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Abstract

Numerical weather prediction (NWP) models often fail to correctly forecast both

the initiation and evolution of nocturnal convection. To improve our understanding of such

events, researchers collected a unique dataset of thermodynamic and kinematic remote

sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment.

This dissertation evaluates the impacts made to forecasts of nocturnal convection when as-

similating this network that includes atmospheric emitted radiance interferometers (AERIs),

Doppler lidars, radar wind profilers (RWPs), high-frequency rawinsondes, and mobile

surface observations.

Using an advanced, ensemble-based data assimilation system, we first evaluate the

impacts of these datasets for a single nocturnal convection initiation (CI) event. Compared

to operational forecasts, assimilating the PECAN dataset improves the timing, location, and

orientation of the CI forecast. We show that AERIs, RWPs, and rawinsondes produce the

largest benefits by enhancing the moisture advection into the region of CI. The impacts of

assimilating these datasets also remains large throughout the growth of the CI event into

a mesoscale convective system (MCS). Assimilating Doppler lidar and surface data only

slightly improves the CI forecasts by enhancing the convergence along an outflow boundary

that partially forces the CI. While this case study suggests positive results from assimilating

high-frequency profiling data, one single event cannot fully represent the wide diversity of

mechanisms and environments that can lead to nocturnal convection.

To address additional types of nocturnal CI, we next expand our work into a sys-

tematic evaluation of the impact of assimilating a collocated network of high-frequency,

ground-based thermodynamic and kinematic profilers collected during PECAN. For 13

nocturnal CI events, we find small but consistent improvements when assimilating ther-

modynamic observations collected by AERIs. Through midlevel cooling and moistening,

assimilating the AERIs increases the skill for both nocturnal CI and precipitation forecasts.

Assimilating composite kinematic datasets collected by Doppler lidars and RWPs instead

xxvi



results in slight degradations to the forecast quality, including decreases in skill and tradi-

tional contingency metrics. The impacts from assimilating thermodynamic and kinematic

profilers often counteract each other, such that we find little impact on the detection of CI

when both are assimilated. However, assimilating both datasets improves various properties

of the CI events that are successfully detected (timing, distance, shape, etc.).

We hypothesize that a lack of flow-dependent methods to assign observation errors

likely contributes to the forecast degradations for some cases. This theory motivates our

final study which evaluates the impact of using novel methods for assigning observation

errors when assimilating ground-based thermodynamic profilers. We find that a static

error inflation method results in forecast degradations compared to a reference experiment

where no remote sensing data are assimilated. These issues are partially resolved when

adaptively inflating the observation errors or when using a method that computes the full

observation error based on observation-space diagnostics. Flow-dependent extensions of

each method are shown to further improve forecasts compared to their static counterpart

by increasing observation errors for problematic retrievals. Assuming that the observation

errors are correctly diagnosed, the results from this dissertation suggest that assimilating a

network of ground-based thermodynamic profilers can greatly improve forecasts of nocturnal

convection.
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Chapter 1

Introduction

Multiple sections of this dissertation are direct excerpts of Degelia et al. (2019, ©American

Meteorological Society) and Degelia et al. (2020, ©American Meteorological Society). This

includes parts of Chapters 1, 2, 3, and 4.

1.1 Background and motivation

A nocturnal maximum in precipitation exists in the Great Plains of the United States

(Surcel et al. 2010). Much of this rainfall occurs within mesoscale convective systems

(MCS) that propagate eastward after developing over the higher terrain near the Rocky

Mountains (Carbone et al. 2002; Trier et al. 2017). Locally-forced nocturnal convection

initiation (CI) also contributes to the precipitation maximum, as Weckwerth and Romatschke

(2019) find that CI events produce 30-60% of observed nocturnal rainfall in the Great Plains.

Though this precipitation is beneficial for agricultural purposes, nocturnal convection also

produces all types of severe weather (Horgan et al. 2007) with hail and wind being the most

common threats (Reif and Bluestein 2017).

Despite the frequent occurrence of nocturnal convection, forecast skill for such events

is typically lower than corresponding forecasts of daytime convection (Clark 2016; Keclik

et al. 2017). Reif and Bluestein (2017) explain that many NWP systems are typically tuned

specifically for mechanisms that initiate surface-based convection during the day, whereas

nocturnal convection tends to be initiated by features above the boundary layer (Corfidi et al.

2008). As such, NWP models routinely fail to predict many mechanisms responsible for

both the initiation and evolution of nocturnal convection (e.g., Davis et al. 2003; Johnson

and Wang 2017; Johnson et al. 2017a; Stelten and Gallus 2017; Johnson et al. 2017b).

For example, various studies find that NWP models often fail to correctly predict both the
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height and strength of the nocturnal low-level jet (LLJ; Storm et al. 2009; Shin and Hong

2011; Smith et al. 2015; Johnson and Wang 2017; Johnson et al. 2017a) which commonly

contributes to the development of nocturnal convection through enhanced convergence at

its terminus (Trier and Parsons 1993). Models also struggle to simulate elevated moist

layers that provide a source of instability for nocturnal convection (Peters et al. 2017).

Furthermore, many studies also document the inability of modern NWP systems to correctly

predict atmospheric bores (Johnson et al. 2017b; Chipilski et al. 2020) that commonly aid in

the maintenance of nocturnal MCSs (Haghi et al. 2018).

Assimilating surface and upper-air observations can resolve some issues in convective-

scale NWP by improving analyses of both the pre-convective environment and the forcing

mechanisms responsible for CI (e.g., Johnson et al. 2015; Degelia et al. 2018; Chen et al.

2020). Sobash and Stensrud (2015) find that assimilating mesonet observations for a

daytime CI event can improve moisture errors and associated CI forecasts. However, few

observations exist that frequently sample the 900-600 hPa layer where most nocturnal

convection originates (Wilson and Roberts 2006; Weckwerth et al. 2019). Observations in

this layer are typically provided by conventional rawinsondes which only collect data a few

times per day, despite convective-scale environments evolving on the order of minutes to

hours (Orlanski 1975).

To advance the prediction and understanding of nocturnal convection, scientists con-

ducted the Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) experiment in

2015. As a part of PECAN, various remote sensing profilers were deployed across the Great

Plains, including Atmospheric Emitted Radiance Interferometers (AERIs; Feltz et al. 2003;

Turner and Löhnert 2014), radar wind profilers (RWPs; Ecklund et al. 1988), and Doppler

lidars (Menzies and Hardesty 1989). Although their errors are often larger than correspond-

ing in-situ measurements, remote sensing instruments can provide thermodynamic and

kinematic data throughout much of the lower troposphere multiple times per hour. As such,

assimilating similar datasets individually has been shown to improve convective forecasts
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during the daytime (e.g., Kawabata et al. 2007; Wulfmeyer et al. 2006), primarily through

modifications of the low-level moisture field. For example, Benjamin et al. (2004) and

Kawabata et al. (2014) show that assimilating RWPs or Doppler lidars can enhance moisture

advection and increase the convective available potential energy (CAPE) for developing

convection. Additionally, Coniglio et al. (2019) recently perform the first evaluation of the

impact of assimilating AERI data and find that the high-frequency thermodynamic retrievals

can lead to small improvements in short-term convective forecasts.

Given that remote sensing instruments can provide high-frequency profiles of elevated

features, we hypothesize that assimilating these data could be especially impactful for im-

proving forecasts of nocturnal convection. Chipilski et al. (2020) investigate this hypothesis

by assimilating remote sensing data for a bore-aided MCS during PECAN. They find that

assimilating AERIs enhances moisture advection into the MCS, whereas kinematic profilers

improve model biases in the structure of the simulated bore. In Chapter 3 of this dissertation,

we perform a similar analysis to determine whether assimilating observations collected

during PECAN can improve forecasts of a nocturnal CI event. We specifically evaluate the

impact of assimilating these data on mechanisms important to the CI process, including the

elevated moist layer and nocturnal LLJ.

Though the first section of this dissertation addresses the impacts of assimilating PECAN

data for a single CI event, nocturnal convection can also be generated and supported by

many mechanisms that occur at a variety of scales. Weckwerth et al. (2019) document

many types of CI observed during PECAN including larger-scale frontal overrunning events,

events forming near an MCS, and CI developing along a bore or density current. Each

type of CI event is dynamically different and occurs within a different thermodynamic

environment. As such, the benefits of assimilating remote sensing datasets are likely case-

and environment-dependent. This wide spectrum of nocturnal convective events motivates

Chapter 4 of this dissertation which systematically evaluates the impact of assimilating the

PECAN dataset for a large set of nocturnal CI events.
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While many studies note the positive impacts of assimilating remote sensing instruments,

others find that these data can sometimes degrade forecast skill for certain events. For

example, Chipilski et al. (2020) find that assimilating AERIs also introduces a positive bias

in the simulated bore height despite improving the overall convective forecast. Coniglio

et al. (2019) also discuss a few cases where assimilating AERI data reduces forecast skill for

CI forecasts during the day. While forecast degradations during DA have been documented

previously (e.g., Sun et al. 2012; Djalalova et al. 2016), such impacts are frequently found

when assimilating remote sensing data (Bormann et al. 2016). These findings indicate that

many unanswered questions remain about how to best assimilate the thermodynamic and

kinematic profilers collected during PECAN.

Incorrectly assigned observation errors could be one potential source of forecast degra-

dations when assimilating remote sensing data. In DA, the analysis state is a function of the

background and observation error covariances (Kalnay 2003). If either set of errors are in-

correct, the final analysis state will be suboptimal and subsequent forecasts can suffer. Much

DA research focuses on improving background error covariances through ensemble- or

hybrid-based methods (Whitaker and Hamill 2002; Buehner et al. 2010), while observation

errors are typically assumed to be constant (Bormann et al. 2016). However, observation

errors for remote sensing profilers can include large systematic or representation compo-

nents that vary significantly in space and time (Fowler and Van Leeuwen 2013). As such,

assuming a constant observation error when assimilating such data can naturally lead to

some observations being underweighted (overestimated observation errors) or overweighted

(underestimated observation errors) during DA.

Recent works evaluate the benefits of adaptively inflating observation errors for satellite

data (e.g., Geer and Bauer 2011; Minamide and Zhang 2017). These studies find potential

forecast improvements by limiting impacts of cloudy radiance data when the observation

differs from the background forecast. Similar methods could potentially prove useful

when assimilating AERI observations, as Turner and Blumberg (2019) document potential
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retrieval errors below cloud base due to issues separating cloud emission from the total

measured emission. Desroziers et al. (2005) present another potential solution to estimating

flow-dependent observation errors using observation-space diagnostics such as background

and analysis residuals. Such methods have also been shown to be beneficial when assim-

ilating satellite observations (e.g., Weston et al. 2014; Cambell et al. 2017), though these

applications sacrifice time-dependent observation errors for statistical robustness. To further

improve forecasts of nocturnal convection, Chapter 5 expands upon previous chapters by

evaluating whether novel methods for assigning flow-dependent observation errors can

further improve the benefits of assimilating the PECAN dataset.

1.2 Overview of this dissertation

This dissertation employs a Gridpoint Statistical Interpolation (GSI)-based Ensemble

Kalman filter (EnKF) to evaluate the impact of assimilating PECAN observations for a vari-

ety of nocturnal convective events. We also employ the Weather Research and Forecasting

(WRF) – Advanced Research WRF model (WRF-ARW) as the forecast component of this

NWP system. The configuration of these systems is detailed in Chapter 2, along with an

overview of the PECAN dataset. Given the experimental nature of many of the instruments

employed during PECAN, we perform quality control and observation pre-processing steps

that are also described in Chapter 2. This dissertation then addresses three primary scientific

questions.

