10) 

 

A Lagrange function, which expresses w as seen in equation (10), is derived from the 

objective function as seen in equation (9)  

 

𝑤𝑤 =  ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝑎𝑎𝑖𝑖 , 𝑎𝑎)𝑎𝑎𝑖𝑖𝑙𝑙
𝑖𝑖=𝑎𝑎                                                        (11) 
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With the aid of the determined w expression, the value of the function f can be derived 

using the expression in equation (11). This is the standard support vector regression 

algorithm to solve approximation problems. 

 

                         𝑓𝑓(𝑎𝑎) =  ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝑎𝑎𝑖𝑖 , 𝑎𝑎) + 𝑏𝑏𝑙𝑙
𝑖𝑖=𝑎𝑎                                           (12) 

 

Kernels are functions that take low-dimensional input space and transform it into a 

higher-dimensional space. In other words, they convert a non-separable problem into a 

separable problem [59]. Kernel functions are used to take data as input and transform it 

into the required processing data. The three major types of kernels are the linear, 

polynomial, and radial basis function [71,72,73]. 

In this study, the polynomial kernel was implemented to develop the super learner 

model ahead of the linear and radial basis function kernel due to its “fit tuning” feature due 

to the lack of limit to the degree that can be applied to the kernel. This kernel represents 

the similarity of vectors in the training set of data in a feature space over polynomials of 

the original variables used in the kernel [74]. 

 

                                        𝑘𝑘�𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗� = (1 + 𝑎𝑎𝑖𝑖 ⋅ 𝑎𝑎𝑗𝑗)𝑑𝑑                    (13) 

 

In this thesis, the SVR(kernel = ‘poly’) module is used to develop a function 

that induces the polynomial kernel. A linear model whose accuracy can be tuned by 

changing the degree parameter's integer values is created. The super learner model freely 

calls this function for training and testing. 

2.4.5. Extra Gradient Boosting Machine (XGBM) 

Gradient Boosting methods works like Adaboost by sequentially adding weak learners to 

an ensemble, each one correcting its predecessor. Unlike Adaboost, Gradient Boosting 

method fits new learners to the residual errors made by the previous learners instead of 

reallocating weights for every instance not properly learned at every iteration [75]. Two 

forms of gradient boosting are XGBM and LightGBM [76]. XGBM is one of the fastest 

implementations of gradient boosted trees [77]. XGBM tackles the major challenge posed 
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by gradient boosting trees (consideration of the loss function) by reducing the search 

space of possible feature splits after looking at the spread of the dataset's input features 

[78]. The regularization feature of XGBM allows for its hyperparameters to be tuned 

efficiently. Also, its implementation of out-of-core computing for large datasets sums up 

its presence in this work [79]. In this thesis, the xgb.XGBRegressor module was 

implemented to fit the regressor module of XGBM on the original dataset. Further tuning 

of its hyperparameters drives the accuracy of the algorithm’s prediction accuracy. The 

super learner model subsequently calls the function for training and testing. 

Before these modules were implemented in calling the algorithms put forward by 

the selection framework, there exists a core in the framework that provided it with a unique 

means by which it not only chose the right algorithms for the development of the super 

learner model but also provided these choice algorithms with their hyperparameters pre-

optimized. This core is known as the Random Search Hyperparameter Optimization. 

2.5. Random Search Hyperparameter Optimization 

Random search hyperparameter optimization is the backbone of the selection 

framework developed and implemented in designing the super leaner model used in this 

thesis. To understand random search hyperparameter optimization, the difference 

between model parameters and model hyperparameters must be highlighted. Model 

Parameters are the parameters estimated by the model from the given data, e.g., weights 

of a deep neural network [80]. On the other hand, Model Hyperparameters are the 

parameters that the given data model cannot estimate. They are parameters whose values 

are set before the learning process begins. They are the parameters used to estimate the 

model parameters, e.g., the ridge regressor's alpha value [81,82].  

The choice of hyperparameters determines the level of performance of the model. 

Hence the need for a means of determining these hyperparameters. This means knowing 

as Hyperparameter Tuning [83]. It is the process of determining the right combination of 

hyperparameters that facilitates the maximization of model performance. With the 

gruesome number of hyperparameters per model, automated hyperparameter tuning is 

employed in determining the optimal hyperparameters using an algorithm that automates 

and optimizes the process [84,85]. Examples of automated hyperparameter tuners are 

Grid Search, Random Search, Bayesian Optimization, Tree-Structured Parzen 
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Estimators, etc. [86]. In this thesis, the random search hyperparameter tuner was 

implemented. 

 

Figure 5 Layout implemented by random search (permission for use has 
been requested from the publisher) 

 

Random search is a basic improvement on grid search. It is based on a random 

search of hyperparameter values from user-defined distributions [87]. It involves the user 

providing a statistical distribution of the hyperparameter values for the optimization method 

or algorithm to test. These distributions are created for each hyperparameter, after which 

the optimization algorithm or method tests them at every iteration by generating a model. 

