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Abstract 

Metal nitride complexes exhibit interesting structure and bonding properties that are 

invoked when discussing the reactivity of these systems. The nitride (N3-) moiety can be 

either nucleophilic or electrophilic based on a variety of factors such as metal identity, 

oxidation state, and nature of the ancillary ligands. Herein, the electronic tuning of Cr salen 

nitride complexes is investigated via modulation of phenolate para-R substituents of 

varying electron donating ability (R = CF3, tBu, NMe2) in order to influence reactivity. Salen 

ligands can exhibit non-innocent behavior, implying that redox processes can either be 

metal or ligand-based. This feature allows the ligand to help facilitate difficult substrate 

transformations uncommon to Earth-abundant first-row metals. Depending on the para-R 

group, the locus of oxidation in Cr nitride salen complexes (metal vs. ligand) can be 

influenced. The electronic structure of oxidized compounds is detailed, allowing for 

rationalization of nitride reactivity based on oxidation locus. 

 

Keywords:  Cr; metal nitride; salen; ligand design; ligand non-innocence; electronic 

structure.  
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Chapter 1. Introduction 

Transition metal complexes bearing terminal nitride (N3-) ligands have been known 

for over 170 years.1 The electronic structure and bonding of metal-nitrogen multiple bonds 

has since been a long-standing topic of interest. In general, the marked kinetic and 

thermodynamic stability of nitride-containing compounds make them attractive candidates 

for use in thermo and piezoelectric materials for energy harvesting2 and thin films.3 Nitride 

bonds to main group elements, such as boron nitrides, represent an extremely resilient 

and versatile class of materials (sometimes harder than diamond) which are traditionally 

used as components in high-temperature equipment.4 Only relatively recently have 

nitrides been given serious consideration as important reactive synthons.5,6  

The vast majority of metal nitride complexes are unreactive at the nitride, and thus 

the ability to generate a reactive nitride fragment is of considerable interest.7 Additionally, 

the relevance of these compounds in biological and industrial nitrogen fixation continues 

to garner appeal.8 For example, the Haber-Bosch process combines H2 and N2 over metal 

catalysts at high temperature and pressure to form ammonia on an industrial scale.9 The 

nature of the catalyst is paramount to the efficiency of the overall process, which normally 

consists of an Fe surface embedded with potassium additives to promote adsorption and 

cleavage of dinitrogen into nitride intermediates.10–13 Interestingly, biological N2 fixation is 

achieved by the nitrogenase enzyme under ambient conditions.14,15 Catalytic N2 reduction 

is achieved within active sites consisting of multi-metallic cofactors containing Fe and Mo 

(or V), with the formation of a terminal nitrido intermediate hypothesized to form.16,17 This 

elegant enzymatic chemistry has inspired research into the development of small molecule 

model systems that catalytically transform dinitrogen to ammonia at ambient temperatures 

and pressures.18–20  

With Fe nitrides hypothesized to form in both the industrial and biological dinitrogen 

to ammonia processes, there have been a number of interesting reports of the 

characterization and reactivity of these species.11,20–28 In addition to Fe, Schrock first 

demonstrated the catalytic reduction of dinitrogen to ammonia using a Mo complex, in 

which a Mo nitride is formed in the process (Fig.1.A).18 Subsequent work by Peters21 using 

Fe and Nishibayashi19 using Mo (Fig. 1B and Fig. 1C respectively) have elegantly 

advanced this chemistry by achieving higher turnovers in NH3 production. Thus, the study 
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of such complexes and their corresponding reactivities provide insight into the mechanistic 

details of N2 activation. 

 

 

 

 

 

 

Figure 1.1.  Examples of Mo and Fe complexes as synthetic model compounds in 
catalytic N2 reduction. Details: HIPT = hexa-iso-propyl-terphenyl, iPr = 
isopropyl, tBu = tert-butyl. 

 

Metal nitrides are also utilized synthetically in substrate oxidations, as will be 

discussed herein. This includes group and N-atom transfer reactions, C–H activation, and 

alkene aziridination. The diverse reactivity of metal nitrides can be rationalized by structure 

and bonding analysis. 

1.1.  Bonding and Relationship to Reactivity 

Generally, transition metal nitrides are classified as nucleophilic or electrophilic 

depending on the relative energy of metal versus nitride fragment orbitals.7 This can be 

rationalized by simplified molecular orbital (MO) bonding considerations. The nitride 

bonding scheme was originally derived from the isoelectronic oxo (O2-) system following 

Gray’s detailed MO description of the vanadyl ion (VO2+) in 1962.29 This work details the 

general bonding in metal oxo (and nitride) complexes which is represented by a partial 

MO diagram in an octahedral ligand field, in which the metal d-orbitals and oxo orbitals 

are considered (Fig. 1.2).30 Filled orbitals on the oxo effectively overlap with vacant orbitals 

of appropriate symmetry and energy on the metal ion to afford short metal-oxygen 

distances (1.5 – 1.7 Å) indicative of multiple bond character.31  

 

(A) Schrock et al.  
8 eq. NH3 per Mo 
 

(B) Peters et al. 
64 eq. NH3 per Fe 

 

(C) Nishibayashi et al. 
63 eq. NH3 per Mo 
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Figure 1.2.  Partial MO diagram for a d0 metal-oxo complex in an octahedral field in 

which metal d-orbitals and oxo atomic orbitals are considered. A similar 

MO diagram applies to metal nitrides. The diagram predicts a  (dz
2 + spz) 

and two π bonds (dxz + px, dyz + py) that form to afford a metal-oxo triple 
bond as well as a lone pair on the oxo. 

 

The diagram in Figure 1.2. also defines the criteria for forming stable terminal oxo 

and nitride complexes. Complexes of tetragonal symmetry can contain no more than four 

d electrons while still maintaining multiple-bond character. In the above diagram, a triple 

bond is the proper formulation for d0, d1, and low spin d2 electronic structures. The diagram 

also predicts the presence of a lone pair due to the non-bonding spz hybrid. This hybrid is 

calculated to contain significant s-character (~80 %) and is therefore usually considered 

energetically unsuitable for reactivity.29 A decrease in metal-oxo bond order arises for 

higher electron counts (represented by the dashed M—O bond in Fig. 1.2) due to the 

population of π* orbitals within the MO manifold. In the absence of π-bonding, the oxo 

ligand becomes exceptionally basic and susceptible to protonation or electrophilic attack.32 

Thus, oxo and nitride complexes are favoured by early transition metals and/or metals in 

high oxidation states. It becomes more difficult to stabilize late transition metals due to the 

exceedingly high oxidation states needed to maintain no more than four d electrons. The 
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“oxo wall” (Fig. 1.3) proposed by Winkler and Gray describes the theoretical boundary 

between groups 8 and 9 in the periodic table. The concept states that oxo complexes of 

group 9 or later with tetragonal symmetry are unstable.33 These complexes however have 

been invoked as highly reactive transient intermediates in late transition metal C–H 

activation reactions.34 Attempts to isolate such species to this day have been largely 

unsuccessful and have even eluded spectroscopic detection. Indeed, work published in 

Science claiming preparation of a tetragonal Pt–oxo complex in direct violation of this 

principal has subsequently been retracted.35  

 

 

 

 

Figure 1.3.  The “oxo wall” for tetragonal metal oxo complexes. 

 

Similar MO descriptions apply to complexes containing terminal nitride ligands, 

which are isoelectronic with the oxo ion. Figure 1.4 depicts the MO diagram for the 

interaction of a single terminal nitride unit with an arbitrary d0 early transition metal ion 

supported by four coplanar -donating ligands.36 The coordination environment 

represented here is akin to that of salen complexes discussed in subsequent chapters. 

The M—N interaction contains a  bond () formed from the favorable overlap of a filled 

nitride spz hybrid with the empty dz
2 orbital. The interaction is also predicted to exhibit two 

π bonds (π) formed by the overlap of filled p orbitals on the nitride with empty d orbitals of 

correct symmetry on the metal centre. The qualitative metal nitride MO bears a striking 

resemblance to the metal oxo MO in Figure 1.2. Thus, nitride complexes are favoured by 

early transition metals in high oxidation states in the same manner as oxo derivatives, as 

the “oxo wall” principle extends to nitrides. The strong  and π donating ability of the nitride 

ligand confers an exceptionally strong trans effect that results in the stabilization of lower 

coordination numbers. Indeed, square pyramidal geometries are commonly observed, 

with the nitride at the apical position. 

 

3 4 5 6 7 8 9 10 11 10
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Figure 1.4.  Partial MO diagram for an early d0 transition metal nitride complex in a 
square pyramidal geometry where the metal d-orbitals and nitride atomic 
orbitals are considered.  

 

The reactivity of metal nitrides can be rationalized from the above diagram. As 

depicted in Figure 1.4, early transition metal complexes are generally nucleophilic 

because the highest occupied molecular orbitals (HOMOs), represented by π, are 

predominantly nitride in character and can interact with suitable electrophilic substrates. 

The lowest unoccupied molecular orbitals (LUMOs) in this scenario are metal-based, 

represented by π*, and thus the metal centre is rendered electrophilic in comparison to the 

nitride. From the bonding diagram, π is typically cited when discussing nitride 

nucleophilicity due to energetic accessability.7,37 Similar to the vanadyl case in Figure 1.2, 

a lone pair (LP) on the nitride is predicted to form due to a non-bonding spz hybrid orbital 

that contains a large component of N s AO character. This has been supported by detailed 

computational analysis suggesting that the LP is typically contracted and much lower in 

energy in comparison to the metal-nitride bonding / antibonding orbitals.36,38  
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Reactivity can be influenced by the metal identity, oxidation state and auxiliary 

ligands. These factors directly influence the π interaction between nitride p and metal d 

orbitals. As an example, Figure 1.5 depicts a further simplified MO picture, taking into 

consideration only metal-nitride π interactions. Case 1 features an early transition metal 

analogous to the system in Figure 1.4, in which the nitride moiety is nucleophilic. An 

electrophilic nitride is in turn predicted for late transition metals (Case 2), as the π* MOs 

are predominantly nitride in character.37 In situations where the π* orbitals contain similar 

metal and nitride character, ambiphilic reactivity is observed.39,40 This typically occurs for 

mid-transition metal nitride complexes.  

 

 

 

 

 

 

 

 

Figure 1.5.  Simplified MO diagram of the π interaction of nitride p and metal d orbitals. 
Case 1 represents an early transition metal in which metal d AO’s are 
higher in energy than nitride p AO’s. The result is a nucleophilic nitride due 
to the prevalence of nitride character in the HOMO (π). Case 2 represents 
a late transition metal where instead metal d AO’s are lower in energy than 
nitride p AOs. The result is an electrophilic nitride due to the prevalence of 
nitride character in the LUMO (π*).  
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1.2. Transition Metal Nitride Reactivity  

1.2.1. Early transition metals 

Early transition metal nitrides are nucleophilic and react with electrophilic 

substrates (Elec) such as alkylating agents41–49 and  boranes (BX3; X = halide, alkyl, C6F5, 

etc.)50–55 to afford adducts (Fig. 1.6A). For example, a Mo tetraphenylporphyrin nitride 

complex reacts with boron trifluoride to form the corresponding imido complex (Fig 1.6B).39 

Adduct formation indicates nucleophilicity, and typically occurs without a change in 

oxidation state. The imido species maintains sp hybridization in most cases and results in 

linearity of the M≡N–Elec bond. Bent sp2 hybridized imido complexes are less common 

(M=N–Elec), and can occur when there is competing π-basicity with ancillary ligands.37 

Thus, sp2 imides are usually formed when other multiply bonded ligands, such as 

alkylidenes or oxo groups are present.56  

 

 

 

 

 

 

Figure 1.6.  (A) General scheme for the nucleophilic reactivity of early transition metal 
nitride complexes. (B) A nucleophilic Mo nitride porphyrin complex. 

 

1.2.2. Late Transition Metals 

Contrary to early transition metals, late transition metal nitrides are electrophilic 

and significantly less stable. This is due to the lack of empty d orbitals of appropriate 

energy and symmetry to accommodate nitride π electron density.57 Highly reactive 

complexes of group 9-10 metals have been reported and are susceptible to rapid 

decomposition via intramolecular ligand insertion reactions.58,59 In one study by the van 

(A) 

(B) 
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der Vlugt group, the reactivity of a transient Ni nitride complex was described (Figure 

1.7A).60 Theoretical analysis predicted the formation of a nitrido species upon photolysis 

of an azide precursor in benzene (1). The reactive nitrido species (2) is subsequently 

‘trapped’ by nucleophilic attack from an adjacent phosphine ligand to afford the Ni–P 

insertion complex (3). C—H activation of benzene results in the formation of a new 

phosphino-amido ligand (4). Late transition metal nitride complexes can also decay via 

intermolecular N–N coupling.61 As an example, the Schneider group reported a Rh nitride 

complex prepared from a frozen toluene solution (5). This species rapidly decays to the 

dinitrogen complex (7) upon thawing of the solution under an atmosphere of N2 (Fig. 

1.7B).62 The dimeric -(N2) bridged species (6) is an intermediate detected by mass 

spectrometry and 31P NMR. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7.  Examples of late metal nitride decomposition pathways. (A) Proposed Ni 
nitride species undergoing intermolecular ligand insertion and (B) A Rh 
nitride species homocoupling to afford N2. 

(A) 

(B) 
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1.2.3. Mid-Transition Metals 

The above examples highlight the highly reactive and electrophilic nature of late 

transition metal nitride complexes. Mid-transition metals of group 7-8 exhibit reactivity 

intermediate between early and late transition metal analogues. Group 8 nitrides such as 

Fe are appealing due to their involvement in several model reactions relevant to nitrogen 

fixation and frequently exhibit electrophilic behavior.20–28,63–70 A simple representation of 

electrophilicity is conveyed in Figure 1.8A. The addition of nucleophilic substrates (Nuc) 

results in reduction at the metal centre and a decrease in metal-nitride bond order due to 

the population of π* MO’s to accommodate additional electron density.71,72 Reactivity with 

phosphines is most commonly observed for Group 8 metals and results in the formation 

of a phosphoraniminato ligand  (N=PR3).73–77 In rare cases, complete N-atom transfer to 

the nucleophilic substrate can occur.22,63 Additionally, ambiphilic reactivity can arise where 

the nitride is regarded as both nucleophilic and electrophilic. For example, an Os nitride 

supported by a P–N–P type pincer ligand prepared by the Schneider group was observed 

to react with both bromotrimethylsilane as well as trimethylphosphine to form the 

respective adducts (Fig. 1.8B).78  

 

 

 

 

 

 

 

 

Figure 1.8.  (A) General scheme for electrophilic reactivity of mid-to-late transition 
metal nitride complexes. (B) An ambiphilic Os nitride complex that reacts 
with both bromotrimethylsilane and trimethylphosphine. 

 

(B) 

(A) 
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Ambiphilic character is not always straightforward to interpret but can be important 

in addressing paradoxical experimental results. For example, the Smith group reported an 

Fe nitride complex supported by a tris(carbene)borate ligand that readily forms an adduct 

with triphenylphosphine, however this complex was not reported to interact with 

electrophilic substrates (Fig. 1.9A).23 Computational analysis predicted a low-lying nitride-

based * LUMO that served as the site of nucleophilic attack by the phosphine. Hammett 

studies however using various para-substituted aryl phosphines revealed that an increase 

in the rate of the N—P interaction was associated with an increase in the electron-

withdrawing ability of the aryl group. The result was inconsistent with an electrophilic 

nitride species. Smith addressed this issue by describing a dual-nature transition state 

(Fig. 1.9B)24  that involves -donation from the phosphine into the nitride LUMO (1), as 

well as π-backdonation from the nitride HOMO into an empty P–aryl * orbital (2). The 

synergistic effect of the two donor-acceptor interactions gave rise to a unique case of 

nitride ambiphilicity.  

 

 

 

 

 

 

 

 

Figure 1.9.  (A) An Fe nitride species that readily forms an adduct with 
triphenylphosphine. (B) The dual-nature transition state proposed by 

Smith. (1) The low-lying * LUMO of nitride character accepts electron 
density from the phosphine lone pair. (2) The π HOMO of Fe character 

back-donates into the P–aryl * bond and accounts for the enhanced rate 
for more electron-withdrawing aryl substituents. The nitride thus exhibits 
both nucleophilic and electrophilic properties. 

 

(A) 

(B) 
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Group 7 metals such as manganese nitrides are often nucleophilic and are 

frequently utilized in synthesis as amination reagents.79–84 The reactivity of analogous 

metal oxo complexes for O–atom transfer is well established, but the utility of nitride 

complexes in this regard is significantly less explored.85–87 Pioneering work by Groves and 

co-workers features a Mn nitride porphyrin complex that inserts into the C–C double bond 

of cyclooctene, and is the first reported case of olefin aziridination by a metal nitride 

complex.88 The addition of a Lewis acid such as trifluoroacetic anhydride (TFAA) was 

necessary to drive reactivity as it converts the nitride into a transient imide species that is 

active towards group transfer (Fig. 1.10A).89 This was later expanded to include amination 

of styrenes and silyl enol ethers using salen ancillary ligands90–92 (Fig.10B), as well as 

other mid-transition metals such as Ru (Fig. 1.10C).93 In the absence of substrate, the 

reactive imido species is susceptible to N–N coupling.94 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10.  Select examples of N–transfer reactions upon activation with Lewis acids. 
(A) aziridination of cyclooctene, (B) aziridation of a styrene with a nitrido 
Mn salen complex and (C) amination of silyl enol ethers with a nitrido Ru 
porphyrin. Mes = mesityl, py = pyridine, Ts2O = p-toluenesulfonic 
anhydride. 

(A) 

(B) 

(C) 
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1.2.4. C—H Activation 

C—H activation of organic substrates by metal nitrides has also been investigated. 

This is often achieved via generation of a highly reactive nitrido species in situ by 

thermolysis, photolysis or gas-phase electrospray ionization.95–100 In many cases, the 

active nitride species was not isolated. Lau and coworkers successfully isolated and 

characterized a high-valent nitrido Ru salen complex that activates organic substrates with 

low bond dissociation energies (BDE) such as xanthene (75.5 kcal mol-1)101 or 9,10-

dihydroanthracene (78.0 kcal mol-1)102 (Fig. 1.11A).103 The addition of ligands such as 

pyridine (py) that bind trans to the nitride results in a more reactive complex capable of 

activating C—H bonds as strong as cyclohexane (95.4 kcal mol-1).104 This species also 

readily inserts into simple alkenes without Lewis acidic activating agents (Fig. 1.11B).105 

 

 

 

 

 

 

 

 

Figure 1.11.  Insertion of the nitride into (A) C—H bond of xanthene, and (B) C=C bond 
of 2,3-dimethyl-2-butene. 

 

 

 

(B) 

(A) 
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1.2.5. Intermetal Reactivity 

Finally, metal nitride compounds also serve as synthons in the preparation of other 

metal nitride complexes. For example, treatment of a known nitrido Mn salen species with 

Mn porphyrins results in oxidative N–atom transfer from the salen complex to the porphyrin 

affording a nitrido Mn(V) porphyrin with subsequent reduction of the Mn(V) salen species 

to Mn(III) (Fig. 1.12A).106 This has since been extended to include N–transfer between 

other ligand sets such as corroles, and between hetero-metal centres (Fig. 1.12B).107–109  

 

 

 

 

 

 

 

 

 

Figure 1.12.  Examples of intermetal N-atom transfer as a preparative tool to form new 
metal nitride complexes. 

 

In some of the examples discussed, salen ligands are frequently used as spectator 

ligands in metal nitride chemistry. This is largely due to their ability to stabilize a range of 

different metals in varying oxidation states.110 As will be discussed below, salen ligands 

can also participate in the overall redox chemistry of the system, allowing for ligand redox 

activity that can potentially be exploited in reactivity.111 

(B) 

(A) 
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1.3. Non-Innocent Ligands  

1.3.1. Non-innocent Ligands in Nature and Synthesis 

The overwhelming majority of compounds in coordination chemistry utilize 

spectator or ‘innocent’ ligands, whose primary purpose is to offer structural and electronic 

support to the central metal atom. Ligands were first deemed to be ‘innocent’ or ‘non-

innocent’ by Jørgenson in 1966 based on whether the oxidation state of the metal centre 

could be determined.112 Currently, the term ‘non-innocent’ is mostly associated with 

ligands that can be oxidized or reduced within the redox processes of a transition metal 

complex, and hence the term ‘redox-active’ can be used interchangeably.113 The ability of 

the ligand to participate in the redox activity of the complex depends on the relative 

ordering of metal (M) versus ligand (L) frontier orbitals. Figure 1.13 depicts the two 

situations in which ligand non-innocence can take place. In the first scenario, if the LUMO 

is predominantly ligand in character, reduction will be ligand-based. Alternatively, if the 

HOMO is ligand in character, then oxidation of the complex will be ligand-based. The latter 

will be the primary focus of this thesis, however in both cases, a ligand radical is formed. 

 

 

 

 

 

Figure 1.13.  The relative ordering of metal and ligand frontier orbitals dictates whether 
the ligand will undergo reduction or oxidation and be classified as “non-
innocent”. 
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Ligand non-innocence is critical to the functioning of certain biological 

metalloenzymes. In these enzymes, the ligands facilitate difficult substrate 

transformations by assisting the metal in multielectron chemistry. Among these systems, 

Cytochrome P450 remains one of the most notable (Fig. 1.14A)114 and features a heme 

active site to oxidize C—H bonds.115 The active oxidant (Compound I), is spectroscopically 

characterized as an Fe(IV) oxo species with a ligand radical delocalized across the 

porphyrin scaffold.116 The non-innocence of the porphyrin is essential to the enzyme’s 

function, as it serves to aid the metal in the 2-electron transformation of alkanes into 

alcohols via insertion of the oxo into C—H bonds (Fig 1.14B).  

 

 

 

 

 

 

 

Figure 1.14.  (A) Pymol rendering of CytochromeP450.114 (B) Reaction scheme for the 
hydroxylation of C–H bonds.  

 

A second example is galactose oxidase (GOase), a copper-containing 

metalloenzyme (Fig. 1.15A)114 that catalyzes the oxidation of primary alcohols to 

aldehydes with concomitant reduction of dioxygen to H2O2 (Fig. 1.15B).117,118 The Cu in 

the active site is bound equatorially to two histidine residues (His496 and His581) and to a 

post-translationally modified tyrosine residue (Tyr272) cross-linked with a cysteine residue 

(Cys228), while a tyrosine residue (Tyr495) occupies the axial position. The active oxidant 

(GOox) incorporates a Cu(II) centre and a tyrosine radical that both undergo 1-electron 

reduction upon substrate oxidation.119  

 

(A) (B) 
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Figure 1.15.  (A) Pymol rendering of GOase.114 (B) Reaction scheme for the oxidation of 
primary alcohols.  

