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Abstract: Intestinal microbiota plays a key role in nutrient digestion and utilization with a profound 
impact on feed efficiency of livestock animals. However, the intestinal microbes that are critically 
involved in feed efficiency remain elusive. To identify bacteria associated with production 
efficiency in chickens, male Cobb broiler chicks were individually housed from day 14 to day 35. 
Individual RFI values were calculated for 56 chickens. Luminal contents were collected from the 
ileum, cecum, and cloaca of each animal on day 35. Bacterial DNA was isolated and subjected to 
16S rRNA gene sequencing. Intestinal microbiota was classified to the feature level using Deblur 
and QIIME 2. High and low RFI groups were formed by selecting 15 and 17 chickens with the 
most extreme RFI values for subsequent LEfSe comparison of the difference in the microbiota. 
Spearman correlation analysis was further performed to identify correlations between the intestinal 
microbiota composition and RFI of all 56 chickens. No significant difference in evenness, richness, 
and overall diversity of the microbiota in the ileum, cecum, or cloaca was observed between high 
and low RFI groups of chickens. However, LEfSe analysis revealed a number of bacterial features 
being differentially enriched in either high or low RFI chickens. Spearman correlation analysis 
further indicated many differentially enriched bacterial features were significantly correlated with 
RFI (P < 0.05). Importantly, not all short-chain fatty acid (SCFA) producers showed a positive 
association with efficiency. While two novel members of Oscillibacter and Butyricicoccus were 
more abundant in low-RFI, high-efficiency chickens, several other SCFA producers such as 
Subdoligranulum variable and two related Peptostreptococcaceae members were negatively 
associated with feed efficiency. Moreover, a few closely-related Lachnospiraceae family members 
showed a positive correlation with feed efficiency, while others displayed an opposite relationship. 
Our results highlight the complexity of the intestinal microbiota and a need to differentiate bacteria 
to the species, subspecies, and even strain levels in order to reveal their true association with feed 
efficiency. Identification of RFI-associated bacteria provides possibilities to manipulate the 
intestinal microbiota for improving production efficiency, profitability, and sustainability of 
poultry production. 
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CHAPTER I 

REVIEW OF THE LITERATURE 

1. Introduction 

1.1. Antimicrobial Growth Promotors in Animal Agriculture 

The practice of adding antibiotic growth promotors (AGPs) to livestock feed and drinking 

water was adopted in the late 1940s and early 1950s, following reports that sub-therapeutic 

concentrations of antibiotics could improve the productivity of broiler chickens (Moore et al., 

1946), turkeys (McGinnis et al., 1951), and swine (Jukes et al., 1950; Brown et al., 1952). AGPs 

were cost-effective tools for improving weight gain, feed efficiency, herd health, and animal 

welfare (CAST, 1981; Kirchelle, 2018; Karavolias et al., 2018). The advent of AGPs helped 

facilitate conventional agriculture’s transition from individual smallholder operations to the large, 

often vertically-integrated concentrated animal feeding operations (CAFOs) of today 

(Krishnasamy et al., 2015; Laxminarayan et al., 2015).  

In the late 1960s and early 1970s, however, agricultural AGP use was linked to the 

emergence of antimicrobial resistant (AMR) pathogens. The rise of AMR infections in humans, as 

well as increased consumer demand for animal protein produced without antibiotics, drove many 

Western governments to limit or outlaw AGP use. In 2006, the European Union implemented a 

total ban on the non-therapeutic use of antimicrobials in food animals, restricting use for 

therapeutic purposes in confirmed instances of disease (European Parliament, 2005). Likewise, in 

2015, the United States expanded the Veterinary Feed Directive to preclude non-
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therapeutic use of “medically relevant” antibiotics (i.e., those used in to treat illness in humans) 

(FDA, 2015).   

Advances in nutrition, genetics, and animal management have allowed producers in high-

income countries to maintain the performance gains of the past 70 years while reducing AGP 

consumption (Sneeringer et al., 2015). Since the early 2000s, AGPs have primarily been used for 

disease control and prevention on CAFOs, or during particularly stressful times such as 

transportation or weaning (Cromwell, 2002). Nevertheless, the growing demand for affordable 

animal protein in lower- and middle-income countries (Van Boeckel et al., 2015), as well as 

ongoing concerns about livestock acting as a reservoir for AMR genes (Köck et al., 2017), 

illustrates the need for alternatives to AGPs for improving herd health and production efficiency. 

1.2. Intestinal Microbiome and Its Impact on Animal Physiology and Performance 

 In their seminal 1946 paper, Moore et al. proposed that AGPs improve animal performance 

by inhibiting pathogen colonization and reducing bacterial competition with the host for nutrients 

in the host gut. Coates et al. (1955; 1963) lent credence to this idea by demonstrating that oral 

antibiotics do not have growth promoting effects in germ-free chicks. Further studies in humans 

(Dethlefsen et al., 2008), mice (Cho et al., 2012), swine (Kim et al., 2012), poultry (Gaucher et al., 

2015), and cattle (Grønvold et al., 2011) confirmed that exposure to oral antibiotics early in life 

has a significant impact on the host gut microbial community and host phenotype.    

The complex community of bacteria, fungi, viruses, and protists in the gastrointestinal (GI) 

tract is known collectively as the intestinal microbiome. The intestinal microbiome composition 

and diversity influence feed utilization (Stanley et al., 2012a; Stanley et al., 2013a), fat and muscle 

deposition (Turnbaugh et al., 2009), and disease resistance (Curtis and Sperandio, 2011). 

Commensal bacteria that colonize the surfaces of the rumen and intestines regulate intestinal 
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epithelial cell turnover rates, encouraging epithelial apoptosis, compensatory proliferation, 

lengthening of the microvilli to increase absorptive surface area, and induction of brush border 

enzyme activities for nutrient digestion (Malmuthuge et al., 2015a; Yu et al., 2012). Anaerobes in 

the cecum and colon ferment complex, host-indigestible carbohydrates and proteins, and produce 

short-chain fatty acids (SCFAs), proteogenic amino acids, vitamin K and B-complex vitamins, and 

other essential nutrients for the host (Portune et al., 2016; LeBlanc et al., 2013).  

The three primary SCFAs in the GI tract are acetate, proprionate, and butyrate. SCFAs are 

the primary source of energy for intestinal and ruminal epithelial cells, meeting 20-30% of the 

caloric requirement for swine and up to 80% of the caloric requirement for ruminants (Bugaut et 

al., 1987; Bergman, 1990). Despite being the least abundant of the three, butyrate is preferentially 

taken up by colonic epithelial cells (Guilloteau et al., 2010). When added to feed, butyrate is 

associated with heightened ileal villi, higher numbers of mucin-producing goblet cells, increased 

antioxidant capacity, reduced inflammation, and decreased malondialdehyde (MDA, a marker of 

oxidative stress) levels in the intestine (Wu et al., 2018). Because it is so influential on rumen and 

gut physiological development in young animals, butyrate has unsurprisingly been found to 

increase daily gain and feed intake in poultry, weanling piglets, weanling calves, and suckling 

lambs (Czerwiński et al., 2012; Huang et al., 2015; McCurdy et al., 2019; Liu et al., 2019). 

The presence of commensal microorganisms on the epithelial surface and in the luminal 

content induces production of Foxp3+ regulatory T-cells (Tregs), which secrete anti-inflammatory 

cytokines and suppress pro-inflammatory T-helper-1 (Th1) and Th17 cells (Round and 

Mazmanian, 2010). Though the exact mechanism behind this is unclear, it is thought that blunting 

the pro-inflammatory response during establishment of the gut microbiome teaches the gut 

immune system to tolerate commensal organisms, preventing chronic inflammation and damage 
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to the intestines (MacDonald et al., 2011; Belkaid and Hand, 2014). Delayed exposure to 

commensal microbes results in permanently altered immune profiles with a bias towards the pro-

inflammatory response (Hansen et al., 2012). In addition to directly modulating the host immune 

system, commensal organisms may minimize or prevent colonization of pathogens by competitive 

exclusion (Curtis and Sperandio, 2011).  

Disruptions to the gut microbiome, such as sudden changes in diet (Kogut, 2019), stress 

(Lu et al., 2003; Yang et al., 2011), enteric infection (Stanley et al., 2012b), and long-term 

antibiotic use can lead to an unstable and imbalanced microbial state, known as “dysbiosis”. 

Dysbiosis in turn is linked to poor efficiency, health, and welfare outcomes in livestock (Hermann-

Bank et al., 2015).  

1.3. Biogeography and Succession of Gut and Rumen Microbes  

At birth, human and animals are virtually germ-free, having almost no contact with 

microorganisms in the sterile environment of the maternal uterus or egg. At birth, the neonate is 

immediately exposed to the microflora of the dam and/or the surrounding environment; these 

microbial species form the initial inoculum that colonize the gastrointestinal (GI) tract of the 

animal (Dominguez-Bello et al., 2010). In mammals, the introduction of easily-absorbed colostrum 

and milk to the GI tract, as well as continued exposure to the dam and/or environment, will 

introduce new microbes and result in the rapid expansion and diversification of the microbiome. 

During weaning and the introduction of solid feed, the microbiome composition undergoes a 

dramatic shift to accommodate the new substrate; once weaning is complete, a mature, stable, 

adult-like microbial community takes hold.  

The adult gut microbiome contains an estimated 3.8 x 1013 bacterial cells (Sender et al., 

2016), representing over 1,000 unique species (Qin et al., 2010). A review by Gaggìa et al. (2010) 
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describes the major microbial groups associated with monogastric animals as Bacteroides, 

Clostridium, Bifidobacterium, Eubacterium, Lactobacillus, Enterobacteriaceae, Streptococcus, 

Fusobacterium, Peptostreptococcus, and Propionibacterium. In ruminants, these were 

Fibrobacter, Ruminococcus, Butyrivibrio, Bacteroides, Prevotella, Selenomonas, Streptococcus, 

Lactobacillus, and Megasphaera. Establishing a healthy, stable, resilient gut microbiome is 

paramount to ensuring that the animal performs to its genetic potential. 

1.4. Defining Production Efficiency in Meat Animals  

 Production efficiency is extremely important to the modern livestock industry, as feed may 

account for 60 – 80% of total production costs (Willems et al., 2019). In meat animals, efficiency 

is described as “a function of gain in body weight and feed consumed” (Koch et al., 1963), and is 

generally expressed in terms of average daily gain (ADG), average daily feed intake (ADFI), feed 

conversion ratio (FCR), and residual feed intake (RFI).  

ADG is the rate of weight gain per day over a given period of time, while ADFI is the rate 

of feed consumption per day over a given period of time. An efficient animal should have a high 

ADG and low ADFI. FCR is defined by the MacLeod et al. (2013) as the rate at which “an animal 

converts feed into tissue, usually expressed in terms of kg of feed per kg of output”, or the ratio of 

feed to gain, with lower FCR values indicating higher efficiency. In the US and Canada, typical 

FCRs range from 1.8 – 2.0 for broiler chickens, 2.73 – 3.5 for swine, 5.0 – 7.0 for finishing lambs, 

and 4.5 – 7.5 for finishing beef cattle (MacLeod et al., 2013; Wand, 2014; Shike, 2013).  

RFI is defined by Sell-Kubiak et al. (2017) as “the difference between the measured intake 

and the expected feed intake of an animal [accounting] for its maintenance requirement”. Expected 

feed intake is calculated by taking the average of ADFI and ADG of a group of animals; RFI is 
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then calculated by subtracting the expected intake from the actual intake.  Like FCR, a lower RFI 

value indicates higher efficiency. 

2. Analysis of the Microbiome 

2.1. 16S rRNA Gene Sequencing  

 Environmental microbiologists estimate that less than 1% of bacteria can be cultured in the 

lab (Amann et al., 1995). Molecular methods, such polymerase chain reaction (PCR) amplification 

of bacterial small subunit ribosomal RNA (SSU rRNA) genes, have allowed culture-independent 

studies of large, diverse microbial communities from environmental samples (Su et al., 2012).  

Tracking changes in bacterial communities is typically done by 16s SSU rRNA gene 

sequencing. Woese et al. (1980) pioneered the use of the 16s rRNA gene for microbial census and 

phylogenetic studies. The 16s rRNA gene is approximately 1500 bp in length (Janda and Abbott, 

2007) and encodes a portion of the 30S small subunit of the bacterial ribosome (Woese et al., 

1980). Its slow, steady rate of evolution and ubiquity in bacteria and archaea (Gray et al., 1984; 

Olsen et al., 1986) make the 16s rRNA gene a reliable marker for classification and phylogeny 

(Woese et al., 1987). Though mostly conserved, it has nine “hypervariable” regions (V1 – V9) that 

can be targeted with universal primers for informatics purposes (Weisburg et al., 1991; James, 

2010). 

