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Abstract

With the growth of data-intensive applications, along with the increase of both size and
dimensionality of data, queries with advanced semantics have recently drawn researchers’
attention. Skyline query problem is one of them, which produces optimal results based
on user preferences. In this thesis, we study the problem of spatial skyline query in the
Euclidean and road network spaces. For a given data set P , we are required to compute
the spatial skyline points of P with respect to an arbitrary query set Q. A point p ∈ P is
a spatial skyline point if and only if, for any other data point r ∈ P , p is closer to at least
one query point q ∈ Q as compared to r and has in the best case the same distance as r
to the rest of the query points. We propose several efficient algorithms that outperform the
existing algorithms.

Keywords: Spatial skyline query problem; Skyline point; Spatial skyline point; Euclidean
d-dimensional space; Road network space
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Chapter 1

Introduction

With the growth of decision support systems and data-intensive applications, along
with the increasing volume of multi-dimensional data, queries with advanced semantics
have recently drawn researchers’ attention. Skyline query, which produces optimal results
based on user preferences, contains abundant semantics and provides users with exciting
insights. A skyline query locates a set of points based on multiple user-specified criteria that
no other points are better than them.

In this thesis, we focus on efficient skyline query processing over spatial data. For a given
data set P , we are required to compute the spatial skyline points of P with respect to an
arbitrary query set Q. A point p ∈ P is a spatial skyline point if and only if, for any other
data point r ∈ P , p is closer to at least one query point q ∈ Q as compared to r and has in
the best case the same distance as r to the rest of the query points. Several algorithms are
proposed to solve the spatial skyline query problem in d-dimensional Euclidean space and
road network space. Our contributions can be summarized as follows:

• We propose several efficient algorithms that outperform the existing spatial skyline
algorithm in the 2-dimensional Euclidean space.

• We study the spatial skyline query problem in the high dimensional Euclidean space.

• We show that an existing algorithm that solves the spatial skyline query problem in
the road network space is incomplete.

• We provide a correct and efficient algorithm that outperforms the existing spatial
skyline algorithm in the road network space.

• We validate the efficiency of our algorithms through extensive experiments.

The remainder of this chapter is organized as follows. In section 1.1, a brief survey is
conducted on work related to the skyline query problem and several variants of skyline
query problem. In section 1.2, we pay attention to the spatial skyline query problem. We
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also provide the formal definition of the spatial skyline query problem along with some
useful concepts.

1.1 Theoretical Analysis of Skyline Query

The skyline query problem is also known as the problem of finding maxima/minima of
a set of vectors. This problem is first defined and studied by Kung et al. [25]. We are given
d totally ordered sets D1, D2, . . . , Dd. Let U = D1 × D2 × · · · × Dd denote the Cartesian
product of the d sets mentioned above, and let P ⊆ U be a subset of U of size n. Each
element in P is a d-dimensional vector. For a vector v = (v1, v2, . . . , vd) ∈ P , let vi be the
ith component of v. A partial ordering can be defined on P . For any u, v ∈ P , we say v is
greater than u, denoted by v � u, if and only if, every component of v is greater than or
equal to their counterparts in u, and at least one component of v is strictly greater than its
counterpart component in u. This is equivalent to

∀i ∈ {1, 2, 3, . . . , d}, vi ≥i ui ∧ ∃j ∈ {1, 2, 3, . . . , d}, vj >j uj

Here, ≥i and >i are defined using the order provided by ith totally ordered set Di. We
can also say v dominates u. The problem of finding maxima of a set of vectors can then be
defined as follows. We want to locate a set of elements S ⊆ P of maximum size, such that,

∀s ∈ S, ∀v ∈ P \ {s}, v � s

The worst case computational complexity of this problem can be defined as

Cd(n) = minA maxP cd(A,P )

where cd(A,P ) represents the number of operations, used by algorithm A, to find all the
maximal elements given a dataset P with d dimension. Cd(n) denotes the maximum number
of operations used to find all maximal elements for any data set of size n with the fastest
algorithm. Cd(n) represents the worst case theoretical bounds for finding maxima in a set of
vectors problem. For d = 1, the dataset P is a totally ordered set. We can find the maximum
element using one search over P in O(n) operations. Kung et al. proves the following bounds
of Cd(n) [25]:

Cd(n) ≤ O(n logn) for d = 2, 3

Cd(n) ≤ O(n(logn)d−2) for d ≥ 4

Cd(n) ≥ Ω(dlogn!e) for d ≥ 2

2



Since dlogn!e is Θ(n logn), the bounds are tight for d = 2, 3. When it comes to d ≥ 4,
whether the bounds are tight remains an open problem.

The problem of finding the maxima of a set of vectors drew the attention of the database
community, and they name it the skyline operator or the skyline query problem [4]. However,
the skyline query problem tends to find the minima, instead of the maxima, of a set of
vectors. The minima are also known as the skyline points. Researchers have proposed several
algorithms to solve the skyline query problem efficiently. For example, Börzsönyi et al. [4]
introduced a divide and conquer algorithm; Tan et al. [22] presented the index-based bitmap
algorithm; Kossmann et al. [13] came up with the nearest neighbor algorithm; Papadias et
al. [32] proposed the branch and bound skyline algorithm, and Bartolini et al. [1] introduced
the sort and limit skyline algorithm.

Besides the general skyline query problem, variants of the skyline query problem draw
researchers’ attention as well. In constraint skyline query problem [11][16][31][32], users are
interested in finding the skyline points of a subset of the original dataset. One or more
constraints may define the subset. Each constraint is usually expressed as a range along
a dimension of the original dataset. A group skyline query [19][28][49] focuses on groups
of points instead of single points. It retrieves skyline groups that are not dominated by
any other groups. Our thesis concentrates on the spatial skyline query problem, where we
take advantage of the spatial relationship between different points to accelerate the skyline
computation. The details of the spatial skyline query problem are covered in the next
section.

1.2 Narrowing down: Spatial Skyline Query Problem

While the database community has extensively studied the skyline query problem, many
failed to consider the spatial relationship between data objects. For example, consider the
scenario of finding hotels for a trip to a city. A user wants to find a hotel that is close to
the museum, the beach and the airport: Figure 1.1 displays several candidate hotels and 3
locations of interest.

If we treat this problem as a general skyline query problem, it is a 3-dimensional problem
because, for a hotel, we need to compare its distances to three locations (museum, beach
and airport) with other hotels. However, the algorithms solving the general skyline query
problem ignore the geometric relationship between those locations and the hotels. More-
over, if we have more locations to consider, the dimensionality and computation time will
increase dramatically. Consequently, the research community proposed the spatial skyline
query problem, which takes advantage of the geometric relationship between data objects
to simplify the computation. We now define the spatial skyline query problem and provide
some related concepts.

3



Figure 1.1: Hotel example

1.2.1 Problem Definition

In the spatial skyline query problem, a set of data points P is given so that data points
of P can be preprocessed. For each spatial skyline query, a set of query points Q will be
given. For each query set Q, we need to locate all the spatial skyline points S ⊆ P with
respect to Q.

The distance between any two points p1 and p2 can be computed using a distance
function d(p1, p2). In our thesis, the distance d(·, ·) is either the Euclidean distance or the
shortest path distance in a road network. Before showing the formal definition of the spatial
skyline query problem, we need to present several definitions.

Definition 1.1 (Domination). For two data points p1, p2 ∈ P , p1 dominates p2 with respect
to a query set Q, written as p1 ≺Q p2, if and only if, distances from p1 to all the query
points are less than or equal to the corresponding distances from p2 to all the query points,
and for some qj ∈ Q, the distance from p1 to qj is strictly less than the distance from p2 to
qj . Put it into mathematical form:

p1 ≺Q p2 ⇐⇒ ∀qi ∈ Q, d(p1, qi) ≤ d(p2, qi) ∧ ∃qj ∈ Q, d(p1, qj) < d(p2, qj).

Observation The dominance relationship is transitive, meaning that if pi ≺Q pj , and
pj ≺Q pk, then pi ≺Q pk. The proof of the transitivity of the dominance relationship is
straightforward.
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Note that we use ⊀Q to indicate a point cannot dominate another point with respect
to the query set Q. We use the term dominance check to represent the process of testing
whether one data point dominates another data point with respect to Q.

If two data points p1, p2 are located at different positions, but have the same distances
to all query points, p1 and p2 don’t dominate each other. Take the hotel finding problem
mentioned above as an example. If there are only two query points, for example, the museum
and the beach, it is possible that two hotels have the same distances to the beach and the
museum, but they are at different locations on the map. When searching for the optimal
hotels, the algorithm should return both hotels.

Definition 1.2 (Dominator/dominating region). The dominator region of a point p ∈ P
with respect to Q is a region such that for any point pd ∈ P in the region, pd dominates
p with respect to Q. Thus the dominator region is the intersection of disks D(q, d(p, q))
centred at all the query points q of Q with radius d(p, q). The dominating region of p with
respect to Q, on the other hand, is a region where points inside the region are dominated
by p. The dominating region is unbounded and is formed by the complement of the union
of all the disks D(q, d(p, q)) centred at all the query points q of Q with radius d(p, q).

(a) Dominator region of p (b) Dominating region of p

Figure 1.2: Dominator and dominating regions of p

The gray regions of Figure 1.2 are the dominator region and the dominating region of
a point p with respect to three query points {q0, q1, q2}. Note that the shapes of the two
regions are irregular especially with the increase of the number of query points.

The definition of the spatial skyline point is now given:

Definition 1.3 (Spatial Skyline Point). A data point p ∈ P is a spatial skyline point with
respect to Q if and only if p cannot be dominated by other data points of P . Put it into
the mathematical form:

p is a spatial skyline point ⇐⇒ ∀pi ∈ P \ {p}, pi ⊀Q p

5



We use the term skyline check to describe the procedure of determining whether a
data point of P is a spatial skyline point with respect to Q.

Definition 1.4 (Spatial Skyline Query). Given a data point set P and a query point set
Q, a spatial skyline query locates all the spatial skyline points S ⊆ P with respect to Q

In a spatial skyline query problem, S is used to denote the set that contains all the
spatial skyline points of P with respect to Q.

1.2.2 Related Concepts

Various algorithms and data structures in computational geometry are used in this
thesis. We briefly introduce them in this section.

Convex Hull A subset C of a Euclidean space Rd is convex, if and only if, for any pair of
points p, q ∈ C, the line segment pq is completely contained in C. The convex hull CH(P )
of a set of points P is the smallest convex set that contains P . To be more precise, it is
the intersection of all convex sets that contain P [10]. The convex hull of n points can be
constructed in O(n logn) time in 2 and 3 dimensional spaces [10]. For d ≥ 4, the convex
hull of n points can be constructed in Θ(nb

d
2 c) time [10]. Figure 1.3 shows an example of

the convex hull of a set of points.

Figure 1.3: Convex hull of a set of points

Voronoi Diagram Let P = {p1, p2, . . . , pn} be a set of n distinct points in d-dimensional
Euclidean space. We define the Voronoi diagram of P as the subdivision of the Euclidean
space into n cells, one for each point in P , with the property that a point q lies in the cell
corresponding to a point pi if and only if d(q, pi) ≤ d(q, pj) for each pj ∈ P with j 6= i.
We denote the Voronoi diagram of P by V or(P ) [10]. Planar Voronoi diagram of a set of n
points can be computed in O(n logn) time. For d ≥ 3, the d-dimensional Voronoi Diagram
of n points can be constructed in O(nb

d+1
2 c) time [5][23]. This can be done by transforming
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the d-dimensional Voronoi diagram construction problem into a (d+ 1)-dimensional convex
hull construction problem. Figure 1.4 shows the Voronoi diagram of a set of points along
with the subdivision of the plane.

Figure 1.4: Voronoi diagram of a set of points [10]

KD-Tree KD-tree is a spatial index that supports point-location query and range query.
A KD-tree for a set P of n points in the d-dimensional space uses O(n) storage and can be
built-in O(dn logn) time. A rectangular range query on the KD-tree takes O(n1−1/d + I)
time in the worst case, where I is the number of reported points [2][10]. The nearest neighbor
of a point can be computed by exploring O(logn) nodes on average [15]. Figure 1.5 shows
an exmaple of the KD-tree of a set of points. Figure 1.5a shows the planar subdivision of
the KD-tree and Figure 1.5b shows the corresponding tree structure.

(a) Planar subdivision of the KD-tree (b) Tree structure of the KD-tree

Figure 1.5: KD-tree of a set of points [10]
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R-Tree R-tree is a dynamic spatial index based on B-tree. It is used for the dynamic
organization of a set of d-dimensional geometric objects representing them by the minimum
bounding d-dimensional rectangles (for simplicity, MBRs in the sequel). Each node of the
R-tree corresponds to the MBR that bounds its children. The leaves of the tree contain
pointers to the objects instead of pointers to the children nodes [45]. R-tree supports dy-
namic operations like insertion or deletion. Theoretical analysis shows Ω(n1−1/d) as the
lower-bound for range query of R-tree in the worst case. [21] Recent studies show that
logarithmic average search time can be achieved in the 2-dimensional case [18]. Figure 1.6
shows an example of the R-tree for a set of objects.

(a) MBRs of the R-tree

(b) Tree structure of the R-tree

Figure 1.6: R-tree of a set of objects [45]

Shortest Path Algorithms Dijkstra’s algorithm is generally used to solve the single-
source shortest-paths problem on a weighted, undirected graph G = (V,E) for the case in
which all edge weights are non-negative [9]. The runtime complexity for Dijkstra’s algorithm
is O(min(|V | log |V |+ |E| log |V |, |V |2)) [9].