 

The enzymes highlighted in the above examples have served as inspiration in the 

design of synthetic analogues that can facilitate difficult substrate transformations by 

harnessing ligand non-innocence. These systems offer an attractive alternative to rare 

and expensive noble metals in catalysis.120,121 Generally, catalytic transformations are 

based on bond breaking/making events in which multiple electrons (usually 2) are shuttled 

across the substrate and metal centre. Such is the case for elementary processes such 

as oxidative addition (OA) and reductive elimination (RE). This type of chemistry is 

common to expensive (noble) metals such as Pd, Pt, Ir, Rh, etc. but not readily accessible 

to the cheaper earth-abundant first-row transition metals that typically engage in 1-electron 

chemistry.122  

Non-innocent ligands can compliment metal reactivity by functioning as electron 

reservoirs during catalysis.120,123–125 Multielectron chemistry can thus be achieved in a 

controlled manner by common 1st row transition metals. Chirik and coworkers have 

elegantly advanced the field by applying this concept to the Fe-catalyzed [2π + 2π] 

cycloaddition of olefins.126,127 In their model depicted in Figure 1.16, an Fe(II) complex in 

the reduced form employing a non-innocent (bis)iminopyridine ligand forms a π complex 

with a diene upon the release of two nitrogen ligands (1). A 2-electron OA subsequently 

takes place, with the ligand acting as the electron source as opposed to the metal (2). This 

allows Fe to remain in the FeII state, bypassing a less energetically favourable FeIV 

intermediate.  A RE then forms the cyclized product whilst the ligand is reduced back to 

the dianionic state (3). The overall ability of the ligand to function as an electron reservoir 

(A) (B) 
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allows the Fe complex to facilitate an important catalytic transformation traditionally 

executed by noble metals.122 This concept has been applied to other earth-abundant metal 

complexes incorporating redox-active ligands in both catalysis128–134 and in stoichiometric 

multi-electron reactions.135–138 

 

 

 

 

 

 

 

Figure 1.16.  Fe-catalyzed [2π + 2π] cycloaddition of dienes employing a redox-active 
bis(imino)pyridine Fe complex. X = CH2, N-alkyl, C(CO2)Et)2. 

1.3.2. Salens as Non-Innocent Ligands 

Salen ligands (‘salen’ being a common abbreviation for N2O2 bis-phenoxide bis-

Schiff-base ligands) are of interest due to their significance in asymmetric catalysis,139–148 

and potential versatility for material149–152 and medicinal applications.153–155 Furthermore, 

salen ligands can exhibit ligand non-innocence.111 Phenolate oxidation affords metal 

complexes that resemble the active site of galactose oxidase, and can serve as a platform 

in the advancement of biomimetic chemistry.156–164 Typically, salen complexes are 

prepared by the condensation of a salicylaldehyde with a diamine, followed by 

complexation to a metal salt (MX2) upon deprotonation with a suitable base (Fig. 1.17A). 

Due to the abundance of readily available salicylaldehydes and diamine backbones, a 

number of salen-type ligands can be readily prepared. In addition, asymmetric, imino-

reduced (salan), and half-reduced analogues are well known (Fig. 1.17B).158,165–168  
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Figure 1.17.  (A) General scheme for the preparation of salen complexes. (B) Structures 
of asymmetric, imino-half reduced and salan derivatives. Semi-circle in 
Figure depicts general diamine backbone. 

 

The modular synthesis of salen ligands provides a straightforward approach for 

tuning steric and electronic properties about the metal centre.169 Furthermore, these 

ligands can stabilize various metals in a wide range of oxidation states.110 As mentioned, 

salens have the potential to undergo oxidation in place of the metal. While outside the 

scope of this thesis, reduction of the salen scaffold is also possible with strong alkali metal 

reducing agents (Li, Na, K).170  In some cases, oxidation can be strictly metal or ligand-

based. Contribution from both the metal and the ligand to the singularly occupied 

molecular orbital (SOMO) is also possible, resulting in delocalization of the oxidation locus 

across the complex.171–173 The identity of the metal ion and oxidation state imparts a strong 

influence in this case, while various exogenous factors such as the addition of axially 

binding ligands and temperature can lead to valence tautomerism (Fig. 1.18).174–178 

 

 

 

 

(A) 

(B) 
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Figure 1.18.  Examples of factors that can affect the degree of ligand radical involvement 
in the electronic structure of 1-electron oxidized salen complexes. (A) 
Effect of changing the metal ion,175,176 (B) addition of axially binding 
ligands,176 (C) temperature-dependent valence tautomerism in solution.177 

 

How different phenolate para-R phenoxide substituents influence the overall 

electronic structure of oxidized metal salen complexes has been extensively studied in the 

Storr group.179–184 The alteration of para-R substituents provides a means of electronic 

tuning whilst maintaining a constant geometry about the metal centre. As an example, the 

donating ability of the para-R substituent was modulated in Ni salen complexes and the 

extent of ligand radical delocalization upon oxidation was explored.175,176,179,180 Complete 

delocalization across the two redox-active phenoxides was determined to be of lowest 

energy in complexes with electron-withdrawing or weakly donating para-R substituents 

(CF3 and tBu) due to the participation of the metal ion in the SOMO. A shift towards a 

localized electronic structure was observed upon substitution with more electron-donating 

groups (NMe2), in which the lowest energy electronic structure includes significant radical 

character on one of the electron-donating para-ring substituents. (Fig 1.19).179,180  

(A) 

(B) 

(C) 
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Figure 1.19.  The effect of the para-ring substituent on ligand radical delocalization 
visualized by DFT-generated spin density (SD) plots. Greater spin density 
on the Ni ion is observed for more electron-withdrawing groups (R = CF3 > 
tBu) due to involvement of the metal d orbitals in the SOMO of the complex 
facilitating radical delocalization.179 Electron donating groups (R = NMe2) 
result in less spin density on the Ni and localization of the radical to one 
side of the salen.180 

 

Ligand electronics can also affect the reactivity of metal salen complexes.183,185 For 

example, Thomas and Shimazaki have collectively demonstrated that the rate and 

mechanism of benzyl alcohol oxidation to benzaldehyde by an oxidized Cu(II) salen 

species can be influenced by phenolate para-R substitution.186–189 Jacobsen reported that 

the enantiomeric excess (ee) values in Mn salen catalyzed epoxidation of alkenes was 

found to be larger for electron-donating para-R groups.190,191 A similar effect was observed 

for Cr salen catalyzed copolymerization of cyclohexene oxide and CO2, in that 

polymerization rates were enhanced with para-R electron-donating ability.192,193 The Storr 

group has investigated the effect of para-R substituent electronic tuning on metal nitride 

chemistry. In recent work, a series of Mn(V) nitride salen complexes were prepared with 

varying para–R substituents.181 Oxidation of complexes with mildly electron-donating (R = 

tBu) and strongly withdrawing groups (R = CF3) resulted in metal-based oxidation. This 

species exhibited a highly reactive Mn(VI)–nitride unit that rapidly decays via N—N 

coupling to afford N2 and a MnIII decay product (Fig. 1.20). The rate of coupling was found 

to be dependent on the electron-withdrawing ability of the R group, with the CF3 

substituent affording a faster coupling rate compared to the tBu derivative. In contrast, 

oxidation of the Mn(V) nitride employing a strongly electron-donating para-R substituent 

(R = NMe2) resulted in ligand-based oxidation, forming a stable ligand radical that was 

remarkably resistant to the homocoupling pathway.  
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Figure 1.20.  The oxidation of Mn(V) nitride salen complexes. Activation of the Mn—N 
bond is dependent on para-R electronics 

 

The current hypothesis for the observed reactivity is that the high-valent metal 

species contains a degree of nitridyl radical character that favours a radical coupling 

pathway (Fig. 1.21A).181 Direct spectroscopic evidence of nitridyl radicals are uncommon 

but known in the literature (Fig. 1.21B).41,61,62 Although N–N coupling remains a common 

pathway for various high-valent metal nitrides, they are also suitable candidates for the 

amination of unactivated C–H bonds due to their H-atom abstraction ability.194  

 

 

 

 

 

Figure 1.21.  (A) The proposed mechanism for the decomposition of the Mn(VI) complex  
proceeds through a nitridyl radical species that favours N—N 
homocoupling. (B) An example of an Ir complex with a large degree of 
nitridyl radical character. 

 

 

(A) Storr et al. (B) Schneider et al. 
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1.4. Cr Salen Complexes 

The results highlighted in the Mn study above demonstrate that oxidation and 

subsequent activation of the metal–nitride bond can be influenced by ligand electronics. 

In unpublished work from the Storr group, the reactive Mn(VI) species shows precedence 

for amination of organic small molecules. While this remains an ongoing area of research 

in the group, preliminary work suggests that the rapid homocoupling pathway significantly 

outcompetes substrate interactions. In an alternative approach, we have changed the 

metal ion to Cr in order to investigate the changes to the overall electronic structure and 

reactivity upon oxidation. We postulated that the Cr nitride complexes would be inherently 

more stable in comparison to Mn following the general trend of greater stability for early 

transition metal nitrides, where the oxidized Cr(VI) complexes are relatively inert towards 

homocoupling. This would allow for more detailed investigations of electronic structure as 

well as reactivity studies with organic substrates. 

This principal was exemplified by Kochi who evaluated the active species in metal 

salen catalyzed enantioselective epoxidation of alkenes. In the early 1990’s, 

Jacobsen195,196 and Katsuki197 independently demonstrated that Mn(III) salen complexes 

can catalytically transform pro-chiral alkenes into epoxides using PhIO or NaClO as a 

stoichiometric oxidant. Currently, different versions of the catalyst are commercially 

available, with the most popular (and versatile) colloquially referred to as Jacobsen’s 

catalyst (Fig. 1.22A).198 Cr versions are also readily available. In their work, the Kochi 

group proposed that the active oxidant was a Mn(V) oxo species generated in situ by 

treatment of Mn(III) with PhIO.199 Attempts to isolate this species however have been 

largely unsuccessful.200 When Cr was instead used, a cationic Cr(V) oxo complex was 

successfully isolated and structurally characterized (Fig 1.22B).201 Despite enhanced 

stability, this complex was still highly active towards epoxidation, as treatment with one 

equivalent of alkene resulted in complete epoxide formation and quantitative recovery of 

the Cr(III) reduced product, signalling a 1:1 stoichiometry. It was on this basis, along with 

detailed kinetic and spectroscopic data, that the active oxidant in Cr salen catalyzed 

epoxidation was unambiguously assigned as the oxo species. These findings have since 

been translated to Mn in which a transient Mn oxo intermediate is invoked as the active 

species in the catalytic epoxidation of alkenes, despite unsuccessful isolation and 

spectroscopic detection of this intermediate (Fig. 1.22C).143,202 
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Figure 1.22.  Mn and Cr salens used in alkene epoxidation. (A) commercially available 
Jacobsen’s catalyst for epoxidation of asymmetric alkenes. (B) First 
example of a structurally characterized Cr oxo active species.201 (C) 
Proposed mechanism for metal salen catalyzed alkene epoxidation. 

 

Cr salen complexes are frequently reported in the literature as highly efficient 

epoxidation catalysts.143,203 Apart from this, they are also regarded as suitable catalysts in 

epoxide ring-opening reactions,204–207 CO2 copolymerization with various small 

molecules208–214 and in alcohol oxidation.215 Phenoxyl radicals bound to Cr are scarce in 

the literature,216,217 and despite the potentially rich chemistry, the formation and reactivity 

of Cr complexes bearing salen-based phenoxyl radicals have not yet been reported. This 

thesis describes the synthesis and characterization of a series of Cr(V) nitride complexes 

bearing non-innocent salen ligands (Fig. 1.23). Ligand electronics were tuned by 

modulation of phenolate para-R substituents to influence the locus of oxidation. The 

electronic structure of the oxidized species was assessed by various spectroscopic and 

theoretical techniques, and factors affecting nitride reactivity were investigated.  

 

 

 

 

 
Figure 1.23.  Nitrido Cr(V) complexes bearing salen ligands with para-ring substituents 

from electron-withdrawing (R = CF3) to electron-donating (R = NMe2).  
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1.5. Thesis Outline 

In an effort to gain a deeper understanding of the electronic nature of metal nitride 

complexes and how this relates to reactivity, a series of Cr nitride salen complexes 

employing para-R phenoxide substituents of varying electron donating ability have been 

prepared. Chapter 2 outlines the synthetic strategies for the preparation of CrNSalCF3, 

CrNSaltBu and CrNSalNMe2, and a combination of spectroscopic and theoretical techniques 

permitted detailed characterization. 

Chapter 3 details how the modulation of para-R phenoxide substituents influences 

the locus of oxidation. It was observed that strongly withdrawing and moderately donating 

R groups (R = CF3, tBu) favour metal-based oxidation, while employing strongly donating 

groups (R = NMe2) affords a ligand radical species. 

In Chapter 4, the reactivities of neutral and oxidized complexes is discussed. 

Nucleophilicity was found to be a general property for neutral Cr(V) compounds, however 

this is effectively switched off upon metal-based oxidation. Interestingly, oxidation at the 

ligand does not appear to impart significant changes in the Cr—N unit as this species 

remains nucleophilic. Extensive theoretical analysis is employed to rationalize these 

reactivity differences. 

Finally, Chapter 5 outlines the ongoing work and future directions geared at 

building off of the results discussed herein. In all, this thesis provides significant new 

information on the intricate interplay between ligand electronics and metal nitride 

reactivity.  
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Chapter 2. Synthesis and Characterization of 
CrNSalCF3, CrNSaltBu and CrNSalNMe2 

D. Martelino performed the synthesis and carried out UV-vis and theoretical analysis. R. 

M. Clarke collected X-ray data. K. Herasymchuk and G. McNeil collected EPR data and 

Diego Martelino simulated the data.  

2.1. Introduction 

The synthetic strategies for the preparation of Cr nitride complexes are reported in 

a number of reviews.5,6 Select examples include ammonia oxidation218 and nitrosyl 

deoxygenation.219 A versatile synthetic route is photochemical decomposition of an azide 

precursor, in which the major driving force is the liberation of N2.220–224 This was initially 

reported by Arshankow and Poznjak in 1982, who demonstrated that photolysis of a Cr(III) 

azide salen complex afforded the Cr(V) nitride product (Fig. 2.1A).225 This was the first 

reported case of a terminal nitride ligand bonded to a first row transition metal. Herein, the 

method in which the complexes CrNSalCF3, CrNSaltBu and CrNSalNMe2 were prepared was 

through N-atom transfer from a nitrido Mn species to a Cr(III) precursor. This reactivity 

was introduced in Section 1.2.5 and is a commonly used procedure in transition metal 

nitride synthesis. The ability to transfer a single nitrogen atom between two metal centres 

was first reported by Bottomley and Neely who found that complete N-transfer from a 

nitrido Mn(V) porphyrin to a Cr(III) porphyrin was possible (Fig. 2.1B).226 
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Figure 2.1.  First reported cases for the synthesis of Cr nitride complexes by (A) 
photolysis of an azide precursor225 and (B) Intermetallic N-atom transfer.226 

 

 The N-atom transfer procedure was elegantly advanced by Bendix and coworkers 

who devised a general route for the preparation of a number of Cr nitride complexes.227 

This preparation involves reaction of a nitrido Mn salen complex with CrCl3(THF)3. 

Oxidative N-transfer from Mn(V) to the Cr(III) starting material occurs readily. The resulting 

reaction mixture contains a species in solution that has been described as a [Cr≡N]2+ unit 

complexed by a labile coordination sphere (Scheme 2.1). The room temperature electron 

paramagnetic resonance (EPR) spectrum of this solution consists of a broad and 

featureless isotropic signal (giso = 1.98) that is consistent with a Cr(V) d1 species.228,229 The 

Mn complex is effectively reduced to a Mn(III) by-product and readily precipitates in 

acetonitrile solvent. The filtrate containing [Cr≡N]2+ is an excellent template that 

coordinates to a wide variety of both simple and multidentate ligands.230–232 Salen ligands 

readily coordinate to this species under basic conditions, allowing for the isolation of air-

stable CrNSalNMe2, CrNSaltBu and CrNSalCF3. 

(A) 

(B) 
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Scheme 2.1.  Synthesis of Cr nitride salen complexes (R = CF3, tBu, NMe2). 

 

 

 

 

 

 

This chapter outlines the preparation and characterization of CrNSalNMe2, 

CrNSaltBu and CrNSalCF3. Synthesis was accomplished using the N-atom transfer method 

with a nitrido Mn salen complex (MnNSalen). Characterization using spectroscopic and 

computational methods will be discussed.  

2.2. Results  

2.2.1. Synthesis 

All Cr compounds were synthesized according to the general preparation outlined 

by Bendix,227 in which the appropriate substituted salen ligand was added to a solution 

containing [Cr≡N]2+. All three complexes were isolated as coloured microcrystalline solids 

in reasonable yield (R = CF3: rose gold, 75 %; tBu: brownish-yellow, 80 % NMe2: dark 

orange, 82 %) and exhibited good fits to elemental analysis (EA) data.  

Scheme 2.2.  Synthetic strategy for Cr nitride salen complexes. 

 
 

 

 

Reaction conditions: (i) CH3CN, 1 eq. MnNSalen; (ii) CH3CN, ~ 3 drops Et3N, 1 eq. H2SalR. 
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2.2.2. Solid-State Structure Determination 

The solid-state structures of CrNSaltBu and CrNSalNMe2 are presented in Fig. 2.2 

and Fig. 2.3 respectively and selected crystallographic data is presented in Table 2.1. X-

ray quality crystals were grown by slow evaporation of complexes in a 1:1 mixture of 

dichloromethane and acetonitrile. Attempts to isolate suitable crystals of CrNSalCF3 for 

analysis were unsuccessful due to a high degree of twinning and relatively small crystal 

morphology. Nevertheless, the structures obtained for CrNSaltBu and CrNSalNMe2 feature 

a pseudo-square pyramidal geometry with the nitride at the apical position and the central 

Cr ion above the salen plane by ~0.5 Å (R = tBu: 0.595 Å, R = NMe2: 0.518 Å). The short 

Cr-nitride bond length of ca. 1.5 Å (R = tBu: 1.549 Å, NMe2: 1.544 Å) is indicative of triple 

bond character and is in close agreement with other Cr complexes containing terminal 

nitride ligands.219,228,232  

 

 

 

 

 

Figure 2.2.  POV-Ray representation of CrNSaltBu. 
Thermal ellipsoids shown at 50% probability level. Hydrogen atoms omitted 
for clarity. Cr, pink; C, grey; O, red; N, blue. Select interatomic distances 
[Å] and angles [deg]: Cr(1)-O(1): 1.909(3), Cr(1)-O(2): 1.898(2), Cr(1)-N(1): 
2.008(3), Cr(1)-O(2): 2.019(2), Cr(1)-N(3): 1.549(3), O(1)-C(1): 1.314(4), 
O(2)-C(2): 1.307(4). Angles: O(1)-Cr(1)-O(2): 87.47, O(1)-Cr(1)-N(1): 
88.12, O(1)-Cr(1)-N(2): 144.72, O(1)-Cr(1)-N(3): 110.13,O(2)-Cr(1)-N(2): 
105.88, O(2)-Cr(1)-N(1): 153.50, O(2)-Cr(1)-N(3): 105.88, N(1)-Cr(1)-N(2): 
80.58, N(1)-Cr(1)-N(3): 100.17, N(2)-Cr(1)-N(3): 104.74. 
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C1 C2 



29 

 

 

 

 

 

Figure 2.3. POV-Ray representation of CrNSalNMe2. 
Thermal ellipsoids shown at 50% probability level. Hydrogen atoms omitted 
for clarity. Cr, pink; C grey; O, red; N, blue. Select interatomic distances [Å] 
and angles [deg]: Cr(1)-O1: 1.911(4), Cr(1)-O(2): 1.906(4), Cr(1)-N(1): 
2.013(5), Cr(1)-O(2): 2.004(4), Cr(1)-N(3): 1.544(5), O(1)-C(1): 1.305(6), 
O(2)-C(2): 1.323(6). Angles: O(1)-Cr(1)-O(2): 87.81, O(1)-Cr(1)-N(1): 
88.79, O(1)-Cr(1)-N(2): 149.28, O(1)-Cr(1)-N(3): 108.04, O(2)-Cr(1)-N(2): 
88.57, O(2)-Cr(1)-N(1): 150.52, O(2)-Cr(1)-N(3): 107.51, N(1)-Cr(1)-N(2): 
79.65, N(1)-Cr(1)-N(3): 101.38, N(2)-Cr(1)-N(3): 102.13. 

 

Table 2.1.  Selected crystallographic data for CrNSaltBu and CrNSalNMe2. 

 CrNSaltBu CNSalNMe2 
Formula C36H52CrN3O2 C32H46CrN5O2 

Formula weight 610.8 584.72 

Space group P -1 P 21/n 

a (Å) 9.99(3) 9.27(2) 

b (Å) 13.51(3) 27.81(6) 

c (Å) 14.70(3) 12.04(3) 

α (deg) 63.0(1) 90 

β (deg) 78.2(2) 102.8(10) 

γ (deg) 71.4(10) 90 

V (Å3) 1672.83 3027.11 

Z 4 6 

T (K) 150 150 

ρcalcd (g cm-3) 1.213 1.283 

λ (Å) 1.54178 1.54178 

μ (cm-1) 3.072 3.393 

R indicesa with I > 2.0σ(I) (data) 0.0586 0.0927 

wR2 0.1548 0.2069 

R1 0.0601 0.0985 

Goodness-of-fit on F2 1.303 1.267 
aGoodness-of-fit on F 
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O1 O2 
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2.2.3. Electron Paramagnetic Resonance Spectroscopy 

 Electron paramagnetic resonance (EPR) spectroscopy was used to confirm the 

3d1 (S = ½) electronic ground state. All compounds, regardless of R group, were found to 

exhibit identical experimental spectra and simulation parameters. Figure 2.4 shows the 

room temperature EPR spectrum of CrNSalCF3, CrNSaltBu, and CrNSalNMe2 in 

dichloromethane. Each signal is composed of a sharp isotropic resonance centred at giso 

= 1.978. The intense central feature is due to Cr isotopes with nuclear spin I = 0 (totalling 

90.5 % abundance). This signal is flanked by a quartet pattern due to hyperfine splitting 

from 53Cr with nuclear spin I = 3/2 (9.5 % abundant). These signals are further split into a 

septet line pattern due to similar hyperfine splitting values with three nitrogen atoms (two 

imines on the salen and the nitride, I = 1). The degeneracy in splitting values, despite 

chemical non-equivalence, is a characteristic feature for Cr nitride complexes containing 

equatorial imino-donating ligands.220,233,234  

 

 

 

 

 

 

 

 

 

Figure 2.4.  Room temperature EPR of CrNSalCF3, CrNSaltBu, and CrNSalNMe2 in 
dichloromethane. Fitted parameter values are the same for all compounds: 
giso = 1.978; A53Cr = 78.00 MHz, A14N, imine = 6.34 MHz, A14N, nitride = 6.28 MHz. 
Conditions: 0.33 mM complex; freq. = 9.85 gHz; power = 2.0 mW; mod. 
freq. = 100 kHz; mod. amp. = 0.6 mT; T = 298 K.  