Early microbiome studies used Sanger sequencing technology to sequence the whole 16s 

gene. However, the process of generating and assembling reads was inefficient, expensive, and 

time-consuming. Sanger sequencing was ultimately superseded by high-thoroughput next-

generation sequencing (NGS) methods such as Roche 454 pyrosequencing and, later, Illumina 

“sequencing by synthesis” flowcell technology (J. Johnson et al., 2019). NGS outputs a high 

volume of short (300-500 bp) reads, allowing for high resolution and deeper sampling depth at a 
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fraction of the cost of traditional Sanger sequencing (Liu et al., 2007; Caporaso et al., 2011). 

Though some high-thoroughput methods for full-length 16S sequencing exist (Burke and Darling, 

2016; J. Johnson et al., 2019), most contemporary microbiome studies target one or more of the 

hypervariable regions for amplification and sequencing (Hamady and Knight, 2009).  

The V3 (approx. 180-200 bp) and V4 (approx. 250 bp) regions are frequently used in 

microbiome studies. Kozich et al. (2013) amplified the V4, V3-V4, and V4-V5 regions and found 

that V4 had the lowest error rate (0.01%), followed by V3-V4 (0.10-0.21%) and V4-V5 (0.36-

0.64%). Youssef et al. (2009) reported that species richness estimates generated by V4, V5-V6, 

and V6-V7 fragments were comparable to the richness estimate of the full-length fragment, while 

the V3 fragment underestimated species richness. Yang et al. (2016) agreed, stating that the V4, 

V5, and V6 regions were the most reliable for representing full-length sequences. Chakravorty et 

al. (2007), on the other hand, found that the V2 and V3 regions were better suited to distinguishing 

between closely related species than the more conserved V4, V5, and V7 regions. Muyzer et al. 

(1993), Huse et al. (2008), Gloor et al. (2010), and Bartram et al. (2011) have all reported that the 

V3 region’s conserved flanking regions, high resolution, and length made it an excellent candidate 

for use in taxonomic studies.  

2.2. Metagenomics, Metatranscriptomics, Metaproteomics, and Metabolomics   

16S sequencing can only determine which taxa are present in a sample, and in what 

abundance; it cannot explain the larger role of the bacteria in the environment, or how that role 

changes in certain contexts. The emerging fields of metagenomics, metatranscriptomics, 

metaproteomics, and metabolomics attempt to fill this knowledge gap by probing the collection of 

bacterial genomes, RNA transcripts, proteins, and metabolites, respectively.  
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Metagenomics allows isolation and analysis of DNA taken directly from the environment, 

providing access to the whole genomic profiles of an entire populations of bacteria. Whole genome 

shotgun sequencing (WGSS) and computational tools for assembling, binning, classifying, and 

annotating DNA reveals the genetic repertoire and physiology of novel, often uncultivable bacteria 

(Handelsman, 2004). In livestock, metagenomics has revealed upregulation of key microbial 

metabolic pathways in response to AGP or phytochemical supplementation (Huang et al., 2018), 

as well as competitive and cooperative dynamics between gut microbes (Richards et al., 2020). 

Additionally, functional analysis of the metagenome can reveal differential abundance of genes 

for antibiotic resistance in the microbiome of AGP-treated animals (Xiong et al., 2018) or for 

metabolism, stress, and virulence in that of high and low-performing animals (Singh et al., 2014). 

Metatranscriptomics goes a step further, analyzing the collection of RNA transcripts in a 

sample. The transcriptome consists of messenger RNA (mRNA), transfer RNA (tRNA), rRNA, 

and non-coding RNA molecules (ncRNA). The advent of microarray technology in the mid-2000s 

allowed researchers to study the expression profiles of thousands of genes at a time, thereby 

allowing direct comparisons between genomes and environments.  

They did not, however, allow for discovery of novel transcripts, nor the absolute 

quantification of transcripts (Morozova et al., 2009). RNA sequencing (RNA-Seq) technology 

came about in the early 2010s, addressing the limitations of the microarray and providing improved 

coverage and depth for a more comprehensive picture of the transcriptome and natural variations 

within it (Wickramasinghe et al., 2014). Metatranscriptomics is typically used to identify the 

biological processes underpinning disease pathology (Bashiardes et al., 2016) or performance 

(Horodyska et al., 2019) of the host. However, it may also be applied to the host gut microbiota; 
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Johnson et al. (2017), for example, analyzed the swine fecal transcriptome to better understand the 

influence of the antibiotic carbadox on the gut microbiome.   

 Metaproteomics goes further still, using chromatography and mass spectrometry to study 

the collection of proteins produced and used by the host or gut microbiota (Morgan and 

Huttenhower, 2014). Metaproteomics allows for large-scale identification and quantification of 

proteins from molecular information, and provides insight into community structure and in situ 

carbon sources (Kleiner, 2019). Tröscher-Muβotter et al. (2019) published a functional analysis of 

the porcine GI proteome, revealing differential enrichment of proteins related to production, 

conversion, transport, and metabolism between luminal and mucosal microbiota and between GI 

segments. Proteomics may also be used to identify disease-specific biomarkers or novel 

therapeutic targets, as done by Erickson et al. (2012) in a study of twin pairs with Chron’s disease.  

Likewise, metabolomics uses chromatography and mass spectrometry to study the 

collection of metabolites and other low molecular weight molecules produced and utilized by the 

host or gut microbiota (Clish, 2015). Metabolomics has provided valuable insight into bacterial 

metabolism and cross-feeding behaviors (De Vuyst and Leroy, 2011), the impact of enteric 

infection and antibiotic treatment on host systemic energy metabolism (Le Roy et al., 2019), and 

the impact of subtherapeutic antibiotic and ionophore use on gut microbiota and host metabolism 

(T. Johnson et al., 2019).  

2.3. Bioinformatics Pipelines  

 As advances in sequencing technology produced exponentially larger and more complex 

data sets, a need developed for computational tools that could efficiently pair, trim, align, cluster, 

classify, and statistically analyze sequencing reads. The two most popular tools for processing and 

analyzing microbial 16s data are mothur (Schloss et al., 2009; Kozich et al., 2013) and Qualitative 
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Insights into Microbial Ecology, or QIIME (Caporaso et al., 2010; Bolyen et al., 2019). The two 

differ in their default alignment, clustering, and classification algorithms; however, differences in 

relative abundance and diversity output between the two appear to be linked to the reference 

database used, rather than the software itself (López-García et al., 2018). 

 Clustering has traditionally been done on the basis of sequence identity, by binning 

sequencing reads that differ by less than a fixed, arbitrary dissimilarity threshold into “operational 

taxonomic units” (OTUs). Generally, sequences of 97% identity were assigned to the same species, 

95% identity to the same genus, and 80% identity to the same phylum (Schloss and Handelsman, 

2005). The OTU-based approach is used by the mothur program and is still widely accepted; 

however, new methods now allow differentiation between closely related taxa by clustering based 

on single nucleotide differences (Callahan et al., 2017). QIIME 2 pipelines such as DADA2 and 

Deblur generate these highly-resolved bins, referred to as amplicon sequence variants (ASVs) 

(Callahan et al., 2016; Amir et al., 2017). Taxonomic assignment is then performed on the OTUs 

or ASVs by comparing the experimental sequence with known sequences in a published database, 

such as SILVA (Quast et al., 2013), GreenGenes (DeSantis et al., 2006), and the Ribosomal 

Database Project (RDP) (Wang et al., 2007).  

 Additional databases exist for meta’omics data. Metagenomic information may be run 

against the Kyoto Encyclopedia of Genes and Genomes (KEGG) and KEGG Orthology (KO) 

databases to reveal the physiology and function of uncultured organisms based on molecular data 

(Kanehisa et al., 2016).  Characterization of purified transcript, protein, and metabolite samples 

may be done against in-house or commercial libraries; the National Center for Biotechnology 

Information (NCBI) also maintains open-source transcript, protein, and metabolite databases.  
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3. Microbiome of Ruminants 

3.1. Biogeography and Succession 

 In ruminants, bacteria account for anywhere from 40% to 90% of the ruminal microbial 

population, at a density of 108-1011 colony forming units (CFU)/g content (Nagaraja, 2016). A 

meta-analysis of the RDP database by M. Kim et al. (2011) found 5,271 different bacterial and 

3,516 different archaeal OTUs associated with the bovine rumen. An individual animal may host 

anywhere from 300 to 1000 unique OTUs in their rumen, depending on the composition of the diet 

(Edwards et al., 2004; Kong et al., 2010; Yeoman and White, 2014). Different microbial 

populations inhabit the solid particulates, liquid fraction, and epithelial lining of the rumen (Cho 

et al., 2006; Jewell et al., 2015).  

The “bacterial baptism” hypothesis suggests that, during vaginal birth, a neonate is seeded 

by the maternal microbiome (Stinson et al., 2018). A study by Alipour et al. (2018) found that the 

intestinal microbiome of perinatal calves consists of low abundances of Firmicutes, Proteobacteria, 

Actinobacteria, and Bacteroidetes, resembling the oral microbiome of the dam. After 24 hours, 

Escherichia/Shigella and Clostridiales emerge as the predominant taxa, but by the end of the first 

week, they are superseded by Faecalibacterium, Bacteroides, Lactobacillus, Butyricicoccus, and 

Bifidobacterium. As the calf ages, richness and evenness increases, and ruminal microbiome 

begins to stabilize (Klein-Jöbstl et al., 2014).  A pattern of decreasing facultative anaerobes and 

increasing obligate anaerobes has also been observed in lambs (Fonty et al., 1987).   

The “core” microbiome of the mature rumen consists of Prevotella, Butyrivibrio, and 

Ruminococcus, as well as a number of unclassified Lachnospiraceae, Ruminococcaceae, 

Bacteroidales, and Clostridiales. The small and large intestines, on the other hand, are dominated 

by Firmicutes (de Oliveira et al., 2013; Malmuthuge et al., 2014) These taxa appear in different 



12 
 

proportions among individuals, but are nevertheless found in the majority of ruminant species 

around the world (Jami et al., 2012; Henderson et al., 2015; Xue et al., 2018). In cattle, host 

genetics appear to have a stronger influence on gut microbiome composition and regulation than 

in other livestock species (Gonzalez-Recio et al., 2018). Once established, the individual rumen 

microbiome is highly resilient and host-specific, resisting colonization by foreign microbes and 

responding almost exclusively to changes in diet (Weimer, 2015). 

3.2. Role in Digestion 

The two dominant phyla in the mature bovine rumen are Firmicutes and Bacteroidetes. 

Firmicutes are more abundant in cattle fed a hay-based diet, whereas Bacteroidetes are more 

abundant in grain-based diets (Clemmons et al., 2019). As cattle are adapted from a hay-based to 

grain-based diet for finishing, the rumen microbial population shifts substantially. Microbes 

associated with fermentation of roughage (e.g. Butyrivibrio fibrisolvens, Fibrobacter 

succinogenes, Ruminococcus flavefaciens) steadily decrease in abundance; likewise, microbes 

associated with fermentation of grain (e.g. Megasphaera elsdenii, Selenomonas ruminantium, 

Prevotella bryantii) rapidly increase in abundance (Tajima et al., 2001; Fernando et al., 2010). 

Many of the highly abundant carbohydrate-fermenting bacteria also ferment proteins (Prevotella 

spp., B. fibrisolvens, Streptococcus bovis, S. ruminantium, M. elsdenii) and lipids (B. fibrisolvens, 

S. ruminantium) (Nagaraja, 2016).  

The proportion of grain to roughage, or ruminally-available carbohydrates to complex 

dietary fiber, is especially important in feedlot and dairy cattle. High grain diets are also associated 

with higher ruminal abundance of Acetitomaculum, Lactobacillus, Prevotella, and Streptococcus. 

Lactobacillus and Streptococcus produce lactic acid as a by-product of carbohydrate fermentation, 

and thrive in low pH, sugar-rich environments (Petri et al., 2013). Excessive lactic acid production 
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lowers the rumen pH and eventually causes lactic acidosis, a syndrome characterized by 

dehydration, damage to the ruminal and intestinal walls, decreased ruminal motility, increased 

ruminal osmotic pressure, decreased cardiac output, decreased blood pH, decreased renal blood 

flow, laminitis, liver abscesses, and, in severe cases, shock and death (Nocek, 1997; Owens et al., 

1998). Supplementing grain-fed cattle with an adequate amount of roughage – or with ionophores, 

such as monensin and lasolocid – reduces the population of lactic acid bacteria, in turn reducing 

lactic acid concentrations and raising rumen pH (Nagaraja et al., 1985).  

While bacteria are by far the most dominant and best-understood component of the ruminal 

microbiota, fungi also exert an enormous influence on rumen function and bovine performance. 

Mycobiome research has been hindered by the fastidious growth conditions of ruminal and 

intestinal fungi, as well as uncertain methods of genomic DNA isolation, variations in length of 

the ITS regions, and limited reference databases (Paterson et al., 2017). As a result, most fungal 

research has focused on opportunistic pathogens and their role in disease (Mukherjee et al., 2015; 

Huseyin et al., 2017).  