The iteration continues until the predefined (by user) distributions for each hyperparameter 

are exhausted or until the desired accuracy is reached [88]. Random search was proven 

to be better than grid search because, [89]: firstly, in random search, a range can be 

assigned independently according to the distribution of search space, therefore making 

random search perform better in cases where some hyperparameters are not uniformly 

distributed as seen in figure 5.  

On the other hand, in grid search, the budget for each hyper-parameter set is a 

fixed Value 𝐵𝐵
1
𝑁𝑁, Where B is the total budget and N is the number of hyper-parameters. 

Secondly, in the context of handling large datasets, the random search offers a less time-

consuming technique (same as the grid search), leading to an outcome with a large 

probability of finding the best hyperparameters, unlike grid search, whose longer search 

time cannot guarantee better results [91,90]. 
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2.6. Computation time and Memory Consumption 
Optimization 

Computation time and memory consumption have been a genuine issue over the 

years in transferring machine learning models onto portable physical systems. Most 

machine learning models' size mitigates their utilization in basic physical systems, 

therefore requiring complex-expensive systems with greater hardware requirements to 

carry these models. In comparison with the model developed to predict the same dataset's 

corrosion rate [11], the super learner’s architecture facilitates efficient utilization of memory 

at less computation time by its models using multilayered ensembles (ML-Ensembles). 

Computation time and memory consumption issues are common, mostly with a 

moderately sized dataset, becoming more prominent with an increase in the training 

dataset's size. When ensembles such as bagging, voting, etc., are executed, serialization 

of the training dataset occurs (i.e., training ensembles in parallel), which are then stored 

subprocess (memory). As the number of ensembles in parallel increases, multiple copies 

of the training dataset are stored in the same subprocess, leading to increased memory 

consumption at slower computation time when the model is called for execution [92]. 

Multilayered Ensembles (ML-Ensemble) is a python library that utilizes 

memmapping to builds models in the form of a feed-forward network. Layers are stacked 

sequentially, with each layer taking the previous layer’s output as input. With the aid of 

multilayered ensembles, ensembles of any shape and form can be built, features can be 

propagated through layers, estimation method can be varied between layers, 

preprocessing can be differentiated between a subset of base learners but most 

importantly, the computation time and memory consumption are optimized [93]. Also, the 

serialization of the training data, sending the serialized data to the subprocess, and 

copying of the dataset (leading to an increase in the number of subprocesses) are all 

avoided, leading to the memory consumption being constant [94,95]. 

Ultimately, the knowledge on the architecture of the super leaner provided in this 

chapter is essential in developing a super learner model that not only provides a 

comparable prediction accuracy (compared to other model trained on the same dataset) 

but also efficiently utilizes system memory (at lesser computation time) while predicting 

the corrosion rate of 3C steel in different environmental conditions.  
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Chapter 3.  

Super Learner Model Implementation 

Due to the lack of super learner modules in the press and play tools, e.g., WEKA, 

MATLAB machine learning application, etc., the python programming language was 

utilized in developing the architecture that operates and runs the desired super-learning 

model with the target features of less memory consumption (implying lesser computation 

time) and comparable prediction accuracy required for this thesis. This chapter covers the 

methodology employed in the development of the super learner model. This covers the 

tools implemented in the selection and development of base learners and the super 

learner model, respectively, to the super learner model's performance evaluation. A 

justification for the choice of tools, dataset employed, algorithm selection technique, model 

hyperparameter tweaks, and the developed model's performance evaluation is provided.  

3.1. Tools Utilized 

Several specific software packages were employed to implement the base learners 

and develop the super learner model. These packages include Spyder integrated 

development environment (IDE), Numpy, Pandas, Matplotlib, Scikit-learn, and multilayer 

ensemble libraries.  

Spyder is a free and open-source scientific environment written in python 

programming language. Spyder IDE is used to develop data science, machine learning, 

predictive analytics applications, etc. Spyder distribution package was implemented for 

this study because of its suitability with the Windows OS (operating system of the PC), 

facilitating the importation of the libraries used in the development of the super learner 

model [96]. In addition, features such as the iPython console (a terminal used to display 

print commands output), variable explorer (stores all variables, lists, arrays, etc.), and the 

plots tab (visualization of plots) available to Spyder cannot be found in any other python 

integrated development environments such as Jupyter notebook, Google Cloud, etc. 

NumPy stands for Numerical Python and is one of the most effective mathematical 

and scientific libraries in python programming. This library was implemented due to its 

support for large, multidimensional arrays objects and various tools to work with these 
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arrays [97]. Numpy provides functions spanning from high performance, efficient storage 

to other data operations, all to transform arrays. Furthermore, NumPy came pre-installed 

in Spyder (unlike other IDEs requesting special and tedious installation methods) but was 

still imported at the beginning of the code block. In this study, Numpy was used to develop 

arrays implemented in each model covered by this study. 