R = CF3 

R = tBu 

R = NMe2 

Simulation 

Cr I = 0 

Cr I = 3/2 
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Samples were then frozen and analyzed at 77 K (Fig. 2.5). Again, all three 

derivatives exhibited identical spectra. Each signal is composed of a uniaxial line shape 

with hyperfine coupling to a single Cr centre, in close agreement with other Cr(V) 

systems.222,233,235 The addition of a large excess of tetrabutylammonium perchlorate 

(TBAP) supporting electrolyte was necessary in order to minimize intermolecular 

interactions. In the absence of supporting electrolyte, the signal intensity was significantly 

reduced and afforded line patterns that could not be accounted for in simulations 

(Appendix A – Fig. A1).  

 

  

 

 

 

  

 

 

 

 

Figure 2.5.  Low temperature EPR spectrum of CrNSalCF3, CrNSaltBu, and CrNSalNMe2 
in dichloromethane. Fitted parameter values are identical for all 
compounds: g⊥ = 1.992, A53Cr = 53 MHz; g∥ = 1.950, A53Cr = 130 MHz. Inset 
corresponds to a zoomed in region of the high-field signals that contain the 
resolved Cr hyperfine interactions to the g∥. Conditions: 0.33 mM complex; 
0.1 M TBAP; freq. = 9.387 GHz; power = 2.0 mW; mod. freq. = 100 kHz; 
mod. amp. = 6 GHz; T = 77 K.  
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2.2.4. Electronic Absorption Spectroscopy  

UV-vis absorption spectroscopy was used to further probe the ground state 

electronic structure. Figure 2.6 depicts the absorption spectra for the three derivatives. 

Similar spectral features are observed and are typical of a d1 Cr(V) complex in a square 

pyramidal geometry.221,233 The intense transition at high energy exhibits R group 

dependence (Table 2.2, energy of transition decreases in the order CF3 > tBu > NMe2). 

This is consistent with ligand to metal charge transfer (LMCT) character due to the 

influence of R-group electronics on the corresponding ligand orbital energy. The increased 

electron-withdrawing ability of the CF3 substituent is a key factor in facilitating the 

stabilization of the ligand orbital energy in comparison to the tBu and NMe2 derivatives. A 

similar trend was observed for a series of Mn nitride complexes employing the same salen 

ligands.181  

The energy of the weak transition (Fig. 2.6 inset) at 18,000 cm-1 does not appear 

to exhibit R-group dependence. This is consistent with a Laporte forbidden d→d transition 

( ~ 300 M-1cm-1) from the non-bonding dxy into empty dxz or dyz π* orbitals.228 The transition 

can only be observed for CrNSalCF3 and CrNSaltBu. The CrNSalNMe2 LMCT band described 

above is relatively broad and lower in energy in comparison to the tBu and CF3 derivatives. 

Thus, this feature likely obstructs detection of the d → d band for CrNSalNMe2.  

 

 

 

 

 

 

Figure 2.6.  UV-vis absorption spectra of CrNSalCF3, CrNSaltBu and CrNSalNMe2. Inset: 
observable d → d transitions. The CrNSalNMe2 d → d transition is likely 
hidden by the LMCT band. Conditions: 0.45 mM complex; T = 298 K; 
CH2Cl2. 

 

R = CF3 R = tBu R = NMe2 
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Table 2.2.  Spectroscopic properties of CrNSalCF3, CrNSaltBu and CrNSalNMe2.  

Complex max / 103 cm-1 ( / 103 M-1 cm-1) 

CrNSalCF3 27.5 (8.1), 18.0 (0.3) 

CrNSaltBu 25.5 (7.8), 18.0 (0.3) 

CrNSalNMe2 23.3 (6.4) 

 

2.2.5. Theoretical Analysis 

 Theoretical analysis using density functional theory (DFT) were employed to 

visualize orbital contributions to the S = ½ electronic ground state and characterize spin 

density (SD). Analysis of the singularly occupied molecular orbital (SOMO) of CrNSaltBu 

(Fig. 2.7A) depicts a predominant dxy contribution and is non-bonding with respect to the 

nitride. Additionally, the SD plot (Fig. 2.7B) predicts significant spin localization on the 

metal (ca. 1.45) and a degree of negative spin on the nitride (ca. -0.43). These values do 

not appear to be influenced by para-R group and identical SOMO and SD plots are 

obtained for CrNSalCF3 and CrNSalNMe2. Furthermore, the predicted metrical parameters 

were found to be in good agreement with experimental structural data (Table 2.3). 

 

 

 

 

Figure 2.7.  DFT-generated plots for CrNSaltBu. (A) Visualization of the dxy SOMO. (B) 
Spin density plot. Nitride Cr SD values: R = CF3: -0.431, R = tBu: -0.427, R 
= NMe2: -0.425. Cr SD values: : R = CF3: 1.454, R = tBu: 1.448, R = NMe2: 
1.444. See Appendix A – Fig. A2 & A3 for SOMO and SD plots of CrNSalCF3 
and CrNSalNMe2. 
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Table 2.3.  Calculated and experimental (in parentheses) coordination sphere metrical 
parameters for complexes in Å. 

Compound Cr1-O1 Cr1-O2 Cr1-N1 Cr1-N2 Cr1-N3 O1-C1 O2-C2 

CrNSalCF3 1.927 1.936 2.028 2.037 1.521 1.309 1.310 

CrNSaltBu 1.922 1.930 2.029 2.038 1.524 1.316 1.316 
(1.909) (1.898) (2.008) (2.019) (1.549) (1.314) (1.307) 

CrNSalNMe2 1.919 1.928 2.029 2.038 1.525 1.317 1.318 
(1.911) (1.906) (2.013) (2.004) (1.544) (1.305) (1.323) 

 

2.3. Discussion and Summary 

Synthesis of the three nitrido Cr complexes was accomplished by employing N-

atom transfer from MnNSalen to CrCl3(THF)3, followed by coordination of the derivatized 

H2SalR ligand to the {Cr≡N}2+ unit. This was found to be the highest yielding approach with 

respect to the salen ligand. Photolysis afforded comparatively low yields (for example 82 

% via N-transfer versus 11 % via photolysis for CrNSaltBu) and required preparation of 

azide precursors from chloride derivatives. The mild conditions and rapid rate with which 

the N-transfer pathway proceeds makes this procedure highly appealing. Facile transfer 

of the nitride moiety from Mn to Cr is reflective of the enhanced stability of early transition 

metal nitrides over later transition metal analogues, and likely serves as a thermodynamic 

driving force. Additionally, the insolubility of the Mn(III) chloride by-product favours product 

formation.  

Characterization by UV-vis absorption spectroscopy, X-ray crystallography and 

electron paramagnetic resonance confirmed the formation of the complexes. High energy 

transitions in the absorption spectra were found to exhibit R-group dependence consistent 

with a LMCT transition. The S = ½ electronic ground state was confirmed by EPR 

spectroscopy and yielded g values and splitting patterns that were accounted for in 

simulations. Density functional theory gave metrical parameters that were in good 

agreement with experimental X-ray data. Visualization of the SOMO revealed that this 

orbital is dxy in character, as expected based on the MO description for the isoelectronic 

Vanadyl complex by Gray.29 
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Overall, this chapter details the preparation and characterization of CrNSalCF3, 

CrNSaltBu and CrNSalNMe2. The influence of para-R group electronics on the locus of 

oxidation and reactivity of 1-electron oxidized complexes are studied in subsequent 

chapters.  

2.4. Experimental 

2.4.1. Materials 

All chemicals were of the highest quality grade and purified whenever necessary. 

The ligands H2SalNMe, H2SaltBu, H2SalCF3 were synthesized following literature 

procedures.179,180 The atom-transfer reagents MnNSalen and CrCl3(THF)3 were also 

prepared according to published protocols.236,237 Dichloromethane and acetonitrile were 

dried by refluxing over calcium hydride and distilled prior to use.  

2.4.2. Synthesis 

Preparation of {Cr≡N}2+ solution: To a purple solution of 0.150 g CrCl3(THF)3 (0.40 

mmol) in 2 mL dry acetonitrile was added 0.134 g (0.40 mmol) solid green MnNSalen, 

which resulted in an instant colour change to dark-brown with the precipitation of 

Mn(Cl)Salen. The solution was stirred under nitrogen at room temperature for 1 hour and 

subsequently stirred under air for 1 hour. The solution was then filtered to remove brown 

Mn(Cl)Salen in quantitative yield. The resulting yellow-brown filtrate contains the {Cr≡N}2+ 

fragment (Sol. A) used in further preparations as outlined below. 

Synthesis of CrNSalNMe2: A yellow solution of 0.208 g H2SalNMe2 (0.40 mmol) in 2 

mL acetonitrile containing a few drops of triethylamine was added to Sol. A. The resulting 

mixture was refluxed for 5 hours upon which the solution turned dark orange. The solvent 

was removed in vacuo and the crude product was purified by silica gel column 

chromatography using a 1% solution of Et3N in dichloromethane (Rf 0.45) to obtain 

CrNSalNMe2 as a dark orange powder. Yield 0.194 g (0.33 mmol, 83%). ESI-MS m/z: 

585.32 {M+H+} 100%. Anal. Cald (%) C32H46CrN5O2: C 65.73, H 7.93, N 11.98; Found (%): 

C 65.47 H 7.53, N 11.91. eff = 1.70 (Evans method).  
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Synthesis of CrNSaltBu: A yellow solution of 0.219 g H2SaltBu (0.40 mmol) in 2 mL 

acetonitrile containing a few drops of triethylamine was added to Sol. A and refluxed for 

5 hours upon which the solution turned black. The solvent was removed in vacuo and the 

crude product was purified by silica gel column chromatography using a 1:1 mixture of 

hexanes and dichloromethane as the eluent (Rf 0.4). CrNSaltBu was isolated as a yellow-

brown powder. Yield 0.195 g (0.32 mmol, 80%). ESI-MS m/z: 611.36 {M+H+} 100%. Anal. 

Cald (%) C36H52CrN3O2: C 70.79, H 8.58, N 6.80; Found (%): C 70.70, H 8.64, N 6.92. eff 

= 1.71 (Evans method). 

Synthesis of CrNSalCF3: A yellow solution of 0.228 g H2SalCF3 (0.33 mmol) in 2 mL 

acetonitrile containing a few drops of triethylamine was added to Sol. A and refluxed for 

5 hours upon which the solution turned dark red. The solvent was removed in vacuo and 

the crude product was purified by silica gel column chromatography using a 1:1 mixture 

of hexanes and dichloromethane as the eluent (Rf 0.5). CrNSalCF3 was isolated as a rose-

gold powder. Yield 0.190 g (0.30 mmol, 75%). ESI-MS m/z: 635.21 {M+H+} 100%. Anal. 

Cald (%) C30H34CrF6N3O2: C 56.78, H 5.40, N 6.62; Found (%): C 56.21, H 5.96, N 6.39. 

eff = 1.68 (Evans method). 

2.4.3. Instrumentation 

` Electronic spectra were obtained using a Cary 5000 spectrophotometer. Mass 

spectrometry (ESI positive mode) was performed on an Agilent 6210 TOF ESI-MS system. 

Nuclear magnetic resonance (NMR) for magnetic susceptibility via Evan’s Method was 

carried out on a Bruker AVANCE III 500 MHz instrument. Elemental analysis (C, H, N) 

were performed by Mr. Paul Mulyk at Simon Fraser University on a Carlo Erba EA1110 

CHN elemental analyser. All electron paramagnetic resonance (EPR) were recorded on a 

Bruker EMXplus spectrometer operating with a premium X-band microwave bridge and 

an HS resonator. EPR spectra were simulated using the EasySpin package in Matlab.238 

2.4.4. X-ray Structure Determination 

Single-crystal X-ray crystallographic analysis of a block-brown CrNSaltBu or block-

orange CrNSalNMe2 crystal were performed on a Bruker APEX II Duo diffractometer with 

graphite monochromated Cu Kα radiation. The crystals were mounted on a 150 μm 

MiteGen sample holder. The data were collected at 293 K to a maximum 2 of 50°. Data 
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were collected in a series of φ and ω scans in 0.5°-1.0° widths with 10.0 – 60.0 s 

exposures. The crystal-to-detector distance was 40 mm. The structures were solved by 

intrinsic phasing239 and subsequent refinements were performed using ShelXle.240 All non-

hydrogen atoms were refined anisotropically. All C—H hydrogen atoms were placed in 

calculated positions but were not refined.  

2.4.5. Theoretical Analysis 

Geometry optimizations were performed using the Gaussian 16 program (Revision 

A.03)241 employing the B3LYP functional with the 6-31g* basis set.242 This combination 

has provided good theoretical fit to experimental metrical data for a variety of similar salen 

systems.172,173,243,244 Frequency calculations performed on the same functional/basis set 

confirmed optimized structures were at a global minimum. Single point calculations were 

performed using the B3P86 functional and TZVP basis set of Ahlrichs245,246 as this 

functional/basis set combination was determined to predict the change in nitride spin 

density values upon reaction with Lewis acids (see later chapters).41 All calculations 

employed a polarizable continuum model (PCM) for CH2Cl2 (=8.93) for all atoms.242,247,248  
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Chapter 3. Oxidation of CrNSalCF3, CrNSaltBu and 
CrNSalNMe2 and Electronic Structure Determination 

D. Martelino performed the chemical oxidation of compounds, electrochemistry, 

absorption spectroscopy and theoretical analysis. K. Herasymchuk and G. McNeil 

collected EPR data for CrNSalCF3 and CrNSaltBu, F. Thomas (Grenoble) collected EPR 

data for CrNSalNMe2, and D. Martelino simulated the data. 

3.1. Introduction 

As discussed in previous chapters, the elucidation of electronic structure in metal 

salen complexes is of considerable interest due to the interesting photophysical properties 

and potential for noble metal-like reactivity via ligand non-innocence.120,121,123–125 The 

modulation of para-R phenoxide substituents presents a means to tune ligand orbital 

energies and influence the locus of oxidation. Depending on the electronic structure, this 

can result in an “electron hole” within the system. Questions as to where (ie. ligand radical 

or high-valent metal) and to what extent delocalization occurs across the metal salen 

scaffold can be investigated. These details can manifest as dramatic differences in 

spectroscopic and electrochemical properties, and there are a variety of physical and 

theoretical methods employed in addressing these questions.249  

Oxidized metal salen complexes can be classified as mixed-valence 

compounds.250,251 An archetypical example of a mixed-valence compound is the Creutz-

Taube ion which consists of a dinuclear Ru complex bridged by an organic pyrazine linker, 

[((NH3)5Ru)(-pyz)(Ru(NH3)5]5+ (Fig. 3.1A).252 The Ru oxidation states are not accurately 

ascertained by conventional means as the degree of electronic coupling between 

dinuclear sites dictates the overall electronic structure. The Creutz-Taube ion represents 

a strongly coupled system, where Ru valencies are averaged (M2.5+–L–M2.5+) due to 

complete delocalization of the electronic structure. On the contrary, a scenario with limited 

electronic coupling results in discrete oxidation states (M2+–L–M3+). Metal salen 

complexes represent a reverse case (Fig. 3.1B), where two redox-active phenolate ligands 

are bridged by a metal ion linker (L–Mn+–L). 
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Figure 3.1.  Examples of mixed-valence systems. (A) Creutz-Taube ion. (B) An 
oxidized metal salen complex. 

 

Robin and Day established a classification system for the characterization of 

mixed-valence compounds.253 Class I compounds exhibit no electronic communication 

due to inhibited intervalence charge transfer (IVCT) either by remote separation or the 

nature of the linker group. Class II compounds have less restricted charge transfer where 

valencies can interconvert thermally or through electronic excitation. Lastly, Class III 

compounds are best described as fully delocalized due to strong coupling. The oxidation 

states within Class III systems are averaged (similar to the Creutz-Taube ion example). 

Pro-radical salen complexes typically fall between the Class II and III regimes.111,159 

Distinction between a Class II localized or Class III delocalized ligand radical is paramount 

in characterization. Both cases exhibit IVCT transitions in the near-infrared region (800-

2500 nm), and thus UV-vis-NIR (ultraviolet-visible-near-infrared) spectroscopy is routinely 

employed in the exploration of these systems.254–256 Hush devised a theoretical model 

describing IVCT transitions that accounts for characteristic absorption features.257 Class 

II compounds exhibit broad and relatively weak IVCT bands (½ ≥ 2000 cm-1,  ≤ 5000 

M-1 cm-1), while Class III compounds exhibit sharp and intense transitions (½ ≤ 2000 cm-

1,  ≥ 5000 M-1 cm-1).249,258,259 

A variety of other analytical methods provide a wealth of information regarding the 

electronic structure of metal salen complexes. Electrochemical analysis is employed to 

probe oxidation and/or reduction events, select a suitable chemical oxidant/reductant, or 

determine the feasibility of electrolysis. The degree of electronic coupling can also be 

extrapolated from the electrochemical data, as symmetric valencies with minimal coupling 

will undergo oxidation at approximately equal potential.260 On the other hand, 

(B) (A) 
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delocalization of the singularly occupied molecular orbital (SOMO) manifests as discrete 

redox processes.261–263 Electron paramagnetic resonance (EPR) spectroscopy is also 

commonly used as it is sensitive to the generation or loss of a paramagnetic species. In 

addition, EPR is useful in discriminating between a ligand or metal-based oxidation. 

Ligand radicals will typically exhibit g values close to that of a free electron (ge = 2.002319) 

and can be sensitive to metal ion contribution to the SOMO.184,264 In systems featuring a 

pre-existing paramagnetic metal ion, the generation of a ligand radical can complicate the 

analysis due to magnetic coupling.159,177 Thus, EPR cannot be solely relied upon to draw 

conclusions about the detailed electronic structure of a system, highlighting the necessity 

of integrating information from a combination of various methods. Theoretical analysis, 

such as density functional theory (DFT), can be a powerful supplement to experimental 

data. Single point energy calculations can aid in rationalizing experimental results as the 

lowest energy spin state can be predicted, while visualization of the SOMO and spin 

density plots are useful in assessing spin localization. Time-dependent density functional 

theory (TD-DFT) analysis can be used to predict donor and acceptor orbitals associated 

with transitions in an absorption spectrum, especially diagnostic IVCT transitions in the 

NIR region.  

In this chapter, a combination of physical and theoretical methods were employed 

to characterize electronic structure and investigate the influence of para-R substituent 

electronics on the oxidation of CrNSalNMe2, CrNSaltBu and CrNSalCF3. Experimental 

findings provide strong evidence for the formation of a ligand radical for strongly electron-

donating R-groups (R = NMe2), while mildly donating and strongly withdrawing 

substituents (R = tBu, CF3) support formation of a Cr(VI) product. 

3.2. Electronic Structure Determination 

3.2.1. Electrochemistry 

The redox processes of CrNSalCF3, CrNSaltBu and CrNSalNMe2 were probed by 

cyclic voltammetry (CV) using tetrabutylammonium perchlorate (nBu4NClO4) as the 

supporting electrolyte and CH2Cl2 as the solvent. The lowest potential redox processes 

are reversible at all scan rates studied (10 – 1000 mV s-1) and no reduction waves were 

observed within the electrochemical window for CH2Cl2 (Fig. 3.2 & Table 3.1). CrNSalNMe2 

displays two overlapping redox events that are difficult to resolve by CV. Scanning to 
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higher potentials reveals a third quasi-reversible redox process (Appendix B – Fig. B1). 

The first redox process for CrNSaltBu occurs at E1/2 = 0.61 V. Scanning to higher potential 

reveals a second quasi-reversible process at E1/2 = 1.1 V (Appendix B – Fig. B1). The 

voltammogram of CrNSalCF3 is similar to that of CrNSaltBu and features a single quasi-

reversible redox process at E1/2 = 0.87 V. This species exhibits a first redox process with 

the highest potential among the three derivatives due to the strong electron withdrawing 

nature of the CF3 substituent. Scanning to higher potentials does not reveal additional 

redox processes within the scan window for CH2Cl2. In all, the oxidation potentials for the 

complexes are tunable by ca. 1V, demonstrating the profound effect of para-R electronics.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Cyclic voltammogram of CrNSalNMe2, CrNSaltBu and CrNSalCF3. Only the 
1st redox wave is shown for tBu and CF3 derivatives. Conditions: 1.0 mM 
complex; 0.1 M nBu4NClO4; scan rate: 100 mV/s; T = 298 K; CH2Cl2. 

 

20 A 

R = NMe2 

R = tBu 

R = CF3 
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Table 3.1.  Redox potentials for complexes versus Fc
+/Fc.a,b 

Compound Epa1 Epc1 E1/21 Epa2 Epc2 E1/22 
CrNSalNMe2 0.05 -0.12 -0.04 (0.17) 0.20 0.03 0.12 (0.17) 

CrNSaltBu 0.70 0.51 0.61 (0.19) -- -- -- 

CrNSalCF3 0.98 0.75 0.87 (0.23) -- -- -- 
aGiven in volts, peak-to-peak separation given in parenthesis. bPeak-to-peak separation 
for Fc

+/Fc couple at 298 K is 0.13 V. Redox waves were determined to be a 1-electron 
process by comparison of complex peak area to the peak area from 1-equivalent 
decamethylferrocene added. 

 

Differential pulse voltammetry (DPV) was used to resolve the 1st and 2nd redox 

processes for CrNSalNMe2 where a potential difference (Eox) of 160 mV was observed 

(Fig. 3.3A). Similar values have been reported by the Storr group for salen complexes 

employing the NMe2 substituent for metal centres including Ni,180 Mn nitride181 and uranyl 

(UO2).184 These features have been unambiguously assigned as sequential oxidations of 

both phenolate moieties. Interestingly, the voltammogram of CrNSalNMe2 bears a striking 

resemblance to the voltammogram of the Mn analogue MnNSalNMe2 (Fig. 3.3B).181 These 

similarities provide strong evidence that the oxidations of CrNSalNMe2 are both ligand-

centred, affording [CrVNSalNMe2]⦁+ as the first oxidation product, matching the assignment 

for the Mn analogue using a number of experimental and theoretical techniques.  

 

 

 

 

 

 

Figure 3.3.  (A) 1st and 2nd redox waves for CrNSalNMe2 (black) resolved by DPV (red). 
(B) Comparison of CrNSalNMe2 (black) and MnNSalNMe2 (red).181 
Conditions: 1.0 mM complex; 0.1 M nBu4NClO4; scan rate: 100 mV/s; T = 
298 K; CH2Cl2. 

(B) (A) 
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The Eox value of 160 mV suggests limited electronic coupling between redox-

active phenolate centres in-line with the previous reports.180,181,184 The relatively small 

value is consistent with a Class II mixed-valence compound with significant radical 

localization. The stability of [CrVNSalNMe2]⦁+ with respect to disproportionation can also be 

calculated using Eox. Under the present conditions, the monocation [CrVNSalNMe2]⦁+ can 

disproportionate to neutral CrNSalNMe2 and the diradical [CrVNSalNMe2]⦁⦁2+ as shown in 

Equation 1, where L represents a phenolate group and M is the metal centre. The 

comproportionation equilibrium constant Kc expressed in Equation 2 can be measured 

electrochemically using Equation 3.249,265 The  Eox value of 160 mV affords a small Kc 

value of ca. 340 at 298 K. Using this value, a solution of mono-oxidized complex is 

calculated to be ~90% [CrVNSalNMe2]⦁+, ~5% CrNSalNMe2 and ~5% [CrVNSalNMe2]⦁⦁2+. 