However, recent studies have demonstrated that anaerobic ruminal fungal (phylum 

Neocallimastigomycota) may improve fiber digestibility and nutrient digestion while reducing 

methane production, thereby improving the production performance and efficiency of cattle 

(Puniya et al., 2015). Transcriptomics approaches have revealed that members of 

Neocallimastigomycota express an extensive array of transcripts coding for carbohydrate active 

enzymes (Gruninger et al., 2018; Comtet-Marre et al., 2018), making them exceptional plant 

biomass degraders and key contributors to ruminant metabolism and functional capacity (Y. Wang 

et al., 2019) of grass- or hay-fed cattle. In addition to their enzymatic activity, these fungi 

physically disrupt plant cell walls via penetrating rhizoids, facilitating bacterial metabolic activity 
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and improving the solubility and therefore host-accessibility of the substrate (Zebeli and Metzler-

Zebeli, 2012).  

3.3. Role in Physiological and Immunological Development 

Calves are immunodeficient at birth, as no placental transfer of immunoglobulins (Igs) 

occurs in utero; they are thus reliant on passive transfer of maternal Igs, namely IgG, from 

colostrum until their own immune system develops (Godden, 2008). Adequate consumption of 

high-quality, pathogen-free colostrum is critical to the long-term health, welfare, and productivity 

of the calf, as it provides both maternal Igs and the initial inoculum of intestinal bacteria. 

Malmuthuge et al. (2015b) found that heat-treatment of colostrum before feeding increases the 

abundance of beneficial Bifidobacterium in the small intestine, and decreases the abundance of 

Escherichia coli, relative to calves receiving fresh colostrum.  

Colonization by enteric pathogens is linked to lower overall microbial diversity and higher 

incidence of diarrhea; colonization by Bifidobacterium and Faecalibacterium, on the other hand, 

is linked to greater overall diversity, weight gain, and lower incidence of disease (Oikonomou et 

al., 2013). Colonization of the ruminal and intestinal mucosal surfaces by commensal microbiota 

is also believed to promote postnatal maturation of the mucosa-associated lymphoid tissues 

(MALT), including Peyer’s patches, the site of T-cell and B-cell activation (Reynolds and Morris, 

1984; Malmuthuge et al., 2015a). During weaning, pattern recognition receptors (e.g. Toll-like 

receptors [TLRs]) responsible for bacterial detection are downregulated as memory T-cells (e.g. 

CD4+, CD8+) increase in number, marking a shift from innate to adaptive immune responses 

(Malmuthuge et al., 2012; Fries et al., 2011).  

Fermentation mostly occurs in the hindgut until the development of a functional rumen at 

3-4 weeks of age in sheep (Oh et al., 1972) and 3-6 weeks of age in cattle (Kehoe et al., 2007). 
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Calves are gradually weaned from milk or milk replacer, slowly incorporating larger amounts of 

grain and roughage in the form of a calf starter ration or creep feed (Diao et al., 2019), though 

abrupt weaning does not appear to significantly alter the gut microbiome (Meale et al., 2016). 

Exposure to roughage and reduction of milk triggers a shift from a rumen dominated by 

Bacteroidetes to one dominated by Firmicutes (Meale et al., 2016). Butyrate, produced by Gram-

positive Firmicutes as a by-product of polysaccharide fermentation, stimulates enzymatic activity, 

ruminoreticulum growth, and papillae lengthening, improving nutrient absorption and utilization 

by the calf (Górka et al., 2011).  

4. Microbiome of Swine 

4.1. Biogeography and Succession 

 In swine, microbial succession is determined by age, introduction of solid feed, and 

weaning, rather than breed or the dam. In the first hours and days post-partum, the GI tract of 

piglets is dominated by members of the families Clostridiaceae, Enterobacteriaceae, 

Streptococcaceae, and Fusobacteriaceae, presumably from exposure to colostrum and to the skin 

and feces of the sow. By the end of the first week, however, Lactobacillaceae takes over and 

remains the predominant family up until weaning, after which Ruminococcaceae, 

Lachnospiraceae, and Prevotellaceae take over (Konstantinov et al., 2006; Petri et al., 2010; Bian 

et al., 2016).  

The gut microbiome undergoes its most rapid and expansive changes during weaning, 

which occurs at approximately 2-3 weeks of age. Abrupt separation from the sow and littermates, 

transfer to a new environment with unfamiliar pen mates, and change from liquid milk to solid 

feed induces stress, anorexia, malaise, intestinal inflammation, and susceptibility to enteric 

pathogens, consequently leading to temporary declines in feed intake and performance (Pié et al., 
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2004; Lallès et al., 2007; McLamb et al., 2013). Pajarillo et al. (2014) compared fecal samples 

taken from piglets pre- and post-weaning, reporting a weaning trend towards increased bacterial 

diversity and a distinct shift from Bacteroides to Prevotella as the most abundant genus observed. 

A meta-analysis by Holman et al. (2017) found a distinct “core” microbiome in adult swine, 

consisting of Prevotella, Clostridum, Alloprevotella, and Ruminococcus in fecal samples, as well 

as Clostridium, Blautia, Lactobacillus, Ruminococcus, Roseburia, and Subdoligranulum in GI 

samples. 

4.2. Role in Digestion 

  Diet composition significantly influences the gut microbiome composition of monogastric 

animals. Consumption of milk and creep feed encourages the proliferation of Firmicutes, 

especially Lactobacillales. Carbohydrate fermentation leads to the production of lactic acid, which 

lowers the intestinal pH and discourages the growth of Enterobacteriaceae (Rinttilä and 

Apajalahti, 2013). Fermentation also establishes a hypoxic environment favorable to the 

colonization of Bifidobacterium and Bacteroides (Bäckhed et al., 2015). In nursing piglets, weight 

gain is highly correlated with the amount of colostrum and milk consumed. Morissette et al. (2017) 

found that gut microbial composition of two-week old piglets was strongly associated with body 

weight, and is therefore likely influenced by colostrum and milk consumption. Higher body weight 

piglets had higher proportions of Bacteroidetes, Bacteroides, and Ruminococcaceae, and lower 

proportions of Actinobacilus porcinus and Lactobacillus amylovorus than lower body weight 

piglets.  

Unlike calves, piglets are abruptly weaned and switched to solid feed. This sudden dietary 

shift, as well as environmental, social, and psychological stressors, causes major disruption and 

instability in the gut microbiome. By day 10 post-weaning, however, the gut microbiome stabilizes 
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and begins to resemble that of mature swine (Chen et al., 2017). On the phylum level, Fusobacteria 

and Proteobacteria give way to Firmicutes and Bacteroidetes; on the genus level, increases in 

Blautia, Paraprevotella, Oscillibacter, Clostridium XIVa, Roseburia, Clostridium sensu stricto, 

and Prevotella are matched by decreases in Megasphaera, Eschierchia/Shigella, Bacteroides, 

Fusobacterium, and Lactobacillus (Chen et al., 2017). Post-weaning pigs fed a low-fat, high-fiber 

diet had higher fecal abundances of lactobacilli, bifidobacteria, and F. prausnitzii, as well as higher 

SCFA concentrations; while those fed a high-fat, low-fiber diet had higher fecal abundances of 

Enterobacteriaceae (Heinritz et al., 2016).  

4.3. Role in Physiological and Immunological Development 

Like calves, piglets are born with an immature immune system, and rely on passive transfer 

of maternal Igs through colostrum for immune support. Bioactive compounds in porcine colostrum 

stimulate intestinal mucosal proliferation, gut closure, and growth and maturation of GI tissues 

(Xu et al., 2002; Everaert et al., 2017). Prevotella is positively associated with luminal secretory 

IgA concentrations and body weight in post-weaning pigs (García et al., 2016). Other commensal 

bacteria such as Bacillus amyloliquefaciens promote gut integrity, induce anti-inflammatory 

responses, and competitively exclude pathogens from the surface of the intestines (Hu et al., 2018; 

Liao and Nyachoti, 2017). García et al. (2016) found that weaning time (14 d vs 21 d) does not 

significantly impact microbiome composition or plasma IgG concentration; though earlier 

weaning favored earlier synthesis of intestinal IgA, later weaning favored villi length and increased 

numbers of goblet cells and lymphocytes.  

Early colonization by pathogens can cause disease and poor performance. The colonic 

microbiome of suckling piglets suffering from neonatal porcine diarrhea (NPD) consists of lower 

proportions of Firmicutes and Actinobacteria and higher proportions of Proteobacteria and 
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Fusobacteria relative to healthy piglets; E. coli and Enterococcus were highly abundant, whereas 

normal commensals such as Lactobacillus acidophilus were diminished. (Hermann-Bank et al., 

2008). Probiotics containing protective commensals may be fed to suckling and weanling pigs to 

competitively inhibit pathogens and produce butyrate during carbohydrate fermentation. While 

butyrate does not appear to promote growth or efficiency in piglets (Biagi et al., 2007), it has been 

shown to significantly increase serum IgG and jejunal IgA and significantly decrease the incidence 

of diarrhea, tempering the adverse effects of weaning stress by providing immune support (Fang 

et al., 2014).  

5. Microbiome of Poultry 

5.1.  Biogeography and Succession 

 Conventionally-raised poultry are thought to have widely-varying colonization of their GI 

tracts in part due to the sanitation practices of modern commercial hatcheries. Eggs are collected 

and washed or fumigated prior to placement in a sanitized hatching environment, eliminating 

contact with pathogens but also parental microflora. Instead, newly-hatched chicks are exposed to 

non-avian bacterial sources, including human handlers, bedding material, transport containers, 

feed, and water (Stanley et al., 2013b; Stanley et al., 2014).  

 Nevertheless, some trends have emerged over the years. According to Apajalahti et al. 

(2004), bacterial densities on day of hatch reach 108 and 1010 CFU/g digesta in the ileum and 

cecum, respectively. By day 3 or 4, the density will plateau at 108-109 CFU/g in the ileum, and 

1011-1012 CFU/g in the cecum and cloaca (Yadav and Jha, 2019); however, the proportions at the 

phylum, class, family, and genus levels will continue to shift until approximately 2-3 weeks of 

age, after which the composition will remain relatively stable for the duration of the animal’s 

productive life (Ballou et al., 2016; Ranjitkar et al., 2016).  
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At the phylum level, Firmicutes is predominant (70%) along the whole GI tract, followed 

by Bacteroidetes (12.3%) and Proteobacteria (9.3%) (Waite and Taylor, 2014; Choi et al., 2015; 

Feye et al., 2020). Lu et al. (2003) found that the class Lactobacillaceae dominates the ileum, 

followed by the classes Clostridiaceae, Streptococcaceae, and Enterococcaceae; the cecum, on 

the other hand, is dominated by Clostridiaceae, followed by Actinobacteria, Lactobacillaceae, and 

Bacteroidaceae. The nutrient-dense, hypoxic conditions of the jejunum and ileum facilitate the 

growth of facultative anaerobes, including Lactobacillus, Enterococcus, and Streptococcus; while 

the anoxic environment of the distal cecum facilitates polysaccharide fermentation and SCFA 

production by the obligate anaerobes of the order Clostridiales (including Lachnospiraceae and 

Ruminococcaceae) (Apajalahti and Vienola, 2016).  

5.2. Role in Digestion 

 Feed is the most important determinant of gut microbiome composition in poultry. Starter 

diets for broiler chicks consist of carbohydrate-rich mash or crumble, which encourages the growth 

of lactic acid bacteria. The lactic acid by-product of carbohydrate fermentation lowers the pH of 

the duodenum and jejunum, discouraging the growth of Proteobacteria (Rinttilä and Apajalahti, 

2013).  

Lactobacilli are found throughout the intestines, as their β-glucanase and bile salt hydrolase 

(BSH) activity are important for non-starch polysaccharide (NSP) and lipid metabolism, 

respectively (Torok et al., 2008). Clostridiales, however, is the dominant order of the cecum and 

colon. Sergeant et al. (2014) analyzed the cecal metagenome and found genes encoding several 

carbohydrate fermentation pathways leading to the production of SCFAs, as well as genes for poly- 

and oligosaccharide degradation. Clostridiales members are particularly effective at degrading 

starch and cellulose found in plant material; Bacteroides, Prevotella, Parabacteroides, and 
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Alistipes (members of Bacteroidetes) have also been associated with carbohydrate and SCFA 

production (Stanley et al., 2013a).  

5.3. Role in Physiological and Immunological Development 

In chickens, the acquired immune system doesn’t mature until the end of the first week of 

life, forcing the newly-hatched chick to rely on its innate defenses, including the gut microbiome 

(Bar-Shira and Friedman, 2006). The presence of commensal microbes is linked to higher goblet 

cell density and increased MUC2 expression, promoting secretion of protective mucus (Broom 

and Kogut, 2018); as well as B-cell activation and proliferation, which in turn leads to mucosal 

immunoglobulin A (IgA) secretion and activation of T-cells (Lex and Azizi, 2017). Commensal 

organisms also provide protection from pathogens via competitive exclusion (Nisbet, 2002), and 

appear to improve the efficacy of vaccines by through low-grade stimulation the gut immune 

system (Nothaft et al., 2017; Redweik et al., 2020) 

6. Association of the Intestinal Microbiome with Production Performance  

6.1. Association with Average Daily Gain and Average Daily Feed Intake in Ruminants 

 Body weight and fat deposition has been repeatedly linked to the Firmicutes-to-

Bacteroidetes ratio. Generally, higher proportions of Bacteroidetes lead to weight loss, while 

higher proportions of Firmicutes lead to weight gain (Ley et al., 2006).  