Chapter 3 first explores whether assimilating PECAN observations can improve simu-

lations of a nocturnal CI event and its relevant initiation mechanisms. The CI of interest

occurred near an elevated moist layer located just north of the intersection of the LLJ with a

synoptic boundary. This setup is commonly observed during CI events in the Great Plains

(Weckwerth et al. 2019). In addition to the convective impacts, we perform data denial

experiments that assess the relative impact of each observation type (i.e., thermodynamic

profilers, kinematic profilers, surface observations).
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Next, Chapter 4 addresses the systematic impact of assimilating the PECAN observations

across a larger set of nocturnal CI events. We select 13 cases observed during PECAN that

capture the wide spectrum of mechanisms responsible for nocturnal CI, including frontal

overrunning events, CI occurring near an MCS, bore- or outflow-generated events, and

pristine CI events that develop without the influence of parent convective systems or obvious

surface boundaries. To evaluate the forecasts over a large set of cases, we also develop an

object-based algorithm for detecting and verifying forecasts of CI that is detailed within

Chapter 4. This chapter also specifically assesses the impact of assimilating collocated

datasets.

Finally, Chapter 5 of this dissertation explores whether forecasts of nocturnal convection

can be further improved by applying novel methods for assigning observation errors. These

methods, including both static and flow-dependent methods for computing the full observa-

tion error, are detailed within the methods section of Chapter 5. To evaluate these methods,

we select a case from the systematic study presented in Chapter 4 in which assimilating

PECAN observations degrades the convective forecast skill. A general summary and plans

for future work are given in Chapter 6.
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Chapter 2

Methods and system description

In each chapter of this dissertation, we assimilate both conventional and PECAN obser-

vations using a GSI-based EnKF recently extended for meso- and convective-scales. GSI

performs the observation quality control and computes the observation-space statistics, while

EnKF computes the background error covariance and performs the DA update. Additionally,

we pair the GSI-based EnKF with the WRF-ARW model (Skamarock et al. 2008) as the

forecast element of the DA system. Each component of this system is detailed below along

with a summary of the assimilated datasets.

2.1 Description and configuration of the GSI-based ensemble Kalman

filter (EnKF)

During DA cycling, the GSI-based EnKF uses observations (yo) to update a prior

estimate of the model state (xb) into an analysis (xa). The EnKF improves upon other DA

methods such as 3D-Var by sampling flow-dependent background error covariances (Pb)

from ensemble forecasts (Johnson et al. 2015; Houtekamer and Zhang 2016). For this

dissertation, we utilize the ensemble square root filter (EnSRF; Whitaker and Hamill 2002)

version of the EnKF wherein observations are serially assimilated to update the mean state

following:

xa = xb +K(yo−Hxb) (2.1)

K = PbHT(HPbHT +R)−1 (2.2)

Here, K represents the Kalman gain, R represents the observation error covariance matrix,

and H is the linearized observation operator performed by GSI. To update the ensemble
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Table 2.1: List of covariance localization radii applied throughout this dissertation.

Observation type Horizontal localization (km) Vertical localization [ln(P/Pre f )]
Conventional observations, PECAN rawinsondes, AERIs 700, 200 1.1, 0.55
Doppler lidars and RWPs 700, 200 0.20, 0.20
Radar observations N/A, 200 N/A, 0.55

member perturbations (given by the prime symbols), EnSRF computes a modified Kalman

gain (K̃) following:

x′a = x′b− K̃Hx′b (2.3)

K̃ = (1+
√

R/(HPbHT +R))−1K (2.4)

We refer to Whitaker and Hamill (2002) for additional details on the EnKF and EnSRF,

including the methods used to compute the matrix products PbHT and HPbHT.

Computational costs limit the number of ensemble members that can be used to sample

Pb. To treat these sampling errors, we use covariance localization following a Gaspari

and Cohn (1999) function that limits observation impacts beyond a certain distance. The

localization radii for conventional observations are set following Degelia et al. (2018).

For the PECAN observations, we perform sensitivity tests to determine the localization

radii that produce the highest fractions skill score (FSS; Roberts and Lean 2008) for the

case study described in Chapter 3 (values shown in Table 2.1). Additionally, to treat

errors associated with the misrepresentation of background errors, both a constant 15%

(multiplicative; Whitaker and Hamill 2012), as well as a relaxation to prior spread of 95%

(Whitaker and Hamill 2012) inflation methods are applied to the ensemble during every

DA cycle. The constant inflation parameters smoothly decrease to ∼3% at the model top to

avoid overdispersion (Johnson et al. 2015; Zhu et al. 2013). Finally, to maintain ensemble

spread and quickly introduce observed storms into the analyses, random Gaussian noise

with zero mean is added during each cycle and to every grid point for temperature (σ =

0.5 K), dewpoint temperature (σ = 0.5 K), and horizontal winds (σ = 0.5 ms−1) following

Wang and Wang (2017).
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2.2 Configuration of the WRF-ARW forecast system

All simulations presented herein utilize version 3.7.1 of WRF-ARW. Following Johnson

et al. (2017a), we first generate 40 ensemble members by downscaling members 1 through

20 of both the Global Ensemble Forecast System (GEFS; Wei et al. 2008) and Short-Range

Ensemble Forecast (SREF; Du et al. 2014). These operational simulations initialize, and

update the lateral boundary conditions, for our outer, CONUS domain with 12-km grid

spacing (d01 in Fig. 2.1). We note that the native GEFS and SREF systems have horizontal

resolutions of approximately 34 km and 16 km, respectively. After DA is complete on the

outer domain, an inner, convection-permitting domain with 4-km grid spacing is nested

within the mesoscale grid (d02 in Fig. 2.1). The simulations presented in chapter 4 also

utilize a third domain that is described later. Each domain features 50 vertical levels on a

stretched grid with a 50 hPa model top. The vertical grid spacing is approximately 200 m in

the planetary boundary layer (PBL) and increases to 450 m at 500 hPa.

Fixed physical parameterization schemes are used for all 40 members during both the

DA and forecast periods that follow Degelia et al. (2018; schemes listed in Table 2.2). These

include the 1.5-order, local closure Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi

and Niino 2006) PBL scheme that Coniglio et al. (2013) find to be nearly unbiased for

nighttime profiles of temperature and moisture. During DA, we utilize the WRF single-

moment 6-class (WSM6; Hong and Lim 2006) microphysical parameterization scheme

to be consistent with the observation operator for reflectivity in GSI (Johnson et al. 2015;

Wang and Wang 2017). We use the Lin et al. (1983) scheme during the forecast period that

Degelia et al. (2018) subjectively find performs well for CI forecasts. Finally, we also apply

the Noah land surface model (Ek et al. 2003), Rapid Radiative Transfer Model for general

circulation models (longwave radiation; Iacono et al. 2008), Goddard shortwave radiation

(Tao et al. 2003), and the Grell and Freitas (2013) cumulus parameterization schemes. Given

that the 4-km domain can explicitly resolve convective storms, we only utilize the cumulus

parameterization on d01.
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Figure 2.1: Domain configurations used during DA. Also shown are the location of each
fixed PISA (FP) observing site.

Table 2.2: Physical parameterizations used in WRF-ARW.

Parameterization type Scheme name
Microphysical parameterization (DA) WSM6 (Hong and Lim 2006)
Microphysical parameterization (forecast) Lin et al. (1983)
PBL parameterization MYNN (Nakanishi and Niino 2006)
Longwave radiation parameterization RRTMG (Iacono et al. 2008)
Shortwave radiation parameterization Goddard (Tao et al. 2003)
LSM Noah (Ek et al. 2003)
Cumulus parameterization Grell and Freitas (2013)
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2.3 Overview of assimilated datasets

Each section of this dissertation assimilates conventional, radar, and PECAN observa-

tions. The conventional data consist of operational surface, rawinsondes, aircraft, ship, and

buoy observations obtained from the North American Mesoscale Data Assimilation System

(NDAS; Rogers et al. 2009). The radar observations include reflectivity and radial velocity

data that have been pre-processed using WDSS-II (Lakshmanan et al. 2007). We assimilate

the full radar dataset (i.e., no thinning) from all WSR-88D stations within the PECAN

domain, following the methods described in Johnson et al. (2015) and Degelia et al. (2018).

The PECAN observations (Table 2.3) are obtained from the PECAN field catalog

(available online at http://catalog.eol.ucar.edu/pecan) and consist of data collected from

both fixed and mobile PECAN Integrated Sounding Arrays (PISAs), mobile mesonets, and

mobile GPS Advanced Upper-Air Sounding Systems (MGAUS). Each fixed (FP; Fig. 2.1)

and mobile PISA (MP) features different instruments as described by Geerts et al. (2017).

The instruments assimilated here are further described below but include AERIs (∼5-min

thermodynamic profiles), Doppler lidars, RWPs, rawinsondes, and surface observations.

The data are typically quality controlled before being uploaded to the field catalog, though

we further pre-process each dataset using a variety of methods. The benefits these pre-

processing steps are shown in Haghi et al. (2018). Additionally, we note that the exact

instruments assimilated differ in each chapter.

2.3.1 AERIs

AERIs retrieve thermodynamic profiles from observations of downwelling infrared

radiance (Turner and Löhnert 2014) and have been employed to study a variety of meteoro-

logical phenomena including the African monsoon (Hansell et al. 2010), shallow convective

clouds (Fast et al. 2019), atmospheric bores (Toms et al. 2017), low-frequency gravity waves

(Adams-Selin and Schumacher 2019), and nocturnal convection (Geerts et al. 2017). They

can capture thermodynamic data on the order of minutes, allowing for the rapid monitoring
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Table 2.3: List of PECAN observing sites and instruments that are assimilated across
this dissertation. We note that the exact sites and instruments assimilated differ in each
chapter. All AERI observations are produced by the AERIoe retrieval technique (Turner and
Löhnert 2014) except at FP1 where the data are generated by AERIprof (Feltz et al. 2003).
Additionally, we note that the FP1 site includes three RWPs spaced by an average of 17 km.
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of elevated mixed layers (Feltz et al. 2003) and boundary layer stability (Blumberg et al.

2017). Recently, Turner and Löhnert (2014) introduce an optimal estimation retrieval algo-

rithm (AERIoe) that allows for computing unique uncertainty profiles for AERI observations,

improving the potential impact of assimilating this dataset by allowing for less-confident

retrievals, such as those in cloudy conditions, to be weighted less.

In this dissertation, we assimilate the temperature and moisture profiles output by the

AERI retrieval (as opposed to the raw radiance observations). Because the retrieval accuracy

quickly decreases with height and above cloudy layers, no observations above either 3 km

AGL or cloud base are assimilated here (D. Turner, personal communication). Additionally,

to reduce both the correlated and uncorrelated observation errors, a “superob” method (e.g.,

Berger 2004) is applied to each retrieval wherein the observations are averaged over a 10

hPa depth. For all observation types, we only apply the superob method to the portions of

the profile where the native observation spacing is less than the superob depth. We also do

not apply any temporal averaging or thinning to the AERI data, as one large advantage of

assimilating this instrument is its ability to capture rapid changes in moisture (Chipilski et al.

2020).