 
[LML] + [L⦁+ML⦁+]  ⇌ 2[LML⦁+] (1) 

 
𝐾c =  

[LML⦁+]2

[LML][L⦁+ML⦁+]
 

(2) 

 
𝐾c = 𝑒𝑥𝑝 (

ΔEoxF

RT
) 

(3) 

The voltammograms of CrNSaltBu and CrNSalCF3 do not exhibit overlapping 

oxidation processes in contrast to CrNSalNMe2. Additionally, the 1st oxidation potentials are 

significantly higher in comparison to MnNSaltBu and MnNSalCF3 analogues (Fig. 3.4A & 

3.4B) highlighting the effect of the metal ion. The 1st redox events in the Mn 

voltammograms have been attributed to the Mn(V)/Mn(VI) redox couple and are 

irreversible due to rapid N—N homocoupling.181 Herein, the CrNSaltBu and CrNSalCF3 

redox waves are best assigned as the Cr(V)/Cr(VI) couple affording [CrVINSaltBu]+ and 

[CrVINSaltBu]+ respectively upon oxidation. The reversibility of the Cr(V)/Cr(VI) redox 

process for the Cr complexes is likely due to the enhanced stability of early transition metal 

nitride complexes in comparison to later transition metal analogues. It unlikely that these 

redox features are associated with ligand-based oxidations. A large Eox value (0.49 V for 

CrNSaltBu, 2nd oxidation of CrNSalCF3 falls outside the electrochemical window) would 

suggest significant phenoxide-phenoxyl electronic coupling.179 Indeed, parallel electronic 
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absorption experiments do not provide evidence for the presence of a Class III mixed-

valence compound (see Section 3.2.2).  

 

 

 

 

 

 

Figure 3.4.  (A) Comparison of CrNSaltBu (black) and MnNSaltBu (red)181 by CV. (B) 
Comparison of CrNSalCF3 (black) and MnNSalCF3 (red)181 by CV. 
Conditions: 1.0 mM complex; 0.1 M nBu4NClO4; scan rate: 100 mV/s; T = 
298 K; CH2Cl2.  

 

3.2.2. Electronic Absorption Spectroscopy 

The high redox potential of CrNSalCF3 (0.87 V vs. Fc+ /Fc) required use of a strong 

chemical oxidant in order to further study the oxidized form. Tris(2,4-

dibromophenyl)aminium hexafluoroantimonate ([N(C6H3Br2)3]⦁+[SbF6]-) was selected for 

this purpose due to its high oxidizing potential (1.1 V vs Fc
+/Fc)266 and solubility in CH2Cl2. 

The oxidation of all three Cr complexes was monitored via UV-vis-NIR spectroscopy by 

titration with a saturated solution of oxidant until 1 equivalent was added. The oxidation of 

CrNSalCF3 and CrNSaltBu is depicted in Figure 3.5 and features a decrease in the intensity 

of the high energy charge transfer band of the neutral complexes with concomitant 

appearance of lower energy absorbances (Table 3.2). Well defined isosbestic points 

indicate clean product formation. Similar spectral features are reported for the 

[MnVINSalCF3]+ and [MnVINSaltBu]+ versions, which contain low energy transitions at 

11,600 and 9,300 cm-1 respectively characterized as ligand-to-metal charge transfer 

(LMCT) events into the singularly occupied Mn(VI) dxy orbital.181  

 

(A) (B) 
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Figure 3.5.  Chemical oxidation of CrNSalCF3 and CrNSaltBu using 
([N(C6H3Br2)3]⦁+[SbF6]-) monitored by UV-vis-NIR spectroscopy. Black: 
neutral; red: oxidized. Intermediate grey lines represent increasing aliquots 
of oxidant added until 1 equivalent was reached. Conditions: 0.45 mM 
complex; T = 233 K; CH2Cl2. Analysis of the red band over time indicated 
minimal changes at T = 233 K, further demonstrating the stability of 
oxidized complexes in solution. 

 

The spectral similarities between Mn and Cr derivatives support a metal-based 

Cr(V) → Cr(VI) oxidation affording [CrVINSalCF3]+ and [CrVINSaltBu]+. This assignment is 

corroborated by noting the relative energy of low energy absorption band (Energy R = CF3 

> tBu). A blue-shift is expected upon modulation of tBu to CF3 due to the electron 

withdrawing ability of this substituent. It is unlikely that this transition is associated with a 

ligand radical-based transition. Electrochemical measurements discussed in Section 3.2.1 

effectively rule out a localized regime, however it cannot rule out the possibility of a Class 

III delocalized ligand radical. Class III complexes contain sharp and intense (½ ≤ 2000 

cm-1,  ≥ 5000 M-1 cm-1) NIR transitions that are a key diagnostic feature in the 

characterization of these complexes.249,257–259 Indeed, analysis of the lowest energy 

transitions in the oxidized spectra do not fit the criteria for such a species (Table 3.2). 

 

 

R = CF3 R = tBu 
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The spectral features for the oxidized CrNSalNMe2 complex suggest a different 

electronic structure when compared to electron deficient derivatives (Fig. 3.6). Reduction 

of the high energy charge transfer band at 23,300 cm-1 of the neutral species alongside 

the formation of an envelope of new transitions (Fig. 3.6, Table 3.2) and isosbestic points 

indicate clean product formation. In particular, the broad and low intensity absorbance 

centred at 11,500 cm-1 ( ~ 1000 M-1cm-1) fits the criteria for a Class II IVCT.249,258,259 Similar 

spectral features have been reported for other localized phenoxyl radical-containing metal 

salen complexes that employ the same ligand.180,181,184 Furthermore, the addition of over 

1 equivalent of oxidant causes this feature to decay (Appendix B – Fig. B2). These findings 

are consistent with the assignment of a ligand-oxidized electronic structure to form 

[CrVNSalNMe2]⦁+. 

 

  

 

 

 

 

 

Figure 3.6.  Chemical oxidation of CrNSalNMe2 monitored by UV-vis-NIR spectroscopy. 
Black: neutral; red: oxidized. Intermediate grey lines represent increasing 
aliquots of oxidant added until 1 equivalent was reached. Conditions: 0.45 
mM complex; T = 233 K; CH2Cl2. Analysis of the red band over time 
indicated minimal changes at T = 233 K, further demonstrating the stability 
of oxidized complex in solution. 

Table 3.2.  Spectroscopic properties of oxidized Cr complexes. 

Complex max / 103 cm-1 ( / 103 M-1 cm-1) ½  low energy 
transition / cm-1 

[CrVINSalCF3]+ 23.0 (5.8), 11.0 (2.2) 6700 

[CrVINSaltBu]+ 21.9 (5.0), 8.1 (4.15) 4900 

[CrVNSalNMe2]⦁+ 21.3 (6.8), 18.8 (6.8), 11.5 (1.0) 8700 

R = NMe2 
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3.2.3. Electron Paramagnetic Resonance Spectroscopy 

The oxidized Cr complexes were analyzed by continuous wave X-band electron 

paramagnetic resonance (EPR) to further characterize electronic structure. A sample of 

CrNSalCF3 for EPR analysis was chemically oxidized using the radical oxidant 

[N(C6H3Br2)3]⦁+ due to the high redox potential of this derivative (0.87 V vs. Fc
+ /Fc). The 

milder potentials of CrNSaltBu and CrNSalNMe2 (0.61 and -0.04 V vs. Fc
+ /Fc respectively) 

allowed for bulk electrolysis which afforded cleaner oxidation. EPR analysis of electrolyzed 

samples were also free of residual unreacted [N(C6H3Br2)3]⦁+ signals. The EPR spectra of 

the neutral and oxidized complexes are depicted in Figure 3.7. Oxidation of CrNSalCF3 and 

CrNSaltBu resulted in an almost total loss of the EPR signal (ratio of doubly integrated 

signals of oxidized vs. neutral complex R = CF3: 5 %; tBu 2 %). The residual signals in 

these species are likely due to unoxidized starting material. The central feature in the 

oxidized CrNSalCF3 spectrum is likely due to unreacted [N(C6H3Br2)3]⦁+. Interestingly, 

oxidation of CrNSalNMe2 also leads to a significant loss of signal but still exhibits a 

considerable amount of spin active species (ratio of doubly integrated signal of oxidized 

vs. neutral complex R = NMe2: 20 %).  

As discussed in Chapter 2, the EPR spectra of neutral versions unambiguously 

describe the Cr(V) d1 (S = ½) electronic ground state. Loss of this signal upon oxidation 

can be due to one of three reasons.159,177,267 The first and most straightforward case is the 

generation of diamagnetic d0 Cr(VI).268 The second possibility is a triplet species (S = 1) 

with ferromagnetic coupling between the ligand radical and electron in the dxy orbital. 

Consequently, this system can exhibit a large zero-field splitting (ZFS) component 

affording EPR transitions outside the X-band measurement window.161,269,270 The third 

case is the generation of an open-shell singlet species (S = 0) due to antiferromagnetic 

coupling of the phenoxyl radical and the Cr(V) d1 metal ion.158,271 The evidence obtained 

from the experimental data discussed in previous sections suggests that oxidation of the 

complexes affords [CrVINSalCF3]+, [CrVINSaltBu]+ and [CrVNSalNMe2]⦁+ (S = 0 or 1) which 

can all be EPR silent. The relative intensities of residual spin active species in the EPR 

spectra of Cr complexes suggest that there are key differences in the oxidation of 

CrNSalNMe2 relative to tBu and CF3 derivatives.  
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Figure 3.7.  Frozen solution EPR spectra of concentration-matched neutral (black) and 
oxidized samples (red) of CrNSalCF3, CrNSaltBu and CrNSalNMe2 in 
dichloromethane. Insets are a magnification of the corresponding oxidized 
complex signal. Conditions: 0.45 mM complex; 0.1 M TBAP; freq. = 9.4 
GHz; power = 2.0 mW; mod. freq. = 100 kHz; mod. amp. = 6 GHz; T = 20 
K. 

 

In order to further probe the spin state, 1H nuclear magnetic resonance (NMR) was 

conducted on chemically oxidized samples (Fig. 3.8). Sharp peaks in the 0 – 10 ppm 

region are observed for CF3 and tBu derivatives supporting the formation of either d0 Cr(VI) 

R = 

R = tBu 

R = CF3 
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or a strongly antiferromagnetically coupled Cr(V)-ligand radical. With the UV-vis-NIR and 

electrochemistry data suggesting Cr(VI) formation, we attribute the loss of EPR signal to 

the generation of diamagnetic d0 [CrVINSalCF3]+ and [CrVISaltBu]+. In contrast to these 

systems, the 1H NMR spectrum of a chemically oxidized sample of CrNSalNMe2 in the 0 – 

10 ppm region exhibited significant broadening indicative of a paramagnetic species. 

Magnetic susceptibility via Evans Method revealed a magnetic moment of eff = 2.82 (2 

unpaired electrons) supporting the formation of the Cr(V) d1 phenoxyl radical 

[CrVNSalNMe2]⦁+ structure at room temperature.  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.8.  1H NMR spectra of chemically oxidized complexes in CD2Cl2. R = CF3: 
green; tBu: purple; blue: NMe2. * Denotes solvent peaks. ▴Denotes 
resonances from N(C6H3Br2)3 which is the reduced form of the aminium 
chemical oxidant. CrNSalNMe2 was oxidized using AgSbF6 (0.65 V vs 
Fc

+/Fc).266 † Denotes the paramagnetically shifted solvent peak used as a 
reference for magnetic susceptibility via Evans Method. 
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We further analyzed the EPR spectrum of [CrVNSalNMe2]⦁+ by preparing the bis-

oxidized diradical species [CrVNSalNMe2]⦁⦁2+ and investigated its electronic structure by 

EPR. The spectrum features an isotropic signal centred at g = 2.0054 characteristic of a 

ligand radical (Appendix B – Fig. B3). It was determined from DPV studies that the mono-

oxidized complex disproportionates to give ca. 5 % neutral CrNSalNMe2 and 5 % bis-

oxidized [CrVNSalNMe2]⦁⦁2+. Interestingly, overlay of the simulation parameters of these 

species yields the observed EPR spectrum of the mono-oxidized sample (Fig. 3.9). This 

result demonstrates the EPR silence of [CrVNSalNMe2]⦁+ which is likely a consequence of 

magnetic coupling between the dxy electron and ligand radical. Unfortunately, the 

collective data cannot definitively discriminate between a ferromagnetic or 

antiferromagnetic interaction, and efforts to detect a signal at half-field corresponding to a 

triplet species were unsuccessful for both mono and bis-oxidized species at low 

temperature (9 K and 20 K respectively). (Appendix B – Fig. B4 & B5). 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  EPR of a sample of [CrVNSalNMe2]⦁+ (bottom). The corresponding simulation 
(red) was accomplished by summing the simulation parameters obtained 
for neutral CrNSalNMe2 and bis-oxidized [CrVNSalNMe2]⦁⦁2+ complexes. 
Conditions: 0.45 mM complex; 0.1 M TBAP; freq. = 9.4 GHz; power = 2.0 
mW; mod. freq. = 100 kHz; mod. amp. = 6 GHz; T = 20 K; CH2Cl2. 

Bis-oxidized 
component 

Neutral 
component 

Sum 

Experiment 
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3.2.4. Theoretical Analysis  

Theoretical analysis using density functional theory (DFT) calculations were 

performed to gain further insight into the electronic structure of the oxidized systems. 

Single point calculations at the b3p86/TZVP level of theory were utilized to predict the 

lowest energy spin state upon oxidation (Table 3.3). The possible spin states considered 

include singlet Cr(VI), as well as broken-symmetry singlet (BSS) and triplet species that 

can form upon ligand radical formation. Oxidation of CrNSalCF3 is predicted to be metal-

based by 2.5 kcal mol-1 affording singlet [CrVINSalCF3]+ in agreement with experimental 

findings. Interestingly, calculations run on the tBu derivative predict the BSS structure to 

be 2.4 kcal mol-1 lower in energy compared to the singlet species. However, we conclude 

from the combined experimental data that the experimental electronic structure is more 

consistent with metal-based oxidation. Oxidation of CrNSalNMe2 is predicted to be ligand-

based by 13.9 kcal mol-1, with the BSS and triplet structures differing by only 0.2 kcal/mol. 

The use of other functionals such as blyp, b3lyp and bp86 were also explored and can 

shift relative energetics, however theory at the b3p86 level was chosen for analysis as this 

functional correctly predicted a change in nitride spin density values upon reaction with 

Lewis acids (see later chapters).41 

Table 3.3.  Relative spin state energetics upon oxidation in kcal mol-1. 

Compound Singlet BSS Triplet 

CrNSalCF3 0 + 2.5 + 3.0 

CrNSaltBu + 2.4 0 + 0.7 

CrNSalNMe2 + 13.9 0 + 0.2 

 

 The changes in calculated metrical parameters were then analyzed from optimized 

geometries for assigned spin states (Table 3.4). Oxidation of CrNSalCF3 and CrNSaltBu to 

the singlet state is predicted to result in a symmetrically contracted coordination sphere 

consistent with a high-valent metal centre.111,159,267 Oxidation of CrNSalNMe2 to the broken-

symmetry singlet structure affords asymmetric parameters in-line with a localized ligand 

radical.161,174,180,184 The Cr—N triple bond contracts in all cases, however the effect is 

significantly more pronounced upon formation of Cr(VI) (Cr—N bond contraction in Å R = 

CF3: - 0.018; R = tBu: -0.019; R = NMe2: -0.006) suggesting that the formation of a ligand 

radical has little effect on the Cr-nitride unit. 
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Table 3.4.   Calculated coordination sphere metrical parameters for oxidized 
complexes in Å. Bracketed values correspond to difference (oxidized – 
neutrala) in calculated bond lengths.  

Compound Cr1-N1 Cr1-N2 Cr1-N3 Cr1-O1 Cr1-O2 O1-C1 O2-C2 

[CrVINSalCF3]+ 2.026 2.065 1.503 1.818 1.813 1.328 1.340 

 (-0.002) (+0.028) (-0.018) (-0.109) (-0.123) (+0.019) (+0.030) 

[CrVINSaltBu]+ 2.022 2.062 1.505 1.819 1.815 1.330 1.343 

 (-0.007) (+0.024) (-0.019) (-0.103) (-0.115) (+0.014) (+0.027) 

[CrVNSalNMe2]⦁+ 2.038 2.015 1.519 1.984 1.904 1.279 1.317 

 (+0.009) (-0.023) (-0.006) (+0.065) (-0.024) (-0.038) (-0.001) 
aSee Section 2.2.2 for details.  

 

Spin density (SD) plots for the broken-symmetry singlet (Fig. 3.10A) and triplet 

(Fig. 3.10B) [CrVNSalNMe2]⦁+ solutions predict ligand radical localization and account for 

the asymmetry in metrical parameters. These calculations are in good agreement with 

results obtained from electrochemistry and UV-vis-NIR spectroscopy that provide 

evidence for the formation of a Class II mixed-valence compound. Calculations on metal 

salen complexes incorporating the same ligand also predict radical localization.180,181,184 

 

 

 

 

 

Figure 3.10.  Spin density plots for possible [CrVNSalNMe2]⦁+ structures. (A) Broken-
symmetry singlet case. (B) Triplet case. 

The Cr(V)-ligand radical coupling can be calculated using the Yamaguchi equation 

(1) and is applicable to both strong and weak exchange systems.272,273 The calculated 

exchange correlation (J = -58 cm-1) corresponds to a weakly antiferromagnetically coupled 

system. A plot of the Cr dxy and phenoxide π magnetic orbitals of [CrVNSalNMe2]⦁+  is 

depicted in Figure 3.11. The amount of net positive overlap can provide insight into the 

(A) (B) 
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degree of magnetic coupling.271,274 A calculated value of 12% is consistent with a weakly 

antiferromagnetically coupled system.275 This relatively small value can be rationalized 

based on the relative orientations of dxy and phenoxide π magnetic orbitals, which are not 

suited for optimal overlap within a (pseudo)square pyramidal geometry. Slight distortions 

however within the metal coordination sphere can result in net positive overlap and can 

account for the calculated value of 12 %. 

 
𝐽 =  

𝐸𝐵𝑆 − 𝐸𝐻𝑆

〈Ŝ2〉𝐻𝑆 − 〈Ŝ2〉𝐵𝑆 
 (1) 

 

 

 

 

Figure 3.11.  Plots of the [CrVNSalNMe2]⦁+ magnetic orbitals in the broken-symmetry 
singlet state.  

 

3.2.5. Discussion and Summary 

This chapter illustrates that the locus of oxidation for chromium nitride salen 

complexes can be tuned through the modulation of phenoxide para-R substituents. The 

combined experimental and theoretical data provide strong evidence that complexes 

bearing electron-withdrawing to moderately electron-donating substituents (R = CF3, tBu) 

result in metal-based oxidation, while substitution with a strongly electron-donating para-

R group (R = NMe2) affords a ligand radical.  

The first redox event in the CV for CrNSaltBu was assigned as the Cr(V)/Cr(VI) 

redox couple. It is unlikely that this wave corresponds to phenoxide oxidation, as a large 

Eox of 0.5 V would suggest significant electronic communication to give a Class III 

delocalized ligand radical species. The absorption spectrum of [CrVINSaltBu]+ exhibits no 

evidence for the presence of diagnostic IVCT absorbances associated with a delocalized 

156  156  
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ligand radical, as the lowest observable energy transition is best described as a LMCT. 

The same rationale applies to [CrVINSalCF3]+, which also exhibits a low energy band 

characterized as a LMCT into the empty dxy orbital. The EPR spectra for both derivatives 

feature a total loss of signal intensity relative to the neutral version, while the NMR spectra 

depict sharp resonances in the 0-10 ppm window consistent with the formation of 

diamagnetic d0 [CrVINSaltBu]+ and [CrVINSalCF3]+. These results are partially corroborated 

by DFT calculations, which predict singlet [CrVINSalCF3]+ as the lowest energy oxidation 

product, however favour the broken-symmetry singlet structure for the tBu derivative.    

The electrochemical data for CrNSalNMe2 suggest minimal electronic coupling 

based on the small Eox value (0.16 V) consistent with a Class II mixed-valence 

compound. The absorption spectrum of [CrVNSalNMe2]⦁+ features a broad and low intensity 

absorbance that fits the parameters for a ligand-to-ligand charge transfer. [CrVNSalNMe2]⦁+ 

was found to be EPR silent due to magnetic coupling at low temperature (20 K), while 

Evans Method experiments is consistent with a species exhibiting two unpaired electrons 

at room temperature. The exchange correlation was calculated to be J = -53 cm-1 

suggesting weak antiferromagnetism rationalized by a 12 % magnetic orbital overlap. DFT 

analysis predicts the broken-symmetry singlet as the lowest energy structure, while the 

spin density plots reveal radical localization in line with a Class II mixed-valence complex.  

The combined experimental and computational data provides strong evidence for 

the metal-based oxidation for complexes CrNSalCF3 and CrNSaltBu. Interestingly, 

substitution at the para-R position with electron-rich groups as demonstrated by the 

CrNSalNMe2 complex affords a ligand radical. Interestingly, these complexes exhibit 

remarkable stability in comparison to Mn analogues. Although an in-depth exploration into 

the possible decay products for the oxidized species was not conducted, preliminary 

kinetic analysis in solution suggest that the slow decomposition is governed by second-

order kinetics for [CrVINSalCF3]+ and [CrVINSaltBu]+ in-line a bimolecular N—N 

homocoupling pathway, while the decay of [CrVNSalNMe2]⦁+ is also minimal but does not 

follow second-order kinetics. In all, these results demonstrate that the modulation of 

remote ligand electronics in Cr nitride salen complexes is an effective approach in tuning 

the relative ordering of redox-active orbitals such that the locus of oxidation is influenced.  
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3.3. Experimental 

3.3.1. Materials  

All chemicals were of the highest quality grade and purified whenever necessary. 

The tris(2,4-dibromophenyl)aminium hexafluoroantimonate radical oxidant 

[N(C5H3Br2)3][SbF6] was synthesized according to published protocols.276 

Dichloromethane was dried by refluxing over calcium hydride and distilled prior to use. 

3.3.2. Instrumentation 

Electronic spectra were obtained using a Cary 5000 spectrophotometer equipped 

with custom designed immersion fiber-optic probes with 0.1 and 1 cm path lengths. 

Constant temperatures were maintained with an FTS Multi-Cool Low Temperature Bath. 

Solvent contraction was accounted for in all low-temperature studies. Cyclic voltammetry 

(CV) was performed on a PAR-263A potentiometer equipped with a silver wire reference 

electrode, a platinum disk counter electrode and glassy carbon working electrode. 