There are several speed-up techniques for the Dijkstra’s algorithm [43]. One technique
is the bidirectional search algorithm [29][38] . The bidirectional search runs a forward Dijk-
stra’s algorithm from the source vertex and a reverse Dijkstra’s algorithm from the target
vertex. The algorithm stops when the two searches meet. The bidirectional search algorithm

8



works well in practice, even though it has the same worst case time complexity as the Dijk-
stra’s algorithm. Another speed-up technique is A* algorithm [35][47]. It adds lower-bound
heuristics to unvisited vertices so that the search wavefront can expand toward the target
vertex. Additionally, if preprocessing is allowed, the landmark algorithm can be used [17].
The algorithm chooses a small fixed-sized subset of vertices L ⊂ V as "landmarks". In the
preprocessing step, for each landmark l ∈ L, the algorithm computes its distances to all the
vertices v ∈ V . For each landmark l ∈ L, a lower-bound heuristic from a vertex v to the
target vertex t is computed by hl(v) = d(l, t)− d(l, v). The heuristic for v is then defined to
be the maximum of all heuristics h(v) = max(maxl(hl(v)), 0). Researches show that the
landmark algorithm outperforms the A* algorithm [17].

1.2.3 Chapter Organization

The remainder of this thesis is organized as follows. In Chapter 2, several algorithms are
provided to solve the 2-dimensional Euclidean spatial skyline query problem. In Chapter 3,
algorithms are proposed that solve the spatial skyline query problem in high dimensional
Euclidean space. In Chapter 4, we first point out a mistake in an existing algorithm for
solving the spatial skyline query problem in road network space. We then propose a correct
and more efficient algorithm that solves the spatial skyline query problem in road network
space. In Chapter 5, conclusions are drawn showing our contributions in solving the spatial
skyline query problem in different metric spaces.

9



Chapter 2

Spatial Skyline Query Problem in
2 Dimensional Euclidean Plane

In this chapter, we focus on the spatial skyline query problem in the 2-dimensional
Euclidean plane. A point in 2-dimensional spatial skyline query problem has two attributes,
representing the x value and the y value of a spatial location. The spatial skyline query
problem retrieves all the skyline points S from the data set P with respect to an arbitrary
query set Q. Sections in this chapter are organized as follows: Section 2.1 provides a survey
on related researches. In section 2.2, we propose several new algorithms. In section 2.3,
experiments are conducted to evaluate the efficiency of our algorithms.

2.1 Related Work

This section provides a brief survey on work related to the spatial skyline query problem
in 2-dimensional Euclidean plane along with some useful theorems and algorithms.

Sharifzadeh and Shabi [36] first studied the spatial skyline query problem. They proposed
the Voronoi-based Spatial Skyline Algorithm (V S2) that takes advantage of the Voronoi
diagram and the convex hull to accelerate the computation. Son et al. [39] pointed out an
error in V S2 and proposed a new algorithm called Enhanced Spatial Skyline Algorithm
(ES) that correctly solves the spatial skyline query problem. Son et al [40][41] also studied
the spatial skyline query problem in L1 space. They proposed an algorithm that can return
a set of spatial skyline points in O(|P | log |P |) time where it is assumed that |Q| ≤ |P |.
Bhattacharya et al. [3] applied the compact Voronoi diagram to solve the spatial skyline
query problem, which transforms the problem into finding sites with non-empty cells in an
additive Voronoi diagram with a convex distance function. The complexity of their algorithm
is O((|Q|+ |P |) log(|Q|+ |P |)). Ji et al. [20] proposed an algorithm to solve the problem in
parallel using MapReduce.
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2.1.1 Useful Theorems

We now introduce several useful theorems. Sharifzadeh et al. [36] suggest a way to reduce
the size of query points using the convex hull.

Theorem 2.1 (Convex Hull [36]). The skyline points S of a set of data points P with
respect to Q do not depend on any non-extreme query point q ∈ Q.

Observation If a query point lies completely inside the convex hull of the query point set
CH(Q), it can be safely removed without affecting the final results of the spatial skyline
query. In other words, if we spend O(|Q| log(|Q|)) time to construct the convex hull of all
the query points [10], the number of query points can be reduced from |Q| to |CH(Q)|.
Theorem 2.1 also implies that we can add new query points inside the CH(Q) without
affecting the final results of a spatial skyline query. Additionally, theorem 2.1 leads to the
following corollary:

Corollary 2.1.1 (The Dominance Check Method [39]). The bisector of two data points
intersects the interior of CH(Q) if and only if they do not spatially dominate each other.

Observation If CH(Q) is known, we can test whether a data point dominates another
data point in O(log |CH(Q)|) time after constructing the convex hull of Q in O(|Q| log |Q|)
time. The logarithmic time dominance test can be achieved by testing whether the perpen-
dicular bisector of the two data points intersects with CH(Q) using a binary-search-like
technique [10].

Besides using the convex hull to reduce the number of the query points, some skyline
points can be located without performing any dominance check [36].

Theorem 2.2 (Seed Skyline Points [36]). If the Voronoi cell of p ∈ P intersects with
CH(Q), p is a skyline point.

Observation We can quickly determine a subset of skyline points using the Voronoi
diagram of data points.

2.1.2 Existing Approaches

Based on the theorems mentioned above, we now go over the Voronoi-based Spatial
Skyline Algorithm (V S2) [36] and the Enhanced Spatial Skyline Algorithm (ES) [39]. ES
is based on V S2, and will be used later in the experiment section.

V S2 first selects a random query point qs. We call qs the source query point since it is
the query point the algorithm starts with. V S2 then starts to traverse the Voronoi diagram
of data points in sorted order from the source query point qs. For each data point p, the
algorithm first checks if p has at least one spatial skyline neighbor. If p has at least one

11



spatial skyline neighbor, V S2 checks if p is a skyline point. Meanwhile, the algorithm pushes
the unvisited Voronoi neighbors of p along with their distances to qs into a min-heap H.
V S2 stops when the heap H is empty. However, as first noted by Son et al. [39], V S2 may
fail to find all spatial skyline points. We present V S2 in Algorithm 1 and will discuss why
the algorithm is wrong and provide the corrections later.

Algorithm 1 V S2 [36]
Input: Data Point Set P , Query Point Set Q
Output: Skyline Point Set S

1: Heap H = {(NN(qs),dist(NN(qs),qs))}
2: Visited = {NN(qs)}
3: Extracted = { }
4: while H is not empty do
5: (key, p) = H.top()
6: if p ∈ Extracted then
7: remove (key, p) from H
8: if Vor(p) intersects with CH(Q) or p is not dominated by S then
9: add p to S

10: end if
11: else
12: add p to Extracted
13: if S is empty or a Voronoi neighbor of p is in S then
14: for each Voronoi neighbor p′ of p do
15: if p′ /∈ Visited then
16: add p′ to Visited, and add (p′, dist(p′, q)) to H
17: end if
18: end for
19: end if
20: end if
21: end while

In Algorithm 1, NN(qs) denotes the data point in P that is closest to the source query
point qs, and dist(NN(qs),qs)) represents the Euclidean distance from NN(qs) to qs. The
algorithm maintains a min-heap H, which keeps track of a set of data points currently being
considered. The Visited array stores all the points visited, and the Extracted array stores
all the points whose Voronoi neighbors have been visited. The algorithm continuously pops
the top node (key, p) out of H. If the data point p is in Extracted, the algorithm performs
dominance check for p against all the skyline points found so far. The data point p is
accepted if no skyline point dominates it. If p is a skyline point or it has a neighbor who
is a skyline point, V S2 pushes the Voronoi neighbors of p into H. The algorithm stops
when H is empty. In other words, the algorithm stops after it examines all the points whose
neighbors have at least one skyline point.

However, as pointed out by Son et al. [39], V S2 may fail to locate all the skyline points. A
skyline point s can be found in a position where the Voronoi neighbors of s and the Voronoi
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neighbors of those Voronoi neighbors are all dominated by some other skyline points, as
shown in Figure 2.1.

Figure 2.1: An example showing V S2 may fail to find all skyline points [39]

In Figure 2.1, q0, q1, and q2 are query points. Other points are data points. p0, p1, and p2

are skyline points. All other data points are dominated by p0 and p1. If V S2 is applied to
this dataset, it will fail to locate p2 as a skyline point, because the Voronoi neighbors of
p2 and the Voronoi neighbors’ neighbors of p2 are all non-skyline points. V S2 simply stops
without examining p2.

After pointing out the problem of V S2 in [39], the authors propose the ES algorithm to
compute all the skyline points correctly. The ES algorithm comes from V S2 with several
changes to it. The main difference between V S2 and ES is that, instead of using the Voronoi
diagram to traverse the whole data point set, ES traverses data points according to their
distances to the source query point. Before presenting the algorithm, we need to introduce
the following lemma.

Lemma 2.3 (Domination Order [39]). Suppose all data points are sorted according to their
distances to a randomly selected query point q ∈ CH(Q). Suppose the sorted data point set
are {p0, p1, p2, . . . , pn−1} where d(pi, q) ≤ d(pj , q), ∀i < j. For an arbitrary data point pi,
points dominating pi, if exists, can only appear from the set {p0, p1, p2, . . . , pi−1}.

Observation Suppose all data points are sorted by their distances to the source query
point and stored in an array A. The number of dominance tests required to verify whether
an arbitrary data point pi is a skyline point can be reduced to the number of skyline points
that appear before pi in A.

Note that both V S2 and ES take advantage of the bounding box of the dominating
regions of the skyline points. In general, the number of the skyline points is much smaller
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than the number of data points. Moreover, skyline checks are costly. The number of points
that go through skyline checks should be kept as low as possible. Observe that data points
that lie inside the dominating regions of skyline points found so far can be pruned out.
However, calculating the exact shape of dominating regions is a complex problem, because
a dominating region of a point is shaped by the union of at most |Q| number of disks.
As a result, calculating the bounding box of the dominating region can be used as an
approximation to prune out some non-skyline data points. Figure 2.2 shows an example
of the dominating region of a point p with respect to three query points {q0, q1, q2}. The
dominating region of p is the gray area in the figure, which is shaped by three disks:
D(q0, d(p, q0)), D(q1, d(p, q1)) and D(q2, d(p, q2)). The shape of the union of |Q| disks is
difficult to compute, especially when |Q| is large. However, a bounding box enclosing the
dominating region, as shown by the dashed boxes in the figure, is easy to compute.

Figure 2.2: The gray region is the dominating region of p

The bounding box algorithm essentially computes the bounding boxes of dominating
regions of all skyline points. Any data point outside the intersection bounding box of those
bounding boxes can be pruned out safely. For those points that survive the pruning, skyline
checks are needed to decide whether the points are skyline points. We now present two
definitions: tentative point and candidate point.

Definition 2.1 (Tentative Point). A data point p ∈ P is called a tentative point if p is
visited by an algorithm in a spatial skyline query.

We will use TS to denote the set containing all the tentative points. The size of TS
is called tentative size. Note that although, in the worst case, TS can be P , an algorithm
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usually visit, seen in the experimental results, a small subset of data points TS ⊆ P in one
query.

Definition 2.2 (Candidate Point). A data point p ∈ P is called a candidate point if p goes
through a skyline check.

We will use CS to denote the set containing all the candidate points. The size of CS is
called candidate size. Note that CS is a subset of TS .

This paragraph briefly introduces the ES algorithm. The algorithm first locates a set
of seed skyline points, as mentioned in Section 2.2. ES then calculates the bounding box
B of the non-dominating regions of all seed skyline points. Seed skyline points dominate
all the data points outside B. Examining the data points inside B is sufficient to locate
all the yet to be computed skyline points. The algorithm then retrieves all the data points
inside B and treats them as tentative points. ES then sorts all tentative points according
to their distances to a randomly selected query point qs. The bounding box B will become
smaller during the spatial skyline computation, and tentative points inside the current B
are considered as candidate points. The algorithm then performs dominance checks to each
candidate point in sorted order with skyline points found so far. If skyline points found so
far cannot dominate the candidate point, the candidate point is accepted as a skyline point
and inserted into S. Whenever a new skyline point is added to S, the algorithm computes
the bounding box of the new skyline point’s non-dominating region. It then updates B by
computing then intersection of B and the newly computed bounding box. ES stops when
there is no unvisited candidate point inside B. Algorithm 2 below is the pseudocode of the
ES algorithm.

Algorithm 2 ES: Enhanced Spatial Skyline
Input: Data Points P, Query Points Q
Output: Skyline Points S

1: Find all data points in P that are inside CH(Q), or whose Voronoi cells intersect with
CH(Q), and put those points into S

2: Generate a bounding box B of the non-dominating region of S
3: Pn ← the distances from qs ∈ CH(Q) to data points in B
4: Sort Pn in ascending order
5: for i = 0 to |Pn| do
6: if Pn[i] is not dominated by ∀s ∈ S then
7: insert Pn[i] into S (Pn[i] is a skyline point)
8: update B using Pn[i]
9: end if

10: end for

Theorem 2.4. The preprocessing time complexity of the ES algorithm is O(|P | log |P |),
where |P | is the size of the data point set. The query time complexity of the ES algorithm
is O(|Q| log |Q|+

√
|P |+ |TS | log |TS |+ |CS ||S| log |CH(Q)|) in the worst case, where |TS | is
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the tentative size, |CS | is the candidate size, |S| is the size of the spatial skyline point set,
and |Q| is the size of the query point set.

Proof. In the preprocessing, the ES algorithm constructs the Voronoi diagram of all the
data points, which takes O(|P | log |P |) time. It stores all the data points in an R-tree.
Constructing R-tree for a set of |P | points takes O(|P | log |P |) time [45].