Myer et al. (2017) conducted a meta-analysis that split the efficiency of beef cattle into 

four phenotypes: greater ADG/lower ADFI (most efficient), greater ADG/greater ADFI, lower 

ADG/lower ADFI, and lower ADG/greater ADFI (least efficient). For ruminal populations, they 

found that Butyrivibrio and Leucobacter were enriched in the greater ADG/lower ADFI group. 

Prevotella, Lactobacillus, Blautia, Coprobacillus, Dorea, Clostridium, Parabacteroides, and 

Faecalibacterium were also generally associated with better efficiency.  
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 The Myer et al. meta-analysis is supported by other studies performed in dairy cattle. Meale 

et al. (2016) found Bacteroides to be negatively associated with ADG and ADFI, and Prevotella, 

Ruminococcus, Succinovibrio, and Sharpea to be positively associated with ADG and, (in all but 

Prevotella) ADFI. Likewise, Oikonomou et al. (2013) reported that F. prausnitzii, a butyrate-

producing member of Firmicutes, is significantly associated with ADG in suckling calves.   

6.2. Association with Feed Conversion Ratio and Residual Feed Intake in Ruminants 

The ruminal microflora has some association with FCR and RFI, but their effects appear 

to be heavily modulated by the diet (Carberry et al., 2012). Cattle on grain-based diets have lower 

bacterial and enzymatic diversity, but are generally more efficient, while cattle on roughage-based 

diets have higher bacterial and enzymatic diversity, but are less efficient (Li and Guan, 2017). Just 

as the ratio of grain to roughage alters the ratio of Firmicutes to Bacteroides, the ratio of Firmicutes 

and Bacteroides in the Holstein rumen significantly alters milk yield and milk composition. 

Ruminococcus, Lachnospiraceae, and Eubacterium coprostanoligenes are positively associated 

with milk yield and milk-fat, while Prevotella, are negatively associated with yield and milk-fat 

(Tong et al., 2018; Jami et al., 2014). Coriobacterales, Mitsuokella, and Desulfovibrio are 

positively associated with milk lactose content (Jami et al., 2014).   

Jewell et al. (2015) sampled ruminal solid and fluid content, and found that increased 

efficiency was associated with Coprococcus, RF39 (of the phylum Mollicutes), and 

Succinivibrionaceae, while decreased efficiency was associated with Anaerovibrio, Bacteroidales, 

Butyrivibrio, CF231 and YRC22 (of the family Paraprevotellaceae), Clostridia, 

Pseudobutyrivibrio, and Ruminococcaceae. Multiple OTUs within the families Clostridiales, 

Lachnospiraceae, Prevotellaceae, and Succinovibrionaceae were variably associated with 

efficiency. 
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6.3. Association with Average Daily Gain and Average Daily Feed Intake in Nonruminants 

The Firmicutes-to-Bacteroidetes ratio holds true for non-ruminants, particularly in the 

growing and finishing stages. In swine, ADG and ADFI are associated with a high proportion of 

Firmicutes and a low proportion of Bacteroidetes along the GI tract (Ban-Tokuda et al., 2017). At 

lower taxa levels, Prevotella spp. is associated with increased ADFI, while SCFA-producing 

bacteria (e.g. Ruminococcaceae) are associated with decreased ADFI (Yang et al., 2018). The 

effect of Lactobacillus varies by species and strain; though Yang et al. found Lactobacillus to 

reduce appetite and ADFI, Chiang et al. (2015) reported that freeze-dried Lactobacillus johnsonii 

and Lactobacillus mucosae increased ADG, ADFI, and overall feed efficiency in weaned piglets. 

In growing poultry, Gammaproteobacteria such as Acinetobacter and Escherichia/Shigella 

are associated with higher ADFI, as is Turicibacter of phylum Firmicutes. Lactobacillus, on the 

other hand, is associated with lower ADFI (Siegerstetter et al., 2018a). Wen et al. (2019) found 

that the abundance of the archaeon genus Methanobrevibacter in the cecum was positively 

associated with abdominal fat content in broiler chickens, but did not significantly affect body 

weight; the bacteria Mucispirillum schaedleri, on the other hand, was negatively associated with 

both body weight and abdominal fat content. Ranjitkar et al. (2016) found that an increased 

abundance of Lactobacillus salivarius and Clostridiales in the ileum results in lower abundance of 

Lactobacillus reuteri and a higher abundance of deconjugated bile acids. Deconjugation of bile 

acids removes their detergent properties, preventing emulsification of fat and depressing growth 

(Harrow et al., 2007). 

6.4. Association with Feed Conversion Ratio and Residual Feed Intake in Nonruminants 

Tan et al. (2018) reported that FCR is associated with different microbes in different 

segments of the GI tract in swine. High-efficiency (low FCR) Landrace gilts had significantly 
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higher abundances of Prevotella, Campylobacter, and Spaerochaeta in the duodenum; 

Sanguibacter in the jejunum; Kingella and SMB53 (an unclassified member of Clostridiaceae) in 

the ileum; Campylobacter and Butyricoccus in the cecum; and Coprobacillus and Lactococcus in 

the colon. Likewise, low-efficiency (high FCR) gilts had higher abundances of Anaeroplasma, 

Arthrobacter, and Megasphaera in the ileum; Rhodoplanes, Megasphaera, and Mitsuokella in the 

cecum; and Peptococcus in the colon. In contrast, an earlier study by the same group found 

Lactobacillus to be associated with low FCR, and Prevotella with high FCR (Tan et al., 2015).  

Higher abundance of Lactobacillus spp. has been linked to both lower RFI and lower gene 

expression of pro-inflammatory cytokines in the colon of swine following LPS challenge (Vigors 

et al., 2016). Yang et al. (2017) found that OTUs related to dietary polysaccharide metabolism, 

such as Ruminococcaceae, Christensenellaceae, Lachnospiraceae, and Akkermansia, showed a 

positive tendency towards association with feed efficiency (low RFI). Prevotella and 

Faecalibacterium, on the other hand, were associated with high RFI.  

In broilers, Clostridiales is linked to lower FCR while lactobacilli – especially L. salivarius 

– is linked to higher ADFI and, consequently, higher FCR. (Torok et al., 2011; Stanley et al., 

2016). Stanley et al. also reported the families Lachnospiraceae, Ruminococcaceae, and 

Erysipelotrichaceae and genera Ruminococcus and Faecalibacterium were highly abundant in 

highly efficient birds.  

7. Modulation of the Gut Microbiome  

7.1. Theory 

AGPs are believed to promote animal health and production efficiency by modulating the 

gut microflora. AGPs treat subclinical infections and reduce pathogen load (Allen and Stanton, 

2014), reduce competition between the host and microbiota for nutrients (Apajalahti and Vienola, 
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2016), and reduce production of harmful metabolic by-products (Grant et al., 2018). AGPs also 

select for commensals that stimulate the host immune system (Belkaid and Hand, 2014); 

competitively exclude pathogens (Ma et al., 2018); efficiently break down nutrients to a form that 

can be used by the host (Liao and Nyachoti, 2017); or produce metabolites that are known to 

improve performance by meeting a nutritional need or enhancing gut immunity and absorptive 

capacity (Robinson et al., 2019; Gadde et. al, 2018).  

However, AGPs no longer a legal or viable option for many producers, and some veterinary 

antibiotics (e.g. tylosin) have demonstrated potential to select for resistance to related medically-

important antibiotics (e.g. vancomycin) (Aarestrup, 2000; Allen et al., 2013). Attention has 

therefore turned to other methods by which to establish a healthy, robust, production-enhancing 

gut microbiome.  

7.2. Current Practices 

 Beneficial bacteria are encouraged to grow and flourish in the GI tract by supplementing 

animal feed and drinking water with probiotics, prebiotics, and phytochemicals. The Food and 

Agriculture Organization (FAO) and World Health Organization (WHO) (2002) define direct-fed 

microbials (DFMs) or “probiotics” as “live microorganisms which, when administered in adequate 

amounts, confer a health benefit on the host”. Probiotics often include Lactobacillus, 

Bifidobacterium, Bacillus, and yeasts such as Saccharomyces (Bajaj, 2014; Angelakis, 2017). 

Commercial probiotic mixes are particularly popular among poultry and swine producers, and 

especially for use in younger, more vulnerable animals (Nisbet, 2002; Hu et al., 2018). They’ve 

also been shown to improve gain, efficiency, and disease resistance in veal calves (Timmerman et 

al., 2005), but are mostly ineffective in adult ruminants due to the resilience and host-specificity 

of the established rumen microbiome (Weimar, 2015). 
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Probiotics can effectively overcome production declines due to heat stress in layer hens 

(Deng et al., 2012), but not in broilers (Song et al., 2014); nevertheless, a meta-analysis by Faria 

Filho et al. (2006) found that supplementing drinking water with probiotics improved body weight 

gain and reduced FCR in broilers. Other broiler nutrition studies demonstrate the efficacy of 

probiotics at improving weight gain and feed efficiency (Jin et al., 1998; Salim et al., 2013), fat 

digestibility and nitrogen retention (Tortuero, 1973), increasing ileal villus height (Salim et al., 

2013), resistance to and resilience against Salmonella infections (Higgins et al., 2007; Redweik et 

al., 2020), and decreased cecal loads of foodborne pathogens such as E. coli and Salmonella 

(Tortuero, 1973; Knap et al., 2011; Salim et al., 2013).  

Prebiotics are defined as “non-digestible food ingredients that can be utilized by intestinal 

microflora, which beneficially affects the host” (Gibson and Roberfroid, 1995). They generally 

include inulin, lactulose, and fructo-, galacto-, manno-, xylo-, soya-, and isomalto-

oligosaccharides (Huyghebaert et al., 2011; Sugiharto, 2016), which provide a substrate for 

favorable commensals (Ramirez-Farias et al., 2009) and an alternative binding site for E. coli and 

Salmonella that facilitate their elimination in digesta flow (Parks et al., 2001; Fernandez et al., 

2002). Like probiotics, prebiotics have been shown to improve weight gain, efficiency, absorptive 

capacity, and immune function while decreasing stress and cecal pathogen loads in broilers (G. 

Kim et. al, 2011; Sohail et al., 2012). Alizadeh et. al (2015) found that adding galacto-

oligosaccharides to formula milk increased fecal lactobacilli, bifidobacteria, and butyrate 

concentration; improved intestinal architecture; and reduced the incidence of diarrhea in piglets.  

Phytochemicals are compounds produced by plants for protection against predators, 

pathogens, and competitors (Molyneux et al., 2007). Phytochemicals found in herbs, spices, and 

other edible plants are a staple of traditional human medicine and are being explored as feed 
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additives for livestock. Samanta et al. (2015) found that dried, powdered ginger root (Zingiber 

officinale) both increased the abundance of beneficial organisms and while decreasing the 

abundance of pathogens in fecal samples from grower pigs.  

Essential oils are gaining popularity among swine and poultry producers for their 

antimicrobial, anti-inflammatory, anti-oxidative, and coccidostatic effects (Omonijo et al., 2018). 

Components of essential oils – especially carvacrol (found in oregano, thyme, and bergamot) and 

cinnemaldehyde (found in cinnamon) – are reported to inhibit Salmonella, E. coli, S. aureus, and 

Listeria monocytogenes growth in vitro (Hulánková and Bořilová, 2011) and in vivo for lactating 

sows (Tan et al., 2015) and broilers (Amerah et al., 2012). Tan et al. also noted improvements in 

ADFI for carvacrol-supplemented sows and ADG for their piglets, which they attribute to reduced 

oxidative stress. This is supported by Hashemipour et al. (2013), who reported reduced lipid 

oxidation in the muscles of broilers. For poultry, essential oil blends may also act as coccidiostats; 

they’ve been shown to destroy Eimeria oocysts in vitro (Remmal et al., 2011), improve immune 

response against Eimeria following avian coccidiosis vaccination (Lee et al., 2011), and prevent 

dramatic microbiome shifts after Eimeria challenge in vivo (Oviedo-Rondón et al., 2006). 