Tetrabutylammonium perchlorate (0.1 M) was used as the supporting electrolyte in 

CH2Cl2. Decamethylferrocene was used as an internal standard.277 Electrolysis was 

performed at 253 K with a Biologic SP300 potentiostat by using a carbon foam working 

electrode and was monitored by coulometry and rotating-disk electrode voltammetry. 1H 

nuclear magnetic resonance (NMR) and magnetic susceptibility via Evans Method was 

carried out on a Bruker AVANCE III 500 MHz instrument. Electron paramagnetic 

resonance (EPR) were recorded on a Bruker EMXplus spectrometer operating with a 

premium X-band microwave bridge and an HS resonator. EPR spectra were simulated 

using the EasySpin package in Matlab.238 

3.3.3. Theoretical Analysis 

Geometry optimizations were all performed using the Gaussian 16 program 

(Revision A.03)241 employing the B3LYP functional with the 6-31g* basis set.242 This 

combination has provided good matches to experimental metrical data for a variety of 

similar salen systems.172,173,243,244 Frequency calculations performed on the same 

functional/basis set confirmed optimized structures were at a global minimum. Single point 

calculations were performed using the B3P86 functional and TZVP basis set of 
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Ahlrichs245,246 as this functional/basis set combination was determined to predict the 

change in nitride spin density values upon reaction with Lewis acids (see later chapters).41 

All calculations employed a polarizable continuum model (PCM) for CH2Cl2 (=8.93) for all 

atoms.242,247,248 The AOmix Program was used for analysis of magnetic orbital overlap 

populations.275  

3.3.4. Oxidation Protocol 

Chemical oxidations for UV-vis-NIR and EPR studies were accomplished by 

addition of 1 equivalent of a saturated solution of the strong aminium chemical oxidant 

[N(C6H3Br2)3]⦁+ (1.1 V vs Fc/Fc
+).266 The volume of solution needed for 1-electron oxidation 

was determined by titrating a sample of NiSaltBu in 3.5 mL dichloromethane (0.45 mM) with 

10 uL aliquots of oxidant and monitoring the intense absorption at 4700 cm-1 ( = 21,600 

M-1cm-1) by UV-vis-NIR spectroscopy.180 Immediate decrease of this band indicated 

complete 1 electron oxidation of NiSaltBu. The same volume of oxidant was then added to 

0.45mM solutions of each Cr complex in 3.5 mL dichloromethane. For compounds of 

suitable potential including CrNSalNMe2 and CrNSaltBu, bulk electrolysis allowed cleaner 

and more controlled oxidation. Samples were dissolved in 8 mL of dry CH2Cl2 (0.5 mM) at 

253 K and electrolyzed under a positive pressure of N2. The integrity of the oxidized 

products was assessed by recording CV curves after the first and second oxidation and 

ensuring that they matched with that of the unoxidized sample. 200 L aliquots were then 

placed in EPR tubes and frozen for analysis. A sample of the electrolyzed solution was 

also analyzed by UV-vis-NIR spectroscopy to ensure resulting spectra matched 

chemically oxidized samples.  
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Chapter 4. Investigation of Reactivity Differences 
upon Oxidation 

D. Martelino performed UV-vis and theoretical analysis. F. Thomas (Grenoble) collected 

EPR data and D. Martelino simulated the data. 

4.1. Introduction 

Despite a number Cr(V) nitride complexes reported in the literature, their 

reactivities have not been discussed until relatively recently. For example, Bendix et al. 

reported that Cr(V) nitrides employing salen and dibenzoylmethanolate ligands are 

nucleophilic and readily react with Lewis acidic substrates.41 The reactivity differences 

between early and late transition metal nitride complexes has also been of interest from a 

computational standpoint.278–280 Nitride partial charges have been traditionally invoked as 

suitable descriptors for terminal nitride reactivity. These values are derived from Mulliken 

analysis and predict the amount of electronic charge distribution within a particular 

bond.281 Despite a formal N3- charge for nitride ligands, the M—N triple bond is 

predominantly covalent. The partial charges for individual atoms are thus calculated to be 

a fraction of the formal oxidation state due to a significant degree of shared electron 

density. In one example by Sauer and coworkers, a series of nitride complexes 

incorporating salen or chloride ligands were investigated by density functional theory 

calculations (Fig. 4.1A).280 The ligand set and oxidation states were fixed while the identity 

of the  metal was varied. It was found that the nitride negative charge decreased with 

increasing group number within the 3d transition metal series. This result correlates well 

with reported experimental trends in reactivity, and it was deduced that a negative partial 

charge on the nitride predicts nucleophilic properties.280  

In another study by Bachler, the protonation of a series of nitride complexes were 

computationally modelled (Fig. 4.1B).279 Experimentally, it was found that protons from 

trace amounts of water attack the V—N triple bond leading to decomposition, while Cr and 

Mn complexes were stable in up to 1.0 M perchloric acid.223 Partial charge calculations 

predicted that the V complex would exhibit the greatest nucleophilicity at the nitride 

(negative Npartial charge M = V > Cr > Mn) and analysis of the energy released upon 

protonation supported this trend (E M = V > Cr > Mn).  
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Figure 4.1.  Examples of computationally studied nitride complexes to describe 
nucleophilicity based on nitride partial charges. (A) Salen and chloro 
complexes (M = V, Cr, Mn, Fe) by Sauer.280 (B) triazo-acetylacetonate 
complex (M = V, Cr, R = H; M = Mn, R = CH3) by Bachler.279 

 

This chapter outlines the effect of locus of oxidation on the reactivity of CrNSalCF3, 

CrNSaltBu and CrNSalNMe2. The neutral complexes are nucleophilic and readily react with 

the Lewis acidic tris(pentafluorophenyl) borane forming N—B adducts (Scheme 4.1). 

Metal-based oxidation results in a loss of nucleophilicity for tBu and CF3 derivatives, while 

ligand-based oxidation of the NMe2 derivative does not appear to retard reactivity. The 

nature of the N—B interaction for the oxidized complexes is difficult to rationalize 

experimentally, however an in-depth computational study was conducted to gain insight 

into the observed reactivity differences and product profiles. 

 

Scheme 4.1.  Interaction of CrNSalR with tris(pentafluorophenyl) borane to form N—B 
adducts. 

 

 

 

 

(A) (B) 
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4.2. Results  

4.2.1. Electronic Absorption Spectroscopy 

The reactivity of CrNSalNMe2, CrNSaltBu, CrNSalCF3 as well as oxidized versions 

were analyzed by UV-vis-NIR spectroscopy. Tris(pentafluorophenyl) borane was titrated 

into a solution of CrNSalCF3, CrNSaltBu, and CrNSalNMe2 and monitored by UV-vis-NIR until 

one equivalent was reached (Fig. 4.2). The addition of borane results in a decrease of the 

absorption at 23,300 cm-1 for CrNSalNMe2, and formation of band at higher energy (max = 

26,500 cm-1,  = 5,600 M-1 cm-1). While limited changes are apparent at high energy for 

CrNSalCF3 and CrNSaltBu, new broad bands at lower energy are observed. Isosbestic 

points are indicative of the clean formation of Cr(N—B(C6F5)3)SalR. The addition of over 

1 equivalent yields no further spectral changes signalling a 1:1 stoichiometry (Appendix C 

– Fig. C1).  

 

 

 

 

  

 

Figure 4.2.  UV-vis titration of neutral complexes with tris(pentafluorophenyl) borane. 
Black: CrNSalR; red: 1 equivalent tris(pentafluorophenyl) borane added. 
Intermediate grey lines represent increasing aliquots of borane until 1 
equivalent is reached. Conditions: 0.45 mM complex; T = 233 K; CH2Cl2. 
Complexes are stable and spectra appear identical after 1 hour. Free 
tris(pentafluorophenyl) borane does not exhibit any absorption peaks within 
the energy range of studied. 

 

 

 

R = CF3 R = NMe2 R = tBu 
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 One equivalent of tris(pentafluorophenyl) borane was then added to solutions 

containing [CrVINSalCF3]+, [CrVINSaltBu]+, and [CrVNSalNMe2]⦁+ oxidized with 

[N(C6H3Br2)3][SbF6]  and monitored by UV-vis-NIR under identical conditions (Fig. 4.3). 

[CrVINSalCF3]+ and [CrVINSaltBu]+ do not interact with borane as evidenced by a lack of 

spectral changes upon addition. Interestingly, the spectrum of [CrVNSalNMe2]⦁+ changes 

significantly, suggesting reactivity with the borane.  

 

 

 

 

 

 

Figure 4.3.  Interaction of tris(pentafluorophenyl) borane with the oxidized complexes 
monitored by UV-vis-NIR spectroscopy. Black: oxidized CrNSalR; red: 1 
equivalent borane added. Conditions: 0.45 mM complex; T = 233 K; 
CH2Cl2. Complexes are stabile and spectra appear identical after 1 hr. 
Addition of over 1 equivalent borane yields no further changes for all 
spectra (see Appendix C – Fig. C2). 

 

Borane addition results in a decrease in intensity of the high energy features at 

21,300 cm-1 and 18,800 cm-1 in the [CrVNSalNMe2]⦁+ spectrum. Additionally, the broad 

feature at 12,000 cm-1 decays, and a new broad shoulder feature of similar intensity at ca. 

13,200 cm-1 is formed. The titration of 1 equivalent of borane into a solution of 

[CrVNSalNMe2]⦁+ shows three isosbestic points indicative of clean product formation (Fig. 

4.4). These results provide strong evidence that the locus of oxidation plays a key role in 

modulating the nucleophilic reactivity of the Cr nitride salen complexes. It is important to 

mention that chemical oxidation using the aminium radical ([N(C6H3Br2)3]⦁+[SbF6]-) results 

in the production the N(C6H3Br2)3 amine by-product. While a Lewis acid-base interaction 

between the amine and the tris(pentafluorophenyl) borane may be possible, no evidence 

for this was observed by UV-vis or 1H NMR spectroscopy.  

R = NMe2 R = tBu R = CF3 
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Figure 4.4.  Titration of [CrVNSalNMe2]⦁+ with tris(pentafluorophenyl) borane. Black: 
[CrVNSalNMe2]⦁+, red: 1 equivalent borane added. Intermediate grey lines 
represent increasing aliquots of borane added until 1 equivalent was 
reached. Conditions: 0.45 mM complex; T = 233 K; CH2Cl2. Complexes are 
stabile and spectra appear identical after 1 hr. 

 

4.2.2. Electron Paramagnetic Resonance  

The reactivities of neutral and oxidized complexes were then analyzed by 

continuous wave X-band electron paramagnetic resonance (EPR) spectroscopy. The 

solution EPR spectra (298 K) for all adducts are observed to be identical and exhibit 

equivalent simulation parameters (Fig. 4.5). Evidence for N—B adduct formation is 

deduced by noting changes in nitride hyperfine interactions. Simulations reveal that the 

nitride 14N hyperfine splitting is approximately three times larger for the adducts in 

comparison to the free nitride (Table 4.1). This phenomenon has been previously reported 

by Bendix and is attributed to spin polarization of the Cr—N triple bond and is a 

consequence of the elongation of this bond.41 The low temperature EPR spectra (100 K) 

of the N—B adducts resembles a broadened CrNSalR signal, likely in part due to the 

increase in the nitride hyperfine splitting (Appendix C – Fig. C3). 
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Figure 4.5.  Room temperature EPR spectra of Cr(N—B(C6F5)SalR. Conditions: 0.50 
mM complex; freq. = 9.85 gHz; power = 2.0 mW; mod. freq. = 100 kHz; 
mod. amp. = 0.6 mT; T = 298 K; CH2Cl2. 

 

 

Table 4.1.  Comparison of simulation parametersa between CrNSalR and Cr(N—
B(C6F5)3)SalR. 

Complex giso 
A14N(nitride)  

/ MHz 
A14N(salen)  

/ MHz 
A53Cr  
/ MHz 

CrNSalRb 1.978 6.28 6.34 78.00 

Cr(N—B(C6F5)3)SalR 1.977 16.00 6.45 61.45 
aSimulation parameters are found to be identical irrespective of R group. bSee Section 
2.2.3 for EPR spectrum of CrNSalR. 

 

 

 

R = CF3 

R = tBu

R = NMe2

Simulation
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The EPR spectra of [CrVINSalCF3]+ and [CrVINSaltBu]+ exhibit a significant loss of 

signal due to their diamagnetic nature. The addition of borane should not afford any 

significant changes in the EPR spectra as the d0 spin state is expected to be conserved, 

even with some degree of N—B interaction.7,37,41 Additionally, only a signal associated 

with residual unoxidized CrNSalNMe2 can be observed in the room temperature spectrum 

of a sample of electrochemically generated [CrVNSalNMe2]⦁+ (Fig. 4.6) in agreement with 

the electronic structure discussed in Section 3.2.3. Furthermore, no change is observed 

with the addition of 1 equivalent borane to this species (Appendix C – Fig. C4A). Signals 

associated with the bis-oxidized complex [CrVNSalNMe2]⦁⦁2+ were also not detected, and 

solution EPR measurements (298 K) of an independently prepared sample of 

electrochemically generated [CrVNSalNMe2]⦁⦁2+ feature no observable signals (Appendix C 

– Fig. C4B). Additionally, analysis of the EPR spectrum of [CrVNSalNMe2]⦁+  and 

[CrVNSalNMe2]⦁⦁2+  over time revealed regeneration of the CrNSalNMe2 signal, suggesting 

that these species decay via reduction back to the neutral complex at room temperature 

(Appendix C – Fig. C5).  

 

 

 

 

 

 

 

 

Figure 4.6.  Solution EPR of concentration matched Cr samples. Black: CrNSalNMe2; 
red: [CrVNSalNMe2]⦁+; Inset represents a magnification of the signal in red. 
Conditions: 0.50 mM complex; freq. = 9.428 GHz; power = 2.0 mW; mod. 
freq. = 100 kHz; mod. amp. = 0.6 mT; T = 298 K.  
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Interestingly, the low temperature EPR spectrum (100 K) of a frozen solution of 

[CrVNSalNMe2]⦁+ features an increase in the signal intensities associated with CrNSalNMe2 

and [CrVNSalNMe2]⦁⦁2+ upon addition of 1 equivalent tris(pentafluorophenyl) borane (Fig. 

4.7). Whether this is the result of an interaction with the borane is not yet understood and 

should be probed further. One possibility is that the N—B interaction facilitates the 

disruption of aggregation. The result is a reduction of the intermolecular spin interactions, 

affording signal enhancement. In Section 2.2.3, a large excess of tetrabutylammonium 

perchlorate (TBAP) was required for the low temperature EPR analysis of CrNSalR 

complexes in order to minimize through-space interactions. Indeed, the addition of borane 

to a solution of CrNSalNMe2 (in the absence of TBAP) results in a remarkable increase in 

signal (Appendix C – Fig. C6). 

 

 

 

 

 

 

 

 

Figure 4.7.  Low temperature EPR analysis of the addition of tris(pentafluorophenyl) 
borane to a solution of [CrVNSalNMe2]⦁+. Black: [CrVNSalNMe2]⦁+; red: 1 
equivalent borane added. Conditions: 0.29 mM complex; 0.1 M TBAP; freq. 
= 9.388 GHz; power = 1.0 mW; mod. freq. = 100 kHz; mod. amp. = 6 GHz; 
T = 100 K. 
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4.2.3. Theoretical Analysis 

Theoretical analysis using DFT was conducted in order to rationalize the observed 

differences in reactivity. Mulliken charge analysis was used to quantify metal and nitride 

partial charges (Table 4.2). Neutral compounds are calculated to exhibit values of ca. - 0.4 

at the nitride predicting nucleophilic character. The magnitudes scale with the electron-

donating ability of the para-R group (Npartial charge R = NMe2 > tBu > CF3) however all 

complexes exhibit similar reactivity (see above). The negative charge decreases 

significantly upon formation of [CrVINSalCF3]+ and [CrVINSaltBu]+ ( Npartial charge R = CF3: 

+0.287; tBu: +0.278) consistent with a loss of reactivity with the Lewis acidic borane 

evidenced by UV-vis-NIR analysis. Interestingly, the partial charge for [CrVNSalNMe2]⦁+ 

decreases only minimally in comparison to other derivatives ( Npartial charge R = NMe2: 

+0.056) consistent with the preservation of reactivity. The differences in partial charge 

associated with the locus of oxidation can be rationalized by analysis of calculated bonding 

parameters. The neutral complexes exhibit short Cr—N bond lengths (ca. 1.52 Å as 

discussed in Section 2.2.5) and Mayer bond order calculations are consistent with triple 

bond character (bond order of ca. 2.9). The complexes [CrVINSalCF3]+ and [CrVINSaltBu]+ 

are predicted to exhibit shorter and stronger bonds in comparison to neutral analogues, 

while the Cr—N bonding parameters for [CrVNSalNMe2]⦁+ remain relatively unchanged 

suggesting that formation of a ligand radical has little effect on the Cr-nitride unit ( Cr—

Nbond length upon oxidization: R = CF3: - 0.018 Å ~ tBu: - 0.019 Å > NMe2: - 0.006 Å). 

Consequently, strengthening of the Cr—N bond as a result of metal-based oxidation 

confers enhanced covalency with reduced charge separation. This idea is corroborated 

by analyzing the Cr partial charges in addition to the nitride partial charges. Despite Cr(V) 

→ Cr(VI) oxidation, a significant decrease in positive charge is observed for [CrVINSalCF3]+ 

and [CrVINSaltBu]+ ( Crpartial charge R = CF3: - 0.171; tBu: - 0.177) in comparison to 

[CrVNSalNMe2]⦁+ ( Crpartial charge R = NMe2: - 0.016) consistent with the covalency 

assignment. 
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Table 4.2.  Calculated bonding parameters that influence nitride reactivity. Bracketed 
values correspond to the difference between oxidized and neutral values. 

Compound Partial charge 
Cr 

Partial charge 
N 

Cr—N 
Bond Ordera 

CrNSalCF3 0.617 - 0.355 2.909 

CrNSaltBu 0.617 - 0.387 2.897 

CrNSalNMe2 0.617 - 0.392 2.893 

[CrVINSalCF3]+ 0.446 
(- 0.171) 

- 0.068 
(+ 0.287) 

2.981 
(+ 0.072) 

[CrVINSaltBu]+ 0.440 
(- 0.177) 

- 0.109 
(+ 0.278) 

2.976 
(+ 0.079) 

[CrVNSalNMe2]⦁+ 0.601 
(- 0.016) 

- 0.336 
(+ 0.056) 

2.895 
(+ 0.002) 

aValues are obtained from Mayer bond order calculations. 

Analysis of the π bonding MOs for the metal nitride triple bond is typically invoked 

when discussing nucleophilicity due to the energetic accessibility of these orbitals.7,37 

Natural bond order (NBO) calculations were used to visualize Cr—N dπ–pπ interactions 

and interpret changes upon oxidation. NBO analysis uses the wavefunction generated 

from a geometry optimization and forms orthonormal sets of ‘maximum occupancy’ 

orbitals.282 The result is a Lewis-like interpretation for a particular interaction which 

resembles familiar chemical bonding concepts. Recently, Bullock et al. have employed 

NBO to characterize trends in N—N homocoupling for a series of metal nitride 

complexes.283 Herein, NBO analysis of the Cr—N π bonding interactions reveal important 

factors that can influence reactivity differences. A plot of these orbitals in the xz and yz 

planes for CrNSalCF3, CrNSaltBu and CrNSalNMe2 is depicted in Figure 4.8. NBO 

calculations predict a decrease in the π orbital energy upon oxidation. Table 4.3 denotes, 

however, that the degree of stabilization is more pronounced in [CrVINSalCF3]+ and 

[CrVINSaltBu]+ in comparison to [CrVNSalNMe2]⦁+ (Eπ in kcal mol-1: CF3: -41.9  > tBu: -41.4 

>> NMe2: -16.3) consistent with experimental findings that suggest the Cr(VI) complexes 

exhibit a loss of nucleophilicity. The -bonding interaction and nitride lone pairs for all 

complexes are not expected to be of immediate importance for reactivity (calculated to be 

ca. 200 and 230 kcal mol-1 lower in energy in comparison to the π orbitals respectively). 

Furthermore, the nitride lone pairs are calculated to be comprised of ca. 80 % s-atomic 

orbital character similar to other accounts and is often viewed as part of the core electron 
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set.29,36,38 Nonetheless, these orbital manifolds follow the same trend in stabilization with 

the locus of oxidation (Table 4.3).  

Table 4.3.  Relative orbital energies in kcal mol-1. Bracketed values correspond to the 
difference (oxidized – neutral values).a 

Compound π  Lone pair 

CrNSalCF3 -207.12 -406.23 -436.03 

CrNSaltBu -200.17 -402.30 -427.31 

CrNSalNMe2 -198.90 -401.82 -425.52 

[CrVINSalCF3]+ -249.02 (-41.90) -441.60 (-35.37) -479.83 (-43.80) 

[CrVINSaltBu]+ -241.56 (-41.40) -432.32 (-30.02) -478.71 (-51.40) 

[CrVNSalNMe2]⦁+ -215.20 (-16.30) -412.56 (-10.74) -444.38 (-18.76) 

aSee Appendix C – Table C1-C10 for relative atomic orbital contributions to π,  and lone 
pair molecular orbitals. 

 

 

 

 

 

 

 

 

 

Figure 4.8.  Visualization of the alpha orbitals of the Cr—N π bonding interactions for 
CrNSalCF3, CrNSaltBu and CrNSalNMe2 in the xz and yz planes from NBO 
analysis. See Appendix C – Fig. C7–C12 for visualization of the π-

interactions for oxidized complexes as well as visualization of the -
interactions and lone pairs for all complexes.  
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DFT analysis was then used to investigate the structural and electronic nature of 

neutral and oxidized adducts (Table 4.4). All optimized geometries exhibit approximately 

linear Cr—N—B angles (ca. 175 o) suggesting similar N—B interactions in both neutral 

and oxidized compounds. Adduct formation is also predicted to elongate the Cr—N bond 

by ca. 0.05 Å in all cases. A corresponding increase in nitride spin density is predicted for 

neutral derivatives upon adduct formation (Fig. 4.9A). These results are corroborated by 

solution EPR measurements (298 K) that reveal an increase in nitride 14N hyperfine 

splitting as a result of spin polarization of the elongated Cr—N bond (see previous 

section).41 Interestingly, this effect is also predicted for the ligand radical complex. The 

spin density plot of this species also reveals radical localization suggesting that reactivity 

with the borane has little effect on the phenoxyl radical (Fig. 4.9B). Although adduct 

formation is not experimentally observed for the Cr(VI) species, DFT optimizations 

suggest an adduct with similar bonding  

 

 

 

 

 

 

Figure 4.9.  Spin density plots of (A) Cr(N—B(C6F5)3)SalNMe2 and (B) broken-symmetry 
singlet [CrV(N—B(C6F5)3)SalNMe2]⦁+. See Appendix C – Fig. C13 for spin 
density plots of Cr(N—B(C6F5)3)SaltBu, Cr(N—B(C6F5)3)SalCF3 as well as 
triplet [CrV(N—B(C6F5)3)SalNMe2]⦁+. 