2.3.2 Vertical wind profilers

Multiple types of vertical wind profilers, including both RWPs and Doppler lidars, were

deployed during PECAN. These instruments are also commonly used for both forecast

and research applications. Similar to Doppler weather radars, RWPs actively observe

horizontal winds by measuring the radio waves produced by Bragg scattering from in-

homogeneities in the thermodynamic field. Doppler lidars operate similarly, measuring

light waves backscattered by smaller aerosols. These kinematic profilers can be used to

measure various phenomena that conventional observations typically cannot observe with

high vertical or temporal resolution, including LLJs (Banta et al. 2002; Smith et al. 2019) or

atmospheric turbulence (Smalikho et al. 2005; Calhoun et al. 2006; O’Connor et al. 2010).
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Except at FP3, the Doppler lidars were not co-located with RWPs. Thus, RWPs and

Doppler lidars could often be considered complimentary. However, differences in the design

of the instruments could lead to different DA impacts. Doppler lidars are only able to collect

useful information from the lowest 1-3 km of the atmosphere due to the depth of potential

scatterers (Menzies and Hardesty 1989). Doppler lidars also tend to sample finer-scale flow

fields, such as turbulence, compared to RWPs. Conversely, RWPs collect backscatter from

larger particles (e.g., hydrometeors, dust, insects) which are present as high as 10 km above

ground level (AGL).

Here, we only assimilate vertical profiles of zonal and meridional wind (i.e., no radial

velocity data) collected by these wind profilers. The vertical profiles from each RWP are

provided as 30-min averages. At FP4, FP5, and MP4, the RWPs are calculated using the

Improved Moments Algorithm (Morse et al. 2002) which provides a confidence measure for

each observation. We reject any data with a confidence below 0.5 as recommended by the

data providers. At FP3, any 449 MHz wind profiler data with a signal-to-noise ratio less

than -6 dB are rejected (W. Brown, personal communication). Furthermore, at FP4 and FP5,

the 915 MHz profilers operate in both a “low” mode which features 180 m vertical sampling

up to 4 km AGL, and a “high” mode which features 360 m vertical sampling up to 12 km

AGL. We choose to form a composite profile at these sites by rejecting any “high” mode

data below 4 km AGL. The superob method with a depth of 100 m (similar to a depth of 10

hPa in the boundary layer) is again applied to these observations, as no pressure data are

provided.

To remove the impacts of turbulence not resolved by our model and to be consistent with

the averaging window for RWPs, we also temporally average Doppler lidar observations

into 30-min profiles. Data below 100 m or above 3000 m AGL are not assimilated due to

quality issues (D. Turner and P. Klein, personal communication). We also perform gross

checks to remove any erroneous data based on the root-mean-square difference between
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the observed radial velocity and its fitted values. Again, the lidar wind observations are

superobbed to a depth of 100 m.

2.3.3 Rawinsondes and mobile surface observations

During PECAN, rawinsondes and surface data were collected at much higher frequency

than operational networks. The PECAN rawinsondes were launched as often as every 3

h and at non-standard times. Because Privé et al. (2017) show significant improvements

when assimilating rawinsondes more frequently, we expect the assimilation of PECAN

rawinsondes to produce a larger impact than those demonstrated by previous studies that

only evaluate the operational network (e.g., Benjamin et al. 2010). The rawinsonde data

are provided with quality control markers following the methods described in Loehrer et al.

(1996). We only assimilate levels where all data are marked as ”good”. The rawinsonde

data are also superobbed to a depth of 10 hPa to be consistent with the other PECAN

observations.

Lastly, the PECAN surface observations were typically collected every 1-5 min at most

PECAN platforms. These data, consisting of temperature, humidity, wind, and pressure, are

thinned to 5-min intervals due to the high frequency of the data and to limit potential model

shock. Other than gross checks for valid data, no other quality control methods are applied

to the surface observations before assimilation.
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Chapter 3

An evaluation of the impact of assimilating AERI retrievals, kinematic

profilers, rawinsondes, and surface observations on a forecast of a

nocturnal convection initiation event during PECAN

3.1 Introduction

CI represents the process through which air parcels are successfully lifted beyond their

level of free convection (LFC) and buoyantly accelerate upwards to produce a deep and

precipitating updraft (Crook and Klemp 2000; Kain et al. 2013). Predicting the timing

and location of CI remains one of the most difficult tasks in meteorology (Lilly 1990),

as many studies demonstrate how small initial condition perturbations within the range

of observational uncertainty can significantly modify forecasts (Crook 1990; Martin and

Xue 2006). At night in the Great Plains of the United States, CI commonly contributes

to the nocturnal maximum in summer precipitation (e.g., Surcel et al. 2010; Weckwerth

et al. 2019) and leads to thunderstorms which produce all severe weather hazards (Reif

and Bluestein 2017). Despite these impacts, predicting CI at night can be even more of a

challenge compared to its daytime counterpart (Keclik et al. 2017).

Past studies show that NWP models that employ convective parameterizations underpre-

dict nocturnal CI events in the Great Plains (Davis et al. 2006). Although various deficiencies

have been resolved through the use of convection-allowing models (Weisman et al. 2008),

modern NWP still struggles to predict many of the mechanisms that initiate convection

at night. As discussed in Chapter 1, NWP models routinely fail to correctly forecast the

LLJ (Storm et al. 2009; Shin and Hong 2011; Smith et al. 2015; Johnson and Wang 2017;

Johnson et al. 2017a) and atmospheric bores (Johnson et al. 2017b; Chipilski et al. 2020).

Additionally, elevated moisture biases at night are common and can lead to significant
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errors in CI forecasts. Peters et al. (2017) correlate errors in elevated moist layers with

simulations of highly impactful MCSs. They show that simulations with negative moisture

biases produce large errors in both the timing and location of MCS initiation due to parcels

requiring additional residence time within the lifting regions.

Recently, Degelia et al. (2018) show improvements to a nocturnal CI forecast by assimi-

lating conventional and radar observations. They find that assimilating these data enhances

the buoyancy and convergence prior to CI, while the radar observations aid in suppressing

spurious convection and erroneous outflow boundaries. However, the observations assimi-

lated in Degelia et al. (2018) have become routinely assimilated in operational centers and

their impacts are now relatively understood. This chapter expands upon the findings of

Degelia et al. (2018) by evaluating the forecast impact of assimilating the novel dataset

collected during PECAN (Geerts et al. 2017). The PECAN project seeks to better under-

stand the processes responsible for nocturnal convection in the Great Plains with a focus on

nocturnal CI, MCSs, atmospheric bores, and the LLJ (Geerts et al. 2017). The data collected

during the field campaign included a network of thermodynamic and kinematic profilers

similar to those recommended by the National Research Council (2009).

The observations assimilated here consist of AERIs, Doppler wind lidars (e.g., Menzies

and Hardesty 1989), RWPs (e.g., Benjamin et al. 2004), high-frequency rawinsondes, and

special surface data collected from fixed and mobile PECAN platforms. Assimilating

similar datasets has been shown to improve convective-scale forecasts of various features

(e.g., Kawabata et al. 2007; Wulfmeyer et al. 2006). Benjamin et al. (2004) and Kawabata

et al. (2007) demonstrate forecast improvements when assimilating kinematic profilers,

and Hitchcock et al. (2016) show midlevel moisture impacts when assimilating special

rawinsonde observations. Until recently, little work has evaluated the impact of assimilating

ground-based thermodynamic profilers. A study by Coniglio et al. (2019) shows that

assimilating high-frequency thermodynamic retrievals collected by AERIs can lead to

improvements, albeit non-significant, in short-term convective forecasts. However, the
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Coniglio et al. (2019) study only assimilates data from a single AERI, and for a short period

(2-5 hours) prior to CI. Therefore, we aim to expand upon previous works by assimilating

data collected by multiple AERI platforms and over a longer period of assimilation.

This dissertation chapter focuses on the 26 June 2015 nocturnal CI event during PECAN.

The CI of interest occurred near an elevated moist layer located just north of the intersection

of the LLJ with a synoptic boundary. Such placement is commonly observed during

nocturnal CI events in the Great Plains (Weckwerth et al. 2019). This chapter tests the

hypothesis that assimilating a large network of many different PECAN observations can

improve the simulation of both the elevated moist layer and the ascent mechanisms. In

addition to evaluating the impact of assimilating the entire PECAN dataset, data denial

experiments are presented to assess the relative impact of each observation type.

An overview of the 26 June 2015 CI is presented in section 3.2. Section 3.3 discusses

the cycling configuration and observation errors used to assimilate PECAN observations

for the CI case study. The assimilation and data denial results are found in section 3.4. An

ingredients-based approach is applied in section 3.5 to better understand what aspects of

the environment lead to the observation sensitivities for CI, while we explore the moisture

and kinematic impacts during the DA cycling in section 3.6. A final discussion is found in

section 3.7.

3.2 Overview of the 26 June 2015 nocturnal CI event

As an upper-level ridge deepened over the southwestern United States on 25 June 2015

(Fig. 3.1a), northwesterly flow developed above the Central Plains. A surface low, related

to an embedded shortwave trough (Fig. 3.1a), strengthened a stalled, pre-existing frontal

boundary into a synoptic cold front (Fig. 3.1a,b). Additionally, a cold pool generated

by early-afternoon convection appears to have further reinforced this synoptic front (Fig.

3.2b). By the late afternoon of 25 June, stronger, surface-based cells developed along

the synoptic boundary in central Kansas (Fig. 3.2c). After sunset at 0154 UTC (2054
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LST), a southwesterly, criterion-1 LLJ (12.5 ms−1; Bonner 1968) developed across western

Oklahoma and central Kansas (Fig. 3.1b).

Conditions were favorable for further convective development after sunset on 25-26

June. First, large-scale isentropic ascent developed throughout northern Kansas due to

the interaction of the LLJ with the synoptic boundary (Fig. 3.1b). Second, an additional

mesoscale convergence zone associated with the northern terminus of the LLJ was present

in northeastern Kansas (circled in Fig. 3.1b). At approximately 0215 UTC 26 June, a

linear band of convective cells, which were disconnected from storms along the synoptic

boundary, initiated in northern Kansas. These cells began to merge with additional clusters

of convection that developed in northwestern Missouri (Fig. 3.2g). This arcing band

of nocturnal convection (Fig. 3.2e,f) is the focal point of this chapter. The convective

cluster continued to grow upscale into an MCS (Fig. 3.2h) that propagated southeastward,

producing both severe wind and flash flooding throughout eastern Kansas. We note that

many other nocturnal CI events occurred throughout Kansas on 26 June 2015, some of

which are discussed in Trier et al. (2017).