7.3. Future Directions 

In 2013, van Nood et al. announced the success of their fecal microbiota transplant (FMT) 

study, with 81% of human patients seeing resolution of their Clostridum difficile infection 

following a single FMT infusion. FMT is now a widely-accepted treatment for human C. difficile 

infections, and is being explored as a therapeutic for other nosocomial infections, ulcerative colitis 

(UC), Crohn’s disease, irritable bowel syndrome (IBS), and neuro-psychiatric disorders (Pettigrew 

et al., 2016; Smits et al., 2013; Moayyedi et al., 2015; Wang et al., 2014).  
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Human and mice studies demonstrate that the proportion of Firmicutes to Bacteroidetes in 

the gut is linked to obese and lean phenotypes (Turnbaugh et al., 2009), and mice studies further 

demonstrate that FMT from an obese or lean donor will induce the donor phenotype in the germ-

free recipient (Cox et al., 2014; Lai et al., 2018). Although FMT from high-performing adult 

donors has been shown to improve gut health and immune responses in piglets (Niederwerder et 

al., 2018; Teng et al., 2020), and promotes establishment of protective commensal microorganisms 

in ovo for poultry (Pedrosa et al., 2015), it does not appear to influence growth or production 

efficiency in broilers (Siegerstetter et al., 2018b). Both Le Roy et al. (2018) and Rodriguez et al. 

(2019) found that diet and environment have a stronger influence on performance than exposure 

to donor microbes.  

Nevertheless, monitoring and targeted modulation of the gut microbiome still holds 

promise for improving animal productivity.  Maltecca et al. (2019) recently demonstrated that 

machine learning algorithms such as Random Forest can predict growth and carcass traits of 

growing and finishing swine from microbiome data. In cattle, deep nasopharyngeal swabs 

accurately predict infection of the lower respiratory tract by Mannheimia haemolytica and 

Mycoplasma bovis, providing a quicker, safer, less stressful method of testing and monitoring for 

bovine respiratory disease (BVD) (Godinho et al., 2007). Though cecal and fecal microbial 

evenness differ significantly in poultry, they have similar richness, suggesting that fecal sampling 

may be used to monitor for some shifts in the cecal microbiota (Stanley et al., 2015) 

8. Conclusion 

The gut and ruminal microbiomes are complex, dynamic communities with tremendous 

influence on health, welfare, and performance outcomes in livestock. We now understand that 

modulation of the gut microbiome in early life can, for better or for worse, induce long-lasting 



28 
 

changes to the core microbiome and to host phenotype.  Early establishment of a healthy, diverse 

commensal population ensures proper development of the host gut and gut immunity, reduces the 

incidence and severity of enteric infection, aids in efficient digestion and absorption of nutrients, 

and minimizes performance declines during weaning and transportation.  

Advances in sequencing and computational tools have expanded our understanding of the 

gut microbiome composition, function, and relationship with the host. Not only does long-term 

antibiotic use provide selective pressure that induce the emergence of AMR, it may also cause 

irreparable injury to the host gut microbiome, killing off beneficial commensals and allowing 

potentially dangerous pathogens to proliferate unchecked. We know that feed and environment are 

strong determinants of microbiome composition, and realize that early intervention with prebiotics, 

probiotics, and phytochemicals encourage the establishment of a healthy gut microbiome, as well 

as promote its resilience and stability – thereby fostering animal health and productivity while 

reducing reliance on antibiotics.  

However, further research is needed to identify specific bacterial species and strains 

associated with performance in poultry, and the mechanisms by which they do so. Previous 

correlation studies in poultry have yielded inconsistent results, even under controlled conditions 

(Stanley et al., 2016). In addition, we’ve only recently developed computational tools that can 

resolve differences in 16s rRNA sequences down to a single nucleotide difference. Whereas 

previous microbial censuses have relied on OTUs, this study of the mature broiler gut microbiome 

uses ASVs to resolve differences between closely-related species, giving us a more comprehensive 

picture of which taxa are present and in what proportions. We hope that, by successfully 

identifying taxa associated with ADG, ADFI, FCR, and RFI, we may come one step closer to 

developing newer, more potent products for promoting animal health and production efficiency. 
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CHAPTER II 

ASSOCIATION BETWEEN THE INTESTINAL MICROBIOTA AND PRODUCTION 

EFFICIENCY OF BROILER CHICKENS 

1. Introduction 

Feed accounts for up to 70% of costs in broiler production (Willems et al., 2019). 

Maximizing feed efficiency is paramount to ensuring the sustainability of the industry. In livestock 

production, feed efficiency is generally measured by feed conversion ratio (FCR) or residual feed 

intake (RFI). FCR is defined as the ratio of feed intake to weight gain, with lower FCR values 

indicating high efficiency. On the other hand, RFI is defined as the difference between the actual 

measured feed intake and the expected feed intake of an animal accounting for its maintenance 

requirement, where expected feed intake is calculated based on average feed intake and weight 

gain of a group of animals (Herd and Arthur, 2009; Aggrey and Rekaya, 2013). Similar to FCR, a 

lower RFI value indicates higher efficiency. However, unlike FCR, RFI is independent of body 

weight, mature size, and growth rate and thus has become a method of choice for measuring feed 

efficiency (Aggrey and Rekaya, 2013; Aggrey et al., 2010).  

The intestinal microbiota is known to play a key role in feed digestion, nutrient absorption, 

vitamin synthesis, and immune development (Lallès, 2016; Durack and Lynch, 2019; Wang et al., 

2019; Yadav and Jha, 2019). Manipulation of the intestinal microbiota could potentially enhance 

animal health and feed efficiency (Yadav and Jha, 2019). Relative to that of other livestock species, 

the chicken intestinal microbiota has a much higher proportion of Firmicutes to Bacteroidetes (Wei
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 et al., 2013). Lactobacilli are predominant in the small intestine, while clostridia are abundantly 

colonized in the cecum of chickens (Yadav and Jah, 2019; Wei et al., 2013). As major producers 

of short-chain fatty acids (SCFAs), clostridia are represented by a large, diverse group of obligate 

anaerobic Firmicutes (Guo et al., 2020; Lopetuso et al., 2013). Several clostridial families such as 

Clostridiaceae, Ruminococcaceae, and Lachnospiraceae are generally regarded to improve feed 

efficiency through SCFA production (Yang et al., 2017).  

Microbiome studies of broiler chickens have thus far revealed a high degree of inter-flock 

variation, with diet, environment, management, breed, age, and sex exerting a significant influence 

on the composition and function of the intestinal microbiome (Stanley et al., 2013b; Stanley et al., 

2014; Diaz Carrasco et al., 2019). Several studies have attempted to identify the intestinal microbes 

associated with RFI in both broiler and layer chickens (Yan et al., 2017; Siegerstetter et al., 2017; 

Siegerstetter et al., 2018a; Siegerstetter et al., 2018b; Metzler-Zebeli et al., 2019a; Metzler-Zebeli 

et al., 2019b). However, the findings thus far have been inconsistent and sometimes contradictory. 

No specific bacterial taxa have been reproducibly identified across multiple studies. Even the same 

dietary composition and experimental design being duplicated at two different locations have 

resulted in different outcomes (Siegerstetter et al., 2017).  

Moreover, all aforementioned studies have classified bacteria to the level of genus of 

operational taxonomic unit (OTU), which arbitrarily combines all sequencing reads that share ≥ 

97% identity as a single OTU (Blaxter et al., 2005). In those studies, only differentially enriched 

bacterial genera or OTUs were identified (Yan et al., 2017; Siegerstetter et al., 2017; Siegerstetter 

et al., 2018a; Siegerstetter et al., 2018b; Metzler-Zebeli et al., 2019a; Metzler-Zebeli et al., 2019b). 

A need, therefore, exists to clarify the discrepancies among these studies and potentially further 

identify specific RFI-associated microbes to the species or subspecies level. Deblur, a newly-
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developed bioinformatic tool, separates rather than combines closely-related bacterial taxa even 

with a single nucleotide difference (Amir et al., 2017). Each unique sequence is referred to as an 

amplicon sequence variant (ASV) or a ‘feature’. It is, therefore, now possible to accurately define 

the microbiota composition and compare them among studies (Amir et al., 2017; Callahan et al., 

2017).  

In this study, to identify bacterial features that are associated with feed efficiency, we 

housed broilers individually, calculated their RFI values, analyzed the compositions of the 

microbiome in the ileum, cecum, and cloaca separately using Deblur, and further compared them 

between the broilers with extremely high and low RFI values. As a result, a number of bacterial 

features were found to be differentially enriched between high and low RFI broilers in each of the 

three intestinal locations. We were able to separate closely-related bacteria from each other and 

we found, in several cases, both positive and negative associations with feed efficiency among 

them, highlighting a need to differentiate phylogenetically related bacteria from each other to 

reveal their true involvement in nutrient digestion and nutrient utilization and possibly other 

physiological processes.  

2. Materials and Methods 

2.1. Animal Trial and Sample Collection 

All animal procedures were approved by the Institutional Animal Care and Use Committee 

of Oklahoma State University under protocol number AG-17-3. Day-of-hatch male Cobb broiler 

chicks were obtained from Cobb-Vantress Hatchery (Siloam Springs, AR). Upon arrival, chicks 

were individually weighed and apparently healthy animals of similar body weight (BW) (40 ± 2 

g) were retained. Animals were tagged with wing bands and group-housed on an open floor with 

fresh pinewood shavings for bedding. Chickens were provided ad libitum access to tap water and 
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non-medicated, three-stage, corn-soybean diets formulated to meet the NRC requirements (Table 

1). Animals were housed in an environmentally-controlled room with temperatures starting at 

33°C and decreasing 3°C every 7 days. The light-to-dark ratio (h) was 24:0 for day 0, 23:1 for 

days 1 to 3, 18:6 for days 4 to 6, and 16:8 for days 7 to 14. On day 14, chickens were individually 

weighed, and 72 healthy animals were transferred to individual floor cages with fresh pinewood 

bedding. From day 14 to day 35, individual body weight and feed intake were recorded weekly.  

On day 35, 56 apparently healthy chickens were euthanized by CO2 asphyxiation, followed 

by cervical dislocation. Approximately 0.5 g of luminal contents from the ileum, cecum, and 

cloaca of each bird were collected and flash frozen in liquid nitrogen. The samples were stored at 

-80ºC until further processing. Feed efficiency of individual animals was calculated as RFI = TFI 

– (a1 + b1 * MMW + b2 * TBWG), where TFI is total feed intake, a1 is the intercept, b1 and b2 are 

partial regression coefficients of mid-test metabolic weight (MMW), and TBWG is total body 

weight gain. MMW was calculated as [(D7 BW + D35 BW)/2]0.75 as described by Metzler-Zebeli 

et al. (2016). 

2.2. Bacterial DNA Extraction and Sequencing 

Intestinal bacterial DNA was isolated from each luminal content sample using ZR Fecal 

96-well DNA Isolation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s 

instructions. DNA quality and quantity were determined using Nanodrop ND-1000 (NanoDrop 

Technologies, Wilmington, DE), and the absence of degradation was confirmed using agarose gel 

electrophoresis. High quality DNA was shipped on dry ice to Novogene (Beijing, China) for 

PE250 deep sequencing of the 16S rRNA gene using the V3-V4 primers (341F: 

CCTAYGGGRBGCASCAG and 806R: GGACTACNNGGGTATCTAAT) on an Illumina HiSeq 
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platform. PCR amplification and library preparation were performed by Novogene (Beijing, 

China) using NEBNext® Ultra™ Library Prep kit (New England Biolabs, Ipswich, MA).  

2.3. Bioinformatic and Statistical Analyses  

Illumina paired-end reads were analyzed in QIIME 2 2019.7 (Boylen et al., 2019). Briefly, 

primers were removed from each sequencing read with the cut-adapt plugin (v. 2.10) (Martin, 

2011). After quality filtering, reads were denoised with the Deblur algorithm (v. 2020.2.0). The 

resulting ASVs were then classified into bacterial features using the RDP 16S rRNA training set 

(v. 16) and Bayesian classifier (Wang et al., 2007). A bootstrap confidence of 80% was used for 

taxonomic classification. Features with a classification of less than 80% were assigned the name 

of the last confidently assigned level followed by “_unidentified”. Features appearing in less than 

5% of samples were removed from downstream analysis. Data were normalized using cumulative 

sum scaling (CSS) in the metagenomeSeq package of R (v. 3.6.3) (Paulson et al., 2013).  

Analysis and visualization of the microbiota composition were conducted in R (v. 3.6.3) 

(R Core Team, 2020). The α- and β-diversity analyses were calculated with the phyloseq package 

(v. 1.28.0), while plots were made using ggplot2 (v. 3.3.0).. The α-diversity was calculated using 

number of features, Shannon Index, and Pielou’s Evenness Index. The β-diversity was calculated 

using Bray-Curtis and Jaccard indices. Significance in β-diversity was determined using non-

parametric permutational multivariate analysis of variance (PERMANOVA) via the adonis 

function in the vegan package (v. 2.5-6) (Oksanen et al., 2019).   

Differential enrichment of bacterial features between high and low RFI chickens was 

determined using linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al., 2011), with 

the all-against-all multiclass analysis and a logarithmic LDA threshold of 2.0. Spearman 

correlation analysis was performed on all bacterial features in the ileum, cecum, and cloaca of all 
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56 chickens using the psych package (v. 1.9.12.31). Associations were considered significant if P 

≤ 0.05 and |R| ≥ 0.3. To minimize type I error, rare bacterial features with average relative 

abundances of < 0.01% in an intestinal segment were excluded in both LEfSe and Spearman 

correlation analyses.  