 

 

 

 

(A) (B) 
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Table 4.4.  Calculated values for neutral and oxidized Cr(N—B(C6F5)3)SalR. Bracketed 
values indicate difference (adduct – free nitride).a 

Compound Nitride SD Cr SD Cr—N 
Bond length  

/ Å 

Cr—N—B  
Bond angle 

/ o 

Cr(N—B(C6F5)3)SalCF3 -0.517 
(+0.086) 

1.574 
(+0.120) 

1.576 
(+0.055) 

176.6 

Cr(N—B(C6F5)3)SaltBu -0.515 
(+0.088) 

1.574 
(+0.126) 

1.581 
(+0.057) 

175.1 

Cr(N—B(C6F5)3)SalNMe2 -0.499 
(+0.074) 

1.552 
(+0.108) 

1.582 
(+0.057) 

174.9 

[CrVI(N—B(C6F5)3)SalCF3]+ -- -- 1.558 
(+0.055) 

174.5 

[CrVI(N—B(C6F5)3)SaltBu]+ -- -- 1.554 
(+0.049) 

174.4 

[CrV(N—B(C6F5)3)SalNMe2]⦁+b -0.499 
(+0.074) 

1.552 
(+0.108) 

1.587 
(+0.067) 

173.7 

aSee Chapter 2 for neutral nitride values and Chapter 3 for oxidized nitride values. 
bCalculated value corresponds to broken-symmetry singlet solution.  

 

Energetic analysis of the neutral and oxidized adducts were then employed to gain 

further insight into the observed reactivities. Table 4.5 denotes the energy for the reaction 

of neutral complexes with tris(pentafluorophenyl) borane depicted in Scheme 4.2 which 

can be calculated using Equation (1). The reactivity of borane with neutral complexes is 

predicted to be thermodynamically favourable consistent with experimentally observed 

adduct formation. The reactivity of borane with the CF3 derivative is predicted to be the 

least favourable likely because this species is calculated to exhibit the smallest nitride 

partial charge due to the strong electron-withdrawing nature of the CF3 substituent. The 

tBu and NMe2 derivatives support this trend, with the NMe2 substituent conferring the 

largest nitride negative change and thus exhibiting the largest energy change.  
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Scheme 4.2.  Reactivity of CrNSalCF3, CrNSaltBu and CrNSalNMe2 with 
tris(pentafluorophenyl) borane. 

 

 

 

 

 ΔE𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = E𝐂𝐫(𝐍−𝐁(𝐂𝟔𝐅𝟓)𝟑)𝐒𝐚𝐥𝐑  −  (E𝐂𝐫𝐍𝐒𝐚𝐥𝐑  +  E𝐁(𝐂𝟔𝐅𝟓)𝟑
) (1) 

Table 4.5.  Total energy change upon reactivity of CrNSalR with 
tris(pentafluorophenyl) borane. 

 

Complex Ereaction / kcal mol-1 

Cr(N—B(C6F5)3)SalCF3 -13.2 

Cr(N—B(C6F5)3)SaltBu - 20.2 

Cr(N—B(C6F5)3)SalNMe2 - 21.3 

 

The reactivity of the Cr(VI) complexes with tris(pentafluorophenyl) borane depicted 

in Scheme 4.3 is calculated to be endothermic (Table 4.6) using Equation (2). Very little 

energy change is predicted for the reaction of [CrVINSaltBu]+ with borane (E = + 0.1 kcal 

mol-1), while adduct formation for [CrVINSalCF3]+ is predicted to be considerably more 

endothermic (E = +7.3 kcal mol-1). It is likely that this difference derives from partial 

charge predictions on the nitride, as the value for [CrVINSaltBu]+ is calculated to be ca. 1.6 

times larger than that of [CrVINSalCF3]+. Interestingly, calculations predict the reactivity of 

[CrVNSalNMe2]⦁+ with borane depicted in Scheme 4.4 to be considerably exothermic (E = 

- 11.4 kcal mol-1). These results are consistent with UV-vis-NIR data that suggest adduct 

formation occurs readily for [CrVNSalNMe2]⦁+ and the neutral complexes, while no reactivity 

is observed for [CrVINSalCF3]+ and [CrVINSaltBu]+. 
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Scheme 4.3.  Reactivity of [CrVINSalCF3]+ and [CrVINSaltBu]+ with tris(pentafluorophenyl) 
borane (R = CF3, tBu). 

 

 

 

 

 ΔE𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = E[𝐂𝐫𝐕𝐈(𝐍−𝐁(𝐂𝟔𝐅𝟓)𝟑)𝐒𝐚𝐥𝐑]+  −  (E𝐂𝐫𝐍𝐒𝐚𝐥𝐑  +  E𝐁(𝐂𝟔𝐅𝟓)𝟑
) (2) 

 

Scheme 4.4.  Reactivity of [CrVNSalNMe2]⦁+ with tris(pentafluorophenyl) borane (R = 
NMe2). 

 

 

 

 

 ΔE𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = E[𝐂𝐫𝐕(𝐍−𝐁(𝐂𝟔𝐅𝟓)𝟑)𝐒𝐚𝐥𝐑]⦁+  −  (E𝐂𝐫𝐍𝐒𝐚𝐥𝐑  +  E𝐁(𝐂𝟔𝐅𝟓)𝟑
) (3) 

 

Table 4.6.  Total energy change upon reactivity of oxidized complexes with 
tris(pentafluorophenyl) borane.  

Complex Ereaction / kcal mol-1 

[CrVI(N—B(C6F5)3)SalCF3]+ + 7.3 

[CrVI(N—B(C6F5)3)SaltBu]+ + 0.1 

[CrV(N—B(C6F5)3)SalNMe2]⦁+ - 11.4 
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4.3. Discussion and Summary 

Overall, this chapter describes the reactivity differences between neutral and 

oxidized Cr nitride salen complexes associated with locus the of oxidation. Nucleophilicity 

is observed to be a general property for neutral compounds as expected for nitride ligands 

bound to an early transition metal ion. This was shown by their reactivity with the Lewis 

acidic tris(pentafluorophenyl) borane monitored by UV-vis-NIR and EPR experiments. The 

nitride is calculated to have a considerable partial charge value of ca. -0.4 and is the most 

likely site of electrophilic attack (compared to a partial charge of -0.11 for the dimethyl 

amino N in CrNSalNMe2 for example).284 The nitride fragment also features the least 

sterically hindered environment for interaction with the bulky borane.  

 Metal-based oxidation results in a loss of nitride nucleophilicity. 

[CrVINSalCF3]+ and [CrVINSaltBu]+ do not react with the borane as shown by UV-vis-NIR 

experiments. DFT calculations predict a significant decrease in negative partial charge 

due to the enhanced covalency of the Cr—N triple bond. In addition, NBO calculations 

predict significant stabilization of π bonding MO’s, and reactivity of Cr(VI) complexes with 

the borane are predicted to be endothermic. A similar result was reported in the literature 

for rhenium nitride complexes in 1982 by Dehnicke. The addition of trihalide boranes to 

ReVNCl2(PEt2Ph) afforded N—B adducts, while no reactivity with boranes was observed 

for the independently prepared [ReNVICl4]- analogue.285,286 It should be noted however that 

this account was purely observational and no rationale was discussed. The ancillary 

ligands in this example are not held constant and may also impart additional reactivity 

effects. This trend in nucleophilicity holds for the reverse case as well. Hanack et al. have 

reported a tungsten nitride phthalocyanine complex WVN(Pc) that is initially unreactive 

towards trimethylsilyl chloride, however reduction to the W(IV) analogue using KC8 affords 

nucleophilic properties where a Si—N adduct is formed between the nitride and silyl 

species.54 

 Herein, ligand-based oxidation was not found to inhibit nucleophilic reactivity of the 

nitride. The addition of 1 equivalent of borane to [CrVNSalNMe2]⦁+ affords significant 

changes in the absorption spectrum and is attributed to N—B adduct formation. 

Furthermore, the addition of borane to a solution of [CrVNSalNMe2]⦁+  was analyzed by 

frozen solution EPR and results in an enhancement of the CrNSalNMe2 and 

[CrVNSalNMe2]⦁⦁2+ signal intensities. Although not confirmed, it is possible that borane 
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coordination to both neutral and bis-oxidized species enhances corresponding signals by 

inhibiting aggregation and through-space interactions. On the basis of this assumption, it 

would be rather unsurprising that [CrVNSalNMe2]⦁+ reacts with borane in this scenario. 

Reactivity of this complex was also extensively studied using DFT calculations. Minimal 

changes in nitride partial charge and π orbital energies in comparison to Cr(VI) species 

are consistent with the retention of nucleophilicity. Furthermore, energetic analysis 

predicts that the reaction of [CrVNSalNMe2]⦁+ with borane is exothermic.  

 In summary, this chapter outlines the feasibility of modulating reactivity in oxidized 

Cr nitride salen complexes through ligand electronic effects, demonstrating the importance 

of metal oxidation state on nitride nucleophilicity. Additional efforts are needed to further 

characterize the nature of the N—B interaction for [CrVNSalNMe2]⦁+ experimentally.  

4.4. Experimental 

4.4.1. Materials 

All chemicals were of the highest quality grade and purified whenever necessary. 

Tris(pentafluorophenyl) borane was purchased from Sigma-Aldrich and used without 

further purification. Dichloromethane was dried by refluxing over calcium hydride and 

distilled prior to use. The tris(2,4-dibromophenyl)aminium hexafluoroantimonate radical 

oxidant [N(C5H3Br2)3][SbF6] was synthesized according to published protocols.276 

4.4.2. Instrumentation 

` Electronic spectra were obtained using a Cary 5000 spectrophotometer equipped 

with custom designed immersion fiber-optic probes with 0.1 and 1 cm path lengths. 

Constant temperatures were maintained with an FTS Multi-Cool Low Temperature Bath 

and solvent contraction was accounted for.  All electron paramagnetic resonance spectra 

were recorded on a Bruker EMXplus spectrometer operating with a premium X-band 

microwave bridge and an HS resonator. EPR spectra were simulated using the EasySpin 

package in Matlab.238  
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4.4.3. Reactivity Studies of Complexes with Tris(pentafluorophenyl) 
Borane monitored by Electronic Absorption Spectroscopy 

Neutral Species. Under an inert atmosphere at 233 K, a total of 100 L containing 

tris(pentafluorophenyl) borane (15.8 mM in dry CH2Cl2) was added in 20 L aliquots to 3.5 

mL complex (0.45 mM in dry CH2Cl2). Absorption spectra were collected immediately after 

each aliquot was added. Room temperature studies revealed identical spectral features.  

Oxidized Species. Under an inert atmosphere at 233 K, 100 L of 

tris(pentafluorophenyl) borane (15.8 mM in dry CH2Cl2) was added immediately to 3.5 mL 

complex (0.45 mM in dry CH2Cl2). Absorption spectra were collected immediately upon 

addition. Titration of 1 equivalent borane into [CrVNSalNMe2]⦁+ was facilitated by adding four 

successive 0.25 L aliquots of borane solution (15.8 mM in dry CH2Cl2) into 3.5 mL 

complex (0.45 mM in dry CH2Cl2). Spectra were taken immediately after addition of each 

aliquot. 

4.4.4. Reactivity Studies of Complexes with Tris(pentafluorophenyl) 
Borane monitored by Electronic Paramagnetic Resonance 
Spectroscopy 

Neutral Species. Under an inert atmosphere, a 1 mL solution of 

tris(pentafluorophenyl) borane (1.0 mM in dry CH2Cl2) was added to a 1 mL solution of 

complex (1.0 mM in dry CH2Cl2) and allowed to stir for 1 hour at room temperature. A slight 

colour change for all compounds was noticed immediately upon mixing and persisted for 

the duration of the stirring. A small sample was transferred to a capillary and placed in an 

EPR tube for solution EPR analysis (298 K).  A portion of the stock solution was diluted 

and analyzed by UV-vis to ensure spectra matched previously recorded UV-vis data.  

Oxidized Species. Under an inert atmosphere, 100 L of tris(pentafluorophenyl) 

borane (20 mM in dry CH2Cl2) was added to a 4 mL solution of electrochemically 

generated [CrVNSalNMe2]⦁+ (0.5 mM in dry CH2Cl2) and allowed to stir for 20 minutes at 253 

K. An immediate colour change from pink to purple was noticed upon addition and 

persisted for the duration of the stirring. A 40 L portion of the stock solution was 

transferred to a capillary and placed in an EPR tube for solution EPR analysis (298 K). A 
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200 L portion of the stock as also diluted to 400 L (0.25 mM final concentration). 250 

L of this solution was then pipetted into an EPR tube and frozen for analysis at 100 K.  

4.4.5. Theoretical Analysis 

Geometry optimizations were all performed using the Gaussian 16 program 

(Revision A.03)241 employing the B3LYP functional in combination with the 6-31g* basis 

set.242 Frequency calculations performed on the same functional/basis set confirmed 

optimized structures were at a global minimum. Single point calculations for Mulliken 

charge analysis as well as NBO calculations282,287 were performed using the B3P86 

functional and the TZVP basis set of Ahlrichs.245,246 All calculations apart from the 

optimization of neutral and oxidized adducts employed a polarizable continuum model 

(PCM) for CH2Cl2 (=8.93) for all atoms.242,247,248 The PCM model resulted in convergence 

errors for the CrNSalCF3 adduct. Thus, all neutral and oxidized adducts were optimized in 

the gas-phase, and single point calculations for spin density and energetic analysis 

employed a PCM for CH2Cl2.  
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Chapter 5. Ongoing and Future Directions 

5.1. Thesis Summary 

This thesis presents the synthesis, oxidation and nucleophilic reactivity of a series 

of chromium nitride complexes employing non-innocent salen ligands. Through combined 

experimental and computational techniques, investigation of electronic structure was 

possible, allowing for a description of reactivity based on the oxidation locus. Outlined 

below is the ongoing and future work that build on the results described in the previous 

chapters.  

5.2. Chapter 2 and Chapter 3 

Chapter 2 outlines the synthesis and characterization of CrNSalCF3, CrNSaltBu and 

CrNSalNMe2, while Chapter 3 details the oxidation of these complexes. Strong evidence is 

provided supporting metal-based oxidation for complexes bearing the electron-

withdrawing CF3 and moderately electron-donating tBu para-R substituents, while ligand 

radical formation is supported upon substitution with the strongly electron-donating NMe2 

substituent. Although the oxidized complexes are stable in solution at room temperature, 

they decomposed upon attempted isolation in the solid state. Additional experiments could 

be conducted to provide further evidence for the assigned oxidation states, provided the 

samples remain in solution. 

5.2.1. Variable Temperature Evans Method on [CrVNSalNMe2]⦁+ 

Spectroscopic and theoretical investigations of oxidized CrNSalNMe2 support 

formation of a ligand radical. Frozen solution EPR measurements (20 K) suggest the 

presence of considerable magnetic coupling between the Cr(V) d1 metal center and ligand 

radical to afford [CrVNSalNMe2]⦁+ as an EPR silent species. Unfortunately, the current data 

cannot unambiguously discriminate whether this is the result of a ferromagnetic interaction 

with a large zero-field splitting (ZFS) component,161,269,270 or whether the coupling is 

antiferromagnetic affording a diamagnetic species.158,271 Magnetic susceptibility 

measurements via Evans Method reveals a magnetic moment of eff = 2.82 (2 unpaired 

electrons) suggesting the formation of a triplet (S = 1) species at room temperature (Fig. 
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5.1). Interestingly, density functional theory (DFT) calculations predict the broken-

symmetry singlet structure to be lower in energy by 0.2 kcal mol-1 in comparison to the 

triplet. We questioned whether the experimentally measured spin state at room 

temperature corresponds to a populated (S = 1) excited state, with a singlet ground state 

as predicted by DFT. Variable temperature (VT) Evans Method experiments in the 198 – 

298 K range (in CD2Cl2) should be conducted in order to probe this further.  

 

 

 

 

 

 

Figure 5.1.  1H NMR analysis of [CrVNSalNMe2]⦁+ at 298 K in CD2Cl2 oxidized using 

AgSbF6 (0.65 V vs Fc
+/Fc).266 * Denotes the solvent peak. † Denotes the 

paramagnetically shifted solvent peak used as a reference for magnetic 
susceptibility via Evans Method. 

 

Evans Method measures the downfield NMR shift of an inert reference (typically 

the solvent) due to the presence of a dissolved paramagnetic material in order to 

determine the magnetic moment of that material.288 This is accomplished using an NMR 

tube insert where the reference sample (contained in the inner tube) is immersed in a 

solution containing the dissolved paramagnetic material (outer tube). The difference in 

chemical shift () is used to obtain the molar susceptibility (χm) using Equation 1, which 

can then be used to determine the effective magnetic moment (eff) in Equation 2 (where 

Ma and cA represent the molar mass and concentration of the paramagnetic material, and 

χd is the diamagnetic correction factor). If a weakly antiferromagnetically-coupled 

electronic structure is the ground state for [CrVNSalNMe2]⦁+, then a VT Evans Method 

experiment could show a decrease in eff with decreasing temperature.289–293 Subsequent 

† 

* 
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measurements from low to high temperature should also be conducted in order to confirm 

the reversibility of any change in eff.  

 
𝜒𝑚 =

3MaΔδ

4πcA106
− 𝜒𝑑 

(1) 

 𝜇𝑒𝑓𝑓 = 2.83√𝜒mT (2) 

5.2.2. Infrared Spectroscopy 

Infrared (IR) spectroscopy studies are ongoing and can be used to further probe 

the Cr oxidation state by monitoring changes in the nitride stretching frequencies. The 

solution IR spectra of CrNSalNMe2 and CrNSaltBu feature a moderately intense band at 

1020 cm-1 assigned to the Cr—N stretching frequency,227,294,295 while this band is observed 

as a shoulder at 1029 cm-1 for CrNSalCF3 (Fig. 5.2A and Table 5.1). Interestingly, oxidation 

results in a loss of these features (Fig. 5.2B), with new bands observed at slightly higher 

energy in the [CrVINSaltBu]+ and [CrVNSalNMe2]⦁+ spectra (1110 and 1050 cm-1 respectively) 

likely corresponding to the nitride stretch in the oxidized versions. Unfortunately, the 

[CrVINSalCF3]+ spectrum contains intense absorptions in the energy region that the new 

nitride stretch is expected to occur, making characterization of this band difficult. 

Interestingly however, [CrVINSaltBu]+ features a larger shift in the nitride stretch (E = + 90 

cm-1) in comparison to [CrVNSalNMe2]⦁+ (E = + 30 cm-1) in-line with a stronger Cr—N bond 

for the Cr(VI) derivative in agreement with DFT results outlined in Section 4.1.3. Additional 

experiments are needed to confirm whether these new frequencies at higher energy 

correspond to the new nitride stretching vibrations. The nitride IR stretching vibrations 

could be further probed through labelling experiments where samples containing 50% 15N 

labelled nitride are prepared. IR measurements on the labelled samples are expected to 

result in a splitting of the nitride stretching frequency, with the Cr—15N stretch occurring at 

slightly lower energy.296,297 Oxidation of this sample should thus result in a shift of both the 

14N and 15N nitride bands, confirming the assignment of the new peaks at higher energy.  
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Figure 5.2.  Solution IR spectra showing the nitride stretching frequency of (A) neutral 
(*) and (B) oxidized (†) CrNSalCF3 (green), CrNSaltBu (purple), and 
CrNSalNMe2 (blue). Compounds were oxidized using [N(C5H3Br2)3][SbF6]. 
Conditions: 0.5 mM, CH2Cl2. See Appendix D – Fig. D1 & D2 for full 
spectra. 

 

Table 5.1.  Tentative assignment of nitride stretching frequencies of neutral and 
oxidized CrNSalCF3, CrNSaltBu, and CrNSalNMe2 in cm-1. Bracketed values 
correspond to the difference (oxidized – neutral). 

Compound Cr—N (neutral) Cr—N (oxidized) 

CrNSalCF3 1029 -- 

CrNSaltBu 1020 1110 (90) 

CrNSalNMe2 1020 1050 (30) 

 

5.2.3. X-ray Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) studies can be conducted on frozen solution 

samples and could be useful in further probing the Cr oxidation state. The pre-edge region 

(resulting from 1s → 3d transitions) is highly sensitive to metal local geometry and 

electronic structure in transition metal complexes.298–300 An increase in the pre-edge 

energy can thus be correlated to an increase in oxidation state. Neutral complexes should 

first be analyzed in order to provide baseline data for comparison to oxidized samples. 

There have been numerous reports of the characterization of Cr(V) complexes by XAS.301–

304 In one example by Hodgson, an intense pre-edge absorption feature centred at ~ 5990 

eV was found to increase by 1 eV upon a change of oxidation state from Cr(IV) to Cr(V) 

(B) (A) 

* † 
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for high-valent oxo and nitrido porphyrin complexes.304 Herein, the oxidation of CrNSalCF3 

and CrNSaltBu to Cr(VI) is expected to deliver a corresponding increase in the pre-edge 

energy by ca. 1 eV.305,306 Additionally, the XAS spectrum of an oxidized sample of 

CrNSalNMe2 should exhibit a similar pre-edge energy in comparison to the neutral form.  

5.3. Chapter 4  

Chapter 4 outlines the reactivities of CrNSalCF3, CrNSaltBu and CrNSalNMe2 as well 

as oxidized versions. Nucleophilicity was determined to be a general property for neutral 

compounds as evidenced by their interaction with tris(pentafluorophenyl) borane. UV-vis-

NIR experiments suggest that nucleophilicity is conserved upon formation of 

[CrVNSalNMe2]⦁+, while no reactivity with borane is observed for [CrVINSalCF3]+ and 

[CrVINSaltBu]+.  

5.3.1. X-ray Crystallography 

 Additional experiments should be conducted in order to confirm whether reactivity 

between [CrVNSalNMe2]⦁+ and tris(pentafluorophenyl) borane involves N—B interaction to 

afford the corresponding nitride adduct [CrV(N—B(C6F5)3)SalNMe2]⦁+. The isolation of 

suitable X-ray quality crystals for [CrVNSalNMe2]⦁+ has been unsuccessful and remains an 

ongoing challenge. Future work should continue in this regard and should also focus on 

X-ray crystallographic studies of [CrV(N—B(C6F5)3)SalNMe2]⦁+. Ideally, adduct formation 

can affect crystal packing/morphology and potentially enhance single-crystal growth for 

solid-state characterization. Coordination sphere metrical parameters are expected to 

exhibit a significant degree of asymmetry about the equatorial plane consistent with radical 

localization.161,174,180,184 It is possible that adduct formation could affect the degree of 

localization, however a strongly delocalized ligand radical is not likely formed based on 

the absence of characteristic sharp and intense near-infrared intervalence charge transfer 

(IVCT) bands in the absorption spectrum (Section 4.1.1).249,258,259  
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5.3.2. Reactivity Profile of Cr Complexes with Tris(pentafluorophenyl) 
Borane 

Density functional theory was utilized to predict changes in partial charges and 

Cr—N bonding parameters, as well as provide information on the relative energetics of 

adduct formation. These calculations sufficiently accounted for the experimentally 

observed reactivity differences of tris(pentafluorophenyl) borane with Cr(VI) and ligand 

radical complexes. Furthermore, optimizations provided insight into the predicted 

geometries of adducts. Future work in this regard should focus on probing the nature of 

the N—B interaction using theory, as this can provide information on the molecular orbitals 

involved and further inform on the reactivity profiles of neutral complexes and 

[CrVNSalNMe2]⦁+ with Lewis acids. DFT can be used to obtain the energy for structures 

optimized at various N—B distances (r), allowing for the construction of a reaction profile. 