Mobile observing platforms were deployed for this event as part of intensive observing

period (IOP) 16. A sounding taken by a PECAN vehicle showed a moist layer atop the

frontal inversion north of the synoptic boundary (Fig. 3.1c). Significant instability (>3000

J kg−1 of CAPE) was associated with elevated air parcels, although some inhibition had to

be overcome before CI could take place. As surface-based parcels were located below the

frontal inversion, much of the nocturnal CI episode of interest was likely elevated. However,

recent analyses of this event by Trier et al. (2018) and Sun and Trier (2018) highlight the

potential role of outflow boundaries in the southern portion of the nocturnal CI event. In

particular, the surface-based cells in Fig. 3.2c produced an outflow boundary that moved

northward through the region of nocturnal CI and that will be discussed throughout this

text. These findings indicate that some of the early cells in this CI event (Fig. 3.2e) were

surface-based.
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Figure 3.1: Overview of the mechanisms leading to nocturnal CI on 26 June including (a)
500 hPa geopotential height (m; black contours) and winds (ms−1; fill and barbs) valid
at 0300 UTC 26 June; (b) 850 hPa winds (ms−1; fill and barbs) and surface temperature
contours (◦C; red); and (c) a PECAN sounding taken from the location of the yellow star
in (b) at 0215 UTC 26 June. In (a,b) the half barbs represent wind speeds of 2.5 ms−1 and
the full barbs represent wind speeds of 5 ms−1. The red dashed line in (a) represents the
location of a shortwave trough axis, the brown dashed line in (a,b) represents the location
of the synoptic boundary discussed in the text, and the dashed green circle in (b) indicates
the approximate LLJ terminus. The plotting domains in (a,b) represent the outer and inner
domains used for the simulations in this chapter, respectively. The gray box in (b) indicates
the plotting domain for 3.8. The states of Kansas (KS), Nebraska (NE), Missouri (MO), and
Oklahoma (OK) are also labeled in (b). The plots in (a,b) are created using model analyses
from the Rapid Refresh model (Benjamin et al. 2016). The sounding in (c) is plotted using
the quality-control checks provided by Loehrer et al. (1996). Except for the wind data
being superobed to a depth of 20 hPa, the data in (c) are processed using the same methods
described in Chapter 2.
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Figure 3.2: Evolution of the 25-26 June nocturnal CI event in terms of composite reflectivity
(dBZ; bottom color bar). The reflectivity data are provided by the Multi-Radar Multi-
Sensor dataset (MRMS; Smith et al. 2016). Additionally, an objective analysis of surface
temperature (◦C; right color bar) is shown using a two-dimensional linear spline interpolation.
Surface temperature contours are also plotted in gray every 2 ◦C. The observations in the
objective analysis are obtained from the MesoWest program (Horel et al. 2002). The fixed
(FP) and mobile (MP) PECAN Integrated Sounding Arrays (PISAs) are labeled in (a). Also
overlaid are both the PECAN observations and conventional NDAS observations that are
assimilated in this chapter. The circle in (c) indicates the location of two surface-based cells
discussed in the text. The gray box shown in (d) indicates the plotting domain for Fig. 3.11.
The circles in (e,f) indicate the nocturnal CI event of interest.
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3.3 Methods

3.3.1 Observation error treatment

In any DA algorithm, the observation error covariance matrix partially controls the weight

between the observation and background states. When assimilating a new dataset, effort

should be paid to how the observation errors are diagnosed (Bormann et al. 2011). Because

RWPs, rawinsondes, and surface observations are routinely assimilated in operational

systems, we assimilate those PECAN observations using a pre-existing, static error profile

built into the GSI software (Shao et al. 2016). Conversely, both AERIs and Doppler lidars

are considered experimental and thus their observation errors are less understood. Luckily,

both the AERIoe and lidar algorithms provide unique error profiles for each observing time

using the methods in Turner and Löhnert (2014) and Newsom and Krishnamurthy (2014),

respectively. Assimilating these novel observations with unique error profiles allows for less

confident retrievals to have a lower weight in the analysis.

In addition to the instrument error, the observation errors used in a DA system should

also include contributions from representation errors (Geer and Bauer 2011). To account for

these and any other residual errors, we inflate the AERI and lidar observation error profiles

using:

σ
2
P f = σ

2
Pi +α(σ2

S f −σ
2
Si) (3.1)

where σ2
Pi is the instrument observation error variance profile provided by the PECAN

dataset and σ2
P f is the final observation error variance profile used for DA. The (σ2

S f −σ2
Si)

term represents an initial estimate of the residual error profile for profiling instruments based

on the difference between an instrument uncertainty profile for rawinsondes (σ2
Si; provided

by Vaisala 2017) and the full error profiles for assimilating rawinsondes in GSI (σ2
S f ). The

static error profiles in terms of σsi and σs f are shown in red in Fig. 3.3. The initial estimate

of residual error is then tuned using the parameter α that varies by instrument. The values of

α are chosen by comparing the skill of nocturnal CI forecasts when varying α by intervals
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of 0.25. The selected values are annotated in Fig. 3.3. Through a trial-and-error process, we

find improved forecasts when linearly increasing α with height for AERI observations, such

that observation errors near the top of the profile are inflated more. We hypothesize that

this is because the observations errors output by AERIoe only include the diagonal terms of

its posterior error covariance matrix, whereas the off-diagonal terms are shown to increase

with height in Turner and Löhnert (2014). Additionally, as will be discussed in Chapter

5, the need for increased inflation at the top of the retrieval could be a result of increased

uncertainty below cloud layers.

Example profiles of input and inflated observation errors for AERIs and Doppler lidars

are shown in Fig. 3.3. Using this method, the forecast skill for the 26 June nocturnal CI

event is improved compared to assimilating these observations using rawinsonde errors (not

shown). Geer and Bauer (2011) and Minamide and Zhang (2017) use a similar approach

to inflate observation error covariances for microwave imager radiances. We note that this

technique is only meant as a preliminary method for assimilating the AERI and Doppler

lidar observations. In Chapter 5, we develop and test additional methods for determining

observation errors for these instruments.

3.3.2 Experimental design and configuration of DA cycling

To evaluate the impact of assimilating PECAN observations on the nocturnal CI forecast,

we compare an experiment with all IOP observations assimilated (ALL) against a baseline

forecast that only assimilates radar and conventional data (DENYALLPECAN). Additionally,

we evaluate the relative forecast impact of AERIs, Doppler lidars, RWPs, rawinsondes,

and mobile surface observations (see observation locations in Fig. 3.2) through data denial

experiments (Table 3.1). In the data denial framework, a decrease in forecast skill in a denial

experiment indicates a positive impact when assimilating those specific observations. For

the experiments here, the observations are denied from the assimilation on both the outer

and inner domain.
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Figure 3.3: Observation error profiles for (a) AERI temperatures (°C); (b) AERI moisture
(%RH); and (c) Doppler lidar winds (ms−1) used in Eq. 3.1. The plots are calculated by
averaging each individual error profile associated with the respective AERI or Doppler lidar
observations assimilated in this study. The red lines represent the rawinsonde instrument
error obtained from Vaisala (2017; σsi; dotted) and the static rawinsonde error from GSI (σs f ;
solid). The black lines represent the input observation error profile provided by the PECAN
dataset (σPi; dotted) and the final observation error profile used for DA after inflation (σP f ;
solid). The values used for α in Eq. 3.1 are also annotated for each variable. For AERI
observation errors, the values of α vary linearly with height (from zero to the final bracketed
value at 3 km AGL).

Table 3.1: List of experiments in Chapter 3.

Experiment name Observations assimilated
DENYALL Conventional and radar observations
ALL Conventional, radar observations, and all PECAN observations listed in Table 2.3
DENYAERI All observations from ALL except for AERIs
DENYLIDAR All observations from ALL except for Doppler lidars
DENYWPROF All observations from ALL except for RWPs
DENYSONDE All observations from ALL except for PECAN rawinsondes
DENYSFC All observations from ALL except for PECAN surface observations
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The cycling description that follows describes the ALL experiment. On the outer domain,

conventional data (see Fig. 3.2) are assimilated at 3-h intervals from 0000 to 2100 UTC

25 June. While the assimilation interval is 3-h, only observations from a 1-h time window

(±30 min centered on the analysis time) are assimilated on the outer domain. We choose to

also assimilate PECAN observations on the outer, mesoscale domain with the same cycling

configuration as the conventional observations. This is because elevated moist layers, which

occur on the mesoscale and are often associated with nocturnal CI (Wilson et al. 2018),

could likely be improved by assimilating the thermodynamic profilers located at the FP sites.

After 2100 UTC, the inner domain is initialized within the outer domain and conventional,

PECAN, and radar observations are assimilated at 10-minute cycling intervals from 2110

UTC 25 June to 0000 UTC 26 June. As the WSR-88D network sufficiently covers the

domain of interest, we choose not to assimilate any special radar data collected by PECAN

instruments. After the final DA cycle at 0000 UTC, 7.5-h forecasts are initialized from

members 1 through 20 of the DA ensemble to cover the nocturnal CI event.

3.4 Overview of the forecast results when assimilating the PECAN

dataset

Before discussing the forecast results from individual experiments, we present the

consistency ratio (Dowell et al. 2004) for each experiment in Fig. 3.4d-f. The consistency

ratio acts as an evaluation of the analysis system by calculating the ratio between the square

of the total ensemble spread in observation space (Wheatley et al. 2014) and the root-mean-

square innovation. A value of 1.0 indicates that the ensemble spread fully accounts for the

background ensemble error, while values greater or less than 1.0 indicate overdispersion or

underdispersion, respectively. During the outer domain DA cycles, the consistency ratio for

thermodynamic variables remains less than one for each experiment (Fig. 3.4d-f), indicating

that the ensemble spread is not sufficient to represent the background ensemble errors. After

downscaling to the inner domain (Fig. 3.4d-f), the consistency ratios for the thermodynamic
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Figure 3.4: Series of (a-c) the number of PECAN observations assimilated in the ALL
experiment; and (d-f) consistency ratio at each data assimilation cycle. The vertical gray
lines indicate the transition from assimilating the PECAN observations on the outer domain
(every 3 hours) to assimilating them on the inner domain (every 10 minutes). The inner
domain observation counts and consistency ratios (right of the vertical gray lines) are
only plotted for every third cycle. The colors in (a-c) correspond to the observation type
assimilated in ALL that was denied from its respective denial experiments labeled in (d-f).
For example, the red line in (a-c) represents the number of AERI observations assimilated
in ALL.

variables are closer to 1.0. For the wind speed, the ensembles are typically overdispersive

during both the outer and inner domain assimilation periods (Fig. 3.4f). Nevertheless,

the ensemble statistics show no sign of filter divergence and each experiment produces

generally similar values. Therefore, we assume that the DA system performs well enough

for comparisons between the denial experiments.
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3.4.1 Comparisons with an operational forecast of nocturnal CI

To first demonstrate the forecast impact of assimilating the PECAN dataset, we com-

pare ALL and DENYALLPECAN with an operational forecast from the High-Resolution

Rapid Refresh (HRRR; Earth System Research Laboratory 2016) model initialized at 0000

UTC 26 June. The forecast results from the HRRR are representative of other real-time

simulations the 26 June nocturnal CI event. The experiments are first compared through raw

neighborhood ensemble probability (NEP; Fig. 3.5) calculated using an 8-km neighborhood

(Schwartz and Sobash 2017). Because the HRRR is a deterministic forecast as opposed

to ensemble-based, Fig. 3.5a-d are presented as neighborhood probabilities (NP), which

are equivalent to the NEP calculated with a single ensemble member. Additionally, the

forecasts are compared through a time-series of FSS (Schwartz et al. 2010) calculated using

1-h accumulated precipitation data with a threshold of 2.54 mm hr−1 (Fig. 3.6). The gridded

precipitation data are provided by the Multi-Radar Multi-Sensor project (MRMS; Zhang

et al. 2016) at 1-km resolution before being interpolated onto our 4-km forecast domain.

The FSS is calculated over the box shown in Fig. 3.5l to ensure verification only over the

event of interest. By using NEP as the input for calculating FSS (Schwartz et al. 2010), the

score represents an ensemble verification metric (FSS for the HRRR is calculated using NP

instead).