Pandas is an open-source, fast, flexible data manipulation and analysis tool built 

off python programming language. Pandas was implemented in this work due to its ease 

with the analysis and importation of the dataset. Pandas is built on the Numpy package 

with its key data structure call the data-frame. This structure facilitates the manipulation 

and storage of tabular data in rows and columns of observation and variables, respectively 

[98]. The Pandas package was imported in the Spyder IDE and was used to import the 

file containing the dataset used in this thesis. The statistical explanation of the dataset, 

dataset head, and tail was developed using the describe method, head method, and tail 

method, respectively, made available by the Pandas package. 

Matplotlib is a plotting library for both Numpy and the python programming 

language. It is a library used in the development of static and animated visualizations [99]. 

The major modules offered by matplotlib include plot, pyplot, and pylab. Matplotlib was 

implemented in this work due to the availability of more plotting functions compared to 

Seaborn.  

Also known as Sklearn, scikit-learn is a free, open-source machine learning library 

for python programming. It is home to various supervised and unsupervised machine 

learning algorithms. Also, it supports libraries (such as Numpy and SciPy), cross-validation 

models, feature extraction, feature selection, parameter tuning, manifold learning, etc. 

[100], which no other module in the world of python provides, hence its utilization in this 

work. Its ease of importation into the Spyder IDE facilitated the importation of performance 

evaluation metrics, model selection method, algorithm functions, and splitting method, all 

required for the algorithm selection technique and super-learner model development 

process.  
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3.2. Dataset employed 

The dataset employed in this work was generated from a marine corrosion rate of 

3C steel experiment conducted by [10] in China. Using the electrochemical technique, 46 

sample points for the corrosion rate of 3C steel were measured under five different 

seawater conditions. The dataset is detailed in Appendix A.  Figure 6 shows the statistical 

description of the dataset. 

 The raw dataset was pre-processed by removing null values and implementing 

data augmentation. Data augmentation was implemented using an autoencoder (on the 

training data) to develop 19 more data points. Therefore, our dataset was made up of 70% 

empirical data and 30% artificial data. 

For post processing, the dataset was randomly split into training data set and a 

test data set containing 90% and 10% of the dataset, respectively, adhering to the 

standard machine learning paradigm that the amount of learning data should be much 

larger than the amount of test data. The objective is to avoid overfitting and underfitting 

problems [96]. The training dataset is the portion of the dataset in which the super learner 

model learned to facilitate its prediction of the target feature. The training dataset was 

used to make sure that the model recognizes the patterns in the dataset. While the test 

dataset was used to provide an unbiased evaluation of the final model fit on the training 

dataset. It was used to test the prediction accuracy of the developed super learner model.  

 

Figure 6 Statistical description of the dataset on the Spyder IDE 
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The dataset is made up of five features, namely, temperature (T), dissolved oxygen 

(DO), salinity (Sal), pH value (pH), oxidation-reduction potential (ORP), and corrosion rate.  

The temperature of seawater was measured using temperature probes at every 

sample point. The unit for temperature measurement is degrees Celsius (°C).  

Dissolved oxygen is the amount of oxygen content present in seawater. The higher 

the dissolved oxygen content in seawater, the higher the metal's electrode potential in the 

sea, hence the faster the corrosion rate of the metal. The unit for dissolved oxygen is 

mg/L. 

Salinity is a term used to describe the degree of dissolved salt in water. The salt 

content in water directly affects the conductivity and oxygen content of water. With the 

increase of salt content in water, water's electrical conductivity increases, but the oxygen 

content decreases. The salinometer was used to determine the degree of salinity of each 

seawater sample for all 46 epochs. The unit of salinity measurement for seawater is parts 

per thousand.  

pH value is the degree of acidity or alkalinity of a medium. The pH of the seawater 

is conducive to the inhibition of seawater corrosion of steel. However, the pH of the 

seawater is far from the effect of oxygen content on corrosion. Although the surface 

seawater pH is higher than that of the deep seawater, the corrosion of the surface 

seawater is far higher due to the seawater's photosynthesis in the surface stronger than 

deep seawater, which is consistent with the actual experimental conclusion. 

Oxidation-reduction potential (ORP), also known as Redox, is a measurement that 

reflects the ability of a molecule to oxidize or reduce another molecule. The unit of 

oxidation-reduction potential measurement is mV. 

Corrosion rate is the rate at which a corrosion-prone material or metal deteriorates 

in a specific environment. The rate, or speed, depends on environmental conditions and 

the type and condition of the metal. The unit of corrosion rate employed in the dataset is 

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐−2 
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3.3. Performance Evaluation Metrics 

In this thesis, performance evaluation metrics were employed not just in the base 

learners selection technique but also in developing the super learner model. Evaluating 

the model's performance with more than one method is critical as it provides an avenue 

to analyze the performance consistency of the model.  

Asides from being the same metrics employed in the evaluation of the models in 

[11], these performance evaluation metrics were also selected because of their reliability 

in evaluating the performance of regression models. The metrics are Root Mean Square 

Error (RMSE), R Squared (R2), and Mean Squared Error (MSE). These metrics (except 

the symmetric mean absolute percentage error) were applied to the test dataset and 

predicted dataset to generate values that indicated the models' performance.  