For a spatial skyline query, O(|Q| log |Q|) is spent on constructing the convex hull of the
query points of Q. Computing bounding boxes of seed skyline points costs O(|S||CH(Q)|)
time. Retrieving all the tentative points CS inside the bounding box takes O(

√
|P |+ |TS |)

time in the worst case [45]. Sorting the tentative points costs O(|TS | log |TS |) time. Per-
forming one dominance check for one candidate point against one skyline point takes
O(log |CH(Q)|) time, as mentioned in Corollary 2.1.1. There are |CS | candidate points,
and each of the candidate points needs at most |S| dominance checks. Therefore, the total
time spent on dominance checks is O(|CS ||S| log |CH(Q)|). Summing them up, we get the
query time complexity O(|Q| log |Q|+

√
|P |+ |TS | log |TS |+ |CS ||S| log |CH(Q)|).

2.2 Our Algorithms

In this section, we demonstrate our work on solving spatial skyline queries in a 2-
dimensional plane. The bounded skyline check method (BSC) is first described in section
2.2.1. The index skyline check method (ISC) is then proposed in section 2.2.2. A geomet-
ric approach, called the bounding line method, which can further reduce the number of
candidate points, is proposed in section 2.2.3.

2.2.1 Reducing the Number of Dominance Tests

In the ES algorithm, Son et al. [39] bound the number of dominance tests for a candi-
date point by O(|S|), which is the size of skyline points found so far. However, if we view
dominance checking in another perspective, dominance checking distinguishes skyline points
from non-skyline points. We can achieve the same effect if we can compute the dominator
region of a candidate point and test whether it contains any other skyline points. If the
dominator region contains no skyline point, the candidate point is a skyline point.

Figure 2.3 demonstrates an example of a dominator region of p. In this figure, there
are 3 query points, namely {q0, q1, q2}. For a data point p, its dominator region, colored
in gray, is the intersection of three disks: D(q0, d(p, q0)), D(q1, d(p, q1)) and D(q2, d(p, q2)).
Any point in the dominator region of p dominates p with respect to Q.

The advantages and disadvantages of the dominance check method mentioned in Corol-
lary 2.1.1 are the opposite of those of the dominator regions. In general, the dominator
region of a candidate point only contains a small subset of skyline points. To complete a
skyline check, we only need to know whether any skyline point lies inside the dominator
region. The dominance check method needs to go over all the skyline points in order to
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Figure 2.3: The gray region is the dominator region of p

complete a skyline check. However, the dominator region of a candidate point is hard to
compute. The boundary of a dominator region of a candidate point consists of up to |Q|
number of circular arcs. Determining its shape and testing whether a point lies inside is dif-
ficult. In contrast, the dominance check method does not require complicated computation
of the dominator region. It is natural for us to combine those two methods.

We now propose the bounded skyline check method (BSC) that combines the advan-
tages of the dominance check method and the dominator region. Instead of computing the
dominator region directly, BSC approximates it with a bounding box of the dominator
region. For a candidate point pc, if no skyline point lies inside the bounding box, pc is a
skyline point. Otherwise, the algorithm performs dominance checks between pc and any
skyline points lying inside the bounding box. If no skyline point dominates pc, BSC accepts
pc as a skyline point. The pseudocode of BSC is provided in Algorithm 3.

Theorem 2.5 (BSC Time Complexity). Suppose S′ denotes the subset of the skyline points
S, which lie inside the intersecting bounding box. A skyline check for a candidate point using
BSC takes O(|CH(Q)|+

√
|S|+ |S′| log |CH(Q)|) time in the worst case.

Proof. O(|CH(Q)|) time is spent on computing the bounding box of the dominator region.
A range query locating skyline points inside the bounding box takes O(

√
|S|+ |S′|) time in

the worst case, or O(log |S| + |S′|) time on average [18][21]. The dominance check method
mentioned in Corollary 2.1.1 will be performed between pc and the skyline points of S′,
which cost O(|S′| log |CH(Q)|) time.
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Algorithm 3 BSC: Bounded Skyline Check
Input: Candidate Point pc, Query Point Set Q, Current Skyline Point Set S
Output: Whether pc is a skyline point

1: for all qi ∈ Q do
2: Compute the orthogonal bounding box Bi of the disk D(qi, d(qi, pc))
3: end for
4: Bounding box of dominator region B =

|CH(Q)|⋂
i=1

Bi

5: if there is no skyline point of S in B then
6: return True (pc is a skyline point)
7: else
8: if pc is not dominated by any skyline points in B then
9: return True (pc is a skyline point)

10: else
11: return False (pc is not a skyline point)
12: end if
13: end if

2.2.2 Another Method for Skyline Check

In this section, a new method for skyline check, the index skyline check method (ISC),
is proposed. Instead of considering the data points in Euclidean space, they can be viewed
in query space, where each dimension of a data point represents its distance to a distinct
query point of CH(Q). A data point p = (xp, yp) in Euclidean space now becomes p =
(d(p, q1), d(p, q2), . . . , d(p, q|CH(Q)|)) in query space. A data point can now be represented
as a |CH(Q)|-dimensional vector. In query space, the dominator region of a point p is
represented by the hypercube formed by p and the origin. If there is a point s inside the
hypercube, s dominates p.

Figure 2.4 demonstrates an example of a data point in query space where there are only
two query points {q1, q2}. The x-axis and y-axis represent the distance from the data points
to q1 and q2, respectively. p′i is the transformed data point of pi, i = 1, 2, 3, 4, 5. Take p′1
as an example. The gray area is the dominator region of p′1, and the hatching area is the
dominating region of p′1. Since p′5 is inside the gray area, p5 dominates p1.

The skyline check for a candidate point now becomes checking whether any skyline point
lies inside the hypercube formed by the candidate point and the origin of the query space.

We now briefly introduce the ISC algorithm. ISC uses a spatial index, like KD-tree or
R-tree, to store all the skyline points. When it encounters a candidate point, ISC transforms
the candidate point from Euclidean space to query space. The method then checks whether
any skyline point lies inside the |CH(Q)|-dimensional hypercube formed by the candidate
point and the origin of the query space. If there is no skyline point inside, the candidate
point is accepted as a skyline point and inserted into the spatial index. Otherwise, the
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Figure 2.4: A demonstration of data points in query space

candidate point is dominated by some skyline points and can be discarded. The pseudocode
of ISC is presented in Algorithm 4.

Algorithm 4 ISC: Index Skyline Check
Input: Candidate Point pc, Query Point Set Q, Current Skyline Point Set S, Spatial Index

of Skyline Point Set I
Output: Whether pc is a skyline point

1: for all qi ∈ CH(Q) do
2: di = d(pc, qi)
3: end for
4: p′c = (d1, . . . , d|CH(Q)|)
5: Check whether any skyline point lies inside the hypercube c formed by p′c and the origin

6: if there is no skyline point in c then
7: Insert d into I
8: return True (pc is a skyline point)
9: else

10: return False (pc is not a skyline point)
11: end if

In Algorithm 4, the inputs additionally include a spatial index I. The hypercube c, in
line 5, is the hypercube formed by candidate point p′ and the origin.

Theorem 2.6 (ISC Time Complexity). A skyline check for a candidate point using ISC
can take O(|CH(Q)||S|1−

1
|CH(Q)| ) time in the worst case.

Proof. Computing distances from a candidate point to all the query points takesO(|CH(Q)|)
time. If a KD-tree or R-tree is used, a range query takes O(|CH(Q)||S|1−

1
|CH(Q)| ) time in

the worst case.
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2.2.3 Bounding the Number of Candidate Points

In this section, we provide a geometric method, the bounding line method, that can
further reduce the number of candidate points and tentative points. The bounding line
method, together with the bounding box method mentioned in Section 2.1, can prune out
more data points. The bounding line method utilizes the geometric relationship between
data points and the minimum enclosing disk of query points.

Theoretical Analysis

The main idea of the bounding line method is to approximate the dominating region of
a data point. Instead of trying to directly compute the irregular shape of the dominating
region with respect to a convex polygon. Our method tries to compute the dominating
region with respect to a query disk. Comparing to a random convex shape, the shape of a
disk is more regular and controllable.

As can be seen from Figure 2.5, the gray area is the dominating region for a point p with
respect to D. Here, D is a query disk instead of a query convex polygon. Notice that if the
bounding line L in Figure 2.5 can be calculated, it is a relatively tighter bound for the area
lying on the right-hand side of L comparing with the bounding box algorithm. Moreover,
if data points scatter around the disk, more bounding lines can appear around the circle,
and a tighter convex bounding polygon can be obtained. We call line L, in Figure 2.5, the
bounding line for p.

The question now becomes how to calculate the bounding line given a data point p and
a disk D. This problem can be transformed to the following geometry problem.

We are given a disk D(o, r) centering at o with radius r, and a point p outside D(o, r).
Since the disk is rotation-invariant, we can assume that the point p lies on the x-axis.
Suppose q is a randomly selected point on the boundary of D(o, r). A disk D(q, α) is
constructed using q as the center and the distance between p and q, d(p, q) = α, as the
radius. Suppose the rightmost point of D(q, p) is j = (xj , yj). We want to find a point q on
the boundary of D(o, r) whose j has the largest xj value. Figure 2.6 visualizes the problem.
Some assumptions are made here. β represents the distance between o and p. θ is the angle
between op and oq. α is the distance between q and p, and xq is the x value of q. This
problem can be further formulated as given p, o, and r, find a q = (xq, yq) that maximizes
xq + α. It turns out that a point q on the boundary of D(o, r) can be found to maximize
xq + α.

Theorem 2.7. Given a point p and a disk D(o, r) centering at o with a radius r, qx +α is
maximized, when d(p, q) = d(o, p).
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Figure 2.5: Dominating region of p with respect to D

Proof. Notice that d(q, j) = d(q, p) = α, because q and j lie on the same circle centering at
q. Since cos θ = β2+r2−α2

2rβ ,

qx + α = r cos θ + α (2.1)

= r(β
2 + r2 − α2

2rβ ) + α (2.2)

= β2 + r2 − α2

2β + α (2.3)

Notice that β and r are constants. So, (2.3) is a function of α. If we take derivative of the
function F (α) = β2+r2−α2

2β + α, we get F ′(α) = 1− α
β . This leads us to the conclusion that

qx + α will reach its maximum when α = β.

Notice that the bounding line method is still applicable in a higher dimension as well.
We now present an algorithm that can reduce the number of candidate points using the
bounding line method in the next section.

Maintaining Bounding Lines Using Symmetric Points

Suppose we have |S| skyline points lying outside the minimum enclosing disk of the
query points. The bounding lines of those skyline points form a convex polygon with at
most |S| edges. We want to test whether a data point p lies inside the convex polygon. If p
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Figure 2.6: Finding the bounding line

lies inside, it is accepted as a candidate point. Otherwise, p is dominated by some current
skyline point and can be discarded. Although testing whether a point is inside a convex
polygon is easy, dynamically maintaining the convex polygon together with an efficient
inclusion test is relatively tricky.

In order to maintain the convex polygon dynamically, we can transform the convex poly-
gon maintaining problem into a nearest neighbor problem involving insertions and deletions.
Instead of keeping track of the bounding lines, we can store a point symmetric to the center
of the minimum enclosing disk o with respect to the bounding line. Figure 2.7 shows an
example of the transformation. In the example, the convex polygon of five pints CH(R)
is transformed where R = {r0, r1, r2, r3, r4}. Each edge rirj of CH(R) is represented by a
point r′ij symmetric to o with respect to rirj .

Symmetric points, along with the center o, can be stored using any spatial index data
structure that supports fast dynamic nearest neighbor queries. For example, an R-tree
containing n points can retrieve the nearest neighbor of an arbitrary point in O(logn) time
on average [45].

In the bounding line algorithm, the center o is the minimum enclosing disk of the query
points D(Q). The edges are produced by the current skyline points outside D(Q). When a
tentative point p arrives, the algorithm searches for its nearest neighbor in the spatial index.
If the nearest neighbor of p is o, p lies inside the convex polygon formed by bounding lines
and is accepted as a candidate point. Otherwise, we can discard p because it lies outside
the convex polygon, and it is dominated by some skyline points found so far.
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Figure 2.7: Transform the convex polygon maintaining problem into a nearest neighbor
problem

Bounding Line Method

We now describe the bounding line method (BL) in detail. There are two operations in
BL: Pruning operation decides whether a data point is a tentative point. Insertion operation
adds a new symmetric point generated by the new skyline point to the existing spatial index.
BL initializes the spatial index with the center of the minimum enclosing disk of the query
points o.

The pruning operation is shown in Algorithm 5. For a data point p, BL checks whether
p lies inside the bounding convex polygon by performing a nearest neighbor query. This
operation will accept p as a candidate point if the nearest neighbor of p is o.

Algorithm 5 BL: Bounding Line Method (Pruning Operation)
Input: Data Point p, Symmetric Points SP
Output: Whether p is a tentative point

1: Find the nearest neighbor NN(p) of p in SP
2: if NN(p) is the disk center o then
3: return True (p is a tentative point)
4: else
5: return False (p is not a tentative point)
6: end if
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The insertion operation is shown in Algorithm 6. When a candidate point s is accepted
as a new skyline point, the algorithm computes the symmetric point of the bounding line
of s with respect to o, and stores the symmetric point in a specific data structure.

Algorithm 6 BL: Bounding Line Method (Insertion Operation)
Input: Skyline Point s, Minimum Enclosing Disk of Q D(Q) , Symmetric Points SP
Output: Symmetric Points SP

1: if s is outside D(Q) then
2: Compute the symmetric point s′ of the bounding line of s with respect to o
3: Insert s′ into SP
4: end if
5: return SP

Since computing the symmetric point only takes constant time, the time complexity of
the BL algorithm depends on the data structure used to perform the nearest neighbor. For
example, if R-tree is used, pruning and insertion cost O(log |S|) time on average [45].