The interaction is expected to follow a Lennard-Jones potential curve typically exhibited 

by Lewis acid-base adduct formation,307–309 however calculations could also predict the 

presence of a transition state  (Fig. 5.3).  

 

 

 

  

  

 

 

Figure 5.3.  Lennard-Jones-type reaction profile for the N—B interaction. req represents 
the equilibrium N—B distance in adducts. 

 

A number of reports on metal nitrides suggest that the nitride lone pair is too low 

in energy to be involved in reactivity, and conclude that Cr—N π bonding orbitals are 

instead likely responsible for reactivity.36,38 In this work, DFT calculations predicted that 
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the lone pair is ca. 230 kcal mol-1 lower in energy than the π bonding interactions in 

agreement with this assignment, however optimizations predict a linear Cr—N—B bond 

angle (ca. 175 o) predicting involvement of the lone pair in the adduct. Future work should 

be geared at probing this further using DFT calculations. Reaction profiles can be 

constructed via optimization of the reactants at a series of constant N—B distances. These 

potential energy surface (PES) calculations can inform whether a bent interaction is 

favoured at greater distances, with a linear conformation stabilized as req is approached 

(Fig. 5.4). Natural bond order (NBO) calculations conducted on each reaction coordinate 

can be used to visualize and provide information on the orbitals involved in reactivity. This 

will allow for a better understanding of the N—B interaction and whether a change from 

bent to linear approach of the borane is associated with a transition state.  

 

 

 

 

Figure 5.4.  Interaction of filled Cr-nitride molecular orbitals with the empty borane p 
orbital. (A) A bent approach suggests involvement of the Cr—N π bonding 
orbitals in adduct formation. (B) A linear approach suggests involvement of 
the nitride lone pair in adduct formation. 

 

5.3.3. Reactivity of [CrVINSalCF3]+ and [CrVINSaltBu]+ with Nucleophiles 

 Experimental results suggest that [CrVINSalCF3]+ and [CrVINSaltBu]+ do not react 

with tris(pentafluorophenyl) borane upon metal-based oxidation. This was rationalized by 

DFT calculations that predict a decrease in the nitride partial charge and lowering of the 

Cr—N molecular orbital (MO) manifold. Future work should focus on exploring whether 

metal-based oxidation affords an electrophilic nitride that reacts with nucleophiles such as 

phosphines.   

 In 2000, Brown et al. discussed charge effects on the reaction rate between neutral 

and cationic rhenium(V) oxo complexes with triphenylphosphine (Fig. 5.5A and 5.5B 

(A) (B) 
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respectively).310 This was accomplished by substitution of the anionic tris(pyrazolyl)borate 

ligand for the neutral tris(pyrazolyl)methane ligand. It was reasoned that this 1-atom 

modification in the tris(pyrazolyl) backbone would afford a change in charge without 

significant perturbation of other steric or electronic properties. Kinetic measurements 

determined that formation of the Re(III)-phosphine adduct proceeded 1000 times faster 

for the cationic complex in comparison to the neutral analogue.  

 

 

 

 

 

 

  

 
Figure 5.5.  Reactivity of (A) neutral and (B) cationic Re(V) oxo complexes by triphenyl 

phosphine. 

 

The observed reaction rates were rationalized by considering the effect of charge 

on the molecular orbitals (MO) involved in the reaction. Increasing the overall charge has 

the effect of decreasing the energy of all molecular orbitals. In particular, the energy of the 

Re—O π* MO is lowered, which is the site of nucleophilic attack by the phosphine lone 

pair (Fig. 5.6).310 Thus, the reactivity with phosphine is more favourable in the cationic 

complex due to enhanced electrophilicity of the oxo ligand, and the rate is greater. Due to 

the isoelectronic nature of oxo and nitride ligands, it stands to reason that this effect should 

also be observed for nitride complexes. Indeed, the M—N π* orbitals have been cited as 

key reaction terminals in various electrophilic nitride complexes.37,57,71,311  

 

(A) 

(B) 
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Figure 5.6.  The orbitals involved in the reactivity of Re(V) oxo complexes by Brown 
include the Re—O π* combination and phosphine lone pair.310  

 

Similar to the charge effect discussed by Brown, all three CrNSalR complexes were 

oxidized to a mono-cation, suggesting an overall increase in electrophilic reactivity. 

However, the locus of oxidation (metal vs. ligand) is expected to affect the relative reaction 

rates with phosphine. DFT calculations outlined in Section 4.1.3 predict that formation of 

[CrVINSalCF3]+ and [CrVINSaltBu]+ results in greater stabilization of the Cr—N bonding 

orbitals energies (as well as the  bonding orbitals and nitride lone pairs) in comparison 

to [CrVNSalNMe2]⦁+. Analysis of the Cr—N π* antibonding combinations (as well as the * 

MOs) in Table 5.2 reveals that these orbitals also lower in energy upon oxidation, making 

them more energetically suited for reactivity with nucleophiles. The stabilization of the π* 

orbitals in [CrVINSalCF3]+ and [CrVINSaltBu]+ is more pronounced in comparison to 

[CrVNSalNMe2]⦁+ (Eπ* in kcal mol-1: CF3: - 58.01  > tBu: - 41.42 >> NMe2: - 14.96) 

suggesting greater electrophilic properties for Cr(VI).  

 

 

 

 

 

 



85 

Table 5.2.  Relative energies of π* and  antibonding interactions in kcal mol-1. 
Bracketed values correspond to the difference (oxidized – neutral values).a 

Compound π* * 

CrNSalCF3 7.42 39.92 

CrNSaltBu 13.57 45.90 

CrNSalNMe2 14.63 46.81 

[CrVINSalCF3]+ - 50.59 
(- 58.01) 

- 26.76 
(- 66.68) 

[CrVINSaltBu]+ - 27.85 
(- 41.42) 

-7.08 
(- 52.98) 

[CrVNSalNMe2]⦁+b -0.33 
(- 14.96) 

32.24 
(- 14.57) 

aValues are obtained from the same NBO calculations discussed in Section 4.1.3. 
bCalculated value corresponds to the broken-symmetry singlet structure. See Appendix D 
– Fig. D3-D8 for visualization of molecular orbitals.  

 

Phosphine reactivity should be initially explored as this reaction is often used as 

an indicator of nitride electrophilicity (Fig. 5.7).7 UV-vis and 31P NMR can provide a 

straightforward approach to monitoring the reactivity. Neutral compounds should be tested 

as well, however these species are nucleophilic and are not expected to react with 

phosphines. The ability to turn on Cr nitride electrophilicity via oxidation is of current 

intertest to further explore the reactivity of these interesting systems in 2-electron 

pathways. Depending on the results with phosphine, reactivity with other nucleophilic 

small molecules such as CO,63,312 isocyanides,22,313 carbenes,314 and alkenes,71,72,105,315 

could be pursued. 

 

Scheme 5.1.  Potential reactivity of [CrVINSalCF3]+ and [CrVINSaltBu]+ with phosphines (R 
= alkyl, aryl). 
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 In summary, although metal-based oxidation results in a loss of nucleophilicity, 

DFT calculations suggest that the Cr(VI) species will exhibit enhanced electrophilic 

properties at the nitride relative to the ligand radical and neutral complexes. The 

nucleophilic reactivities of CrNSalR derivatives as well as [CrVNSalNMe2]⦁+ have been 

discussed, and future endeavors in studying Cr(VI) will serve to broaden the scope of 

reactivity tuning of Cr nitride salen complexes through ligand electronics.  

5.4. Conclusion 

This thesis demonstrates that the locus of oxidation in Cr nitride salen complexes 

can be influenced through the modulation of para-R phenoxide substituents of varying 

electron donating abilities. This led to remarkable reactivity differences at the nitride, 

where nucleophilicity was lost upon metal-based oxidation and conserved upon formation 

of a ligand radical. These differences were rationalized by DFT analysis of the complexes. 

In all, this work can serve to further our understanding of the interesting nature of metal 

nitride triple bonds, and how ligand and metal electronic effects can be exploited to 

influence reactivity.  

5.5. Experimental 

5.5.1. Materials 

All chemicals were of the highest quality grade and purified whenever necessary. 

Dichloromethane was dried by refluxing over calcium hydride and distilled prior to use. 

The tris(2,4-dibromophenyl)aminium hexafluoroantimonate radical oxidant 

[N(C5H3Br2)3][SbF6] was synthesized according to published protocols.276 

5.5.2. Instrumentation 

IR spectra were recorded on a PerkinElmer UTAR Two FT-IR Spectrometer using 

a 1 mm Specac transmission cell.  
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5.5.3. Theoretical Analysis  

Geometry optimizations were all performed using the Gaussian 16 program 

(Revision A.03)241 employing the B3LYP functional in combination with the 6-31g* basis 

set.242 Frequency calculations performed on the same functional/basis set confirmed 

optimized structures were at a global minimum. Single point and NBO calculations282,287 

were performed using the B3P86 functional and the TZVP basis set of Ahlrichs.245,246 All 

calculations employed a polarizable continuum model (PCM) for CH2Cl2 (=8.93) for all 

atoms.242,247,248 
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Appendix A.  Supplementary Material for Chapter 2 

 

 

 

 

 

 
Figure A1.  Low temperature EPR spectrum of CrNSalCF3, CrNSaltBu, and CrNSalNMe2 

in dichloromethane in the absence of TBAP. Conditions: 0.33 mM complex; 
0.1 M TBAP; freq. = 9.38 GHz; power = 2.0 mW; mod. freq. = 100 kHz; 
mod. amp. = 6 GHz; T = 77 K. 

 

 

 

 

 

Figure A2. (A) SOMO and (B) spin density plots for CrNSalCF3. 

 

 

 

 

 

Figure A3. (A) SOMO and (B) spin density plots for CrNSalNMe2.  
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Computational Data 

Table A1. Optimized coordinates for CrNSalNMe2 in Å. 

Atom X Y Z 

O -1.3505 -0.69235 0.050258 

O 1.345336 -0.69063 -0.14032 

N -1.31743 2.042904 0.255584 

N 1.261752 2.030092 -0.14322 

C -3.89752 -4.30263 -0.24632 

C -1.86823 -3.32753 -1.3081 

C -2.09486 -3.40785 1.219131 

C -2.8445 -3.18316 -0.11655 

C -2.66294 -0.59423 -0.0098 

C -3.47675 -1.77633 -0.1197 

C -4.84983 -1.61318 -0.2369 

C -5.51722 -0.36102 -0.23473 

C -4.73011 0.771151 -0.12432 

C -3.31899 0.67084 -0.01799 

C -2.59385 1.905825 0.071971 

C -0.68385 3.372174 0.371135 

C 0.591148 3.305137 -0.48942 

C 2.550469 1.901652 -0.23162 

C 3.297732 0.689235 -0.05806 

C 4.711198 0.80694 -0.02769 

C 5.5154 -0.31576 0.045585 

C 4.865066 -1.57762 0.047369 

C 3.49135 -1.75827 -0.02837 

C 2.657068 -0.58545 -0.05966 

C 2.880465 -3.17405 -0.06151 

C 1.929844 -3.37234 1.142819 

C 2.109293 -3.36739 -1.38977 

C 3.95251 -4.28052 0.012261 

H -4.45271 -4.24273 -1.18979 

H -4.61857 -4.29186 0.579362 
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H -3.38992 -5.27359 -0.22601 

H -2.3999 -3.20183 -2.25956 

H -1.06907 -2.58756 -1.25529 

H -1.41766 -4.32793 -1.30523 

H -2.79323 -3.36838 2.06413 

H -1.32225 -2.65317 1.373212 

H -1.61937 -4.39669 1.222341 

H -5.46657 -2.49462 -0.35927 

H -5.1723 1.761737 -0.10903 

H -3.20243 2.805929 -0.01795 

H 0.266667 3.210146 -1.53721 

H 5.139918 1.802951 -0.0604 

H 5.497088 -2.45265 0.131031 

H 1.489163 -4.37672 1.111597 

H 1.122284 -2.63997 1.136023 

H 2.479649 -3.27659 2.087206 

H 1.653244 -4.36492 -1.41878 

H 1.319036 -2.62357 -1.50133 

H 2.789909 -3.28417 -2.24616 

H 3.458788 -5.25816 -0.024 

H 4.654105 -4.23597 -0.82894 

H 4.528339 -4.23835 0.944191 

H 3.143799 2.78087 -0.48477 

H -0.36732 3.462706 1.420669 

C -1.53577 4.594959 0.014642 

H -2.41276 4.652157 0.669247 

H -1.903 4.505105 -1.01722 

C -0.70361 5.880227 0.15994 

H -1.31227 6.74374 -0.13182 

H -0.44052 6.023372 1.217113 

C 0.575927 5.822568 -0.68303 

H 0.309379 5.801871 -1.749 

H 1.175286 6.726952 -0.52752 

C 1.426741 4.584796 -0.35094 
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H 2.291699 4.557036 -1.02223 

H 1.812712 4.655406 0.675366 

N 0.208229 0.569466 2.042525 

Cr 0.031138 0.5511 0.528332 

N -6.92658 -0.32962 -0.4038 

N 6.928323 -0.26558 0.170372 

C -7.70729 -1.11012 0.558667 

H -7.74142 -0.63627 1.5557 

H -8.73393 -1.20996 0.191284 

H -7.29275 -2.11299 0.674043 

C -7.5187 0.977519 -0.64367 

H -8.57066 0.8429 -0.91403 

H -7.47948 1.64774 0.234655 

H -7.01133 1.472307 -1.47734 

C 7.511239 1.047228 0.401859 

H 8.571516 0.923472 0.643522 

H 7.441303 1.721628 -0.47134 

H 7.020299 1.531373 1.25132 

C 7.692831 -1.03259 -0.8151 

H 7.695422 -0.55408 -1.81061 

H 8.729875 -1.12123 -0.47518 

H 7.288336 -2.04012 -0.92446 

 

Table A2. Optimized coordinates for CrNSaltBu in Å. 

Atom X Y Z 

Cr 0.04088 0.59203 -0.5377 

O 1.34312 -0.6593 0.14391 

N 1.25777 2.06883 0.16433 

C 2.65459 -0.5542 0.1061 

O -1.3531 -0.6531 -0.0916 

N -1.3113 2.08547 -0.2935 

C 3.49099 -1.7234 0.09375 

N 0.24593 0.61518 -2.0473 
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C 4.86799 -1.5322 0.07175 

H 5.49782 -2.413 0.04344 

C 5.52031 -0.274 0.08961 

C 4.70479 0.83793 0.14163 

H 5.12633 1.83749 0.18043 

C 3.29276 0.72369 0.13926 

C 2.88341 -3.1411 0.10386 

C 2.05823 -3.3409 1.39798 

H 2.70136 -3.2527 2.28238 

H 1.60912 -4.342 1.40778 

H 1.25813 -2.6035 1.47628 

C 1.9847 -3.3406 -1.1398 

H 1.18034 -2.6053 -1.1711 

H 1.5388 -4.343 -1.1247 

H 2.57511 -3.2499 -2.0599 

C 3.96097 -4.2443 0.0724 

H 4.57704 -4.1966 -0.8331 

H 3.46886 -5.2234 0.08297 

H 4.62499 -4.2017 0.94367 

C 7.05693 -0.2062 0.06247 

C 7.57183 1.24528 0.09174 

H 7.21934 1.81958 -0.7728 

H 8.66734 1.24882 0.06724 

H 7.25987 1.77009 1.00217 

C 7.58269 -0.8774 -1.2289 

H 8.6788 -0.845 -1.2564 

H 7.20462 -0.3618 -2.1193 

H 7.27982 -1.9279 -1.296 

C 7.63337 -0.9462 1.29327 

H 7.29016 -0.4814 2.2249 

H 8.72967 -0.9119 1.27969 

H 7.33485 -1.9998 1.31432 

C 2.54212 1.93653 0.29305 

H 3.12981 2.8137 0.56577 
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C 0.58138 3.34654 0.49112 

H 0.23339 3.25525 1.53163 

C 0.5666 5.86397 0.67792 

H 0.27703 5.84599 1.73791 

H 1.17073 6.76698 0.53347 

C -0.6942 5.92199 -0.1928 

H -1.3078 6.78681 0.08418 

H -0.4079 6.06295 -1.2442 

C -0.6734 3.41365 -0.3982 

H -0.3335 3.50071 -1.4406 

C 1.4224 4.62411 0.36711 

H 1.83027 4.69115 -0.6509 

H 2.27271 4.59696 1.05679 

C -1.5315 4.63821 -0.0636 

H -1.9218 4.55085 0.95988 

H -2.3934 4.69532 -0.7379 

C -2.5913 1.94922 -0.142 

H -3.2023 2.84934 -0.0698 

C -3.318 0.71415 -0.0657 

C -4.7283 0.81116 0.02436 

H -5.1628 1.80597 0.01953 

C -5.5283 -0.3105 0.10981 

C -4.8604 -1.5599 0.10669 

H -5.4764 -2.4486 0.16877 

C -3.4827 -1.7331 0.02999 

C -2.6646 -0.5547 -0.0567 

C -2.8545 -3.1417 0.03159 

C -2.0608 -3.3605 -1.2792 

H -2.7295 -3.3085 -2.1473 

H -1.5929 -4.3529 -1.275 

H -1.2779 -2.6106 -1.4005 

C -1.9198 -3.2972 1.25485 

H -1.124 -2.5517 1.24068 

H -1.4624 -4.2946 1.25503 
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H -2.4854 -3.1872 2.18849 

C -3.9141 -4.2593 0.11791 

H -4.6053 -4.2425 -0.7328 

H -4.5026 -4.203 1.04121 

H -3.4082 -5.2313 0.11044 

C -7.0631 -0.2605 0.20243 

C -7.5958 1.18469 0.19162 

H -7.2161 1.76499 1.04053 

H -8.6894 1.17545 0.26006 

H -7.3265 1.71114 -0.7313 

C -7.6814 -1.0107 -1.0016 

H -7.383 -0.5444 -1.9477 

H -8.7765 -0.9898 -0.9422 

H -7.3707 -2.0605 -1.0326 

C -7.527 -0.9346 1.51588 

H -7.1182 -0.4126 2.38895 

H -7.21 -1.9815 1.57235 

H -8.6213 -0.9144 1.58894 

 

Table A3. Optimized coordinates for CrNSalCF3 in Å. 

Atom X Y Z 

O -1.3606 -0.6376 0.06193 

N -1.3236 2.09252 0.2929 

C -2.6627 -0.552 0.01705 

F -7.4781 -0.9878 -1.221 

F -7.5432 -0.8279 0.93968 

F -7.4536 0.97726 -0.2748 

F 7.49891 -1.0417 -1.1389 

F 7.52561 -0.5594 0.97413 

F 7.41103 1.04111 -0.4982 

O 1.3543 -0.6678 -0.0526 

N 1.24879 2.07103 -0.1645 

C -3.4638 -1.743 -0.1285 
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N 0.19555 0.6525 2.06499 

C -4.84 -1.5889 -0.1867 

H -5.4672 -2.4659 -0.2914 

C -5.488 -0.3362 -0.126 

C -4.732 0.80563 -0.0064 

H -5.2104 1.7796 0.03149 

C -3.3254 0.71844 0.06911 

C -2.8111 -3.1352 -0.225 

C -1.9855 -3.4226 1.05216 

H -1.5207 -4.4134 0.9791 

H -2.631 -3.4196 1.93871 

H -1.1972 -2.6835 1.1958 

C -1.9034 -3.1927 -1.4774 

H -1.1209 -2.434 -1.437 

H -2.493 -3.0389 -2.3894 

H -1.4257 -4.1774 -1.5484 

C -3.8594 -4.2582 -0.3602 

H -3.3428 -5.2221 -0.4233 

H -4.467 -4.1538 -1.2668 

H -4.5322 -4.304 0.50427 

C -6.9845 -0.2875 -0.1709 

C -2.6046 1.95445 0.15987 

H -3.222 2.85284 0.10926 

C -0.6821 3.41426 0.41439 

H -0.342 3.48504 1.45812 

C -1.5342 4.64758 0.09476 

H -2.3992 4.69822 0.76622 

H -1.923 4.57639 -0.9312 

C -0.6946 5.92735 0.24586 

H -1.3029 6.79945 -0.02 

H -0.4128 6.05219 1.30066 

C 0.57077 5.87775 -0.619 

H 1.1771 6.77663 -0.4584 

H 0.28665 5.87911 -1.681 
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C 1.41906 4.62878 -0.3246 

H 2.27487 4.6129 -1.0083 

H 1.82207 4.67567 0.69672 

C 0.57575 3.35413 -0.4737 

H 0.22797 3.28375 -1.5168 

C 2.52735 1.92873 -0.3377 

H 3.10931 2.79932 -0.6448 

C 3.28464 0.72318 -0.1835 

C 4.6903 0.83666 -0.256 

H 5.14326 1.81681 -0.3701 

C 5.47623 -0.2876 -0.1777 

C 4.86182 -1.5522 -0.0412 

H 5.51411 -2.4152 0.01567 

C 3.48967 -1.7352 0.01474 

C 2.65454 -0.5599 -0.0555 

C 2.8758 -3.1403 0.16207 

C 2.0422 -3.2115 1.46458 

H 2.67998 -3.0449 2.34088 

H 1.58897 -4.2055 1.56301 

H 1.24463 -2.4679 1.47373 

C 1.9858 -3.4522 -1.0645 

H 2.58007 -3.4431 -1.9864 

H 1.17776 -2.7273 -1.1647 

H 1.54362 -4.4506 -0.9601 

C 3.95524 -4.2388 0.24286 

H 4.57249 -4.2828 -0.6623 

H 3.46515 -5.2125 0.35118 

H 4.6168 -4.1082 1.10729 

C 6.97161 -0.2059 -0.2114 

Cr 0.02863 0.59986 0.55838 
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Appendix B.  Supplementary Material for Chapter 3  

 

 

 

 

 

 

Figure B1. Additional redox processes for complexes. Blue: CrNSalNMe2; purple: 
CrNSaltBu; green: CrNSalCF3. Conditions: 1.0 mM complex; 0.1 M nBu4NClO4; scan rate: 
100 mV/s; T = 298 K; CH2Cl2. 

 

 

 

 

 

 

 

 

 

Figure B2. Comparison of UV-vis spectra of [CrVNSalNMe2]⦁+ (blue) and [CrVNSalNMe2]⦁⦁2+ 
(red). 
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Figure B3. EPR of [CrVNSalNMe2]⦁⦁2+ (black) and simulation (red). Conditions: 0.45 mM 
complex; 0.1 M TBAP; freq. = 9.4 GHz; power = 2.0 mW; mod. freq. = 100 kHz; mod. amp. 
= 6 GHz; T = 20 K. 

 

 

 

 

 

 

 

 

 

Figure B4. Full EPR spectrum of [CrVNSalNMe2]⦁+). Conditions: 0.45 mM complex; 0.1 M 
TBAP; freq. = 9.4 GHz; power = 2.0 mW; mod. freq. = 100 kHz; mod. amp. = 2 GHz; T = 
9 K. 