Root Mean Squared Error (RMSE) takes the square root of the average of 

the square of the difference between the actual values and the predicted values. With 

RMSE, the gradient of the model is easy to compute. Just like the mean absolute error, the 

numeric value of the root mean square error was used to determine the accuracy of the 

model it evaluates. When the super leaner model earns a root mean square error score 

tending towards zero at every iteration (a score of 0 means the model is perfect), it implies 

a continuous increase in the model's prediction accuracy. This metric is used in this thesis 

to provide a level-based metric system for comparing accuracy with scores in [101]. The 

root mean square error is mathematically represented as: 

 

RMSE = �∑ �ytrue
j −ypredicted

j �
2Mtest

j=1

Mtest
                                        (14) 

 

R-square is used to measure the degree of variability in the dependent variable 

highlighted by the model. It is referred to as R Square because it is the square of the 

correlation coefficient(R). As in the previous two metrics, the numeric value of the R 

Square was used to determine the accuracy of the model it evaluates. When the super 

leaner model earns an R-Square score tending towards 1 (a score of 1 means the model 

is perfect) at every iteration, it implies a continuous increase in the model's prediction 
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accuracy. This metric is used in this thesis to provide a level-based metric system for 

comparing accuracy with scores in [102]. The R-Square is mathematically represented as: 

 

R2 = 1 −
∑ (ypredicted−ytrue)2n
i=1
∑ (ytrue−y�mean)2n
i=1

                           (15) 

 
Mean Square Error (MSE) measures the squared average distance between the 

true values and the predicted values. The mean square error measures the average of the 

squares of the errors which is, the average squared difference between the predicted 

values and the true values. MSE is a risk function, corresponding to the expected value of 

the squared error loss. The numeric value of the Mean Square Error (MSE) is also used 

to determine the accuracy of the model it evaluates. When the super leaner model earns a 

mean square error score tending towards 0 (a score of 0 means the model is perfect) at 

every iteration, it implies a continuous increase in the model's prediction accuracy. This 

metric is used in this thesis to provide a level-based metric system for comparing accuracy 

with scores [103]. The mean square error (MSE) is mathematically represented as: 

                               MSE = 
∑ �ytrue

j −ypredicted
j �

2Mtest
j=1

Mtest
                  (16) 

 

3.4. Base Learners Selection Technique 

There is no literature stating outrightly the type of algorithms selected as the base 

learners to be implemented in the development of the super learner model.  In this section, 

a novel technique was developed to determine the best machine learning algorithms used 

as base learners implemented in the super learner model. As seen in figure 7, ten 

supervised learning algorithms were selected for the base learner’s selection technique 

flow. These algorithms were selected because they are well-known regression algorithms 

capable of learning the features present in our dataset, a regression problem. Firstly, the 

3C steel corrosion rate dataset, which the algorithms will learn, is imported (in CSV format) 

using the pandas import function pd.read_csv into the Spyder IDE. In addition to the 

3C steel corrosion rate dataset, the ten algorithms' libraries and modules were imported 

into Spyder via algorithm-specific scikit learn functions. These libraries and modules are 
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necessary for the algorithms' functionality as they serve as the architecture of each 

algorithm. Their absence will lead to an error if the selection system is run as the 

algorithms need to call on certain arguments, methods, and functions embedded within 

their respective libraries and modules.  

  

Figure 7 Flow chart showing the development of the base learners selection 
technique 
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Next, a standard machine learning paradigm is introduced: the data head and data 

tail function. The data head is the first couple of rows of the dataset displayed to facilitate 

the proper loading of the dataset. In python, the pandas ‘head method’ is used to return 

the top n (5 by default) rows of the dataset. The data tail is the last couple of rows of the 

dataset presented to facilitate the proper loading of the dataset. In python, the pandas ‘tail 

method’ is used to return the bottom n (5 by default) rows of the dataset. The pandas head 

data.head(), and tail function data.tail() are used to carry out this task to 

double-checking the dataset before running the model. 

The model selection is subsequently implemented to split the input data frame (X). 

The target features series (y) into training and test datasets using an imported scikit learn 

method known as model_selection method. The splitting process ensured 90% of the 

entire dataset was allotted for training data and 10% allotted for test data while keeping 

the splitting process's random state at 1. 