Even though the nocturnal CI of interest was likely at least partially driven by the

large-scale mechanisms discussed in section 3.2, the real-time HRRR simulations largely

fail to capture the event (Fig. 3.5a-d). Between 0300 and 0400 UTC, the HRRR generates

convection too far north and does not produce a southwest-northeast oriented linear event

as was observed. The FSS for the HRRR rapidly decreases from ∼0.45 to 0.05 (Fig. 3.6)

during this time period. While the simulations capture fairly well the convection forming in

western Missouri (Fig. 3.5b,c), the HRRR only generates weak probabilities in southeastern

Nebraska that fail to match the observed locations or orientation of the nocturnal CI event.
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Figure 3.5: Probability forecasts of composite reflectivity greater than 30 dBZ for (a-d)
the operational HRRR forecast initialized at 0000 UTC 26 June; (e-h) the DENYALL
experiment; and (i-l) the ALL experiment. The contours of observed composite reflectivity
greater than 30 dBZ are also overlaid in black. The probabilities for (a-d) are calculated
as the neighborhood probabilities with a radius of 8 km, while the probabilities in (e-l) are
calculated as neighborhood ensemble probabilities with a radius of 8 km. The northern
(NCI) and southern (SCI) initiation episodes are annotated in (k). The black box in (l)
indicates the domain used to calculate fractions skill score shown in Fig. 3.6.
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Figure 3.6: Fractions skill score (FSS) calculated with an 8-km neighborhood over the
black box shown in Fig. 3.5l for a 2.54 mm hr−1 precipitation threshold. The gray shading
represents the approximate time of CI (between 0215-0300 UTC). The values shown in
parenthesis signify the FSS when averaged over the entire forecast period.

29



DENYALLPECAN demonstrates similar issues to the HRRR (Fig. 3.5e-h) and the

FSS for the two forecasts are similar (Fig. 3.6). Again, the linear event is almost entirely

missed apart from low probabilities of two convective events at the extreme ends of the

line at 0400 UTC (Fig. 3.5g). These signals are not maintained and do not merge into a

linear cluster. Eventually, DENYALLPECAN generates a new linear system, but it forms

further west than the observed event and is likely associated with a second CI event that

is discussed in Trier et al. (2017). As the DENYALLPECAN experiment performs poorly

and similar to the HRRR simulations, we assume that it serves as an accurate baseline to

measure the advances that could be made when assimilating PECAN observations in an

operational setting. We note that the lifting mechanisms discussed later are captured in both

the HRRR and DENYALLPECAN (not shown). Thus, we hypothesize that the issues with

these forecasts are primarily related to biases in the elevated instability profile.

Large forecast improvements are made when assimilating the IOP observations in ALL

(Fig. 3.5i-l). The FSS for ALL first becomes larger than DENYALLPECAN at 0115 UTC

(Fig. 3.6) due to improvements in resolving the ongoing surface-based convection in central

Kansas. Shortly before 0300 UTC, ALL generates two distinct CI episodes along the

northern and southern edge of observed linear event, henceforth called NCI (northern CI)

and SCI (southern CI), respectively (Fig. 3.5k). By 0400 UTC, NCI and SCI congeal into

a single linear event that closely matches the position and extent of the observed 30 dBZ

contours (Fig. 3.5k). The linear convection in ALL then merges with additional convection

in western Missouri to grow into a larger MCS, as was observed. Although the shape of the

later MCS is not precisely captured in ALL, the experiment correctly predicts a strongly

organized MCS along the northern Kansas and Missouri border by 0600 UTC (Fig. 3.5l).

Figure 3.6 demonstrates that after CI is simulated at 0300 UTC, ALL maintains higher skill

than DENYALLPECAN throughout the entirety of the forecast.

30



3.4.2 Data denial experiments

Data denial experiments based on ALL are used to determine the relative impact of each

individual PECAN observation type on the forecasts of SCI and NCI. The same NEP plots

from Fig. 3.5 are presented for the denial experiments in Fig. 3.7 and the skill scores for

each are shown in Fig. 3.6. Before discussing the experiments individually, note that ALL

simulates NCI and SCI, as well as the upscale growth into an MCS, better than any denial

experiment. The FSS is also higher in ALL than the other experiments shortly after CI

(Fig. 3.6), indicating that all the individual observation types in the PECAN dataset have a

positive impact on the CI forecast.

Prior to CI, DENYAERI performs slightly better than ALL (Fig. 3.6) due to it better

capturing the decaying surface-based convection in central Kansas (Fig. 3.7e). However,

large improvements from the assimilation of AERI observations appear shortly after 0300

UTC when ALL correctly begins to generate NCI in Nebraska (Fig. 3.7b). DENYAERI does

not produce the same convective cluster until 0330 UTC (not shown) and the FSS values are

reduced from 0.50 in ALL to 0.35 in DENYAERI (Fig. 3.6). Because the convection within

NCI eventually grows upscale into an MCS, DENYAERI also forecasts lower NEP values

and produces a smaller MCS than ALL (Fig. 3.7d,h). These impacts are demonstrated in

Fig. 3.6 as well, as the FSS for DENYAERI becomes lower than ALL after CI occurs and

remains that way throughout the forecast period (Fig. 3.6). Thus, assimilating the AERI

observations leads to a positive forecast impact for the northern cluster of CI and the later

MCS.

Assimilating Doppler lidar observations has a smaller impact compared to the other

observation types evaluated in this chapter. DENYLIDAR forecasts NCI similar to ALL.

The only apparent differences for NCI are that DENYLIDAR performs slightly better at

capturing the additional convective events forming along the LLJ terminus in far western

Missouri (Fig. 3.7b,j). Instead, DENYLIDAR shows a small decrease in skill around 0300

UTC (Fig. 3.6) that is primarily connected to the reduced probabilities and extent of SCI. At
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Figure 3.7: Neighborhood ensemble probability forecasts for (a-d) ALL; (e-h) DENYAERI;
(i-l) DENYLIDAR; (m-p) DENYWPROF; (q-t) DENYSONDE; and (u-x) DENYSFC. Each
plot is calculated with a radius of 8 km. The dashed black boxes in (c) indicate the averaging
regions for the profiles in Figs. 3.10-3.11.
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0300 UTC, the maximum NEP values for SCI are reduced by ∼15% in DENYLIDAR (Fig.

3.7b,j) compared to ALL. However, these differences in FSS do not remain large after the

convection grows upscale (Fig. 3.7d,l).

Similar to the AERI observations, assimilating RWPs in ALL improves the forecast

timing of NCI (Fig. 3.7b,n). Like DENYAERI, the convection that forms in southeastern

Nebraska is not simulated by DENYWPROF until 0330 UTC (not shown). However,

DENYWPROF also poorly captures SCI. Without assimilating the wind profiler data, the

NEP values for SCI are reduced by nearly 40% compared to ALL at 0400 UTC (Fig.

3.7c,o). These large benefits are maintained throughout the upscale growth of the convective

episodes into an MCS (Fig. 3.7d,p). DENYWPROF produces a lower FSS than any of the

individual denial experiments after CI (Fig. 3.6), indicating that the RWPs lead to the largest

improvements compared with the rest of the PECAN dataset.

Assimilating the rawinsonde observations collected during PECAN produces a large

improvement similar to that from the RWPs. DENYSONDE simulates lower probabilities for

both NCI and SCI compared to ALL at 0300 UTC (Fig. 3.7b,r). Additionally, DENYSONDE

degrades the forecast for SCI at 0400 UTC (Fig. 3.7s) as the southern event is almost entirely

missed. As in DENYWPROF, DENYSONDE also produces a large drop in FSS (Fig. 3.6)

shortly after CI. Although the FSS for DENYSONDE converges with ALL (Fig. 3.6)

due to high ensemble probabilities (>90%) within the MCS, the extent of the MCS in

DENYSONDE is still reduced compared to ALL. Therefore, the large improvements from

assimilating rawinsonde observations are partially maintained throughout the later periods

of the forecast.

Finally, assimilating the special PECAN surface observations has a small benefit similar

to those that result from assimilating the Doppler lidars. At early lead times, surface

observations have a small, detrimental impact as seen by a higher FSS in DENYSFC

compared to ALL at 0215 UTC (Fig. 3.6). These impacts again result from differences in

how the DENYSFC experiment resolves the ongoing surface-based convection. Beginning
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at 0300 UTC (Fig. 3.7b,v), the positive impacts from assimilating the PECAN surface

observations are mainly confined to SCI, as DENYSFC shows similar probabilities to

DENYLIDAR. Again, these impacts from assimilating surface observations are small after

the convection grows upscale, as the FSS from DENYSFC and ALL converge shortly after

0400 UTC (Fig. 3.6).

3.5 Ingredients-based analysis of the observations impacts

An ingredients-based approach (e.g., Johns and Doswell 1992) is used to determine

which convective components (lift, moisture, instability) most contribute to the forecast

impacts discussed in the previous section. By performing such an analysis, we determine

exactly why certain observation types aid in the successful forecast of the 26 June nocturnal

CI event.

3.5.1 Observation impacts on lifting mechanisms

We focus first on the lifting mechanisms responsible for the two individual CI clusters.

Although the large-scale ascent mentioned in section 3.2 likely contributes to destabilization

for parcels north of the synoptic boundary, additional mesoscale mechanisms are needed

to lift the parcels to their LFC. For example, the observed sounding taken shortly before

CI (Fig. 3.1c) shows that the most-unstable parcel, originating at 873 hPa, needed to be

lifted to 762 hPa to reach its LFC (∼1 km of lift). Analyses suggest that SCI forms along an

outflow boundary produced by the surface-based convection along the synoptic front (as

hypothesized by Trier et al. 2018; see Fig. 3.2c). NCI initiates shortly afterwards along the

LLJ terminus (see Fig. 3.1b).

To first illustrate the large-scale, isentropic ascent, the heights of the 312 K virtual

potential temperature (θv) isentrope are plotted (Fig. 3.8). In each simulation, the 312 K

θv level is located at or just above the ground in east-central Kansas. The height of that

same isentrope increases to the north as parcels are lifted isentropically above the synoptic
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boundary by the LLJ. Along the Kansas-Nebraska border and near the location of NCI,

the 312 K isentrope is lifted to ∼1250 m AGL in each experiment, demonstrating little

observation impacts on the larger-scale ascent. Fig. 3.8 also shows the horizontal mass

convergence at 850 hPa over the LLJ terminus region for each data denial experiment. Again,

no denial experiment has a large impact on the LLJ or the convergence located at its terminus.

Although DENYWPROF and DENYSONDE simulate slightly weaker wind speeds just

south of the jet terminus, those differences do not manifest in the convergence field. Because

the ascent resulting from horizontal convergence is a function of the integrated convergence

profile, vertical profiles are also shown in Figs. 3.9 (NCI) and 3.10 (SCI). Similar profiles of

convergence are simulated by each experiment along the LLJ terminus and near NCI (Fig.

3.9b).