2.3 Experiments

This section compares our algorithms with the ES algorithm [39] on several aspects.
In section 2.3.1, our algorithms using different methods mentioned in the previous sections
are presented. In section 2.3.2, the experimental settings are reported. In section 2.3.3, the
evaluation results show that our algorithms outperform the ES algorithm.

2.3.1 Algorithms and Implementation

In this section, we propose several algorithms that use different methods mentioned in
the previous sections. Our algorithms have three components.

1. traversal component: determines the order with which the tentative points of TS ⊆
P are visited

2. pruning component: prunes a subset of non-skyline points quickly and produces
the candidate point set CS

3. skyline check component: performs a specific skyline check algorithm to all the
candidate points and determines the skyline point set S

Take the ES algorithm [39] as an example. ES traverses tentative points after they are
sorted from the source query point. The algorithm uses the bounding box method to prune
out some non-skyline points quickly. It then uses the dominance check method to acquire
all the skyline points. We now list several components that will be used by our algorithms.
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Traversal Components There are two traversal components considered: sorting [39] and
the Voronoi diagram [36]. The sorting method sorts the tentative points according to their
distances to the source query point. It then traverses the tentative point set accordingly.
The Voronoi diagram traversal method starts with the data point closest to the source query
point. It pushes all the unvisited Voronoi neighbors of the data point into a min-heap, along
with their distances to the source query point. Data points inside the heap are considered
as tentative points. The Voronoi diagram traversal method stops when the heap is empty.

Pruning Components The bounding box method mentioned in Section 2.1.2 is one of
the pruning components. For each skyline point s found so far, it computes an orthogo-
nal bounding box enclosing the dominating region of s. The method keeps track of the
intersection of the bounding boxes of all the skyline points found so far. Tentative points
inside the bounding box are candidate points. The bounding box and bounding line method
additionally apply the bounding line method mentioned in Section 2.2.3 to the bounding
box method. It can further reduce the bounding region and thus decreases the size of the
candidate set and the tentative set.

Skyline Check Components Three skyline check methods are available: the dominance
check method mentioned in Section 2.1.2, BSC mentioned in Section 2.2.1, and ISC men-
tioned in Section 2.2.2.

Table 2.1 shows several algorithms using different components mentioned above. Al-
though we only list five algorithms here, more algorithms are available by combining differ-
ent components. In our experiments, we will compare the performance of three algorithms:
ES, BSCS, and ISCSBL.

ES ESV BSCS ISCS ISCSBL

Traversal
component

Sorting Voronoi
diagram

Voronoi
diagram

Voronoi
diagram

Voronoi
diagram

Pruning
component

Bounding
box

Bounding
box

Bounding
box

Bounding
box

Bounding
box &
Bounding
line

Skyline
check
component

Dominance
check

Dominance
check

BSC ISC ISC

Table 2.1: Configuration of different algorithms

2.3.2 Experimental Settings

In this section, we introduce the datasets and parameter settings of our experiments.
The datasets are set up in a way similar to the datasets used by Son et al.[39]. Two types
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of datasets are used. One is a synthetic dataset. The other is a real-world point of interest
(POI) dataset [27].

Synthetic dataset A synthetic dataset contains up to one hundred thousand uniformly
distributed points in 2D. The domain of the data points is restricted to a unit square. The
query points follow a normal distribution using a randomly chosen data point as their mean.
Three parameters can be adjusted to thoroughly test the algorithms, namely, dataset size,
query point set size, the standard deviation of the normal distribution of the query points.
We use σ to represent the standard deviation of the normal distribution of the query points.
Table 2.2 lists the configuration of the parameters.

Parameter Setting
Data size 25K, 50K, 75K, 100K
Query size 10, 25

Standard deviation of normal
distribution of query points (σ) 0.02, 0.04

Table 2.2: Configuration of synthetic datasets

As can be seen from Table 2.2, the synthetic dataset has four different sizes, 25K, 50K,
75K, and 100K. They also have five two query point sizes and two different σ. Twenty
queries are generated for each specific configuration. The average response time, the size of
the candidate point set, and the number of spatial skyline points are recorded.

Point Of Interest (POI) dataset The POI dataset contains 21058 locations in Califor-
nia [27] (dataset used by Son et al. [39]). We only use the vertex locations of the dataset.
The edge data are not used in this chapter. The distance between any two points is the
Euclidean distance. Figure 2.8 shows a visualization of the dataset. The configuration of
the size of the query points and σ are the same as mentioned in Table 2.2.

Experimental Equipment The experiments are implemented using Python 3.7.4 and
are carried out on a Macbook Pro with a 3.1GHz Intel i5 CPU and 8 GB memory.

2.3.3 Experimental Results

In this section, the experimental results are provided to show the comparison results of
different algorithms. Table 2.3 and Table 2.4 show the experimental data for the synthetic
dataset and the POI dataset, respectively. All the figures in this section are generated from
these two tables.
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Figure 2.8: Visualization of POI dataset

Effect of data size

Both BSCS and ISCSBL outperform ES under various data sizes. ISCSBL performs
slightly better than BSCS. Note that the spatial skyline size, the candidate size and the
tentative size are considerably smaller than the number of data points. If other parameters
remain the same, the rates of increase in the spatial skyline size, the candidate size and
the tentative size are almost the same as the rate of increase in the data size. When the
data size becomes large, the total response time of ES increases dramatically, while the
response times of BSCS and ISCSBL remain low. The reason is that the algorithms need
to perform skyline checks on a larger candidate point set with the increase of data size.
Additionally, the cost of a skyline check also increases because of the increase of spatial
skyline size. The response time of ES increases dramatically because the skyline check
component of ES examines a large portion of the spatial skyline points for each candidate
point. As for BSCS and ISCSBL, since they only examine a small subset of skyline points
per skyline check, their response times do not grow as much as ES. The bounding box and
bounding line method tends to prune out more data points with the growth of data size. The
pruning effect will become more obvious in high dimensional Euclidean space (discussed in
Chapter 3). Figure 2.9 shows the experimental results on the synthetic dataset with respect
to different data sizes. The query size is 15 and σ is 0.04 in the figure.

Effect of query size

Both BSCS and ISCSBL outperform ES under different query sizes. ISCSBL per-
forms slightly better than BSCS. The increase of the query size has a smaller impact on the
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Synthetic Dataset
Data size 25000 50000
Query size 5 15 5 15

σ 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04
Spatial skyline size 79.95 278.6 146.65 517. 151.95 595.65 257.15 887.85

Total time
(s)

ES 0.3 3.96 0.91 12.36 1.14 17.55 2.82 36.32
BSCS 0.05 0.27 0.1 0.51 0.12 0.76 0.21 1.04
ISCSBL 0.03 0.14 0.07 0.27 0.07 0.34 0.12 0.47

Candidate
Size

ES/BSCS 196.95 833.1 360.75 1402. 423.95 1885.95 658.95 2361.15
ISCSBL 189.8 810.8 351.85 1373.1 414.05 1860.05 638.05 2327.25

Tentative
Size

ES 545.95 2279.2 1004.05 3901.95 1235.5 5375.3 1864.4 6982.65
BSCS 253.95 947.45 440.8 1554.35 510.8 2057.05 763.4 2543.95
ISCSBL 244.6 922.15 428.9 1520.45 498.45 2027.8 737.85 2504.75

Data size 75000 100000
Query size 5 15 5 15

σ 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04
Spatial skyline size 234.15 740.35 402.9 1459.85 303.35 930.2 498.4 1823.4

Total time
(s)

ES 2.69 29.13 7.36 101.55 4.4 46.76 11.43 152.2
BSCS 0.2 1. 0.38 2.17 0.29 1.56 0.49 2.89
ISCSBL 0.11 0.43 0.21 0.91 0.16 0.58 0.26 1.15

Candidate
Size

ES/BSCS 663.6 2263.85 1122.95 4352.75 902.5 3036.3 1366.45 5295.25
ISCSBL 649.05 2233.8 1084.45 4277.9 885.9 2987.15 1342.55 5189.2

Tentative
Size

ES 1967.9 6125.5 3114.1 12361.1 2551.8 8113.9 3687.65 14632.75
BSCS 770. 2444.85 1254.95 4618.4 1028.25 3251.3 1512.35 5585.75
ISCSBL 752.85 2410.5 1211.55 4535.45 1008.05 3196.3 1484.15 5471.

Table 2.3: Experimental results of algorithms in the 2-dimensional Euclidean space using
synthetic dataset

spatial skyline size and the candidate size comparing to the impact of data size. The reason
is that the size of CH(Q), not Q, affects the final results of a spatial skyline query. The
query size has a similar impact on the POI dataset. ISCSBL still has the best performance
among the three algorithms. Its response time remains steady with the growth of the query
size, while the response time of ES grows dramatically. Figure 2.10 shows the experimental
results on the POI dataset with respect to the query size. The data size is 21058 and σ is
0.04 in the figure.

Effect of σ

Both BSCS and ISCSBL outperform ES under different standard deviations of the
normal distribution of query points. ISCSBL performs slightly better than BSCS. σ has
a more significant impact than the data size or the query size on both the synthetic dataset
and the POI dataset. The reason is that σ affects the size of the region covered by the query
points. If the query points cover a broader region, the algorithms will visit more candidate
points and retrieve more skyline points. The increase of the response time of ISCSBL is the
slowest among the three algorithms because it has the most efficient skyline check method.
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POI Dataset
Query size 5 15

σ 0.02 0.04 0.02 0.04
Spatial skyline size 179.35 503.35 233.35 954.5

Total time
(s)

ES 1.65 14.2 2.45 39.01
BSCS 0.16 0.62 0.2 1.18
ISCSBL 0.08 0.26 0.11 0.46

Candidate
Size

ES/BSCS 463. 1386.3 579.1 2219.65
ISCSBL 446.65 1370.05 564.5 2186.05

Tentative
Size

ES 1281.4 3166.85 1693.45 5060.5
BSCS 551.25 1522.85 676.65 2381.25
ISCSBL 531.75 1505. 658.25 2342.95

Table 2.4: Experimental results of algorithms in the 2-dimensional Euclidean space using
POI dataset

(a) Response time (b) Skyline/candidate size

Figure 2.9: Experimental results on the synthetic dataset with respect to the data size

Figure 2.11 shows the experimental results on the POI dataset with respect to σ. The data
size is 21058 and the query size is 15 in the figure.

2.4 Conclusion

In this chapter, we have studied the spatial skyline query problem in the 2-dimensional
Euclidean plane and present several algorithms that can improve the efficiency of the queries.
Two efficient skyline check methods are proposed. BSC takes advantage of the dominator
region, while ISC takes advantage of the spatial index. The bounding line method, which
can reduce the candidate size, is also proposed here. The effect of the bounding line method
is not very obvious for the 2-dimensional case. As we will see in the next chapter, the
bounding line method will have a significant impact on reducing the candidate size in high
dimensional space.

Our algorithms,BSCS and ISCSBL, outperform the ES algorithm. ES takesO(
√
|P |+

|Q| log |Q|+ |TS | log |TS |+ |CS ||S| log |CH(Q)|) time to complete a query in the worst case.
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(a) Response time (b) Skyline/candidate size

Figure 2.10: Experimental results on the POI dataset with respect to the query size

(a) Response time (b) Skyline/candidate size

Figure 2.11: Experimental results on the POI dataset with respect to the standard deviation
of the normal distribution of the query points

The worst-case query time complexity of the BSCS algorithm is O(
√
|P | + |Q| log |Q| +

|TS | log |TS |+ |TS |
√
|S|+ |CS ||S′| log |CH(Q)|), where |S′| is the number of spatial skyline

points used in BSC. The worst-case query time complexity for the ISCSBL algorithm is
O(

√
|P | + |TS | log |TS | + |TS |

√
|S| + |CS ||CH(Q)||S|1−

1
|CH(Q)| ). In the worst case, |TS | and

|CS | can be as large as O(|P |), and |S′| can be as large as O(|S|). In the experiments, we
notice that |CS | and |TS | are O(|S|). We also show that the improvement in the response
time of our algorithms mainly comes from the efficient skyline check methods. Instead of
visiting the whole spatial skyline point set, our skyline check methods only visit a subset of
the spatial skyline point set.

30



Chapter 3

Spatial Skyline Query Problem in
High Dimensional Euclidean Space

In this chapter, we investigate the spatial skyline query problem in high dimensional
Euclidean space. We are given a set of data points P . For an arbitrary query set Q in d-
dimensional Euclidean space, the problem requires us to locate all the skyline points S ⊆ P
with respect to Q. Like in the 2-dimensional case, our algorithms have three components,
namely the traversal component, the pruning component and the skyline check component.

This chapter is organized as follows: Section 3.1 discusses why the algorithms designed
for the 2-dimensional Euclidean plane are not efficient in high dimensional space. In section
3.2, we discuss several solutions for the traversal components, pruning components, and
skyline check components of our algorithms. Section 3.3 contains some experimental results
comparing the solutions to different components. In section 3.4, conclusions are drawn.