Furthermore, each of the ten algorithms is then fitted and assessed simultaneously 

on the 90% training dataset and 10% test dataset (consisting of five sample points of the 

dependent features) to develop individual prediction models. The predictions (y_pred) 

of each model are utilized along with the output test dataset (y_test) in the formulation 

of mean square error (MSE) values for each model, as seen in figure 8. Mean square error 

was used instead of R squared and RMSE because of its ability to penalize large errors 

compared to R squared [104]. 
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Figure 8 MSE scores of all ten models in spyder IDE’s variable explorer 

 

Subsequently, a score of 0.8 is taken as the selection threshold. Therefore, models 

with MSE scores below 0.8 are accepted, while those with values above the threshold are 

rejected. In addition, the selection framework also gives us a baseline of hyperparameters 

(for each accepted model) to be implemented in the super leaner. The accepted models 

of the algorithms and their equivalent MSE scores are extra gradient boosting (xgbMSE), 

lasso regression (lassoMSE), linear regression (linregMSE), ridge regression (ridgeMSE), 

and support vector regression using the polynomial kernel (svrpolyMSE), as seen in figure 

9.  

 

Figure 9 Spyder IDE terminal window view of the accepted models  
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3.5. Development of the Super Learner Model 

With all the libraries of all five accepted base learners on the Spyder canvas, the 

super learner ensemble is launched using the SuperLearner() method. This method 

houses the SVR libraries (Polynomial kernel), lasso regression, ridge regression, linear 

regression, and extreme gradient boosting, as well as the baseline hyperparameters of 

each model. In addition, the only important hyperparameter of the super learner, i.e., fold, 

is kept at 2 (i.e., fold=2) since we have two layers implemented in its architecture. All the 

base learners are fitted on the training data with the fitted estimators stored separately. 

Subsequently, the training data is split into two folds (each containing a subset of training 

data and test data) based on the super learner hyperparameter, after which each of the 

five base learners is fitted on each fold, and predictions carried out on the test datasets in 

each fold sequentially. Each fold's predictions are then stacked upon each other based on 

the super learner model being an ensemble. The linear regression model is implemented 

in the meta learner, which is subsequently fitted on the prediction matrix to produce a fitted 

meta learner. Figure 2 is a diagrammatic representation of a super learner fitting process. 

 

Figure 10 Flow representation of the super leaner model fitting process 

 

The fitted estimators (formed by fitting each of the base learners on the entire 

training data) were fitted on the new test dataset to carry out predictions. This fitting 

process facilitated the entry of the test dataset into the prediction matrix. The final 
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predictions based on the test dataset were generated using the fitted meta learner, which 

converted the prediction matrix into corrosion rate predictions. Figure 10 shows a flow 

representation of the fitting process of the developed super learner. 

3.6. System Characteristics 

The system implemented in the execution of the super learner model possessed the 

following characteristics: 

Table 1 System Characteristics 
OS Name Microsoft Windows 10 Home 
System Model HP ENVY x360 Convertible 15-cn0xxx 
System Type X64-based PC 
Processor Intel® Core™ i5-8250U @ 1.60GHz, 1800Mhz 
Memory 8.00 GB DDR4 SDRAM 1199MHz 
Base Frequency 1.80GHz 
Maximum Frequency 3.39GHz 
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Chapter 4.  

Evaluation of the Super Learner Model 

In this chapter, the developed super learner models’ performance is evaluated 

using root mean square error, mean square error, and R- squared error. Not only are these 

metrics the best evaluation metrics utilized for supervised learning regression problems, 

but they also allow us to compare the prediction capability of our model with not only the 

algorithms that make up its architecture but also the prediction capability of models 

developed on the same training data [10,11]. For these comparisons to occur, the Smart 

Firefly Algorithm & Least Squares Support Vector Regression (SFA-LSSVR) and Support 

Vector Regression integrating Leave Out One Cross-Validation (SVR-LOOCV) models 

were developed (following the model architectural design detailed in the works of 

literature) to generate an RMSE score similar to the scores in [10,11]. The methods 

employed in the presentation and evaluation of results in this chapter span from tables to 

histograms. 

4.1. Test Dataset 

The dataset used to test the super learner model was extracted from the dataset 

itself. This is because the dataset was generated from an experiment on studying the 

corrosion rate of 3C steel in different marine environmental conditions [10]. This dataset 

is foreign to the model due to its absence in the dataset used to train the super learner. 

Hence, the model is tested on a fresh dataset, taking out the possibility of high variance 

and subsequent overfitting. The test dataset is 10% of the entire dataset and comprises 

five randomly selected data points. The random selection was automatically carried out 

by the model_selection method imported from the scikit learn library. The dataset 

takes the form of the features variables (X_test) containing the five environmental 

parameters and the target variable (X_test), corrosion rate. From the two forms, the 

target variable is mapped to the ensemble. Predict the method of the super learner 

model to estimate the corrosion rate. Figure 11 shows the feature set and target variable 

dataset extracted from the variable explorer of spyder IDE. 
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Figure 11 feature set and target test dataset 

 

4.2. Test Results 

This section outlines the corrosion rate predicted by the super learner model. From the 

results, the developed model provides a comparable prediction accuracy against the 

Smart Firefly Algorithm & Least Squares Support Vector Regression (SFA-LSSVR) [11] 

and outperforms the Support Vector Regression integrating Leave Out One Cross-

Validation (SVR-LOOCV) model [10].  