While the PECAN observations have little impact on forcing mechanisms for NCI,

they have a larger impact on the convergence ahead of the outflow produced by the earlier

surface-based convection (Figs. 3.10b, 3.11; see first column of Fig. 3.7 for the forecasts of

this surface-based convection). The wind speeds and convergence ahead of the cold pool

are maximized at 250 m AGL (Fig. 3.10) and are shown in Fig. 3.11. Compared to ALL

and DENYAERI (Fig. 3.11a,b), wind speeds in the northern section of the cold pool are

over 8 ms−1 slower in DENYLIDAR, DENYWPROF, and DENYSFC Fig. 3.11c-f). Due

to the slower wind speeds south of this outflow boundary, the convergence profile along

the boundary is weaker in those denial experiments (Fig. 3.10b). Although DENYSONDE

simulates slower wind speeds within the cold pool compared to ALL (Fig. 3.11e), the

experiment also enhances the winds ahead of the outflow boundary. Thus, DENYSONDE

produces a similar magnitude of convergence as ALL for SCI (Fig. 3.11a,e, 3.10b). These

convergence differences partially explain why assimilating the Doppler lidars, RWPs, and

surface observations aid in enhancing SCI. Without the additional ascent along the outflow

boundary, parcels in DENYLIDAR, DENYWPROF, and DENYSFC need additional time to

reach their LFC.
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Figure 3.8: Ensemble mean forecasts of 850 hPa winds (fill; ms−1) and convergence
(contoured in black every +5-6 s−1) for (a) ALL; (b) DENYAERI; (c) DENYLIDAR; (d)
DENYWPROF; (e) DENYSONDE; and (f) DENYSFC valid at 0200 UTC 26 June. The
plotting domain is shown by the gray box in Fig. 3.1b. The half barbs represent wind speeds
of 2.5 ms−1 and the full barbs represent wind speeds of 5 ms−1. Also overlaid in dashed
red contours are the heights (every 250 m AGL) of the 312 K virtual potential temperature
isentrope. The circled areas indicate the general location of the LLJ terminus corresponding
to the CI event of interest, while the dashed brown lines indicate the approximate location
of the synoptic boundary discussed throughout the text.
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Figure 3.9: (a) Profiles of temperature (solid lines) and dewpoint temperature (dashed lines);
(b) divergence (10−5 s−1); and (c) ∆zLFC (km) for each data denial experiment valid at 0200
UTC 26 June. The ensemble mean profiles are averaged over the northern black box in Fig.
3.7c.
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Figure 3.10: As in Fig. 3.9 but averaged over the southern black box in Fig. 3.7c and valid
at 0130 UTC 26 June.
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Figure 3.11: Ensemble mean forecasts of 250 m AGL winds (fill; ms−1) and convergence
(contoured in black every +5-6 s−1) for (a) ALL; (b) DENYAERI; (c) DENYLIDAR; (d)
DENYWPROF; (e) DENYSONDE; and (f) DENYSFC valid at 0130 UTC 26 June. The
plotting domain is shown by the gray box in Fig. 3.2d. The half barbs represent wind speeds
of 2.5 ms−1 and the full barbs represent wind speeds of 5 ms−1. The plotting domain is
zoomed into the outflow boundary produced by the ongoing surface-based cells discussed in
the text. See text for a description of the circled areas.
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3.5.2 Observation impacts on the thermodynamic environment

Although assimilating the PECAN observations has little impact on the convergence

near LLJ terminus, the denial experiments show large sensitivities to the elevated moist

layer in the same area (Figs. 3.9a,3.12). DENYAERI, DENYWPROF, and DENYSONDE,

which all produce a large decrease in forecast skill for NCI, simulate drier midlevels near

the LLJ terminus compared to ALL (Fig. 3.9a). The dry air in these three experiments

leads to additional inhibition that needs to be eroded before parcels can reach their LFC.

Another way of presenting the inhibition is through ∆zLFC, which describes the distance

between a parcel’s LFC and it’s starting height. The ∆zLFC parameter can be interpreted

as the amount of lifting needed for a parcel to produce an accelerating updraft. In ALL,

parcels originating at 2.25 km AGL near NCI need to be lifted only 900 m to reach their

LFC. This value corresponds well with the sounding in Fig. 3.1c. Without AERI, RWPs, or

rawinsondes assimilated, these same parcels need to be lifted between 1200 and 1600 m (Fig.

3.9c). For SCI, only the assimilation of RWPs or rawinsondes significantly modifies the

thermodynamic environment (Fig. 3.10a,c). While assimilating both RWPs and rawinsondes

results in moister midlevels, the rawinsondes also strongly cool the layer between 900 and

800 hPa and thus further improve the environment for SCI. In ALL, parcels originating

at 2 km AGL for SCI need 900 m of lift to reach their LFC, while the same parcels in

DENYWPROF or DENYSONDE need 1300 m of lift (Fig. 3.10c).

The impact on the elevated moist layer is further shown by the plan view plot in Fig.

3.12. Compared to ALL, the Doppler lidar and surface observations have little impact

on the midlevel dewpoint temperatures throughout northern Kansas. When denying the

AERI, RWPs, or rawinsondes, however, the 700 hPa dewpoint temperatures are reduced by

upwards of 6 ◦C in some locations. DENYWPROF and DENYSONDE both modify the

elevated moist layer over a large region that corresponds to both NCI and SCI (red circles in

Fig. 3.12d,e). Conversely, the observation impacts from assimilating AERI observations are
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Figure 3.12: Ensemble mean forecasts of 700 hPa dewpoint temperature (◦C) and wind barbs
for (a) ALL; (b) DENYAERI; (c) DENYLIDAR; (d) DENYWPROF; (e) DENYSONDE;
and (f) DENYSFC valid at 0200 UTC 26 June. The half barbs represent wind speeds of 2.5
ms−1 and the full barbs represent wind speeds of 5 ms−1. See text for a description of the
red circles.

mainly confined to the region near the LLJ terminus corresponding to NCI (red circle in Fig.

3.12b).

3.6 Analysis of observation impacts on the DA cycles

The previous section indicates that assimilating the PECAN observations enhances both

the elevated moist layer (AERI, RWPs, and rawinsondes) and the convergence along an

outflow region produced by earlier, surface-based convection (Doppler lidars, RWPs, and

surface observations). These primary impacts likely lead to the improved forecast skill in

ALL. However, it is not initially clear why, for example, assimilating the RWPs modifies the

moisture field. Thus, this final section of results explores the observation impacts throughout

the DA cycles to briefly explain how the assimilation of PECAN observations impacts these

important fields.
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3.6.1 AERIs

Differences between the 700 hPa water vapor mixing ratio analyses for ALL and

DENYAERI are presented in Fig. 3.13a-d. In ALL, most of the additional moisture

from assimilating AERI observations originates on the outer domain DA cycles (0300-2100

UTC 25 June). At 0600 UTC 25 June, ALL shows increased moisture above the synoptic

boundary compared to DENYAERI. The additional moisture is maximized at 700 hPa (Fig.

3.13a). By 0900 UTC, the moisture differences along the boundary in ALL reach nearly +4

g kg−1 (Fig. 3.13b). After 0900 UTC, the midlevel steering flow in ALL (see Fig. 3.12a)

advects the additional moisture northeastward, eventually reaching the Kansas-Nebraska

border by the final DA cycle on the outer domain (Fig. 3.13d). The region of additional

moisture in ALL, compared to DENYAERI, correlates well with the location of NCI.

The additional moisture added above the synoptic boundary appears to be primarily

related to negative increments in the midlevel moisture profile at FP2 (Fig. 3.14). First, the

background ensemble in ALL indicates that the 750 hPa mixing ratio at the top of the AERI

profiles from FP2 is negatively correlated with the elevated moist layer above the synoptic

boundary (Fig. 3.14a; correlation calculated against 700 hPa mixing ratio where the impact

is maximized). We hypothesize that this anti-correlation in the background is due to the

ensemble indicating a strong moisture gradient along the frontal boundary, such that drier

members at FP2 are moister above the front. Next, the midlevels in the background are also

10 ◦C too moist compared to corresponding AERI retrievals at FP2 (Fig. 3.14b). Therefore,

while the AERI observations at FP2 aid in drying the midlevels in southwestern Kansas, the

background covariance structure allows the same profiles to strongly moisten the midlevels

above the synoptic boundary (Fig. 3.14a). This finding illustrates the primary advantage

of using an ensemble-based DA method like the EnKF, as it can generate flow-dependent

background error covariances.
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Figure 3.13: Differences in analyzed ensemble mean water vapor mixing ratio (g kg−1)
between ALL and (a-d) DENYAERI at 700 hPa; (e-f) DENYWPROF at 750 hPa; and (i-l)
DENYSONDE at 750 hPa. The plots are valid at (a,e,i) 0600 UTC; (b,f,j) 0900 UTC; (c,g,k)
1800 UTC; and (d,h,l) 2100 UTC 25 June. Also overlaid are the locations of the AERIs
(a-d; green dots), RWPs (e-f; magenta squares), and PECAN rawinsondes (i-l; red stars)
assimilated in ALL.
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Figure 3.14: (a) Background ensemble correlations between 750 hPa water vapor mixing
ratio at FP2 (green dot) and 700 hPa water vapor mixing ratio across the domain; and (b)
examples of all AERI profiles assimilated from FP2 (black lines) at 0600 UTC 25 June.
The green lines indicate the ensemble mean of the background, while the red lines indicate
the ensemble mean of the analysis. The rightmost cluster of lines in (b) represents the
temperature (◦C), while the leftmost cluster of lines represents the dewpoint temperature
(◦C). Also overlaid in (a) are the ensemble mean analysis increments (background minus
analysis; black contours) for water vapor mixing ratio (g kg−1). The dashed contours
indicate negative increments and the solid contours indicate positive increments. Both plots
are taken from the ALL experiment.
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3.6.2 RWPs and rawinsondes

As discussed earlier, assimilating the RWPs in ALL results in additional moisture at

750 hPa throughout a large region of northeastern Kansas (Fig. 3.13e-h). This moisture

primarily manifests during the final outer domain DA cycles between 1800-2100 UTC 25

June (Fig. 3.13h). However, unlike the assimilation of AERI observations which directly add

moisture, the additional moisture from assimilating RWPs results from enhancements to the

moisture advection field (Fig. 3.15). In northwestern Kansas, the 1800 UTC wind profiler

observations at FP3 and FP5 produce innovations of +2-4 ms−1 in the zonal wind, which in

turn, lead to a large, positive increment in ALL (Fig. 3.15a). Because most of the midlevel

moisture is also located in northwestern Kansas (Fig. 3.15), the enhancement of the zonal

wind in ALL increases the moisture advection into central and eastern Kansas. Without

the assimilation of the RWPs in DENYWPROF (Fig. 3.15b), the zonal wind decreases

during the 1800 UTC cycle throughout much of western Kansas. Thus, DENYWPROF

simulates weaker moisture advection that eventually leads to the large differences in the 750

hPa moisture field at 2100 UTC (Fig. 3.13h).

As with the impact from assimilating RWPs, the assimilation of rawinsonde data also

leads to modifications to the midlevel zonal wind fields during the 1800 UTC cycle (Figs.

3.13k,3.15c). However, only one rawinsonde was launched during this cycle while many

wind profiles were collected throughout the domain (see Fig. 3.2b). The single rawinsonde

assimilated at 1800 UTC from FP1 shows a large, negative innovation (∼-3 ms−1) between

the observed and simulated zonal wind at 700 hPa (Fig. 3.16b). Because both the innova-

tion at FP1 and correlations with the 750 hPa wind in western Kansas are negative (Fig.

3.16a), we deduce that assimilating the FP1 rawinsonde at 1800 UTC is at least partially

responsible for the positive increment in the zonal wind shown in Fig. 3.15a. Therefore,

in DENYSONDE, a negative increment in the zonal wind occurs in southwestern Kansas

at 1800 UTC (Fig. 3.15c) that weakens the moisture advection into central Kansas. As in
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Figure 3.15: Ensemble mean analysis increments (analysis minus background) of the 750
hPa zonal wind (ms−1) for (a) ALL; (b) DENYWPROF; and (c) DENYSONDE valid at
1800 UTC 25 June. The black contours indicate the ensemble mean 750 hPa water vapor
mixing ratio (g kg−1) for each respective experiment. Also overlaid in (a) are the ensemble
mean innovation values (observation-background; dots) for the RWP observations closest to
750 hPa.