 

 

giso = 2.0054 
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Figure B5. Full EPR spectrum of [CrVNSalNMe2]⦁⦁2+. Conditions: 0.45 mM complex; 0.1 M 
TBAP; freq. = 9.4 GHz; power = 2.0 mW; mod. freq. = 100 kHz; mod. amp. = 2 GHz; T = 
20 K.  
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Computational Data 

Table B1. Optimized coordinates for [CrVNSalNMe2]⦁+ in Å. 

Atom X Y Z 

O -1.335 -0.6557 -0.0653 

O 1.39714 -0.7014 -0.0627 

N -1.353 2.05404 0.24637 

N 1.23289 2.05878 -0.1834 

C -3.8093 -4.3122 -0.4715 

C -1.8964 -3.2035 -1.6149 

C -1.9196 -3.4705 0.91167 

C -2.7767 -3.1738 -0.3423 

C -2.6583 -0.5953 -0.061 

C -3.4417 -1.7889 -0.2018 

C -4.8237 -1.6565 -0.2248 

C -5.5214 -0.4253 -0.1109 

C -4.7541 0.72317 0.00376 

C -3.3389 0.65236 0.02454 

C -2.6344 1.89928 0.11006 

C -0.7254 3.38716 0.35896 

C 0.53853 3.33124 -0.5192 

C 2.5112 1.95156 -0.3018 

C 3.28961 0.73894 -0.1265 

C 4.66872 0.88077 -0.1238 

C 5.5162 -0.2517 -0.0355 

C 4.89941 -1.5446 -0.0055 

C 3.54023 -1.744 -0.0278 

C 2.67312 -0.5689 -0.0609 

C 2.94404 -3.1618 0.00752 

C 2.08978 -3.3343 1.28846 

C 2.0795 -3.3948 -1.2563 

C 4.03686 -4.2496 0.02792 

H -4.4367 -4.2051 -1.364 

H -4.4638 -4.3792 0.40531 
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H -3.2778 -5.2663 -0.5579 

H -2.5083 -3.0415 -2.5107 

H -1.1214 -2.4361 -1.582 

H -1.4106 -4.1822 -1.7122 

H -2.5485 -3.5028 1.80958 

H -1.1487 -2.7128 1.05699 

H -1.4308 -4.4472 0.80884 

H -5.4215 -2.5477 -0.3623 

H -5.2158 1.70019 0.09361 

H -3.2582 2.7909 0.05525 

H 0.20324 3.21281 -1.5602 

H 5.0884 1.87647 -0.1947 

H 5.5451 -2.4079 0.03888 

H 1.66505 -4.3445 1.31051 

H 1.26914 -2.6174 1.32999 

H 2.70796 -3.2099 2.18523 

H 1.66595 -4.4096 -1.2332 

H 1.25042 -2.6894 -1.3158 

H 2.6868 -3.3004 -2.1644 

H 3.55539 -5.2326 0.04402 

H 4.67572 -4.2125 -0.8621 

H 4.67285 -4.1839 0.91817 

H 3.09243 2.82992 -0.5813 

H -0.3999 3.48065 1.40518 

C -1.5918 4.60138 0.00784 

H -2.4566 4.65492 0.67797 

H -1.9755 4.49975 -1.0166 

C -0.7683 5.89448 0.13083 

H -1.3902 6.74909 -0.1577 

H -0.4893 6.04845 1.18216 

C 0.49624 5.84286 -0.7342 

H 0.21242 5.8106 -1.7951 

H 1.09055 6.75278 -0.5956 

C 1.36635 4.61682 -0.4064 
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H 2.21739 4.59205 -1.0953 

H 1.76981 4.70024 0.61192 

N 0.11597 0.58236 2.00648 

Cr -0.0168 0.57626 0.49191 

N -6.9322 -0.4163 -0.1875 

N 6.86636 -0.1179 0.00858 

C -7.6517 -1.3299 0.7026 

H -7.658 -0.9768 1.74824 

H -8.6886 -1.4168 0.36315 

H -7.2092 -2.3267 0.68347 

C -7.5747 0.88678 -0.2707 

H -8.6379 0.74065 -0.4825 

H -7.4924 1.4768 0.65981 

H -7.141 1.46907 -1.089 

C 7.48892 1.21058 -0.0074 

H 8.56863 1.09567 0.05996 

H 7.25141 1.73874 -0.9364 

H 7.14722 1.80694 0.84423 

C 7.73762 -1.2955 0.0862 

H 7.59697 -1.9396 -0.7874 

H 8.77409 -0.9661 0.11163 

H 7.53004 -1.8706 0.99423 

 

Table B2. Optimized coordinates for [CrVINSaltBu]+ in Å. 

Atom X Y Z 

O -1.3778 -0.5205 0.78763 

O 1.22441 -0.5357 -0.2485 

N -1.241 2.09058 0.48645 

N 1.23143 2.09685 -0.1199 

C -4.0072 -4.1083 0.90028 

C -1.781 -3.4947 -0.0374 

C -2.3967 -2.8818 2.351 

C -2.9159 -3.0184 0.89798 
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C -2.6368 -0.4953 0.3582 

C -3.4519 -1.6637 0.39727 

C -4.7558 -1.5234 -0.0749 

C -5.3352 -0.3177 -0.537 

C -4.5368 0.81236 -0.4983 

C -3.1961 0.74094 -0.0642 

C -2.4718 1.96742 0.08999 

C -0.6099 3.41393 0.65928 

C 0.57023 3.40543 -0.3217 

C 2.50292 1.94751 -0.3163 

C 3.23592 0.71405 -0.2399 

C 4.64466 0.77489 -0.3065 

C 5.4084 -0.3788 -0.3358 

C 4.70652 -1.6055 -0.3359 

C 3.31776 -1.7414 -0.3071 

C 2.56741 -0.5371 -0.2355 

C 2.64385 -3.1271 -0.3235 

C 1.85341 -3.3292 0.99183 

C 1.71053 -3.2393 -1.5532 

C 3.6707 -4.2739 -0.4218 

H -4.3899 -4.316 -0.1052 

H -4.8521 -3.8455 1.54685 

H -3.5763 -5.0394 1.28326 

H -2.1552 -3.6424 -1.0573 

H -0.9595 -2.7775 -0.0747 

H -1.3793 -4.4511 0.31708 

H -3.2039 -2.565 3.02173 

H -1.5804 -2.1616 2.43121 

H -2.03 -3.8532 2.7023 

H -5.3818 -2.4062 -0.0799 

H -4.9227 1.78137 -0.794 

H -3.0391 2.87643 -0.1024 

H 0.15441 3.39325 -1.3396 

H 5.10827 1.75483 -0.3275 
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H 5.29554 -2.513 -0.3655 

H 1.35835 -4.3071 0.98506 

H 1.08749 -2.5648 1.1344 

H 2.53027 -3.2997 1.85362 

H 1.21579 -4.2175 -1.5572 

H 0.93785 -2.4682 -1.5552 

H 2.28687 -3.1494 -2.4816 

H 3.13386 -5.2283 -0.4412 

H 4.27061 -4.2153 -1.3369 

H 4.34947 -4.2984 0.43815 

H 3.08634 2.82526 -0.5907 

H -0.2033 3.41442 1.67894 

C -1.482 4.6578 0.48153 

H -2.3111 4.64547 1.19813 

H -1.9131 4.68359 -0.5279 

C -0.6123 5.91104 0.68932 

H -1.2261 6.80566 0.53912 

H -0.2585 5.94079 1.72861 

C 0.58669 5.92577 -0.268 

H 0.22703 6.02221 -1.3014 

H 1.21698 6.80014 -0.073 

C 1.44594 4.65327 -0.1473 

H 2.23569 4.6819 -0.9053 

H 1.93254 4.61701 0.8364 

N 0.64232 0.66558 2.01787 

Cr 0.07506 0.56238 0.62736 

C -6.7918 -0.308 -1.0279 

C 6.94581 -0.3757 -0.3754 

C -7.2379 1.09411 -1.4832 

H -7.1946 1.8226 -0.6654 

H -6.6261 1.46781 -2.3123 

H -8.2753 1.05227 -1.8316 

C -7.726 -0.7673 0.11746 

H -8.7669 -0.7679 -0.2262 
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H -7.4901 -1.7801 0.46065 

H -7.6523 -0.0931 0.97825 

C -6.9329 -1.2759 -2.2275 

H -6.6662 -2.3038 -1.9599 

H -7.9699 -1.2838 -2.5825 

H -6.2908 -0.9659 -3.0598 

C 7.49158 -1.1097 0.87309 

H 7.14991 -2.1492 0.92013 

H 8.58761 -1.1209 0.85361 

H 7.17272 -0.608 1.79385 

C 7.51895 1.05386 -0.385 

H 7.19026 1.61956 -1.2645 

H 7.23345 1.61439 0.51255 

H 8.61293 1.00948 -0.4118 

C 7.43179 -1.1014 -1.6529 

H 7.09178 -2.1418 -1.6903 

H 7.06813 -0.595 -2.5543 

H 8.52746 -1.1097 -1.6861 

 

Table B3. Optimized coordinates for [CrVINSalCF3]+ in Å. 

Atom X Y Z 

O -1.3822 -0.5251 0.74465 

O 1.24245 -0.5324 -0.2805 

N -1.2396 2.08754 0.46678 

N 1.23248 2.09279 -0.1519 

C -3.9801 -4.1346 0.84076 

C -1.7759 -3.4873 -0.1288 

C -2.347 -2.9282 2.28594 

C -2.8935 -3.0401 0.84097 

C -2.65 -0.4995 0.34888 

C -3.4502 -1.6809 0.3798 

C -4.7663 -1.5441 -0.055 

C -5.3252 -0.3205 -0.4656 
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C -4.5625 0.82774 -0.4334 

C -3.2166 0.74865 -0.0312 

C -2.4825 1.97292 0.11645 

C -0.6032 3.41054 0.63785 

C 0.56684 3.40082 -0.3533 

C 2.50318 1.95093 -0.3423 

C 3.24331 0.71859 -0.2588 

C 4.64735 0.78396 -0.3056 

C 5.37726 -0.3865 -0.3237 

C 4.71284 -1.6243 -0.3341 

C 3.32421 -1.7516 -0.3214 

C 2.58194 -0.5389 -0.2586 

C 2.64656 -3.134 -0.3538 

C 1.84391 -3.3427 0.95288 

C 1.72733 -3.2345 -1.595 

C 3.67606 -4.2787 -0.4492 

H -4.3828 -4.3208 -0.1611 

H -4.8116 -3.8913 1.5118 

H -3.5369 -5.0719 1.19235 

H -2.1701 -3.6157 -1.1435 

H -0.9589 -2.765 -0.1672 

H -1.3619 -4.4481 0.19745 

H -3.1428 -2.6306 2.97841 

H -1.5329 -2.2055 2.36646 

H -1.9681 -3.9045 2.60885 

H -5.4081 -2.4156 -0.0654 

H -4.9868 1.78757 -0.7067 

H -3.0535 2.88537 -0.0439 

H 0.14451 3.38021 -1.3679 

H 5.14035 1.74977 -0.325 

H 5.32067 -2.5191 -0.366 

H 1.35062 -4.3209 0.93387 

H 1.07487 -2.5812 1.09309 

H 2.51168 -3.3181 1.82157 
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H 1.23118 -4.2115 -1.6093 

H 0.95537 -2.4625 -1.6022 

H 2.31422 -3.1407 -2.516 

H 3.14001 -5.2328 -0.4807 

H 4.28466 -4.2136 -1.3581 

H 4.34517 -4.3088 0.41795 

H 3.08393 2.83028 -0.6156 

H -0.1898 3.40714 1.6547 

C -1.4769 4.65434 0.46782 

H -2.2966 4.64447 1.19514 

H -1.9198 4.67704 -0.5367 

C -0.6045 5.90777 0.66324 

H -1.2208 6.80113 0.51752 

H -0.2397 5.94006 1.69852 

C 0.58317 5.92061 -0.3075 

H 0.21281 6.01454 -1.3372 

H 1.21605 6.79478 -0.1211 

C 1.44446 4.649 -0.192 

H 2.22513 4.67517 -0.9593 

H 1.94121 4.61623 0.78667 

N 0.62688 0.6606 1.98 

Cr 0.07472 0.55039 0.58613 

C -6.7466 -0.2931 -0.9557 

C 6.88047 -0.3586 -0.297 

F -7.5593 -1.0322 -0.1674 

F -6.8508 -0.8038 -2.2057 

F -7.246 0.96008 -0.9957 

F 7.37162 0.84145 -0.6736 

F 7.36344 -0.614 0.94208 

F 7.41101 -1.2925 -1.1187 
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Appendix C.  Supplementary Material for Chapter 4 

 

 

 

 

 

 

Figure C1. Addition of 1 equivalent tris(pentafluorophenyl) borane to neutral complexes 
(red) followed by an addition of a second equivalent (grey). Conditions: 0.45 mM complex; 
T = 233 K; CH2Cl2. 

 

 

 

 

 

 

 

Figure C2. Addition of 1 equivalent tris(pentafluorophenyl) borane to oxidized complexes 
(red) followed by an addition of a second equivalent (grey). Conditions: 0.45 mM complex; 
T = 233 K; CH2Cl2. 

 

 

 

 

R = NMe2 R = tBu R = CF3 

R = NMe2 R = tBu R = CF3 
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Figure C3. Frozen EPR of CrNSalR with 1 equivalent tris(pentafluorophenyl) borane. 
Green: R = CF3; purple R = tBu; blue: R = NMe2; red: simulation. Fitted parameter values 
are identical for all compounds: g⊥ = 1.9888, g∥ = 1.9580, A53Cr = 55.71 MHz, A14N = 16.55 
MHz. Conditions: 0.25 mM complex; freq. = 9.6364 gHz; power = 2.0 mW; mod. freq. = 
100 kHz; mod. amp. = 0.6 mT; T = 100 K.  

 

 

 

 

 

 

 

Figure C4. (A) Solution EPR analysis of concentration matched samples of CrNSalNMe2 
(black) and [CrVNSalNMe2]⦁+ with 1 equivalent of tris(pentafluorophenyl) borane (red). Inset 
represents a magnification of the signal in red. (B) Solution EPR of concentration matched 
samples of CrNSalNMe2 (black) and [CrVNSalNMe2]⦁⦁2+ (red). Inset represents a 
magnification of the signal in red. Conditions: 0.50 mM complex; freq. = 9.428 GHz; power 
= 2.0 mW; mod. freq. = 100 kHz; mod. amp. = 0.6 mT; T = 298 K.  

 

(A) (B) 
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Figure C5. Time-dependant solution EPR analysis of [CrVNSalNMe2]⦁+ (A) and 
[CrVNSalNMe2]⦁⦁2+ (B) depicts the decomposition of these complexes back to neutral 
CrNSalNMe2. Conditions: 0.50 mM complex; freq. = 9.427 GHz; power = 2.0 mW; mod. 
freq. = 100 kHz; mod. amp. = 0.6 mT; T = 298 K. 

 

 

 

 

 

 

 

 

Figure C6. EPR of concentration matched samples of CrNSalNMe2 (black) and CrNSalNMe2 
with 1 equivalent tris(pentafluorophenyl) borane added (red). Inset: magnified signal of 
CrNSalNMe2. Conditions: 0.3 mM complex; freq. = 9.388 GHz; power = 2.0 mW; mod. freq. 
= 100 kHz; mod. amp. = 6 GHz; T = 100 K.  

30 min
9 min
5 min
2 min
initial

10 min
2 min
initial

(A) (B) 
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NBO Analysis 

 

 

 

 

 

Figure C7. Visualization of the alpha orbitals of the Cr—N  interaction (A) and lone pair 
(B) for CrNSalNMe2. 

 

Table C1. Analysis of CrNSalNMe2 – alpha orbitals. 

π bond π bond  bond Lone pair 
N  

42.44 % 
Cr 

57.56 %  
N 

42.60 % 
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Cr 

46.67 % 
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Table C2. Analysis of CrNSalNMe2 – beta orbitals.  

π bond π bond  bond Lone pair 

N  
58.06 % 

Cr 
41.94 %  
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Cr 
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Cr 
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Figure C8. Visualization of the alpha orbitals of the Cr—N  interaction (A) and lone pair 
(B) for CrNSaltBu. 

 

Table C3. Analysis of CrNSaltBu – alpha orbitals. 

π bond π bond  bond Lone pair 
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Table C4. Analysis of CrNSalNMe2 – beta orbitals.  

π bond π bond  bond Lone pair 

N  
58.03 % 

Cr 
 41.97 %  
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Figure C9. Visualization of the alpha orbitals of the Cr—N  interaction (A) and lone pair 
(B) for CrNSalCF3. 

 

Table C5. Analysis of CrNSalCF3 – alpha orbitals. 

π bond π bond  bond Lone pair 

N  
41.89 % 
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Table C6. Analysis of CrNSalCF3 – beta orbitals. 

π bond π bond  bond Lone pair 

N  
57.73 % 
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0.04 % 

p 
5.79 % 

d 
94.17 % 

s 
25.18 % 

p 
74.75 % 

d 
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Figure C10. Visualization of the alpha orbitals involved in the Cr—N π interactions (A),  
interaction (B) and lone pair (C) for [CrVNSalNMe2]⦁+. 

 

Table C7. Analysis of [CrVNSalNMe2]⦁+ – alpha orbitals. 

π bond π bond  bond Lone pair 

N  
41.68 % 

Cr 
 58.32 %  

N 
42.29 % 

Cr 
 57.71 % 

N 
53.27 % 

Cr 
46.73 % 

N 
90.31 % 

s 
0.04 % 

p 
99.79 % 

d 
0.17 % 

s 
2.45 % 

p 
8.26 % 

d 
89.29 % 

s 
0.00 % 

p 
99.83 % 

d 
0.17 % 

s 
0.05 % 

p 
4.35 % 

d 
95.60 % 

s 
17.98 % 

p 
81.94 % 

d 
0.08 % 

s 
6.37 % 

p 
2.80 % 

d 
90.83 % 

s 
82.01 % 

p 
17.88 % 

d 
0.00 % 

 

Table C8. Analysis of [CrVNSalNMe2]⦁+ – beta orbitals. 

π bond π bond  bond Lone pair 

N  
57.00 % 

Cr 
43.00 %  

N 
 57.91 % 

Cr 
42.09 % 

N 
60.66 % 

Cr 
39.34 % 

N 
91.34 % 

s 
0.22 % 

p 
99.65 % 

d 
0.13 % 

s 
1.37 % 

p 
 8.09 % 

d 
 90.54 % 

s 
0.03 % 

p 
99.84 % 

d 
0.13 % 

s 
0.36 % 

p 
7.27 % 

d 
92.37 % 

s 
24.70 % 

p 
75.25 % 

d 
0.07 % 

s 
7.20 % 

p 
3.22 % 

d 
89.58 % 

s 
75.07 % 

p 
24.92 % 

d 
0.00 % 

(A) 
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Figure C11. Visualization of the Cr—N π interactions (A),  interaction (B) and lone pair 
(C) for [CrVINSaltBu]+. 

 

Table C9. Analysis of [CrVINSaltBu]+ orbitals. 

π bond π bond  bond Lone pair 

N 
 46.04 % 

Cr 
53.96 % 

N 
46.78 % 

Cr 
53.22 % 

N  
56.89 % 

Cr 
 43.11 %  

N 
-- 

s 
0.07 % 

p 
99.76 % 

d 
0.17 % 

s 
1.93 % 

p 
7.61 % 

d 
90.46 % 

s 
0.01 % 

p 
99.83 % 

d 
0.17 % 

s 
0.20 % 

p 
7.31 % 

d 
92.49 % 

s 
19.75 % 

p 
80.17 % 

d 
0.08 % 

s 
10.28 % 

p 
3.02 % 

d 
86.69 % 

s 
80.19 % 

p 
19.80 % 

d 
0.00 % 
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Figure C12. Visualization of the Cr—N π interactions (A),  interaction (B) and lone pair 
(C) for [CrVINSalCF3]+. 

 

Table C10. Analysis of [CrVINSalCF3]+. 

π bond π bond  bond Lone pair 

N  
44.42 % 

Cr 
55.58 %  

N 
47.41 % 

Cr 
52.59 % 

N 
56.54 % 

Cr 
43.46 % 

N 
-- 

s 
0.42 % 

p 
99.40 % 

d 
0.18 % 

s 
1.65 % 

p 
6.55 % 

d 
 91.80 % 

s 
0.02 % 

p 
99.81 % 

d 
0.17 % 

s 
0.00 % 

p 
17.16 % 

d 
82.84 % 

s 
20.14 % 

p 
79.78 % 

d 
0.08 % 

s 
13.57 % 

p 
1.44 % 

d 
84.99 % 

s 
79.44 % 

p 
20.55 % 

d 
0.00 % 
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Figure C13. Spin density plots for (A) Cr(N—B(C6F5)3)SaltBu , (B) Cr(N—B(C6F5)3)SalCF3, 
(C) triplet [CrV(N—B(C6F5)3)SalNMe2]⦁+. 
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Appendix D.  Supplementary Material for Chapter 5 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure D1. Full IR spectra of CrNSalCF3 (green), CrNSaltBu (purple), and CrNSalNMe2 
(blue). Conditions: 0.5 mM, CH2Cl2. 
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Figure D2. Full IR spectra of [CrVINSalCF3]+ (green), [CrVINSaltBu]+ (purple), and 
[CrVNSalNMe2]⦁+ (blue). Complexes were oxidized using [N(C5H3Br2)3]⦁+[SbF6]-. Conditions: 
0.5 mM, CH2Cl2. 
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NBO Analysis 

 

 

 

 

 

 

Figure D3. NBO analysis of CrNSalCF3. (A) Visualization of the alpha orbitals of the Cr—
N π* interaction in the xz and yz planes. (B) Visualization of the alpha orbital of the Cr—

N * interaction. 

 

  

 

 

 

 

 

 

Figure D4. NBO analysis of CrNSaltBu. (A) Visualization of the alpha orbitals of the Cr—
N π* interaction in the xz and yz planes. (B) Visualization of the alpha orbital of the Cr—

N * interaction. 
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Figure D5. NBO analysis of CrNSalNMe2. (A) Visualization of the alpha orbitals of the Cr—
N π* interaction in the xz and yz planes. (B) Visualization of the alpha orbital of the Cr—

N * interaction. 

 

 

 

 

 

 

 

 

Figure D6. NBO analysis of [CrVINSalCF3]+. (A) Visualization of the of the Cr—N π* 

interaction in the xz and yz planes. (B) Visualization of the of the Cr—N * interaction. 
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Figure D7. NBO analysis of [CrVINSaltBu]+. (A) Visualization of the of the Cr—N π* 

interaction in the xz and yz planes. (B) Visualization of the of the Cr—N * interaction. 

 

 

 

 

 

 

 

 

Figure D8. NBO analysis of [CrVNSalNMe2]⦁+. (A) Visualization of the alpha orbitals of the 
Cr—N π* interaction in the xz and yz planes. (B) Visualization of the alpha orbital of the 

Cr—N * interaction. 
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