BLAST search of the GenBank database was further conducted to reveal the identified of 

those features showing differential enrichment or significant correlations with RFI. Multiple 

sequence alignment was conducted and sequence percent identities were revealed using Clustal 

Omega at https://www.ebi.ac.uk/Tools/msa/clustalo/. 

2.4 Data Deposition  

The raw sequencing reads of this study have been deposited in the NCBI GenBank SRA 

database under the accession number PRJNA647670. 

3. Results 

3.1. Production Parameters  

A total of 56 apparently healthy chickens were retained on day 35 for calculation of RFI 

and collection of the intestinal contents. These chickens displayed a large variation of feed 

efficiency with the RFI values ranging from -379.9 to 483.1 (Fig. 1A). We selected 15 and 17 

chickens with the most extreme RFI values were selected to form ‘high’ and ‘low’ RFI groups, 

respectively, for comparison (Fig. 1A). These two groups of chickens indeed showed a significant 

difference in RFI (P < 0.001) with an average RFI value of 166.5 and -141.7 for high and low 

groups, respectively (Fig. 1B). As expected, there was no difference in day-35 BW (Fig. 1C) or 

average daily gain (Fig. 1D). Significant differences in average daily feed intake (ADFI) (P = 

0.047) (Fig. 1E) and feed conversation ratio (FCR) (P < 0.001) (Fig. 1F) were observed between 

the high and low RFI groups.  

https://www.ebi.ac.uk/Tools/msa/clustalo/
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3.2. Diversity of the Intestinal Microbiome 

 A total of 166 luminal content samples of the day-35 ileum, cecum, and cloaca were 

subjected to 16S rRNA gene sequencing. Following quality control, 11,027,919 high-quality 

sequence reads were obtained with an average of 66,433 sequences per sample. Sequences were 

further denoised by Deblur, and the reads present in less than 5% of samples were removed, 

resulting in the identification of a total of 551 bacterial features. The α-diversity of the intestinal 

microbiota was calculated using observed features, Pielou’s Evenness Index, and Shannon Index 

as indications of richness, evenness, and overall diversity, respectively. No significant difference 

was observed in the ileum, cecum, or cloaca with any of these three indices between high- and low 

RFI chickens (Fig. 2). The β-diversity was further calculated using the Bray-Curtis and Jaccard 

indices as indications of dissimilarity in overall diversity and richness, respectively. However, no 

significant separation between high and low RFI groups was observed in any of the intestinal 

segments (Fig. 3). 

3.3. Composition of the Intestinal Microbiome 

 The compositions of the microbiota were apparently different among the ileum, cecum, 

and cloaca. At the genus level, the ileal microbiota was dominated by Lactobacillus, Romboutsia, 

Enterococcus, and Turicibacter (Fig. 4A), while Lactobacillus, Faecalibacterium, and an 

unidentified genus in each of the Lachnospiraceae and Ruminococcaceae families dominated the 

cecal microbiota (Fig. 4B). On the other hand, the four most predominant genera of the cloacal 

microbiota included Lactobacillus, Romboutsia, Enterococcus, and an unidentified genus of the 

Lachnospiraceae family (Fig. 4C). However, statistical analysis of the top 15 most abundant 

genera in each of the ileum, cecum and cloaca revealed no significant difference (FDR > 0.05), 

although Subdoligranulum (P = 0.020), Anaerostipes (P = 0.027), an unidentified genus of 
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Peptostreptococcaceae (P = 0.013), and an unidentified genus of Ruminococcaceae (P = 0.030) 

tended to be more abundant in the ileum of high RFI chickens (Table 2). 

 At the feature level, four bacterial features including a member of Lactobacillus F1, 

Romboutsia F2, Enterococcus F3, and Turicibacter F4 accounted for more than 80% of the 

bacterial population in the ileum (Fig. 4D), while the microbiota was much more diverse in the 

cecum with top 30 features totaling less than 70% of the bacteria (Fig. 4E). In the cloaca, the four 

most abundant features, i.e., Lactobacillus F1, Romboutsia F2, Enterococcus F3, and Turicibacter 

F4, accounted for less than 45% bacteria, with top 30 features totaling more than 80% (Fig. 4F). 

Statistical analysis of the top 30 features revealed no significant difference (FDR > 0.05) in any of 

the ileum, cecum, or cloaca between high- and low-RFI chickens, while Subdoligranulum F6 (P = 

0.003), Anaerostipes F17 (P = 0.015), and two unidentified features of Peptostreptococcaceae F15 

(P = 0.018) and F43 (P = 0.009) tended to be more abundant in the ileum of high RFI chickens 

(Table 3). While there was no tendency for any feature to show differential enrichment in the 

cecum of high RFI chickens, an unidentified Lachnospiraceae feature F33 tended to be more 

abundant (P = 0.002) in the cloaca of high RFI chickens. No feature in the cecum showed no 

difference (P > 0.05) between high and low RFI chickens (Table 3).  

3.4. Differential Enrichment of the Intestinal Microbiome 

LEfSe analysis was employed to identify differential enrichment of bacterial features 

between high and low RFI chickens using a LDA score of 2.0 as the threshold. In the ileum, two 

unidentified Peptostreptococcaceae features F15 and F43 as well as Subdoligranulum F6 were 

enriched in the high RFI group, although no bacteria were found to be enriched in low RFI chickens 

(Fig. 5A). Kruskal-Wallis test confirmed statistical significances (P < 0.05) with all three features 

in the ileum (Fig. 5B). It is noted that F15 and F43 are highly related, differing by only one 
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nucleotide along 403 nucleotides in the V3-V4 region of the 16S rRNA gene. A BLAST search of 

the GenBank database revealed that F15 and F43 shared an approximately 98% identity to 

Clostridium difficile, Intestinibacter bartlettii (formerly known as Clostridium bartlettii), and 

Romboutsia ilealis, all of which belong to Clostridium cluster XI (Gerritsen et al., 2017). A 

BLAST search of Subdoligranulum F6 confirmed it to be 100% identical to S. variabile, a 

Ruminococcaceae family member (Clostridium cluster IV) initially reported in human feces 

(Holmstrøm et al., 2004).  

In the cecum, an unidentified Lachnospiraceae F116 (96.5% identical to Blautia hominis 

or B. marasmi) and Oscillibacter F220 (97.3% identical to O. valericigenes) were enriched in the 

low RFI group, while an unidentified Faecalicoccus F195 (93.6% identical to F. acidoformans) 

and an unidentified Lachnospiraceae F92 were enriched in the high RFI group (Fig. 6A and 6B). 

In the cloaca, among a total of 12 differentially enriched features, an unidentified Lachnospiraceae 

F76 and Butyricicoccus F149 (97.5% identical to B. faecihominis) were more abundant in the low 

RFI group, while an unidentified Peptostreptococcaceae F15, unidentified Lachnospiraceae F33, 

and Blautia F42 (98.3% identical to B. obeum) were preferentially present in the high RFI group 

(Fig. 7A and 7B).  

3.5. Correlation between the Intestinal Microbiome and RFI  

To further reveal the correlations between RFI and relative abundances of all bacterial 

features in the ileal, cecal, and cloacal samples of all 54 chickens, Spearman correlation analysis 

was performed. A total of 6 features showed a significant positive correlation (P < 0.05) with RFI 

in the ileum (Fig. 8A), with a R value ranging from 0.3 to 0.42 (Fig. 8B), albeit with no bacteria 

showing a negative correlation. In the cecum, two features were significantly negatively correlated 

with RFI (P < 0.05), with another four showing significant positive correlation (P < 0.05) (Fig. 
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9A). The |R| values of these features ranged from 0.31 to 0.45 (Fig. 9B). In the cloaca, a total of 

six features were found to be significantly associated with RFI (P < 0.05), with one displaying a 

negative correlation and five showing a positive correlation (Fig. 10A). Among the most strongly 

associated features were an unidentified Peptostreptococcaceae F15 (P = 0.009, R = 0.34) and 

Subdoligranulum F6 (P = 0.002, R = 0.40) in the ileum (Fig. 8B); an identified Firmicutes F254 

(P < 0.001, R = 0.45) and an unidentified Lachnospiraceae F92 (P = 0.008, R = 0.35) in the cecum 

(Fig. 9B); and Blautia F42 (P < 0.001, R = 0.45) and two unidentified Lachnospiraceae F33 (P = 

0.001, R = 0.43) and F203 (P = 0.007, R = -0.36) in the cloaca (Fig. 10B).  

It is noteworthy that Lachnospiraceae F33, F76, and F92 are closely related and a BLAST 

search revealed that all three are 100% identical to a number of uncultured and uncharacterized 

poultry intestinal microbes in GenBank (data not shown). They showed 96-97% identity to M. 

faecis, M. lactaris, or M. torques in the Mediterraneibacter genus (Togo et al., 2018).  

Because of the availability of individual FCR, ADG, and ADFI values, we also performed 

Spearman correlation analysis between each phenotype and the intestinal microbiota profiles. As 

expected, most of the bacterial features that were correlated with RFI were also similarly correlated 

with FCR, but not with ADG or ADFI, in the ileum, cecum, and cloaca (Fig. 8A, 9A, 10A). 

Apparently, a different group of bacteria were commonly associated with ADG and ADFI in each 

of the three intestinal locations.  

4. Discussion 

Identifying feed efficiency-related intestinal microbes are critically important in reducing 

feed costs and thus maintaining the profitability and sustainability of livestock production. 

Metzler-Zebeli’s group has explored a possible association between the intestinal microbiota and 

RFI in broiler chickens and attempted to identify RFI-associated bacteria; however, the outcomes 
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have been inconsistent among their studies, and the bacteria were only classified to the genus or 

OTU level (Siegerstetter et al., 2017; Siegerstetter et al., 2018a; Siegerstetter et al., 2018b; 

Metzler-Zebeli et al., 2019a; Metzler-Zebeli et al., 2019b). There is a need to address the 

discrepancies and further classify RFI-associated bacteria to the species and subspecies levels. In 

this study, we analyzed the ileal, cecal, and cloacal microbiotas, simultaneously, for their 

relationships with feed efficiency of broilers and explored for the first time QIIME 2’s Deblur 

method of denoising, allowing for single-nucleotide resolution in differentiating bacterial features. 

As a result, we have identified a number of bacterial features in the ileum, cecum, and cloaca that 

are strongly-linked to RFI. All seven bacterial features that are differentially enriched in the ileal 

and cecal microbiota of high or low RFI chickens based on LEfSE analysis are significantly 

correlated with RFI. Three differentially enriched cloacal bacterial features also show a significant 

correlation with RFI.  

Most of the bacteria that are strongly associated with high or low RFI belong to 

Clostridiales, a highly diverse order of obligate anaerobes that ferment host-indigestible plant 

polysaccharides into SCFAs (Parks et al., 2018; Boutard et al., 2014). Clostridia are abundant in 

soil and also in the gastrointestinal (GI) tract, representing up to 20% of uncultured genomes in 

the human GI tract (Almeida et al., 2019). Among the families of Clostridiales are Clostridiaceae 

(Clostridium Cluster I), ), Ruminococcaceae (Cluster IV), Peptostreptococcaceae (Cluster XI), 

and Lachnospiraceae (Cluster XIVa) (Galperin et al., 2016). Lachnospiraceae and 

Ruminococcaceae are highly abundant in poultry and are particularly effective at degrading 

cellulose and other host-indigestible polysaccharides (Biddle et al., 2013). Consistently, we found 

that Oscillibacter F220 (family Oscillospiraceae) in the cecum and Butyricicoccus F149 (family 
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Clostridiaceae) in the cloaca are enriched in low RFI chickens and positively associated with feed 

efficiency.   

However, to our surprise, a majority of other SCFA-producing clostridia are more abundant 

in high RFI chickens and negatively correlated with feed efficiency. For example, two unidentified 

and closely-related Peptostreptococcaceae F15 and F43 show differential enrichment in high RFI 

chickens and significant positive correlations with RFI in the ileum, meaning that both are 

negatively correlated with feed efficiency. F15 is also negatively correlated with feed efficiency 

in the cloaca. F15 and F43 are closely related to Clostridium cluster XI bacteria such as C. difficile, 

I. bartlettii, and R. ilealis. Although C. difficile is a well-known enteric pathogen, little is known 

about I. bartlettii or R. ilealis. Both I. bartlettii and R. ilealis were recently found to be enriched 

in children with neurodevelopmental disorders (Bojović et al., 2020). Analysis of the R. ilealis 

genome revealed its limited capacity to synthesize amino acids and vitamins with the ability to 

utilize different relatively simple carbohydrates such as glucose, L-fructose and fructo-

oligosaccharides (Gerritsen et al., 2017). The reason why Peptostreptococcaceae F15 and F43 

reduce feed efficiency remains to be investigated, although I. bartlettii appears to be more 

abundant in the ileum of turkeys with heavier BW (Danzeisen et al., 2013).  