46



Figure 3.16: (a) Background ensemble correlations between 700 hPa zonal wind at FP1 (red
star) and 750 hPa zonal wind across the domain; and (b) the zonal wind profile assimilated
from the FP1 rawinsonde at 1800 UTC 25 June. The green lines indicate the ensemble
mean of the background, while the red lines indicate the ensemble mean of the analysis.
Also overlaid in (a) are the ensemble mean analysis increments (background minus analysis;
black contours) for zonal wind (ms−1). The dashed contours indicate negative increments
and the solid contours indicate positive increments. Both plots are taken from the ALL
experiment.

DENYWPROF, the weaker moisture advection then leads to reduced midlevel moisture

during the later DA cycles in DENYSONDE compared to ALL (Fig. 3.13k,l).

3.6.3 Doppler lidars and surface observations

To determine why assimilating Doppler lidars or surface observations enhances the

wind speeds within the outflow boundary, we analyze the common elements that con-

tribute to stronger cold pools. We find little sensitivity to either the precipitation within the

surface-based cells or the relative humidity profile below cloud base (not shown). Instead,

when these observation types are assimilated near the ongoing surface-based convection,

convective-scale regions along the borders of the storms are moistened by the final assim-

ilation cycle (Fig. 3.17b,h). This moisture impact is maximized at 600 hPa (Fig. 3.18).

Assimilating RWPs and rawinsonde observations produces similar effects near the ongoing

convection (Fig. 3.17d,f), though additional moisture is already present due to the effects

discussed previously. The additional moisture from assimilating Doppler lidar and surface
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observations does not exist prior to the development of the surface-based convection (Fig.

3.17a,g), indicating that the impacts are related to convective-scale DA. This impact extends

throughout much of the mid-troposphere, with DENYLIDAR and DENYSFC simulating

decreased dewpoint temperatures by an average of 2-4 ◦C between 500 and 800 hPa (Fig.

3.18). We hypothesize that the additional, convective-scale moisture added by these ob-

servations enhances the ongoing surface-based convection and later produces the stronger

outflow seen only in ALL and DENYAERI (Fig. 3.9). Additionally, this increased moisture

would likely reduce the impact of entrainment effects that could act to dissipate the ongoing

convection.

3.7 Discussion

By assimilating remote sensing profilers, high-frequency rawinsondes, and surface

observations collected on 26 June, we find large improvements over a baseline experiment

in terms of location, orientation, and timing of a nocturnal CI forecast. The most skillful

forecast occurs when assimilating every PECAN dataset used in this chapter, thus indicating

that each observation type plays a positive role in improving the CI forecast. Our results also

suggest that the linear CI episode was initiated by two separate forcing mechanisms. NCI

was initiated largely by the LLJ, while SCI formed along an outflow boundary produced by

earlier, surface-based convection.

We conduct experiments within a data denial framework to evaluate the relative impact

of assimilating each PECAN observation type within the full dataset. Assimilating AERI,

RWP, and rawinsonde data produces the largest and most sustained impact by enhancing the

elevated moist layer in the region of CI. The RWPs and rawinsondes affect both NCI and

SCI by strengthening the moisture advection across northern Kansas. Assimilating AERI

observations directly adds moisture above the synoptic boundary that is then advected into

the NCI. This study is among the first to assimilate real AERI observations and demonstrates

that high-frequency profiles of temperature and water vapor can improve short-term forecasts
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Figure 3.17: As in Fig. 3.13 but for differences in ensemble mean water vapor mixing
ratio (g kg−1) at 650 hPa between ALL and (a,b) DENYLIDAR; (c,d) DENYWPROF; (e,f)
DENYSONDE; and (g,h) DENYSFC. The plots are valid at (a,c,e,g) 2230 UTC 25 June;
and (b,d,f,h) 0000 UTC 26 June. Also overlaid are 15 dBZ contours of composite reflectivity
from the ensemble mean of ALL. The red crosses in (b,d,f,h) indicate the location of the
profile in Fig. 3.18.
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Figure 3.18: Ensemble mean profiles of temperature (solid lines) and dewpoint temperature
(dashed lines) taken from the red crosses in Fig. 3.17 and valid at 0000 UTC 26 June. The
sounding is averaged over a neighborhood with a radius of two grid points (8 km).
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of convection. Additionally, the special rawinsondes assimilated here were launched more

frequently and at non-standard times compared to the operational network, thus providing

further evidence for the value of assimilating high-frequency profiles.

The largest improvements result during DA cycling on the outer, mesoscale domain,

indicating that assimilating profiler data can lead to forecast improvements even when not

assimilating the data on a convection-permitting grid. However, additional improvements are

found when assimilating the PECAN data at 4 km. When assimilating surface and Doppler

lidar observations, the pre-existing, surface-based convection produces a stronger outflow

that enhances the ascent for the SCI. We hypothesize that the enhanced outflow is related

to increased moisture near the analyzed convection that then enhances the ongoing storms

during DA on the inner domain. Similar enhancements are also seen when assimilating the

RWP observations. However, the improvements from assimilating surface and Doppler lidar

observations diminish after the two simulated CI clusters merge into a larger MCS.

Still, various aspects of the results should be further explored. First, the location of each

observation likely plays an important role on its impact. For example, the RWPs assimilated

here are possibly more impactful than Doppler lidars due to the additional RWP at FP4 (far

northwestern Kansas site in Fig. 3.15a). An additional Doppler lidar at the same location

could allow for a similar increment for the zonal wind in northern Kansas. However, the

higher maximum height of RWPs (upwards of 10 km AGL) also likely aids in the larger

impact compared to Doppler lidars. Next, while we find an enhanced outflow boundary when

assimilating Doppler lidar and surface observations, the impacts of convective-scale DA

near ongoing convection is an area of research that has yet to be fully explored. Ensemble

correlations near ongoing thunderstorms could be considered spurious due to the chaotic

nature of convection. Thus, the impacts of assimilating the PECAN observations on the

strength of the outflow boundary should be further studied.

For similar cases that show large thermodynamic errors, we expect that assimilating

profiler observations can lead to improvements for short-term forecasts of CI. However,
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the strong forcing mechanisms for this event are well-captured by each experiment, such

that only the thermodynamic enhancements are needed for a successful CI forecast. It is

unclear whether assimilating such data could improve convergence mechanisms for other

CI events, or if the observation impacts would be as large when the mechanisms are not

well captured. As nocturnal convection can be initiated by many other features such as

atmospheric bores or internal gravity waves, the next chapter of this dissertation conducts a

systematic evaluation of the impact of assimilating PECAN field observations on forecasts

of nocturnal CI.
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Chapter 4

Systematic evaluation of the impact of assimilating a network of

ground-based remote sensing profilers for forecasts of nocturnal

convection initiation during PECAN

4.1 Introduction

While conventional rawinsondes provide data only a few times per day, convective-

scale environments often evolve on the order of minutes to hours (Orlanski 1975). To

alleviate this data gap, the meteorological community has recently pushed to expand current

observing capabilities into a Nationwide Network of Networks (National Research Council

2009; Stalker et al. 2013). Part of this proposal involves the introduction of ground-based

remote sensing profilers to provide high-frequency observations of the lower troposphere.

Although their errors are often larger than corresponding in-situ measurements, remote

sensing instruments can provide thermodynamic and kinematic data multiple times per hour.

Additionally, as various studies show that short-term forecasts of convection are highly

sensitive to small changes in the mesoscale environment (e.g., Crook 1990; Martin and Xue

2006), assimilating such instruments can potentially have large benefits for convective-scale

NWP.

Recently, the PECAN experiment (Geerts et al. 2017) employed AERIs and vertical wind

profilers to study nocturnal convection in the Great Plains of the United States. As discussed

at length throughout this dissertation, convection-allowing NWP systems often struggle

to predict such events due to model errors related to important nocturnal mechanisms.

However, a lack of observations that sample the mechanisms and environments responsible

for nocturnal convection also contribute to reduced forecast skill. In the Great Plains,

nocturnal CI most commonly occurs between 0400 and 0900 UTC (Reif and Bluestein
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2017), while conventional rawinsondes are typically only launched at 0000 and 1200

UTC. Moreover, most nocturnal CI events are driven by elevated ascent mechanisms such

as the LLJ or undular bores (Wilson and Roberts 2006; Weckwerth et al. 2019). Such

features cannot be easily observed by conventional surface data, and various studies note

the necessity of lower-troposphere profiling observations to improve this data gap (e.g.,

(Wilson and Roberts 2006; Weckwerth and Parsons 2006; Keclik et al. 2017). Given these

deficiencies, recent works show that assimilating high-frequency, remote sensing datasets

can be particularly useful for improving forecasts of nocturnal convection. For example,

we show in Chapter 3 that assimilating both AERIs and kinematic profilers can enhance

moisture advection and support a successful CI forecast. Additionally, Chipilski et al. (2020)

find that assimilating kinematic profilers improves analyses of a nocturnal LLJ and explicit

forecasts of an undular bore, such that the resulting convective forecast is also improved.

Additional studies assimilating AERIs and kinematic profilers include Hu et al. (2019) and

Coniglio et al. (2019) who find improvements to short-term forecasts of tornadic supercells

and convective evolution, respectively.

While previous works show the benefits of assimilating ground-based remote sensing

datasets for single cases, many research areas remain unexplored. For example, nocturnal

convection can be generated by a variety of ascent mechanisms at different scales (Reif and

Bluestein 2017; Stelten and Gallus 2017; Weckwerth et al. 2019) such that the impact of

assimilating these instruments is likely case- and environment-dependent. While Chapter

3 shows the benefits of assimilating the data for a single, large-scale frontal overrunning

event, it remains unclear whether the impacts will be as large for smaller-scale events such

as those initiated by gravity waves or outflow boundaries. To address this question, we

expand on previous work by using carefully designed experiments to evaluate the systematic

impact of assimilating a network of high-frequency (observations available every ∼5-30

min) boundary layer profilers. We explore these impacts using cases observed during the

PECAN field experiment, as the variety of events provides a sufficient sample of the different

54



convective modes and mesoscale environments responsible for nocturnal CI. Furthermore,

Stalker et al. (2013) propose implementing new networks alongside existing infrastructure

such as the operational rawinsonde network. Thus, this dissertation chapter specifically

evaluates the impact of assimilating collocated rawinsondes, AERIs, and kinematic profilers.

We also explore whether the impact of assimilating these data primarily result from one

instrument type, or if both thermodynamic and kinematic profilers are necessary to improve

forecasts of nocturnal CI.

Details on the sensitivity experiments are presented in section 4.2. Section 4.3 discusses

verification methods we use to evaluate the impact of assimilating these data. The systematic

results for assimilating the remote sensing profilers on forecasts of nocturnal CI are found in

section 4.4. To better understand where the impacts of assimilating these data originate, we

conduct a pre-convective analysis in section 4.5 and example cases are presented in section

4.6. A final discussion is found in section 4.7.

4.2 Observation pre-processing and sensitivity experiments

4.2.1 Observation pre-processing

The PECAN instruments assimilated in this chapter include rawinsondes, AERIs,

Doppler lidars, and RWPs collected from both FP and MP sites (Table 4.1 and Fig. 4.1).

Unlike the previous section, we no longer assimilate mobile surface observations given that

this chapter aims to evaluate the impact of assimilating remote sensing instruments only.

Other than this, each observation is assimilated using the same pre-processing methods

described at length in Chapter 2.3 with a few differences described below.

First, as the goal of this chapter is to evaluate the impact of assimilating a collocated

network of profiling instruments, we only assimilate data from sites that include a rawinsonde

and each of the remote sensing profilers. However, only two PECAN sites feature each

instrument (Table 4.1). To increase the potential number of sites, we treat Doppler lidars and

RWPs as a single dataset that is henceforth referred to as “composite kinematic profilers”.
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Table 4.1: As in Table 2.3 but only for the collocated observations assimilated in Chapter 4.