3.1 Related Work

Son et al. [36] and Sharifzadeh et al. [39] mentioned in their papers that their algorithms
could work in high dimensional space. However, some geometry structures used in their
papers are complex and constructing them in high dimensional Euclidean space takes more
time than the brute force spatial skyline algorithm. For example, in d-dimensional Euclidean
space, the brute force algorithm compares each data point p against all other data points
pi ∈ P \ {p} to see if any data point dominates p, which takes O(|P |2|Q|d) time. However,
for a set of points P in d-dimensional Euclidean space, the Voronoi diagram of them has
Θ(|P |d

d
2 e) combinatorial complexity [23]. The convex hull of those data points has Θ(|P |b

d
2 c)

combinatorial complexity [10]. With the dimensionality growing, we want to avoid using
geometric structures like Voronoi diagrams or convex hulls. Other papers focus on solving
general skyline queries or variants of them in high dimensional space [6][7][26][33][48].
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3.2 Our Algorithms

As mentioned in Section 2.3, a spatial skyline algorithm has three components: the
traversal component, the pruning component, and the skyline check component. In this
section, we propose several solutions to the components that can solve the high dimen-
sional spatial skyline query problem. In Section 3.2.1, two traversal components, such as
sorting and the index traversal method, are discussed. Section 3.2.2 presents the index
traversal method with lazy construction. In Section 3.2.3, two pruning components, namely
the bounding box method, and the bounding plane method, are proposed. In Section 3.2.4,
skyline check components proposed in Chapter 2 are analyzed to show their potential usage
in high dimensional Euclidean space.

3.2.1 Traversal Components in High Dimensional Space

Sorting, as a traversal component, works in high dimensional Euclidean space. Data
points (tentative points) are visited according to their distances to the source query point,
which is an arbitrarily selected query point. Sorting is the simplest and most straightforward
traversal component.

Another traversal component is the index traversal method. In the index traversal
method, data points are stored in a spatial index like a KD-tree. The method then keeps
returning the next unvisited nearest neighbor of the source query point qs, which is an arbi-
trarily selected query point. In this way, data points (called tentative points) are returned in
sorted order. Additionally, as discussed later, the data structure used by the index traversal
method allows pruning of data points during the computation of the spatial skyline points.

In our thesis, KD-tree is used to store all the data points. There are two types of nodes
in a KD-tree [2]: the internal node and the leaf node. The internal nodes store the splitting
value and splitting dimension, while the leaf nodes store the actual data points. A leaf node
has a size parameter that specifies the maximum number of data points sorted in a leaf
node.

For example, suppose we have a set of data points:

{(0, 2), (0, 3), (0, 4), (0, 5),

(1, 2), (1, 3), (1, 4), (1, 5),

(2, 2), (2, 3), (2, 4), (2, 5)}

Figure 3.1a shows the newly constructed KD-tree for the data points. Note that the elliptical
nodes are the internal nodes, and the rectangular nodes are the leaf nodes.

Each node also maintains a bounding box and an enclosing hypersphere in order to
support the pruning methods mentioned later in Section 3.2.3. The bounding box is the
minimum orthogonal bounding box that contains all the data points in the subtree rooted
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(a) Newly constructed KD-tree

(b) Traversal using KD-tree

Figure 3.1: KD-tree example

at the node. The bounding box is represented by a vector of size 2d, where d is the dimension.
The distance from qs to a node is the shortest distance from qs to the bounding box of the
node. If qs lies inside the bounding box of a node, the distance between them is 0.

We also store, at each node v, an enclosing hypersphere, not necessarily of minimum
radius, to contain all the points in v’s subtree. The minimum radius spanning hypersphere
of n points in d dimension can be computed in O(dn) time [14][30]. Note that a spanning
hypersphere of v can easily be computed using the spanning hyperspheres stored at v’s two
children. This way we can easily compute all the spanning hyperspheres of the KD-tree
nodes bottom up in O(dn) time.

We now briefly introduce the index traversal method. The method continuously outputs
the next unvisited nearest neighbors of qs. The index traversal method uses two heaps:
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• Node heap HN : A min-heap stores the nodes of the KD-tree that are being visited.
The keys of HN are the distances from nodes of the KD-tree to qs. Initially, HN only
contains the root node of the KD-tree.

• Point heap HP : A min-heap stores data points yet to be output by the index traversal
method. The keys of HP are the distances from data points to qs. Initially, HP is
empty.

The index traversal method keeps checking the top entry (dmin, Nv) of HN . If Nv is an
internal node, two children of Nv are pushed into HN . Otherwise, Nv is a leaf node, and the
index traversal method pushes all the data points stored in Nv into HP . Additionally, if HP

is not empty, the method compares the keys of the top nodes of HN and HP . If the key of
the top node of HP is smaller than that of HN , the top node of HP is returned as the next
nearest neighbor of the source query point. The index traversal method stops when HN is
empty. The pseudocode of the index traversal method is shown in Algorithm 7.

Algorithm 7 Index Traversal Method
Input: KD-Tree of all data points T , Source Query Point qs
Output: Next unvisited nearest neighbor z

1: Initialize the node Heap HN = [ ]
2: Initialize the point Heap HP = [ ]
3: HN .push(d(T.root, qs), T.root)
4: while HN is not empty do
5: while HP is not empty and HP .top().key < HN .top().key do
6: yield z = HP .pop()
7: end while
8: (dmin, Nv) = HN .pop()
9: if Nv is a leaf node then

10: Compute the distances from points in Nv to qs and push those points along with
their distances to HP

11: else
12: Push the children of Nv into HN along with their distances to qs
13: end if
14: end while

Notice that the yield keyword in line 6 means that the top node of Hp is returned as the
next nearest neighbor, and when the next nearest neighbor is required again, the algorithm
resumes and starts from line 7.

An example of the index traversal method is now provided. We want to find the next
nearest neighbors of the point (0.75, 2) with respect to the KD-tree in Figure 3.1. The
method traverses from the root node down to the nearest leaf node. Figure 3.1b displays
the status when the method is going to pop out the first leaf node from HN . The gray
nodes with the bold border in the figure are visited nodes. The white nodes with the dashed
border are the nodes currently contained in HN . The gray leaf node with the dashed border
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Step HN : (key, node) HP : (key, point)
1 [(0, Internal Node 0)] [ ]
2 [(0, Internal Node 1), (2, Internal Node 2)] [ ]
3 [(0, Internal Node 3), (1.25, Leaf Node 1),

(2, Internal Node 2)]
[ ]

4 [(0.25, Leaf Node 1), (0.75, Leaf Node 0),
(1.25, Leaf Node 2), (2, Internal Node 2)]

[ ]

5 [(0.75, Leaf Node 0), (1.25, Leaf Node 2),
(2, Internal Node 2)]

[(0.25, (1,2)), (1.03, (1,3))]

Table 3.1: Index traversal algorithm detailed procedure

is then popped out. The data points in the leaf node are pushed into HP . For now, the top
node of HN is [0.75, {Leaf Node 0:(0, 2), (0, 3)}], and the top node of HP is [0.25, (1, 2)]. The
key of the top node of HN and the key of the top node of HP are then compared. Because
the top node of HP has a smaller key, (1, 2) is returned as the next nearest neighbor. The
process repeats whenever the next nearest neighbor is required. Table 3.1 shows the status
of HN and HP before the first nearest neighbor is returned.

Theorem 3.1. In the preprocessing step, for a set of data points P in d-dimensional Eu-
clidean space, the index traversal method takes O(d|P | log |P |) to construct the KD-tree [10].

3.2.2 Index Traversal Method with Lazy Construction

In the previous section, we show that the index traversal method can be used to tra-
verse the data points in sorted order. However, the index traversal method must spend
O(d|P | log |P |) preprocessing time to construct the KD-tree before outputting the first sky-
line point [9]. The lazy construction technique can be incorporated into the index traversal
method. The lazy construction technique builds a KD-tree node only when the method is
going to visit the node. It can reduce the preprocessing time. If the pruning component is
incorporated into the index traversal method, we can avoid constructing some nodes of the
KD-tree with lazy construction.

The lazy construction version of the index traversal method assembles most parts of the
original version except for two differences. The first difference is that the method initializes
the KD-tree with only one leaf node containing all the data points. The second difference
appears when the method pops a node out of the node heap HN . In this scenario, if the
popped node is a leaf node with a size larger than the user-specified leaf size, the method
will replace the leaf node with a newly constructed internal node. Data points stored in
the original leaf node are split and stored in the two newly constructed children leaf nodes
of the internal node. Note that the enclosing hyperspheres of the lazy KD-tree nodes are
computed in a top-down manner, since the lazy KD-tree starts with only one leaf node and
the tree structure is built on-the-fly.
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Figure 3.2: Index traversal method with lazy construction

Figure 3.2 contains an example showing the first three steps of applying the index
traversal method with lazy construction. We want to locate the nearest neighbor of the
point (0.75, 2). Initially, all the data points are stored in the Leaf Node 0. When we visit
the Leaf Node 0, it is replaced by an internal node (Internal Node 0). Data points in Leaf
Node 0 are split into two children leaf nodes: Leaf Node 1 and Leaf Node 2. We then visit
the left child of the Internal Node 0. The index traversal method with lazy construction
transforms the Leaf Node 1 into Internal Node 1 by computing the splitting value and
splitting dimension. Leaf Node 3 and Leaf Node 4 are created to store the data points. This
process ends if the number of data points is smaller than the leaf size. The pseudocode
of the index traversal method with lazy construction is presented below in Algorithm 8.
Algorithm 8 is similar to Algorithm 7 except for line 3, which is the initialization of lazy
KD-tree ,and lines 11-14, which are the KD-tree construction steps.

3.2.3 Pruning Components in High Dimensional Space

The bounding box method and the bounding line method described in Chapter 2 can be
used in higher dimensional space. The bounding box method, which uses the bounding box
of the non-dominating region of the skyline points to prune out non-skyline data points,
becomes less efficient in high dimensional space because the ratio between the volume of the
unit hypersphere and the volume of the unit hypercube approaches zero with the growth of
dimensionality [44].

Theorem 3.2. For a given query set, the index traversal method along with the bounding
box method can visit all the tentative points TS of the KD-tree in sorted order and produce
the candidate set CS in O(d|P |1−

1
d + d|S||Q|+ d|TS |+ |TS | log |TS |) time.

Proof. Each skyline point generates a bounding box, which costs O(|Q|d) time. Maintaining
the intersection bounding box takes the same time. The index traversal method can retrieve
all the tentative points TS inside the bounding box using a range-query-like technique,
which costs O(d|P |1−

1
d + d|TS |) time. Computing distances from all the tentative points to
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Algorithm 8 Index Traversal Method with Lazy Construction
Input: Data Point Set P , Source Query Point qs
Output: Next unvisited nearest neighbor z

1: Initialize the node Heap HN = [ ]
2: Initialize the point Heap HP = [ ]
3: Initialize the KD-tree T.root = LeafNode(P )
4: HN .push(d(T.root, qs), T.root)
5: while HN is not empty do
6: while HP is not empty and HP .top().key < HN .top().key do
7: yield z = HP .pop()
8: end while
9: (dmin, Nv) = HN .pop()

10: if Nv is a leaf node then
11: if Nv.size > leaf_size then
12: Transform Nv to a inner node by computing the split and the split dimension of

Nv

13: Create two leaf nodes containing data points after the splitting and make them
two children of Nv

14: else
15: Compute the distances from points in Nv to qs and push those points along with

their distances to HP

16: end if
17: else
18: Push the children of Nv into HN along with their distances to qs
19: end if
20: end while

the source query point takes O(d|TS |) time. Visiting all the tentative points of TS in sorted
order takes O(|TS | log |TS |) time. The total time complexity is O(d|P |1−

1
d +d|S||Q|+d|TS |+

|TS | log |TS |).

The bounding line method mentioned in section 2.2.3 now becomes the bounding plane
method in higher dimensional space, since the bounding line in the 2-dimensional plane now
becomes a (d− 1)-dimensional hyperplane in d-dimensional space where d is the dimension
of the data points. Each (d−1)-dimensional hyperplane indicates a d-dimensional half-space
where yet to be computed spatial skyline points can lie. The intersection of the half-spaces
determined by the skyline points computed so far forms a d-dimensional polyhedron. Any
data point outside the polyhedron cannot be a skyline point. The bounding plane method,
in combination with the bounding box method, performs much better in high dimensional
space.

Theorem 3.3. For a given query set, the bounding box and bounding plane method along
with the index traversal method can visit all the tentative points TS in sorted order and
produce the candidate set CS in O(d|P |1−

1
d + d|S||Q|+ |TS | log |TS |+ d|TS ||S|1−

1
d ) time.
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Proof. The bounding plane method adds an additional O(d|TS ||S|1−
1
d ) to Theorem 3.2

because it checks whether a tentative point produced by the bounding box method lies
inside the convex polyhedron produced by the bounding plane method.

The pruning components can be incorporated into the index traversal method. Whenever
a new node of the KD-tree is met, the node can be checked against the bounding region of
the current skyline points (either a bounding box or a bounding polyhedron). If the node is
completely outside the bounding region, the whole subtree of the node can be pruned out.

3.2.4 Skyline Check Components in High Dimensional Space

The dominance check method in 2-dimensional space is not applicable in the high di-
mensional space since we want to avoid computing the convex hull of all the query points.
An alternative is to compute the distances from the candidate point to all the query points
and compare the distances with current skyline points. The new dominance check method
takes O(d|Q|+ |Q||S|) time.

The Index skyline check method (ISC) mentioned in Section 2.2.2 is applicable and
efficient in high dimensional space. Recall that ISC puts all skyline points found so far
into a spatial index I. A candidate point pc is transformed from the Euclidean space to
the query space. The method then checks whether any skyline point lies inside the |Q|-
dimensional hypercube formed by pc and the origin of the query space. If there is no skyline
point inside the hypercube, pc is accepted as a skyline point. The time complexity of ISC
is O(d|Q|+ |Q||S|1−

1
|Q| ).

3.3 Experiments

In this section, several experiments are conducted to compare the efficiency of different
algorithms in solving the spatial skyline query problem in high dimensional space. In section
3.3.1, we describe our algorithm settings in conducting the experiments. In section 3.3.2,
experimental settings are described. In section 3.3.3, experimental results are shown to
demonstrate the efficiency of different algorithms.