Subdoligranulum F6 (identical to S. variabile, family Ruminococcaceae) in the ileum is 

also enriched in the ileum of high-RFI, low-feed efficiency chickens with a significant negative 

correlation with feed efficiency. S. variable is known to be differentially enriched in children with 

food sensitization (Chen et al., 2016) and correlated positively with lipid metabolic dysfunction 

and inflammatory responses in the ileum of pigs (Huang et al., 2020). Perhaps it is not surprising 

why S. variable is correlated negatively with feed efficiency. Several other clostridial bacteria 

including two unidentified members of Ruminococcaceae F27 and F97 in the ileum, Faecalicoccus 
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F195 (family Erysipelotrichaceae) in the cecum, and an unidentified Clostridiales F72 in the 

cloaca also show a significant positive correlation with RFI. The reason for a negative correlation 

between these SCFA-producing bacteria and feed efficiency remains to be further investigated. 

Apparently, these bacteria influence feed efficiency beyond mere fermentation of plant 

polysaccharides.  

Our results have also clearly revealed that multiple closely-related members of the 

Lachnospiraceae family are significantly associated with RFI. To our surprise, among those 

differentially enriched Lachnospiraceae that also show a strong correlation with RFI, several 

features (e.g. F76, F116, and F203) are negatively correlated with RFI while others (e.g. F33, F42, 

and F92) show a positive correlation. Alignment of these six sequences reveals a minimum 91.3% 

identity among them (Fig. 11). In particular, F33, F76, and F92 are highly related, showing 96.5%-

97.8% identities among each other. Although F33, F76, and F92 could otherwise be grouped as a 

single OTU, their impact on feed efficiency is totally opposite. While F33 in the cloaca and F92 

in the cecum are negatively correlated with feed efficiency, F76 is highly enriched in the cloaca of 

low RFI chickens with a strong tendency to be positively correlated with feed efficiency.  

 Similarly, two related Blautia F42 and F116 of the Lachnospiraceae family also show an 

opposite association with feed efficiency. Albeit with 94.8% identity to each other (Fig. 11), F42 

is negatively correlated with feed efficiency in the cloaca, while F116 has an opposite association 

in the cecum. These results clearly demonstrate the advantage of differentiating the intestinal 

microbes to the single-nucleotide resolution at the species, subspecies, or strain level. Otherwise, 

the physiological effect of some of the bacteria could be masked. In fact, our findings are consistent 

with the well-known fact that functional variations exist among different species of a bacterial 

family or even different strains of the same bacterial species. However, because of limitation of 
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the current nonredundant (NR) and 16S rRNA gene databases in GenBank, most of the newly 

identified RFI-associated bacterial features are found to be 100% associated with uncultured and 

unclassified 16S rRNA sequences. Only Subdoligranulum F6 can be unequivocally be assigned to 

S. variabile, and we failed to assign a specific bacterial species or strain name to the remaining 

features.  

 Notably, the RFI-associated bacteria revealed in this study are mostly different from 

several earlier attempts by Metzler-Zebeli’s group (Siegerstetter et al., 2017; Siegerstetter et al., 

2018a; Siegerstetter et al., 2018b; Metzler-Zebeli et al., 2019a; Metzler-Zebeli et al., 2019b). In 

fact, their results vary from study to study as well. For example, among three different studies, 

Dorea (family Lachnospiraceae) (Siegerstetter et al., 2017), an Anaerobacterium OTU (family 

Ruminococcaceae), two Lactobacillus OTUs (Siegerstetter et al., 2018b), and the 

Christensenellaceae family (Mezler-Zebeli et al., 2019b) have been found to be significantly 

associated with low RFI chickens, while two Gracilibacter OTUs and a Clostridium OTU are 

associated with high RFI chickens (Siegerstetter et al., 2018b). The results are even different 

between two animal experiments being duplicated at two different locations (Siegerstetter et al., 

2017).  

These apparently inconsistent outcomes may potentially be due to dietary and 

environmental differences among different flocks in the studies. Microorganisms present in the 

hatchery, diet, bedding, and caging materials are known to contribute significantly to the intestinal 

microbiota. Secondly, the discrepancies among different studies may be due to relatively low 

stringency of selection for high and low RFI birds. In our study, 32 out of 56 chickens or 57% of 

the chickens were selected to form high and low RFI groups, whereas approximately 50% of 

chickens were chosen in most earlier studies (Siegerstetter et al., 2018a; Siegerstetter et al., 2018b; 
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Metzler-Zebeli et al., 2019a; Metzler-Zebeli et al., 2019b) and 20% of chickens were selected in a 

fifth study (Siegerstetter et al., 2017). It is possible that a higher stringency of selection for extreme 

high and low RFI chickens may lead to more reproducible results. Thirdly, the discrepancies 

among the studies may also be because it is the function, not the composition, of the intestinal 

microbiota that matters in feed efficiency. Although different studies have revealed an association 

of relative abundance of different bacteria with RFI, it is plausible that consistent functional 

alternations might occur between high and low RFI animals. Techniques such as metagenomics, 

metabolomics, metatranscriptomics, and metaproteomics (Heintz-Buschart et al., 2018; Zhang et 

al., 2019) will be useful to reveal the differences in the functional capacity of the intestinal 

microbiota between high- and low-performing chickens.  

5. Conclusion 

The intestinal microbiota is a complex community of microorganisms and variations in the 

structure and function of individual animals have a profound impact on the health and performance 

outcomes of host animals. In this study, we have identified a number of bacteria that are strongly 

associated with feed efficiency in three different GI locations of broiler chickens. Among those 

newly identified RFI-associated bacteria, most belong to the order Clostridiales. Importantly, we 

revealed the complexity of the intestinal microbiota. While a few Lachnospiraceae family 

members are positively correlated with feed efficiency, other closely related bacteria have an 

opposite impact, highlighting a need to differentiate the bacteria to the species, subspecies, and 

even strain levels. Apparently, this work enhances our understanding of the link between the 

intestinal microbiome and feed efficiency in broilers. Identification of performance-associated 

bacterial taxa marks a first step towards developing efficacious, cost-effective pre- and probiotic 

formulations to replace antibiotics as feed additives for growth promotion and disease prevention. 
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It will be beneficial to further increase the selection pressure for high- and low-performing animals 

with a larger difference in RFI values in future studies. It is also important to investigate not only 

the composition, but also the functional potential of the intestinal microbiota and evaluation their 

functional correlations with feed efficiency in the future.  
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Table 1. Composition of the experimental diets 

Ingredients Starter (D0 – D8) Grower (D9 – D18) Finisher (D19 – D35) 
Yellow Corn (%) 52.8 57.1 60.4 
Soybean Meal (%) 39.7 34.9 30.7 
Soybean Oil (%) 3.5 4.2 5.2 
Dicalcium Phosphate, 18.5% (%) 2.04 1.81 1.68 
Limestone (%) 1.06 0.97 0.95 
Salt (%) 0.48 0.48 0.43 
DL-Methionine (%) 0.16 0.22 0.20 
Threonine (%) 0.05 0.07 0.11 
Poultry Premix, NB 30001 (%) 0.03 0.25 0.25 
    
Total ME (kcal/kg) 2987.60 3082.20 3176.80 
Total CP (%) 21.50 19.61 18.00 

 
1 Supplied per kilogram of diet: manganese, 0.02%; zinc, 0.02%; iron, 0.01%; copper, 0.0025%; iodine, 
0.0003%; selenium, 0.00003%; folic acid, 0.69 mg; choline, 386 mg; riboflavin, 6.61 mg; biotin, 0.03 mg; 
vitamin B6, 1.38 mg; niacin, 27.56 mg; pantothenic acid, 6.61 mg; thiamine, 2.20 mg; manadione, 0.83 mg; 
vitamin B12, 0.01 mg; vitamin E, 16.53 IU; vitamin D3, 2,133 ICU; vitamin A, 7,716 IU.  
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Table 2. Relative abundance (%) of the intestinal bacterial genera in day-35 high and low 
RFI chickens 

Genera High RFI Low RFI P-Value FDR 
Ileum 
Lactobacillus 35.69 32.03 0.355 0.568 
Romboutsia 21.06 29.68 0.417 0.568 
Enterococcus 18.72 19.39 0.396 0.568 
Turicibacter 12.98 8.22 0.748 0.748 
Streptococcus 0.49 7.16 0.299 0.560 
Peptostreptococcaceae_unidentified 6.14 0.16 0.013 * 0.112 
Escherichia/Shigella 3.03 2.18 0.584 0.626 
Lachnospiraceae_unidentified  0.45 0.36 0.117 0.351 
Subdoligranulum 0.26 0.14 0.020 * 0.112 
Terrisporobacter 0.26 0.05 0.199 0.427 
Faecalibacterium 0.18 0.14 0.157 0.392 
Ruminococcaceae_unidentified 0.17 0.10 0.030 * 0.112 
Anaerostipes 0.06 0.04 0.027 * 0.112 
Bacteroides 0.06 0.05 0.558 0.626 
Streptophyta 0.03 0.07 0.466 0.583 
Cecum 
Lachnospiraceae_unidentified 22.18 23.15 0.462 0.865 
Lactobacillus 14.26 11.77 0.664 0.897 
Faecalibacterium 13.23 10.68 0.355 0.865 
Ruminococcaceae_unidentified 10.54 10.67 0.985 0.985 
Subdoligranulum 8.12 12.84 0.193 0.722 
Bacteroides 4.67 5.34 0.748 0.897 
Clostridiales_unidentified 3.64 2.93 0.193 0.722 
Romboutsia 3.14 3.40 0.777 0.897 
Enterococccus 2.44 3.54 0.462 0.865 
Blautia 2.67 3.53 0.720 0.897 
Anaerostipes 1.88 1.95 0.955 0.985 
Butyricicoccus 1.82 1.55 0.375 0.865 
Lachnospiraceae_incertae_sedis 1.42 1.48 0.610 0.897 
Ruminococcus2 1.65 1.13 0.168 0.722 
Clostridium_IV 1.08 0.90 0.168 0.722 
Cloaca     
Lactobacillus 17.05 17.62 0.895 0.895 
Lachnospiraceae_unidentified 14.40 14.81 0.895 0.895 
Romboutsia 13.50 11.63 0.865 0.895 
Enterococcus 7.72 13.16 0.584 0.895 
Subdoligranulum 5.12 7.39 0.692 0.895 
Bacteroides 7.42 4.67 0.146 0.895 
Turicibacter 9.23 2.57 0.317 0.895 
Faecalibacterium 6.10 4.55 0.299 0.895 
Ruminococcaceae_unidentified 4.81 4.60 0.806 0.895 
Streptococcus 0.56 6.36 0.533 0.895 
Clostridiales_unidentified 2.78 2.31 0.417 0.895 
Anaerostipes 1.50 1.93 0.865 0.895 
Escherichia/Shigella 1.26 1.82 0.835 0.895 
Blautia 1.46 1.19 0.417 0.895 
Lachnospiraceae_incertae_sedis 0.85 0.81 0.835 0.895 

 
Note: Mean relative abundance (%) of the top 15 genera are shown, with 15 high and 17 low RFI samples per intestinal 
segment. Statistical significance was determined using the Kruskal-Wallis test with Benjamini-Hochberg correction. 
False discovery rate (FDR) is shown. 