From table 1, the mean absolute percentage error (MAPE) formulated from the percentage 

error column indicates the presence of a 1.41% mean absolute percentage error in the 

predictions made by the super learner model in comparison to the 1.26% and 3.2% mean 

absolute percentage error present in the predictions of the SFA-LSSVR and SVR-LOOCV 

models respectively. The root mean square error will be solely implemented to evaluate 

the models due to the mean absolute percentage error values being excessively too large 

or undefined [99].  
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Table 2 Mean absolute percentage error of the models 
Models Mean Absolute Percentage Error (%) 

Super learner 1.41 
SFA-LSSVR 1.26 
SVR-LOOCV 3.2 

 

A visual aid is necessary to analyze further the distance between the experimental and 

predicted rates outlined in table 1. Figure 12 is a line plot showing the relationship between 

the experimental rate (actual values), predicted rate (predicted values), and the 

percentage error. From the figure, the distance between the true values and the predicted 

values represents the percentage error. Therefore, trials 0, 1, 2, 3 & 4 of the super learner 

have minimal percentage error, with just trial 0 being the highest at 7.6% error and trial 4 

having the least percentage error of 0.5%. All other trial points have their percentage errors 

lying between both error points with a median percentage error of 4.3% 

 

 

Figure 12  Line plot of the predicted values, actual values, and percentage 
error of the super learner model 
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Comparing the plot of figure 12 to the visualization of each of the constituent models of 

the super learner model in figure 13 shows not only the vast difference amongst the results 

of the models (super learner model included) but also a visual estimate of how much 

correction was carried out by the super learner model to generate accurate corrosion rate 

predictions. In figure 13, the extra gradient boosting machine plot indicates that the model 

generated the most percentage error (14.65%) on the test dataset compared to not just 

the constituent models but the super learner model itself. Another observation is the near 

similarity in plot between the ridge regression model and the linear regression model, 

which stems from the fact that the ridge regression model is a close variant of the linear 

regression model and hyperparameter optimization gives a mirror-like prediction ability of 

its parent regression model. Compared to the ridge regression and linear regression 

model, the lasso regression model generated a nearly perfect inverted-V error line plot, 

not conforming to a nearly similar prediction power of its parent model (i.e., linear 

regression model). Lastly, the linear, ridge, and lasso regression models generated nearly 

similar median scores (based on their percentage error values) of 8.47%, 8.45%, and 

8.7%, respectively. All of which are inferior to the median value of the super learner model. 

 

 

Figure 13  Line plots of extra gradient boosting machine, lasso regression, 
polynomial kernel of the support vector machine, ridge regression, 
and linear regression models 
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The results from the performance evaluation of the super learner model are outlined in 

table 2. In comparison with its constituent models, the super learner’s performance was 

evaluated using the root mean square error, mean square error, and R squared error 

metric. Based on these metrics' results, the super learner's lower RMSE score in 

comparison to the RMSE score of its constituent models suggests that the super learner 

model fits better than its constituent models. The same principle applies to its lower MSE 

score in comparison to that of its constituent models. In the case of R Squared, the 

superiority of the super learner model is shown due to the closeness of its score to 1, 

indicating that the super learner model predicted the corrosion rate (based on the test 

dataset) with very high accuracy compared to its constituent models possessing R 

squared scores far below therefore indicating their poor prediction accuracy. 

Table 3 Performance evaluation result of the super learner model and its constituent models 

 

Due to the ruthless nature of the root mean square error (RMSE) metric towards outliers 

[98] and its use as the major performance evaluation metric for the SFA-LSSVR and SVR-

LOOCV model, a bar chart is generated in figure 14 to compare the RMSE scores of the 

super learner model to the SFA-LSSVR model, SVR-LOOCV model and the constituent 

models of the super learner model. From the plot, the taller bars indicate the degree of 

inaccuracy of the representing model. This inaccuracy representation is greatest, as 

shown by the light blue bar's length representing the SVR-LOOCV model and then 

followed by the bars representing the constituent models. A huge reduction in the bars' 

Model RMSE MSE R2 

Super Learner 0.485 0.235 0.949 

Extra Gradient Boost 0.878 0.771 0.832 

Lasso Regression 0.82 0.66 0.86 

SVR: Polynomial Kernel 0.737 0.544 0.882 

Linear Regression 0.803 0.644 0.860 

Ridge Regression 0.804 0.646 0.859 
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height (compared with the bars of the constituent models and the SVR-LOOCV model) 

representing the super learner model and SFA-LSSVR model is experienced. This 

reduction shows that the SFA-LSSVR model predictions possess the least amount of 

errors closely followed by the super learner model.  