3.3.1 Algorithm Settings

In this section, we provide several algorithms that take advantage of different compo-
nents we described in the previous sections. The names of the algorithms consist of the
starting alphabet of their components in the following order: the traversal component, the
pruning component and the skyline check component. For example, if an algorithm is named
IB2I, it means that the algorithm uses the index traversal method as their traversal com-
ponent, the bounding box and bounding line method as its pruning component and ISC

as their skyline check component.
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SBD IB2D IB2I ILB2I

Traversal
component

Sorting Index traversal
method

Index traversal
method

Index traversal
method with lazy
construction

Pruning com-
ponent

Bounding box Bounding box
& Bounding
plane

Bounding box
& Bounding
plane

Bounding box &
Bounding plane

Skyline check
component

Dominance
check

Dominance
check

ISC ISC

Table 3.2: Configuration of different algorithms

Note that ES algorithm [39] in 2-dimensional Euclidean plane now becomes the SBD
algorithm in high dimensional Euclidean space by using the new dominance check method
as its skyline check component.

3.3.2 Experimental Settings

The dataset used in this chapter is a synthetic dataset. Data points are generated uni-
formly in a unit hypercube. The query points follow a normal distribution using a randomly
chosen data point as their mean. We investigate the effect of data size, dimension, query
size, and the standard deviation of the normal distribution of the query points on the perfor-
mance of the algorithms. Three different data sizes, three different dimensions, two different
query sizes, and two different σ are considered. Table 3.3 shows the detailed dataset settings.

Parameter Setting
Data point set size 100K, 175K, 250K

Dimension 3, 4, 5
Query point set size 5, 20

σ 0.05, 0.125

Table 3.3: Configuration of the dataset in high dimensional space

KD-tree is used in the index traversal method to store data points. It is also used in ISC
to store skyline points computed so far. The leaf size of the KD-trees used in our algorithms
is 16. As for the insertion of a skyline point s to the KD-tree, we insert s to the leaf node
if the number of the skyline points in the leaf node is smaller than the leaf size. When the
number of the skyline points becomes greater than the leaf size, we replace the leaf node
with a newly constructed internal node. Skyline points stored in the original leaf node are
split and stored into two newly constructed children leaf nodes of the internal node. The
expected height of the KD-tree built in this way is O(logn) [8].
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3.3.3 Experimental Results

Table 3.4 contains the experimental data. Note that we only evaluate the tentative sizes
of SBD and IB2I in the table because ILB2I visits all the data points in the first few
queries and IB2D has the same tentative size as IB2I. Figures in this section are generated
from Table 3.4.

40



D
at
a
siz

e
10

00
00

D
im

en
sio

n
3

4
5

Q
ue

ry
siz

e
5

20
5

20
5

20
σ

0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
sk
yl
in
e
siz

e
10

9.
25

80
8.

44
2.
45

35
69

.4
30

.6
28

3.
14

4.
7

18
54

.2
15

.8
5

10
6.
1

75
.2

79
6.
35

t (s
)

S
B
D

0.
7

4.
02

1.
25

43
.8
8

0.
61

1.
35

0.
71

13
.6
9

0.
61

0.
92

0.
66

6.
12

I
B

2 D
0.
1

2.
42

0.
73

31
.8

0.
05

0.
6

0.
26

11
.1
1

0.
05

0.
45

0.
23

5.
21

I
L
B

2 I
0.
17

1.
63

0.
67

5.
98

0.
09

0.
91

0.
42

6.
58

0.
11

0.
8

0.
46

6.
16

I
B

2 I
0.
13

1.
47

0.
56

5.
68

0.
05

0.
74

0.
29

5.
85

0.
05

0.
58

0.
25

5.
12

|C
S
|

S
B
D

90
0.

98
15

.6
27

59
.3

23
70

9.
7

34
0.
4

65
22

.4
14

46
.

24
45

7.
8

26
9.
4

50
55

.5
11

22
.8

18
90

4.
6

O
th
er
s

85
8.
1

96
26

.1
24

98
.8

23
09

7.
9

30
3.
1

63
66

.8
10

83
.3

22
74

1.
22

0.
8

46
19

.4
66

9.
6

15
44

8.
2

|T
S
|

S
B
D

37
44

.6
29

34
9.
7

74
32

.9
54

96
1.
5

14
62

.8
25

77
9.
2

51
00

.9
58

20
8.
4

13
62

.5
24

18
0.
6

43
95

.4
51

92
0.
5

I
B

2 I
23

58
.4

13
38

2.
4

50
39

.6
27

09
9.
6

19
21

.
10

51
3.
9

36
11

.1
30

69
2.
7

23
64

.4
11

17
7.
7

44
79

.4
27

45
9.
7

D
at
a
siz

e
17

50
00

D
im

en
sio

n
3

4
5

Q
ue

ry
siz

e
5

20
5

20
5

20
σ

0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
sk
yl
in
e
siz

e
15

5.
25

10
13

.3
5

69
2.
4

66
22

.9
5

56
.4
5

41
3.

21
0.
4

23
36

.6
5

21
.

18
0.
35

87
.5
5

12
83

.1
5

t (s
)

S
B
D

1.
21

7.
2.
52

15
9.
21

1.
09

2.
9

1.
26

23
.8
1

1.
06

1.
79

1.
11

13
.0
6

I
B

2 D
0.
17

4.
17

1.
26

11
3.
44

0.
1

1.
44

0.
46

17
.5
1

0.
07

0.
94

0.
32

12
.5
2

I
L
B

2 I
0.
27

2.
41

0.
98

13
.3
8

0.
22

1.
92

0.
74

8.
09

0.
18

1.
67

0.
66

13
.7
9

I
B

2 I
0.
2

2.
19

0.
82

12
.7
4

0.
12

1.
59

0.
5

7.
21

0.
07

1.
22

0.
34

11
.6
4

|C
S
|

S
B
D

15
59

.
14

67
5.
2

41
50

.9
46

05
0.
4

81
8.
2

13
54

9.
2

21
72

.4
32

34
4.
5

41
9.
2

97
85

.4
14

88
.

36
63

2.
8

O
th
er
s

15
22

.5
14

42
8.
8

38
65

.5
44

71
9.
3

73
1.
8

13
11

6.
9

16
40

.
29

50
9.
8

35
3.
1

91
41

.5
90

9.
4

31
06

5.
8

|T
S
|

S
B
D

64
85

.6
42

51
9.
4

13
63

9.
6

10
04

16
.4

43
00

.4
54

71
6.
4

77
04

.8
84

46
4.
2

19
45

.2
49

86
0.
3

39
75

.3
98

45
9.
4

I
B

2 I
37

38
.8

19
81

5.
2

74
16

.6
51

66
1.
2

33
90

.4
22

22
2.
9

55
26

.8
39

62
1.
1

30
19

.7
21

14
1.
5

55
99

.2
51

46
4.
2

41



D
at
a
siz

e
25

00
00

D
im

en
sio

n
3

4
5

Q
ue

ry
siz

e
5

20
5

20
5

20
σ

0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
0.
05

0.
12

5
sk
yl
in
e
siz

e
24

1.
25

14
56

.8
92

4.
95

85
78

.8
5

54
.7

46
8.
9

26
0.
9

33
64

.1
22

.5
5

23
2.
8

11
9.
6

16
27

.7

t (s
)

S
B
D

1.
83

13
.5
4

4.
76

26
4.
06

1.
53

3.
91

1.
84

58
.5
3

1.
51

2.
68

1.
64

17
.1
7

I
B

2 D
0.
34

8.
44

2.
57

20
2.
04

0.
11

1.
77

0.
66

38
.1
1

0.
08

1.
48

0.
49

14
.4
4

I
L
B

2 I
0.
49

3.
98

1.
63

18
.5
6

0.
24

2.
37

1.
12

.7
0.
22

2.
46

0.
97

13
.9
2

I
B

2 I
0.
38

3.
65

1.
39

17
.8
9

0.
13

1.
94

0.
7

11
.5
3

0.
09

1.
88

0.
53

11
.7
4

|C
S
|

S
B
D

29
85

.6
24

77
0.
4

68
24

.3
60

77
2.
9

90
6.
7

15
86

7.
9

30
67

.4
57

32
4.
7

47
5.
6

14
57

7.
6

21
52

.3
47

25
4.
2

O
th
er
s

29
43

.2
24

35
0.
1

63
82

.2
58

67
7.
6

84
3.
2

15
33

2.
6

24
57

.2
54

16
6.
6

39
9.
7

13
59

7.
5

13
32

.3
41

69
5.
1

|T
S
|

S
B
D

12
14

8.
1

67
77

1.
1

24
20

4.
4

14
21

41
.2

49
45

.8
65

49
9.
4

11
84

2.
9

14
30

59
.6

29
29

.2
77

42
9.
7

99
71

.
14

35
90

.4
I
B

2 I
66

34
.1

31
97

6.
8

11
61

0.
66

57
6.
9

40
36

.9
25

76
8.
7

68
83

.
68

66
7.
8

39
53

.3
27

06
4.
5

75
20

.7
66

17
1.
6

Ta
bl
e
3.
4:

Ex
pe

rim
en
ta
lr

es
ul
ts

of
al
go

rit
hm

s
in

th
e
hi
gh

di
m
en

sio
na

lE
uc

lid
ea
n
sp
ac
e

42



Effect of data size

Our algorithms outperform SBD under various data sizes. The spatial skyline size and
the candidate size increase as the data size increases. When the spatial skyline size is
small, IB2D has the best performance because the dominance check method is simple and
straightforward. When the data size becomes large, IB2I starts to outperform IB2D, and
the response times of IB2D and SBD increase significantly. The reason is that ISC can
complete a skyline check by only visiting a relatively small subset of skyline points, while
the dominance check method needs to visit all the skyline points in the worst case. ILB2I

performs slightly worse than IB2I because it spends more time computing the enclosing
hyperspheres of its KD-tree nodes. As for the candidate size and tentative size, all the
algorithms perform better than SBD. More data points are pruned out with the increase
in data size. Figure 3.3 shows the experimental results on different data sizes. The figure
shows the case when the query size is 20, σ is 0.125, and the dimension is 4.

(a) Response time (b) Skyline/candidate size

Figure 3.3: Experimental results on the data size

Effect of dimension

Our algorithms outperform SBD under different dimensions. Note that the spatial sky-
line size, the candidate size and the tentative size become smaller with the increase in the
dimension. The response times of all the algorithms decrease as the dimension increases.
The IB2D has a better performance because the brute force dominance check method be-
comes more efficient as the spatial skyline size becomes very small. The bounding box and
bounding plane method tends to prune out more data points. Figure 3.4 shows the exper-
imental results on different dimensions. The figure shows the case when the data size is
100000, the query size is 20, and σ is 0.125.

Effect of query size

Our algorithms outperform SBD under various query sizes. The response time of SBD
and IB2D increases dramatically with the increase of the query size, while the increase of the
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(a) Response time (b) Skyline/candidate size

Figure 3.4: Experimental results on the dimension

response time of IB2I and ILB2I is relatively small. The reason is that the dominance check
method needs O(|Q||S|) comparisons to complete one skyline check, while ISC can bypass
some skyline points by taking advantage of the KD-tree. Figure 3.5 shows the experimental
results on different query sizes. The figure shows the case when the data size is 175000, σ
is 0.125, and the dimension is 4.

(a) Response time (b) Skyline/candidate size

Figure 3.5: Experimental results on the query size

Effect of σ

Our algorithms outperform SBD under different standard deviation of the normal dis-
tribution of the query points. The response time of SBD increases dramatically with the
increase of σ. However, the increase of the response time of our algorithms is relatively
small. The σ has a significant impact on the spatial skyline size, the candidate size and
the tentative size because it affects the area covered by the query points in d-dimensional
Euclidean space. When σ is small, the bounding box and bounding plane method can prune
out many more points than the bounding box method alone. Figure 3.5 shows the experi-
mental results on different σ. The figure shows the case when the data size is 175000, the
query size is 20, and the dimension is 4.
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(a) Response time (b) Skyline/candidate size

Figure 3.6: Experimental results on the standard deviation of the normal distribution of the
query points

3.4 Conclusion

In this chapter, we have studied spatial skyline query problem in high dimensional
space. We incorporated the lazy construction technique into the index traversal method.
Lazy construction method is efficient when the number of queries is small. We showed how
to incorporate the bounding box and the bounding plane method into the index traversal
method using the KD-tree. In the experiments, we show that our algorithms outperform
the algorithm by Son et al [39] whose worst case query time complexity is O(d|P |1−

1
d +

d|TS | + |TS | log |TS | + d|S||Q| + d|CS ||Q| + |CS ||Q||S|). The IB2I algorithm has the best
performance in general. The runtime complexity of the IB2I algorithm is O(d|P |1−

1
d +

d|TS |+ |TS | log |TS |+d|S||Q|+d|TS ||S|1−
1
d +d|CS ||Q|+ |CS ||Q||S|1−

1
|Q| ). When the skyline

set size is small or the dimension is high, the IB2D algorithm has the best performance. The
worst case runtime complexity of the IB2D algorithm is O(d|P |1−

1
d +d|TS |+ |TS | log |TS |+

d|S||Q|+ d|TS ||S|1−
1
d + d|CS ||Q|+ |CS ||Q||S|).
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Chapter 4

Spatial Skyline Query Problem in
Road Network Space

In this chapter, we focus on the spatial skyline query problem in road network space.
Sections in this chapter are organized as follows: In Section 4.1, we introduce the problem
definition and some related concepts. In Section 4.2, we discuss some related work on the
spatial skyline query problem in road network space. Section 4.3 discusses the lower-bound
constraint algorithm (LBC) in detail [12]. We then point out and correct a mistake in LBC.
In Section 4.4, we present our algorithms. Section 4.5 contains experiments to compare our
algorithms with the corrected version of LBC. Section 4.6 draws some conclusions.