47 
 

Table 3. Relative abundance (%) of the intestinal bacterial features in day-35 high and low 
RFI chickens 

Features  High RFI Low RFI P-Value FDR 
Ileum 
Firmicutes_Lactobacillus_F1 29.18 27.26 0.462 0.674 
Firmicutes_Romboutsia_F2 21.05 29.68 0.417 0.674 
Firmicutes_Enterococcus_F3 18.70 19.38 0.396 0.674 
Firmicutes_Turicibacter_F4 12.97 8.21 0.748 0.876 
Firmicutes_Streptococcus_F8 0.49 7.16 0.335 0.674 
Firmicutes_Lactobacillus_F10 3.19 2.89 0.865 0.927 
Firmicutes_Peptostreptococcaceae_unidentified_F15 5.16 0.14 0.018 * 0.137 
Proteobacteria_Escherichia/Shigella_F12 3.03 2.18 0.584 0.730 
Firmicutes_Lactobacillus_F24 1.13 0.92 0.788 0.876 
Firmicutes_Lactobacillus_F26 1.25 0.25 0.433 0.674 
Firmicutes_Lactobacillus_F22 0.73 0.68 0.472 0.674 
Firmicutes_Peptostreptococcaceae_unidentified_F43 0.98 0.02 0.009 * 0.137 
Firmicutes_Terrisporobacter_F75 0.26 0.05 0.199 0.597 
Firmicutes_Subdoligranulum_F6 0.18 0.09 0.003 * 0.115 
Firmicutes_Lactobacillus_F102 0.16 0.02 0.252 0.674 
Firmicutes_Ruminococcaecea_unidentified_F11 0.09 0.06 0.155 0.597 
Firmicutes_Faecalibacterium_F9 0.07 0.07 0.985 0.985 
Firmicutes_Faecalibacterium_F5 0.06 0.04 0.570 0.730 
Firmicutes_Lachnospiraceae_unidentified_F14 0.05 0.04 0.375 0.674 
Firmicutes_Lachnospiraceae_unidentified_F16 0.05 0.03 0.060 0.362 
Firmicutes_Anaerostipes_F17 0.03 0.03 0.015 * 0.137 
Firmicutes_Lachnospiraceae_unidentified_F19 0.03 0.06 0.772 0.876 
Firmicutes_Lachnospiraceae_unidentified_F20 0.05 0.03 0.121 0.597 
Cyanobacteria_Chloroplast_Streptophyta_F192 0.02 0.05 0.466 0.674 
Firmicutes_Lachnospiraceae_unidentified_F18 0.04 0.03 0.416 0.674 
Firmicutes_Faecalibacterium_F21 0.05 0.02 0.174 0.597 
Firmicutes_Bacteroides_F7 0.03 0.02 0.450 0.674 
Firmicutes_Subdoligranulum_F30 0.03 0.02 0.195 0.597 
Firmicutes_Lachnospiraceae_unidentified_F23 0.03 0.03 0.544 0.730 
Firmicutes_Clostridium_sensus_stricto_F227 0.04 0.00 0.960 0.985 
Cecum 
Firmicutes_Lactobacillus_F1 11.78 10.28 0.985 0.985 
Firmicutes_Subdoligranulum_F6 4.68 8.89 0.439 0.894 
Firmicutes_Faecalibacterium_F5 6.76 5.45 0.748 0.894 
Firmicutes_Faecalibacterium_F9 5.10 4.25 0.637 0.894 
Firmicutes_Ruminococcaceae_unidentied_F11 4.27 4.60 0.610 0.894 
Firmicutes_Romboutsia_F2 3.14 3.40 0.777 0.894 
Firmicutes_Enterococcus_F3 2.43 3.52 0.462 0.894 
Bacteroidetes_Bacteroides_F7 2.42 2.81 0.748 0.894 
Firmicutes_Lachnospiraceae_unidentified_F20 1.40 2.59 0.558 0.894 
Firmicutes_Lachnospiraceae_unidentified_F18 1.85 1.98 0.439 0.894 
Bacteroidetes_Bacteroides_F13 1.68 1.94 0.664 0.894 
Firmicutes_Lachnospiraceae_unidentified_F16 2.30 1.18 0.558 0.894 
Firmicutes_Lachnospiraceae_unidentified_F19 0.60 2.96 0.116 0.894 
Firmicutes_Lachnospiraceae_unidentified_F14 1.76 1.64 0.439 0.894 
Firmicutes_Subdoligranulum_F25 1.66 1.37 0.834 0.894 
Firmicutes_Anaerostipes_F17 1.46 1.57 0.777 0.894 
Firmicutes_Lachnospiraceae_unidentified_F23 1.49 1.30 0.610 0.894 
Firmicutes_Ruminococcaceae_unidentified_F27 1.14 1.35 0.664 0.894 
Firmicutes_Subdoligranulum_F31 1.24 0.91 0.954 0.985 
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Firmicutes_Subdoligranulum_F30 0.54 1.67 0.739 0.894 
Firmicutes_Faecalibacterium_F21 1.12 0.82 0.625 0.894 
Firmicutes_Turicibacter_F4 1.18 0.43 0.533 0.894 
Firmicutes_Ruminococcaceae_unidentified_F34 0.91 0.74 0.485 0.894 
Firmicutes_Lachnospiraceae_unidentified_F33 0.89 0.70 0.146 0.894 
Firmicutes_Lachnospiraceae_incertae_sedis_F32 0.93 0.58 0.213 0.894 
Firmicutes_Lachnospiraceae_unidentified_F35 0.83 0.68 0.157 0.894 
Firmicutes_Ruminococcus2_F28 0.92 0.58 0.156 0.894 
Firmicutes_Butyricoccus_F36 0.77 0.71 0.610 0.894 
Firmicutes_Ruminococcaceae_unidentified_F37 0.65 0.82 0.806 0.894 
Firmicutes_Lachnospiraceae_incertae_sedis_F40 0.48 0.88 0.089 0.894 
Cloaca     
Firmicutes_Lactobacillus_F1 14.17 15.05 0.835 0.985 
Firmicutes_Romboutsia_F2 13.50 11.62 0.865 0.985 
Firmicutes_Enterococcus_F3 7.71 13.16 0.584 0.985 
Firmicutes_Turicibacter_F4 9.23 2.57 0.317 0.985 
Firmicutes_Subdoligranulum_F6 3.16 5.40 0.835 0.985 
Firmicutes_Streptococcus_F8 0.56 6.36 0.509 0.985 
Bacteroidetes_Bacteroides_F7 3.76 2.48 0.146 0.985 
Firmicutes_Faecalibacterium_F5 3.44 2.48 0.193 0.985 
Bacteroidetes_Bacteroides_F13 2.72 1.65 0.109 0.985 
Firmicutes_Ruminococcaceae_unidentified_F11 2.18 1.99 0.865 0.985 
Firmicutes_Faecalibacterium_F9 2.24 1.76 0.290 0.985 
Firmicutes_Lachnospiraceae_unidentified_F19 0.59 3.00 0.290 0.985 
Proteobacteria_Escherichia/Shigella_F12 1.26 1.82 0.835 0.985 
Firmicutes_Anaerostipes_F17 1.25 1.68 0.835 0.985 
Firmicutes_Lachnospiraceae_unidentified_F20 0.85 1.91 0.720 0.985 
Firmicutes_Lachnospiraceae_unidentified_F14 1.39 1.29 0.336 0.985 
Firmicutes_Lactobacillus_F10 1.19 1.40 0.508 0.985 
Firmicutes_Lachnospiraceae_unidentified_F23 1.30 1.02 0.985 0.985 
Firmicutes_Lachnospiraceae_unidentified_F16 1.55 0.69 0.508 0.985 
Firmicutes_Lachnospiraceae_unidentified_F18 0.91 0.97 0.835 0.985 
Firmicutes_Subdoligranulum_F30 0.48 1.30 0.984 0.985 
Bacteroidetes_Bacteroides_F29 0.94 0.55 0.145 0.985 
Firmicutes_Subdoligranulum_F25 0.78 0.42 0.832 0.985 
Firmicutes_Lactobacillus_F26 0.82 0.34 0.554 0.985 
Firmicutes_Ruminococcaceae_unidentified_F27 0.47 0.57 0.865 0.985 
Firmicutes_Subdoligranulum_F31 0.69 0.26 0.984 0.985 
Firmicutes_Clostridiales_unidentified_F41 0.50 0.46 0.417 0.985 
Firmicutes_Lachnospiraceae_unidentified_F33 0.64 0.26 0.002 * 0.985 
Firmicutes_Lactobacillus_F22 0.46 0.40 0.891 0.985 
Firmicutes_Lachnospiraceae_incertae_sedis_F40 0.32 0.54 0.336 0.985 

 
Note: Mean relative abundance (%) of the top 30 features are shown, with 15 high and 17 low RFI samples per 
intestinal segment. Statistical significance was determined using the Kruskal-Wallis test with Benjamini-Hochberg 
correction. False discovery rate (FDR) is shown.  
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Fig. 1. Production performance of the chickens with extremely high and low RFI values. Male 
Cobb chickens were individually housed from day 14 to 35 with free access to non-medicated feed. 
Residual feed intake (RFI) was calculated individually for 56 apparently healthy chickens, from 
which 15 and 17 chickens with extremely high and low RFI values, respectively, were selected (as 
shown by dashed lines) (A). RFI (B), body weight (C), average daily gain (ADG) (D), average 
daily feed intake (ADFI) (E), and feed conversion ratio (FCR) (F) were calculated for two groups 
of selected chickens. Statistical significance was determined using Student's t-test.  
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Fig. 2. Alpha diversity of the ileal, cecal, and cloacal microbiota on day 35 between high and 
low RFI chickens. Differences in richness, overall diversity, and evenness were calculated using 
observed features (A), Pielou’s Evenness Index (B), and Shannon Index (C), respectively. Results 
were plotted using box and whisker plots, in which the middle line denoted the median value and 
the lower and upper hinges represented the first and third quartiles, respectively. Whiskers 
extended from the hinge to the highest or lowest value no farther than 1.5 × the interquartile range. 
Points outside of this range are considered outliers. Statistical significance was determined using 
the Kruskal-Wallis test. 

 

Fig. 3. Beta diversity of the ileal, cecal, and cloacal microbiota on day 35 between high and 
low RFI chickens. Principle coordinate analysis (PCoA) plots were generated using Bray-Curtis 
(A) and Jaccard indices (B), respectively. Statistical significance and R-values were determined 
using permutational multivariate analysis of variance (PERMANOVA). 
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Fig. 4. Composition of the ileal, cecal, and cloacal microbiota on day 35 between high and 
low RFI chickens. Relative abundance of the top 15 genera (A, B, and C) and top 30 features (D, 
E, and F) were shown at each intestinal location. 
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Fig. 5. LEfSe analysis of the day-35 ileal microbiota of high and low RFI chickens.  (A) 
Differential enrichment of the bacterial features was determined using LEfSe with a logarithmic 
LDA threshold of 2.0. Note that only three bacterial features were enriched in the high RFI group, 
while no preferential enrichment was detected in the low RFI group. (B) Relative abundance of 
three differentially enriched bacterial features. Results were plotted using box and whisker plots, 
in which the middle line denoted the median value and the lower and upper hinges represented the 
first and third quartiles, respectively. Whiskers extended from the hinge to the highest or lowest 
value no farther than 1.5 × the interquartile range. Points outside of this range are considered 
outliers. Significance was calculated using the Kruskal-Wallis test. 
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Fig. 6. LEfSe analysis of the day-35 cecal microbiota of high and low RFI chickens.  (A) 
Differential enrichment of the bacterial features was determined using LEfSe with a logarithmic 
LDA threshold of 2.0. (B) Relative abundance of five differentially enriched bacterial features. 
Results were plotted using box and whisker plots, in which the middle line denoted the median 
value and the lower and upper hinges represented the first and third quartiles, respectively. 
Whiskers extended from the hinge to the highest or lowest value no farther than 1.5 × the 
interquartile range. Points outside of this range are considered outliers. Significance was calculated 
using the Kruskal-Wallis test.   
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Fig. 7. LEfSe analysis of the day-35 cloacal microbiota of high and low RFI chickens.  A. 
Differential enrichment of the bacterial features was determined using LEfSe with a logarithmic 
LDA threshold of 2.0. B. Relative abundance of differentially enriched bacterial features. Results 
were plotted using box and whisker plots, in which the middle line denoted the median value and 
the lower and upper hinges represented the first and third quartiles, respectively. Whiskers 
extended from the hinge to the highest or lowest value no farther than 1.5 × the interquartile range. 
Points outside of this range are considered outliers. Significance was calculated using the Kruskal-
Wallis test.   
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Fig. 8. Spearman correlation between RFI and relative abundance of bacterial features in 
the ileum of day-35 chickens. (A) All 56 ileal samples were used in Spearman’s rank correlation 
analysis and only those features with P < 0.05 and |R| ≥ 0.30 were shown.  Note that there were no 
features showing a negative correlation with RFI. (B) Scatterplots of individual ileal bacterial 
features showing a significant correlation with RFI. P and R values were indicated for each feature. 
The solid line in the graph represented the line of best fit, while gray shading around the line 
indicated the 95% confidence interval. In a few cases, 1-3 extremely outlier samples were omitted 
for the sake of better visualization.  
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Fig. 9. Spearman correlation between RFI and relative abundance of bacterial features in 
the cecum of day-35 chickens. (A) All 56 cecal samples were used in Spearman’s rank correlation 
analysis and only those features with P < 0.05 and |R| ≥ 0.30 were shown. (B) Scatterplots of 
individual cecal bacterial features showing a significant correlation with RFI. P and R values were 
indicated for each feature. The solid line in the graph represented the line of best fit, while gray 
shading around the line indicated the 95% confidence interval.  
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Fig. 10. Spearman correlation between RFI and relative abundance of bacterial features in 
the cloaca of day-35 chickens. (A) All 56 cloacal samples were used in Spearman’s rank 
correlation analysis and only those features with P < 0.05 and |R| ≥ 0.30 were shown. (B) 
Scatterplots of individual cloacal bacterial features showing a significant correlation with RFI. P 
and R values were indicated for each feature. The solid line in the graph represented the line of 
best fit, while gray shading around the line indicated the 95% confidence interval. In a few cases, 
1-3 extremely outlier samples were omitted for the sake of better visualization. 
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Figure 11. Multiple sequence alignment (A) and percent identity matrix (B) among six closely 
related Lachnospiraceae members that are strongly associated with residual feed intake. 
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