  

Figure 14  Bar chart showing the root mean square values of the super learner 
model, SFA-LSSVR model, SVR-LOOCV model, and the constituent 
models of the super learner model 

 

Despite the SFA-LSSVR model slightly outperforming the super learner model in terms of 

prediction accuracy when evaluated with the root mean square, the super learner model 

makes up for its loss by utilizing less system memory (faster computation time). This is 

due to the models’ utilization of the mlens framework. The SFA-LSSVR and SVR-LOOCV 

models were developed (while following the model architecture detailed in the literatures) 

to facilitate the memory utilization and computation time speed comparison between them 

and the super learner model. Proper hyperparameter optimization was carried out to 

ensure the SFA-LSSVR and SVR-LOOCV models generated an RMSE values 

approximately similar to the values generated in their respective works of literature. Figure 
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15 shows the execution or computation time of the super learner model, the SFA-LSSVR 

model, and the SVR-LOOCV model. From the figure, the super learner model utilizes the 

least computation time closely followed by the SFA-LSSVR model while the SVR-LOOCV 

model utilizes the most execution time. 

 

 

Figure 15  Computation time of the super learner model, its constituent 
models, the SFA-LSSVR model, and the SVR-LOOCV model 

 

The 3D clustered bar plot in figure 16 shows the super learner model's memory, its 

constituent models, the SFA-LSSVR model, and the SVR-LOOCV model. From the figure, 

the super learner model possesses a better memory usage in comparison to the other 

models with the SVR-LOOCV model possessing the least memory utilization ability. 

Memory consumption test was carried out by executing each model on one after the other 

on spyder IDE and simultaneously monitoring the memory consumed on the task manager 

of a windows 10 PC. This test was carried out three times for each model and the results 

from each test were averaged to give what is presented in figure 16. The memory usage 

and computation time was determined using the friedmann module  
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Figure 16  Memory usage and computation time of the super learner model, its 
constituent models, the SFA-LSSVR model, and the SVR-LOOCV 
model 

  

From the results detailed in this chapter, it is clear to conclude that the super learner 

model’s prediction accuracy (in comparison with that of the SFA-LSSVR and SVR-LOOCV 

model) can be ignored given the super learner models’ superiority in the area of memory 

utilization and computation time especially in applications requiring large datasets, 

modules, objects, and functions. 
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Chapter 5.  

Conclusions 

5.1. Summary 

We presented a machine learning model for the prediction of the corrosion rate of 

3C steel in five different seawater environments (with differences in temperature (T), 

dissolved oxygen (DO), salinity (Sal), pH value (pH), oxidation-reduction potential (ORP). 

These five environmental conditions represent the dataset's feature variables on which 

the super learner model was fitted. The super learner's constituent models, the SFA-

LSSVR model, and the SVR-LOOCV model were also fitted on the dataset's feature 

variables. Also presented was the design of a selection framework used to select the 

algorithms implemented in the development of the constituent model and optimize the 

hyperparameters of the constituent models for easy plug and play into the super learner 

model architecture. As seen in table 3, the super learner model's prediction capability was 

judged to perform below the SFA-LSSVR model slightly but outperformed the SVR-

LOOCV model.  

The super learner model capitalizes on this unfair disadvantage by utilizing less 

computation time and memory than the SFA-LSSVR model and SVR-LOOCV model, both 

of which utilize more computation time and memory the numerous iterations of parameters 

optimization within its architecture. The super learner model displayed it high accuracy 

and efficient memory utilization at less computation time as it is approximately three times 

faster than the SFA-LSSVR model while utilizing approximately 59% of the memory 

consumed by the SFA-LSSVR model; it is four times faster than the SVR-LOOCV model 

while utilizing 54.6% of the memory consumed by the same SVR-LOOCV model. Also, 

the results from the super learner model not only eludes any high bias and low variance 

problems but also successfully capture the complexity of the dataset. The results 

presented in this thesis also highlighted the super learner’s model ability to make 

predictions based on data instances not trained on. The super learner model 

generalization is far better than the SVR-LOOCV model while slightly below the 

generalization strength of the SFA-LSSVR model. The RMSE score presented in table 2 
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highlights the superiority of the super learner model generalization compared to the 

generalization of its constituent models. 

The super learner model offers a new approach for estimating the corrosion rate 

of 3C steel in sea water with high accuracy and less computation time than the hybrid 

metaheuristic regression model (SFA-LSSVR). With minor adjustments, this model and 

the entirety of its architecture could be employed to predict the corrosion rate of other 

metals within seawater conditions. Conditions outside of seawater (e.g., land and air) will 

require numerous adjustments to the model and its selection framework, and the 

packages implemented. Table 3 outlines how this model compares with others from the 

literature. 