4.1 Problem Definition and Related Concepts

A road network can be considered as a weighted undirected graph G = (V,E) where V
is a set of vertices in a 2-dimensional plane and E ⊆ V ×V is a set of edges connecting two
vertices of V . A road network is generally a planar graph. However, the existence of flyovers
and tunnels may make the graph to be non-planar. We will assume in this thesis that our
graphs can be arbitrary, but has O(|V |) edges (i.e. |E| is O(|V |)).

Given two points ps and pt in a road network, dE(ps, pt) denotes the Euclidean dis-
tance between ps and pt, and dN (ps, pt) denotes the shortest path distance or the network
distance from ps to pt. We will assume, in a road network, dE(ps, pt) ≤ dN (ps, pt).

Unlike in Euclidean space where the distance between two points can be computed in
constant time, the shortest distance computation in the road network space takesO(|V | log |V |)
time in the worst case, if |E| is O(|V |) [9]. Two representative algorithms for computing the
shortest path distance are Dijkstra’s algorithm and A* algorithm. Both algorithms maintain
a search wavefront from the source vertex. The search wavefront contains points whose
shortest path distances are relaxed but not yet decided.

When it comes to the spatial skyline query problem, both the query point set Q and the
data point set P belong to V , which means P ⊆ V and Q ⊆ V . If some query point q ∈ Q
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lie on the edges, we can still expend V to include those query points. A spatial skyline query
problem in road network space locates all the network spatial skyline points S ⊆ P with
respect to Q, i.e., each point of S cannot be dominated by any other data points of P with
respect to Q. Some concepts that will be used in the future are mentioned below.

Definition 4.1 (Points in Euclidean space). For a point p and a set of query points Q,
we say that p is in Euclidean space when the Euclidean distances, instead of shortest path
distances, from p to query points qi ∈ Q ∀i ∈ {1, 2, 3, . . . , |Q|} are computed and used in
an operation.

Definition 4.2 (Points in network space). For a point p and a set of query points Q, we say
that p is in network space when the shortest path distances from p to query points qi ∈ Q
∀i ∈ {1, 2, 3, . . . , |Q|} in a road network are computed and used in an operation.

Definition 4.3 (Domination in a road network). Given two points p1 and p2 and a set of
query points Q in a road network, p1 dominates p2 with respect to Q in network space,
written as p1 ≺Q p2, if and only if, the network distances from p1 to all the query points
qi ∈ Q ∀i ∈ {1, 2, 3, . . . , |Q|} are less than or equal to the corresponding network distances
from p2 to all the query points, and for some qj ∈ Q, the network distance from p1 to qj is
less than the network distances from p2 to qj . Put it into a mathematical form:

p1 ≺Q p2 ⇐⇒ ∀qi ∈ Q, dN (p1, qi) ≤ dN (p2, qi) ∧ ∃qj ∈ Q, dN (p1, qj) < dN (p2, qj)

4.2 Related Work

After studying the spatial skyline query problem in Euclidean space, researchers paid
attention to the spatial skyline query problem in the constraint-based space where an envi-
ronment dataset is used for distance calculation [12]. For example, in road network space,
besides reducing the candidate size, one additional goal is to reduce the number of network
distance calculations. Several papers have studied the spatial skyline query problem in the
network space [12] [34] [37]. Other papers focus on some variants of the problem [24] [42]
[46].

In our thesis, we mainly focus on the paper by Deng et al. [12]. The authors proposed
three algorithms to solve the spatial skyline query problem in road network space: the col-
laborative expansion algorithm (CE), the Euclidean distance constraint algorithm (EDC),
and the lower-bound constraint algorithm (LBC). The authors analyzed and compared the
three algorithms. They concluded that LBC outperforms CE and EDC in all aspects,
ranging from the response time to the candidate size. LBC is the best algorithm among
the three algorithms, and we will pay a closer look at this algorithm.
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4.3 Lower-bound Constraint Algorithm and a Correction to
it

4.3.1 Existing Approach

The name of LBC comes from a concept by Deng et al. [12], namely the path distance
lower-bound. It refers to the fact that when computing the shortest path distance dN (ps, pt)
from ps to pt, a lower-bound of dN (ps, pt) can be obtained as used in A* algorithm. Initially,
the lower-bound is the Euclidean distance from ps to pt. When an intermediate point pv is
reached, the lower-bound increases to dl = dN (ps, pv) + dE(pv, pt), where dN (ps, pv) is the
network shortest path distance between ps and pv, and dE(pv, pt) is the Euclidean distance
between pv and pt. The path distance lower-bound gradually increases during the shortest
path computation. We now present an important theorem:

Theorem 4.1 (Domination transitivity in network space [12]). Given two points p1, p2 ∈ P ,
if p1 in network space dominates p2 in Euclidean space, p1 also dominates p2 in network
space

Proof. The proof follows from the definition of domination (Definition 4.3) and the fact
that the Euclidean distance between two points in a road network is a lower-bound of the
network distance between those points. We thus have the following inequalities:

dN (p1, qi) ≤ dE(p2, qi) ≤ dN (p2, qi) ∀i ∈ {1, 2, 3, . . . , |Q|}

dN (p1, qj) < dE(p2, qj) ≤ dN (p2, qj) ∃j ∈ {1, 2, 3, . . . , |Q|}

The inequalities above prove that p1 dominates p2 by the definition of the domination.

We now introduce the LBC algorithm. The algorithm will be explained using the concept
of three components mentioned earlier. We will first discuss the traversal component of
LBC. The algorithm first randomly selects a query point qs as the source query point. In
order to traverse all the data points according to their network distances, LBC locates the,
not yet pruned, next Euclidean space nearest neighbor p of qs. The network distance from
qs to p is computed using the A* algorithm. All points along the shortest path between p
and qs are added to the tentative set TS . The algorithm then retrieves the network nearest
neighbor from TS .

Lemma 4.2. The time complexity of the traversal component of LBC is O(
√
|P |+|TS | log |TS |)

in the worst case.

Proof. Suppose |TS | vertices are visited in a spatial skyline query instance. In the worst case,
LBC retrieves |TS | Euclidean space nearest neighbors of the source query point, which takes
O(

√
|P |) time by performing a nearest neighbor query to the source query point first, and
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Algorithm 9 Traversal Component of LBC
Input: Data point set P , Source query point qs
Output: Next network nearest neighbor z

1: Initialize the candidate point heap CS = [ ]
2: while there are some data points in the undominated area do
3: Find the next Euclidean space nearest neighbor pe
4: Compute the shortest network distance from qs to pe, and push all the data points

met along the way to CS
5: yield z = CS .pop()
6: end while

then searching the surrounding KD-tree nodes of the nearest neighbor [10]. Computing
network distances from a vertex to O(|TS |) vertices in a road network takes O(|TS | log |TS |)
time if the Dijkstra’s algorithm is used [10].

The pruning component of LBC utilizes Theorem 4.1 to prune out data points. Note
that the shortest path distances from the network skyline points to each query point are
already known. The skyline check using the dominance check method are performed between
data points in Euclidean space and the network skyline points found so far. Data points
are discarded if they are dominated by any skyline point in network space. Data points in
Euclidean space that pass the skyline check becomes candidate points, and the algorithm
will compute their network distances in the skyline check component.

If data points in the Euclidean space are stored in a spatial index, like a KD-tree, LBC
performs skyline checks between the bounding box of the internal nodes of the KD-tree and
the network skyline points found so far, instead of performing skyline checks on the data
points. The algorithm discards an internal node along with the sub-tree rooted at the node,
if the internal node is dominated by at least one network skyline point.

Lemma 4.3. The worst case time complexity of the pruning component of LBC is
O(

√
|P ||S||Q|).

Proof. In the worst case, the dominance check method is performed between all the Eu-
clidean space KD-tree nodes visited by the nearest neighbor query and all the skyline points
of S in network space.

We now discuss the skyline check component of LBC. The algorithm maintains a sorted
list q.L for each query point q, storing all the network skyline points found so far. Network
skyline points in the list are sorted in ascending order by their network distances to q.
When LBC meets a new candidate point p, it inserts p into all the sorted lists using the
Euclidean distances from p to all the query points in Q. If there is a network skyline point
s in network space that dominates p in Euclidean space, p is discarded. Otherwise, LBC
starts to compute the network distance between p and the query point q who has smallest
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Euclidean distance to p. Along with the computation of the network distance, the algorithm
moves p up in the sorted list of q. During the movement, if p is found to be dominated by
a network skyline point s, the network distance computation stops immediately, and p is
discarded. The pseudocode of the pruning component and skyline check component of LBC
is presented in Algorithm 10.

Algorithm 10 Pruning and Skyline Check Component of LBC
Input: Data point p, Query point set Q, Network skyline point set S
Output: Whether p is a skyline point

1: p′ = (dE(p, q1), dE(p, q2), dE(p, q3), dE(p, q4), . . . , dE(p, q|Q|))
2: while No network skyline point dominates p′ do
3: Choose a non-source query point with the minimum path distance lower-bound to p,

and expand the search wavefront of it
4: if All the network distances are computed then
5: return True (p is a network skyline point)
6: end if
7: end while
8: return False (p is not a network skyline point)

Lemma 4.4. The skyline check component of LBC takes O(|Q||CS | log |CS |+ |CS ||Q|2|S|)
time in the worst case to perform skyline checks on all the candidate points.

Proof. O(|Q||CS | log |CS |) is spent on computing the network distances from all the candi-
date points of CS to all the query points of Q.

A dominance check takes O(|Q|) time to decide whether one point dominates another
point. For each sorted list of the query points, a candidate point pc can move from the
bottom to the top of the sorted list during the network distance computation. Along its
way in a sorted list, pc can meet at most O(|S|) network skyline points, and thus O(|S|)
dominance checks between pc and the network skyline points found so far are needed.
There are |Q| lists in total. The time spent on one candidate point by the skyline check
component of LBC is O(|Q|2|S|). The total time complexity for all the candidate points is
then O(|CS ||Q|2|S|).

Theorem 4.5. The worst case runtime complexity of the LBC algorithm is O(
√
|P ||Q||S|+

|TS | log |TS |+ |Q||CS | log |CS |+ |CS ||Q|2|S|).

Proof. The runtime complexity is computed by combining Lemma 4.2, Lemma 4.3 and
Lemma 4.4 together.

4.3.2 A Mistake in LBC

In this section, a mistake in the traversal component of LBC is pointed out. In the
traversal component, LBC uses the A* algorithm to compute the shortest path distance
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between the source query point qs and the next Euclidean space nearest neighbor to qs.
LBC pushes all the data points along the shortest path from qs to its Euclidean nearest
neighbor into a candidate heap. The algorithm then selects a point with the shortest network
distance from the candidate heap to be the next candidate point to process. We argue that
candidate points visited in this way may accept some non-skyline points as skyline points.

An example is shown in Figure 4.1 to illustrate an erroneous case in the traversal com-
ponent in LBC. In the example, there are two query points q1 and q2 and five data points
{p1, p2, p3, p4, p5}. The solid lines are the network edges with distance showing by num-
bers beside them. The dashed line are helper edges showing the Euclidean distance between
different points. The network distances from data points to q1 and q2 are:

p1 : (5, 16.18) p2 : (10, 11.18) p3 : (17.92, 19, 1) p4 : (9, 10.3) p5 : (17.57, 18.75)

Only p1 and p4 are network skyline points. However, if LBC is applied to the above
example, and q1 is selected as the source query point, the algorithm will visits p2 before
visiting p4. LBC will wrongly accept p2 as a skyline point, which is dominated by p4. The
Euclidean distances from data points to the source query point q1 are:

p1 : 5 p2 : 10 p3 : 2.61 p4 : 9 p5 : 4

The algorithm first locates the Euclidean nearest neighbor to q1, which is p3. A* al-
gorithm is then applied between q1 and p3. Because the estimated network distance from
p3 to p4 and p3 to p5 are large, p4 and p5 stay in the search wavefront, and p1, p2 and p3

eventually appear in the heap. At the end of the first iteration, p1 is selected as the next
candidate point and then becomes the first skyline point. Since p5 is the second Euclidean
space nearest neighbor of q1 and p5 is already in the search wavefront, LBC adds p5 to the
heap and p2 is popped out of heap at the end of the second iteration. p2 is then wrongly
accepted as a skyline point even though it is dominated by p4. p4 never appears in the heap
during the first two iterations.

In our implementation of LBC, Dijkstra’s algorithm is used in the traversal component
instead of the A* algorithm.

4.4 Our Algorithm

We now propose our algorithm, the network index skyline check with bounding box
algorithm (NISCB). This section introduces the three components of our algorithms re-
spectively.
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Figure 4.1: An Erroneous Case of LBC

4.4.1 Traversal component

Our algorithm creates a dummy point as the source query point. The dummy point
has zero distance edges to all the query points of Q. NISCB expands a Dijkstra’s search
from the source query point. In this way, data points are visited according to their network
distances to the query point set within one Dijkstra’s search.

An example of the traversal component of our algorithm is shown in Figure 4.2. The
example has four data points {p1, p2, p3, p4} and three query points {q1, q2, q3}. The solid
lines are network edges, and their distances are indicated by the number besides them. qs is
the dummy source query point who has three edges with zero distance connecting to three
query points. The dashed lines are edges with zero distance. Our algorithm will initiate the
Dijkstra search from qs. Data points are visited in the following order: {p1, p2, p3, p4}.

The traversal component of our algorithm is simple and straightforward. The pruning
component of our algorithm ensures that our algorithm stops earlier without traversing all
the data points.

4.4.2 Pruning component

The bounding box method mentioned in Section 2.1.2 is modified to be the pruning
component of our algorithm. The method computes a bounding box for every network
skyline point. For a network skyline point s ∈ S, a minimum orthogonal bounding box B is
computed to contain |Q| disks D(qi, dN (qi, s)) ∀qi ∈ Q. D(qi, dN (qi, s)) is a disk centering
at qi with a radius of length dN (qi, s). Note that the radius of a disk is the network distance
from qi to s.
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Figure 4.2: An example of the traversal component of NISCB

Figure 4.3 shows an example of the bounding box B of a skyline point s. There are
three query points {q0, q1, q2} in the example. The solid straight lines are the network edges
connecting s and the query points. The disks with solid borders are disks centred at different
query points. The radii of those disks are the network distances from s to the query points.
The dashed bounding box B, which contains all the disks, is the bounding box computed
by the bounding box method.

The algorithm keeps track of the intersection bounding box BS of the bounding boxes
B of all the network skyline points computed so far. The algorithm stops when there is
no unvisited data points inside BS . The Lemma 4.6 below proves the correctness of the
bounding box algorithm.

Lemma 4.6. The bounding box algorithm along with the Dijkstra’s search from the source
query point visits all the skyline points.

Proof. Assume s ∈ S is a skyline point that has already been located by the algorithm.
Suppose a bounding box B is computed for s in the way described above. Suppose po
represents a randomly chosen data point that is outside B.

We will first prove that po is dominated by s, thus cannot be a skyline point. The
bounding box B is computed using the network distances from s to all the query points
of Q. For any data point outside B, their Euclidean distances to all the query points are
greater than the network distances from s to all the query points. This is equivalent to

∀qi ∈ Q, dN (s, qi) < dE(po, qi) ≤ dN (po, qi)
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Figure 4.3: An example of the bounding box B of s

Equation above indicates that s in network space dominates po in the network space. Any
data point outside B cannot be a skyline point.

We will then prove that all the, not yet located, skyline points inside the bounding box
can be visited by Dijkstra’s search starting from the dummy source query point qs. For
any not yet located skyline point sn inside B, if there is a path from sn to qs that is fully
contained in B, sn is visited when the searching wavefront of Dijkstra’s algorithm reaches it.
The only concern is that all the paths from sn to qs go outside the B so that the algorithm
stops before reaching sn. We claim that this case will never happen. To prove the claim,
notice that in the case with multiple query points, the source query point is a dummy point
who has paths to all the query points with distance 0. In the case described above, sn is
not visited if and only if the shortest paths from sn to all the query points Q go outside B,
which means sn can be treated as a point outside B in network space. Some current skyline
points dominates sn. As a result, sn cannot be a skyline point.

We present the pseudocode of the traversal and pruning components of our algorithm
below in Algorithm 11.

Lemma 4.7. The time complexity of the traversal and pruning components of NISCB is
O(|TS | log |TS |+ |S||Q|) in the worst case.

Proof. It takes O(|TS | log |TS |) time to expand a Dijkstra’s search from qs to all the tentative
points in the road network. O(|S||Q|) time is spent to compute the bounding boxes of all
the skyline points. Pruning of a data point takes only constant time.
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Algorithm 11 Traversal and pruning components of NISCB
Input: Road network data points P , Query point set Q
Output: Next candidate point c

1: Construct a dummy source query point qs with zero-weighted edges to all the query
points

2: Initialize a heap H = [(0, qs)]
3: Initialize an array Closed = [ ] containing all the outputted points
4: Initialize an array Dist of size |P | with values ∞ // This array contains the network

distances from qs to all the data points
5: Initialize a bounding box BS = [(−∞,−∞), (∞,∞)] // [bottom left point, upper right

point]
6: while H is not empty do
7: (d, p) = H.pop()
8: if p is in Closed then
9: continue

10: end if
11: Add p into Closed
12: yield c = p // Output the next candidate point
13: Update BS according to the results of the skyline check component
14: for all network neighbor N(p) of p do
15: if N(p) lies inside b then
16: Update d(N(p), qs) = dN (p, qs) + dN (N(p), p)
17: if d(N(p), qs) < Dist[N(p)] then
18: Dist[N(p)] = d(N(p), qs)
19: Push (d(N(p), qs), N(p)) into H
20: end if
21: end if
22: end for
23: end while

4.4.3 Skyline check component

We modify the index skyline check method (ISC) mentioned in 2.2.2 to apply it to
the road network space. We call this new algorithm Network Index Skyline Check method
(NISC).

Like ISC, NISC also maintains a spatial index, a KD-tree in our thesis, storing all the
skyline points in the query space. Instead of storing the Euclidean distances from skyline
points to the query points, NISC stores skyline points using their network distances to the
query points.

When NISC meets a new candidate point p, the method will perform a range query to
the KD-tree, checking if any network skyline point lies inside the hypercube w formed by p
in Euclidean space and the origin. w = [(0, 0, . . . , 0), (dE(p, q1), dE(p, q2), . . . , dE(p, q|Q|))] is
represented by its bottom left vertex and upper right vertex. Starting from the root node
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of the KD-tree, NISC goes down the KD-tree. Let v be an internal node of the KD-tree.
Let xi(v) be the splitting value of v in the dimension i. There are two cases:

1. xi(v) ≥ dE(p, qi): we only need to search the left subtree of v, since any node in the
right subtree of v stay outside w.

2. xi(v) < dE(p, qi): we need to search both left and right subtree of v.

When we reach a leaf node, skyline checks are performed to the skyline points con-
tained in the node using the dominance check method. If any skyline point in the leaf node
dominates p, we can stop immediately.

After we examined the data points in the first leaf node, if no skyline point inside the
leaf node dominates p, NISC starts the back-up procedure. NISC goes back to the parent
internal node of the leaf node. It now computes the network distance between p and qi

where i is the splitting dimension of the parent internal node. The window of the range
query now becomes w = [(0, 0, . . . , 0), (dE(p, q1), dE(p, q2), . . . , dN (p, qi), . . . , dE(p, q|Q|))].
There are three cases:

1. xi(v) ≥ dN (p, qi): we only need to search the left subtree of v again, since any node
in the right subtree of v still stays outside w.

2. xi(v) < dE(p, qi) < dN (p, qi): we only need to search the right subtree of v.

3. dE(p, qi) ≤ xi(v) < dN (p, qi): we need to search both the left and the right subtree of
v.

Once the searching procedure is done, and there is no skyline point in the subtree rooted
at v dominates p, the back-up procedure can continue. NISCB stops when the network
distances to all the query points are computed and the range query with the hypercube
w = [(0, 0, . . . , 0), (dN (p, q1), dN (p, q2), . . . , dN (p, q|Q|))] is complete.

Lemma 4.8. The worst case runtime complexity of NISC for a set of candidate points CS
is O(|Q||CS | log |CS |+ |CS ||Q|2|S|1−

1
|Q| ).

Proof. O(|Q||CS | log |CS |) time is spent on computing the network distances from all the
query points of Q to all the candidate points of CS . O(|CS ||Q|2|S|1−

1
|Q| ) time is spent on

performing skyline checks to all the candidate points. Each skyline check consists of at most
O(|Q|) range queries to the KD-tree that stores the network skyline points found so far.
Each range query takes at most O(|Q||S|1−

1
|Q| ) time in the worst case.

Theorem 4.9. The worst case runtime complexity of the NISCB algorithm is O(|TS | log |TS |+
|Q||CS | log |CS |+ |CS ||Q|2|S|1−

1
|Q| ).

Proof. The time complexity of NISCB is computed by combining Lemma 4.7 and Lemma
4.8 together.
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4.5 Experiments

4.5.1 Experimental Settings

The dataset used in the experiment is the same as the Point of Interest (POI) dataset
[27] used in section 2.3.2. We use both the node data and the edge data of the POI dataset in
this chapter. Three road network datasets with different numbers of data points and edges
are used. They are the road network of California (CA), the road network of Oldenburg
(OL), and the road network of North America (NA). All the data points are normalized to
lie within the unit square to simulate different network density. Figure 4.4 visualizes the
three datasets. Table 4.1 contains the parameter configuration of the experiments.

(a) OL (b) CA (c) NA

Figure 4.4: Visualization of three road network datasets

Parameter Setting
Dataset (point size,
edge size)

OL(6105, 7037), CA(21058, 21697),
NA(175813, 179198)

Query point set size 5, 15
Region size 0.025, 0.05

Table 4.1: Configuration of road network data

As for the generation of query points, a randomly selected data point p is chosen, and
a square region is computed using p as its center. The side length of the square region is 2
times the value of the region size. The query points are generated on the randomly selected
network edges within the rectangular region.

4.5.2 Experimental Results

In this section, the experimental results are provided and analyzed to show that NISCB
outperforms LBC on the datasets considered here. Table 4.2 contains the experimental
results.
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Comparing traversal and pruning components The traversal and pruning compo-
nents of NISCB outperform the corresponding components of LBC with respect to differ-
ent datasets, query size, and region size. NISCB has a much shorter response time than
LBC. The reason is that checking whether points lie inside a bounding box (the bounding
box algorithm) is much faster than performing skyline checks to the bounding boxes of the
KD-tree nodes. The candidate size and tentative size of NISCB are only 1

4 to 1
2 of those

of LBC. The bounding box method tends to prune out more data points than the pruning
component of LBC. Figure 4.5 shows the experimental results on different road network
datasets with respect to traversal and pruning time, and skyline/candidate sizes. The figure
shows the case when the query size is 15 and the region size is 0.05.

(a) Traversal and pruning time (b) Skyline/candidate size

Figure 4.5: Experimental results on the road network datasets

Comparing skyline check component The skyline check component of NISCB out-
performs the skyline check component of LBC under different parameter settings. Note
that when the data size becomes large, the algorithm spent most of the time on performing
skyline checks. When the data size or the region size becomes very large, NISCB can finish
the skyline checks quickly while the time spent on the skyline checks by the LBC algorithm
increases dramatically. The reason is that, when performing a skyline check, NISCB only
examines a small subset of the network skyline points by taking advantage of the spatial
index. Figure 4.6 shows the experimental results on different road network datasets with
respect to skyline check time and total response time. The figure shows the case when the
query size is 15 and the region size is 0.05.

4.6 Conclusion

In this chapter, we first analyze an existing algorithm, LBC, in solving spatial sky-
line query problem in road network space. The worst case runtime complexity of LBC
is O(

√
|P ||Q||S|+ |TS | log |TS |+ |Q||CS | log |CS |+ |CS ||Q|2|S|). A mistake in the traversal

method of LBC is then pointed out. We propose a correct and efficient algorithm, NISCB.
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(a) Skyline check time (b) Total response time

Figure 4.6: Experimental results on the road network datasets

The worst case run-time complexity ofNISCB isO(|TS | log |TS |+|Q||CS | log |CS |+|CS ||Q|2|S|1−
1

|Q| ).
Extensive experiments are conducted to show that NISCB outperforms LBC component
by component.
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Chapter 5

Conclusion

In this thesis, we have studied spatial skyline query problem in 2-dimensional Euclidean
space, high dimensional Euclidean space, and road network space. For a given data set P ,
we are required to compute the spatial skyline points of P with respect to an arbitrary
query set Q. A point p ∈ P is a spatial skyline point if and only if, for any other data point
r ∈ P , p is closer to at least one query point q ∈ Q as compared to r and has in the best
case the same distance as r to the rest of the query points.

Our proposed algorithms consist of three components: the traversal component, the
pruning component, and the skyline check component. The traversal component determines
the order with which the tentative points are visited. The pruning component quickly prunes
out a subset of non-skyline tentative points using the dominating region of the skyline points.
The rest of the tentative points become candidate points. The skyline check component
performs skyline checks to the candidate points against the skyline points found so far. The
skyline check component retrieves all the skyline points from the candidate points.

We studied the spatial skyline query problem in the 2-dimensional Euclidean plane in
Chapter 2. We proposed two efficient skyline check methods, namely BSC and ISC. BSC is
based on the previously proposed dominance check method. Additionally, it takes advantage
of the bounding box of the dominator region. ISC takes advantage of the spatial index to
complete a skyline check with only a subset of the skyline points. Two algorithms, that use
the two skyline check methods respectively, are BSCS and ISCSBL. Experiments show
that our algorithms outperform the ES algorithm by Son et al. [39]. We also proposed the
bounding box and the bounding line method as a solution to the pruning component.

We also studied the spatial skyline query problem in high dimensional Euclidean space
in Chapter 3. We incorporated the lazy construction technique into the index traversal
method. We showed how to incorporate the bounding box and the bounding plane method
into the index traversal method using the KD-tree. The bounding box and bounding plane
method can significantly prune out more tentative points than the bounding box method
with the increase of dimension. We also showed that ISC can be used in high dimensional
Euclidean space. Two algorithms, IB2I and IB2D, are proposed that use different compo-
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nents. They are compared with the SBD algorithm, which is the high dimensional version
of ES algorithm. Experiments show that our algorithms outperform SBD algorithm. IB2I

has the best performance in general. IB2D has the best performance when the candidate
size is small.

We studied the spatial skyline query problem in road network space in Chapter 4. We
analyzed the LBC algorithm by Deng et al. [12], and corrected a mistake in its traversal
component. We then proposed our algorithm, NISCB, which uses Dijkstra’s search from
a dummy query point as its traversal component, the bounding box method as its pruning
component, and NISC as its skyline check component. Experiments show that NISCB
outperforms LBC with respect to candidate size and response time under various scenario.
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