Table 4 Prediction accuracy comparison between the super learner, SFA-LSSVR, and SVR-LOOCV 
model 

Model RMSE Computation Time 
(seconds) 

Super Learner model 0.485 103 
SFA-LSSVR [11] 0.180 277 
SVR-LOOCV [10] 1.277 321 

 

 Advancement in machine learning has seen the properties of physical GPUs and 

operating systems being replicated on the cloud to facilitate the usage of the latest GPUs 

in developing machine learning models. These GPUs are expensive with an increase in 

specifications, e.g., memory size, processor speed etc. With the availability of large 

datasets in the form of big data, the need for models that can deliver accurate predictions 

while efficiently utilizing memory (and execution at a faster computation time) is 

paramount. The super learner model can meet these needs. It can be utilized instead of 

neural networks due to the super learner model's superiority in memory utilization and 

computation time. To meet the desired level of accuracy required in this thesis on an 

affordable GPU on the cloud, neural network models would likely require the utilization of 

numerous layers to its architecture resulting in a network with several nodes greater than 

that of a basic multilayer perceptron. The utilization of numerous layers within the neural 

network model architecture would thus ultimately lead to very slow computation time 

during the model's execution, unlike the super learner model that utilizes just two-fold and 

five algorithms to attain the required level of prediction while leveraging memory and 

computation time. 
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5.2. Recommendation for future work 

Major future work on this model will be improving the prediction accuracy of the 

model. This can be achieved by increasing the dataset's size via more seawater 

environmental conditions that correlate with the other five conditions. The higher the 

correlation between the features of the variables, the greater the accuracy of the estimated 

corrosion rate of the 3C steel. The dataset can also be increased by adding more trials 

during the experiment's execution, which should be followed with proper dataset 

preprocessing to account for large outliers and missed data points.  

The Adaptive Corrosion Protection System (ACPS) utilizes corrosion rate (using 

corrosion current and corrosion potential) for the protection of electrical tower grillage built 

on the land. This facilitates a potential utilization of the developed super learner model in 

the ACPS to provide accurate corrosion rate values to be implemented in the protection 

algorithm for potential protection of electrical tower grillage structures under seawater. The 

potential utilization of the super learner model (for underwater tower grillage protection) 

eliminates the challenge of additional signal processing (towards better memory 

utilization) as the lightweight nature of the model will facilitate its smooth execution within 

the processors of the raspberry pi modules utilized in the adaptive corrosion protection 

system (ACPS).  

Furthermore, with Python being the language upon which the super learner model 

is developed, the synchronization between the visualizations of the model and the graphic 

user interface of the ACPS (also written in python) is improved for potential use in the 

corrosion protection of underwater tower grillages. In addition, this synchronization also 

provides a foundation for further upgrades to the graphic user interface of the ACPS using 

the machine learning visualization libraries and modules.   
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Appendix   

Below is the training which not just the super learner, but its constituent models and the 

hybrid metaheuristic regression model were fitted on. 

T DO S pH ORP CR 
25.9 6.71 30.1 5.1 378 16.4 

29.35 6.09 29 6.3 400 16.9 

27.9 6.18 31.5 7 363 15.57 

24 7.95 30.2 8.1 324 13.65 

28 5.05 31.4 9.2 240 13.24 

27.87 6.55 31.68 7.2 356 14.06 

28.27 6.98 28.2 6.6 384 15.47 

29.37 6.82 30.12 6.2 414 17.11 

24.27 0.8 32.56 8.1 171 3.61 

27.45 2.6 35.37 7.96 287 7.94 

27.48 5.9 32.39 7.83 331 10.578 

28.75 6.8 32.22 8 340 11.43 

28.52 8.4 32.1 8.01 345 12.52 

28.45 9.9 31.95 7.93 309 22.64 

24.73 6.06 17.33 7.88 321 11.446 

24.51 7.02 32 8.16 308 12.553 

23.65 6.51 41.34 7.67 245 8.402 

16.74 7.11 33.55 8.25 178 10.85 

21.11 6.03 33.44 8.03 295 11.448 

25.57 6.7 32.19 8.09 325 11.872 

31.16 4.38 33.21 7.94 242 8.924 

25.62 34.89 5.32 7.9 385 15.966 

24.95 16.29 6.8 7.82 341 12.12 

24.5 18.37 5.31 7.93 302 12.07 

25.59 21 7.04 7.95 244 11.4 

26.11 34.84 2.82 7.8 335.2 11.288 

24.96 40 6.32 8.08 254 9.3 
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9.5 32.31 4.26 8.2 195 10.56 

12.05 32.04 4.95 8.17 232 11.04 

14.86 32.51 6.3 7.95 198 11.06 

28.13 34.34 5.14 7.8 362.9 13.93 

24.17 16.09 7.68 8.04 283.8 11.55 

23.54 15.04 8.27 8.06 243.8 11.72 

25.31 15.22 7.59 9.32 246.7 11.39 

12.55 37.9 6.42 7.49 235.3 10.52 

16.81 39.49 6.61 7.73 258.7 10.24 

24.09 36.72 5.59 7.83 281.8 9.93 

26.34 35.97 3.25 7.98 367.1 14.37 

25.35 16.94 4.05 8 341.2 15.07 

26.07 35.34 4.07 7.94 404 18.13 

26.52 34.48 4.94 7.9 326.1 11.828 

27.32 3.21 29.31 8.2 281 12.91 

30.7 7.15 31.74 6.5 401 16.28 

27.23 4.2 31.94 7.89 289 9.63 

23.95 7.61 9.17 8.04 231 10.94 

24.6 7.52 24.42 7.57 210 11.83 
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