The observations for sites that feature both sets of wind profilers are combined using three

steps. First, the high-frequency Doppler lidar profiles are temporally averaged using the

same averaging window as the collocated RWP. Then, for any vertical levels where the two

wind profiles overlap, we interpolate the denser profile (usually the Doppler lidar) onto

the coarser observation and the two are averaged together. The observation error variances

are also averaged throughout these layers to produce the error profiles for the composite

dataset. Lastly, observations from where the two datasets do not overlap (above or below

the averaging layer) are added back into the composite kinematic profile. This combination

increases the number of available assimilation sites to seven (five fixed and two mobile sites;

Table 4.1 and Fig. 4.1).

Additionally, we now assimilate the AERI from the Atmospheric Radiation Measurement

(ARM) Southern Great Plains (SGP; Sisterson et al. 2016) station located near Lamont, OK

(known as FP1 during PECAN). This instrument operated continuously throughout PECAN
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Figure 4.1: Overview of experimental design for Chapter 4 including (a) domain configu-
ration for the outer (d01, 12-km) and intermediate (d02, 4-km) assimilation domains, as
well as an example forecast domain (d03, 1-km) used for the 30 June nocturnal CI case.
The forecast domain is the same size for other cases, though its exact location within d02
shifts depending on the location of the primary CI event. The location of each fixed PECAN
observing site assimilated here are also overlaid. We note that two additional mobile PECAN
sites are also assimilated for some cases, though their location varied by event. (b) Flowchart
for the cycled assimilation, including the four 3-h assimilation cycles on d01, the six 15-min
assimilation cycles on d02, and the 7-h forecast period. The primary CI event for each case
(Table 4.2) occurs 3 h after the forecast initialization period.
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and provided data for nearly every case examined here. We note that the AERI observations

at FP1 are retrieved using the AERIprof retrieval algorithm (Smith et al. 1999; also called

AERIplus in Feltz et al. 2003) instead of AERIoe. AERIprof differs from AERIoe by

using a first guess from Rapid Refresh analyses (RAP; Benjamin et al. 2016) instead of a

sounding climatology, having worse performance under low- or midlevel clouds, collecting

less-frequent observations (15-min as opposed to 5-min retrievals), and not producing unique

observation error profiles for each observing time. To assign the observation errors for AERI

profiles collected from FP1, we instead use root-mean-square differences (RMSD) between

the AERI and collocated soundings (given by Fig. 5 in Feltz et al. 2003). These errors are

further inflated using the same method applied to the AERIoe retrievals (see section 3.3.1).

4.2.2 Case selection

Weckwerth et al. (2019) describe the variety of physical processes associated with

nocturnal CI events in the Great Plains of the United States including frontal overrunning,

events forming near a parent MCS, bores or density currents, or pristine CI events. An

overview of each category is described here, and example cases simulated here are shown in

Fig. 4.2 for each category. Frontal overrunning events occur when southerly flow advects

warm, moist air above a frontal boundary, typically resulting in large-scale CI north of the

boundary (Fig. 4.2a). Near MCS events form in proximity of an MCS but not along a radar

fine line and can include “bow and arrow” (Keene and Schumacher 2013; example in Fig.

4.2b) and “T-initiation” (Coniglio et al. 2011) events. Bore or density current events are also

associated with a parent MCS but instead develop along a radar fine line associated with

an outflow boundary (Fig. 4.2c). Finally, pristine CI events include convective episodes

not influenced by parent convective systems or obvious frontal boundaries (Fig. 4.2d).

Weckwerth et al. (2019) provides further details and conceptual diagrams for each type of

nocturnal CI.
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Figure 4.2: Composite reflectivity (dBZ) for example nocturnal CI events from each cat-
egory including (a) frontal overrunning; (b) near MCS (bow and arrow event shown);
(c) bore or density current; and (d) pristine. The dashed white oval regions indi-
cate the primary nocturnal CI events that are likely initiated by the indicated ascent
mechanisms. These images are courtesy of the image archive (available online at
https://www2.mmm.ucar.edu/imagearchive/) maintained by the Mesoscale and Microscale
Meteorology Division (MMM) of NCAR.
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Given this large variety of processes responsible for nocturnal CI, the skill of a convection-

allowing NWP system to predict these events likely varies significantly by case. We thus

explore the impact of assimilating the thermodynamic and kinematic profilers through

systematic experiments that include many nocturnal CI events observed during PECAN.

From the list of nocturnal CI events observed during PECAN and compiled by Weckwerth

et al. (2019), we select a case for evaluation if it features (1) at least two observing sites with

a rawinsonde launched between 2330 UTC and 0030 UTC, and (2) at least one observing

site that is no more than 300 km away from the center of the nocturnal CI event. These

conditions ensure that we can evaluate the impact of assimilating a collocated network of

remote sensing profilers alongside a representation of the current operational rawinsonde

network and that the observations are close enough to impact the primary CI event. We note

that while the cases are selected based on the presence of this primary CI event, we verify all

observed CI events that occur within the forecast domain. After applying these conditions,

we select 13 nocturnal CI cases for evaluation (Table 4.2). On average, the geographic center

of the observing sites is located 221 km (σ = 124.1 km) away from primary nocturnal CI

event. While this distance is larger than other studies that assimilate field campaign data

(e.g., Chipilski et al. 2020), the cycled data assimilation allows for observation impacts to

propagate far from the observing site, thus justifying the verification of all CI events within

the forecast domain.

4.2.3 Experimental design

To determine the systematic impact of assimilating this collocated network of thermody-

namic and kinematic profilers, we carefully design a set of data addition experiments (Table

4.3) based around a baseline experiment, SONDE that only features the assimilation of con-

ventional observations and PECAN rawinsondes. We then separately assimilate collocated

AERIs and composite kinematic profilers in the SONDE TQPROF and SONDE UVPROF

experiments, respectively, by also assimilating the remote sensing data in addition to the
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Table 4.2: List of nocturnal CI events simulated in Chapter 4 and their most likely ascent
mechanisms from Weckwerth et al. (2019). The strength of the large-scale ascent for each
case is also denoted. CI events that develop near a 500 hPa or 700 hPa upstream trough are
classified as strongly-forced, while other events are classified as weakly-forced. The PECAN
observing sites assimilated and their average geographic distance from the nocturnal CI
event (km) are also listed for each case. Note that while these mechanisms correspond to
the primary CI event used to select the cases, all CI objects occurring within the forecast
period and domain are verified.
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Table 4.3: List of experiments simulated in Chapter 4.

Experiment Datasets assimilated
SONDE PECAN rawinsondes launched between 2330 and 0030 UTC
SONDE TQPROF All observations from SONDE plus collocated thermodynamic profilers
SONDE UVPROF All observations from SONDE plus collocated kinematic profilers
SONDE ALLPROF All observations from SONDE TQPROF and SONDE UVPROF

baseline observations. To ensure that these data addition experiments demonstrate the impact

of assimilating the remote sensing instruments alongside a representation of the conventional

rawinsonde network, we only assimilate PECAN rawinsondes closest to 0000 UTC in all

experiments. If no rawinsondes are launched from a site between 2330 and 0030 UTC, then

all data from that site are excluded for that case. Finally, we assimilate all sets of collocated

observations together in SONDE ALLPROF.

4.3 System configuration and verification techniques

4.3.1 Model and DA system configuration

To simulate the 13 nocturnal CI events, we apply the multi-scale model and DA system

described in Chapter 2.1-2.2. Although data gaps prevent the same quantity of data from

being assimilated for each nocturnal CI case, we ensure that each site is at least assimilated

for the same duration by always beginning DA 16.5 h prior to the primary, observed CI

event (Fig. 4.1b; 13.5 h of DA and 3 h of forecast spin-up). Four assimilation cycles

are first performed every 3 h on the outer, CONUS domain (∆x=12 km; d01 in Fig. 4.1)

using conventional data, PECAN rawinsondes, and the PECAN remote sensing profilers

to improve the analysis of synoptic and mesoscale features. Afterwards, we downscale the

outer domain to an intermediate, convection-allowing grid where radar observations are also

assimilated for six, 15-min cycles to improve analyses of storm-scale features (∆x=4 km;

d02 in Fig. 4.1). Previous studies (e.g., Johnson and Wang 2019) indicate that at least 1-km

grid spacing is necessary to capture small-scale convective events such as those initiating

along an undular bore. Thus, after DA is complete, we initialize 7-h forecasts from the
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final EnKF analysis on a third, 1-km forecast domain (see new d03 in Fig. 4.1). Following

Johnson and Wang (2019), we only use the first 10 ensemble members for the forecast

period to represent current convection-allowing ensemble systems.

4.3.2 Object-based identification of CI

Given that CI is a locally rare and rapidly occurring process (Burlingame et al. 2017),

applying traditional verification methods can be difficult (e.g., Kain et al. 2013). Recently,

Burghardt et al. (2014) developed an object-based technique that allows for detecting and

matching between specific observed and forecast CI objects. We apply this method, also

utilized by Burlingame et al. (2017) and Keclik et al. (2017), to identify each CI event

occurring during the 7-h forecast period (example shown in Fig. 4.3). The same technique

is simultaneously applied to both the forecasts and MRMS radar observations (Smith et al.

2016) using the following steps. First, we apply bilinear interpolation to regrid the observed

MRMS reflectivity data onto the model grid for each case. We then identify convectively

active regions in the forecast and observations by selecting areas of reflectivity greater than

35 dBZ at the -10 ◦C level. Searching at the -10 ◦C isotherm avoids potential brightbanding

effects that could cause spurious CI events to be detected in stratiform precipitation regions

(Gremillion and Orville 1999). For the forecast data, we calculate reflectivity at -10 ◦C by

searching downwards from the model top to find the first model level where the ambient

temperature is greater than -10 ◦C. The forecast reflectivity data are then interpolated onto

that height. The MRMS reflectivity at -10 ◦C is calculated using the same method, except

that RAP analyses are used for determining the height of the -10 ◦C isotherm (NOAA 2015).

We note that the height fields derived from the forecast data and RAP analyses are generally

within 100 m of each other and have little impact on the derived reflectivity product.

Once convectively active regions have been identified, we detect individual convective

objects by segregating the reflectivity data with a watershed transform algorithm that requires

at least four contiguous grid points of reflectivity > 35 dBZ (Lakshmanan et al. 2009). These

63



Figure 4.3: Example of the object-based CI detection algorithm applied throughout this
study for forecast member 1 of SONDE ALLPROF on 3 June. The background shading
represents the (a,c,e,g) observed and (b,d,f,h) forecast reflectivity at -10 ◦C (dBZ). The
unmatched CI objects, indicated at the time and centroid location of CI, are represented by
red dots. If a CI object is matched between the forecast and observed objects, it is instead
represented by a yellow dot and the pair ID is annotated above the object.
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convectively active objects are then tracked backwards in time so that their starting time and

location (CI) can be determined. The object tracking works by searching a 15-km search

radius, which we subjectively find to work well for the cases simulated here, around each

object at the previous output time (15 min). This step effectively tracks objects across time

by merging any pairs with a translation speed less than 60 km h−1. We note that only ∼2%

of objects move faster than this speed, indicating that the threshold likely has little impact on

the results presented herein. After tracking, we remove any objects that are not maintained

for a minimum of 1 h, such that we only account for mature, deep convection (Burlingame

et al. 2017). We then define the CI objects by the starting time and centroid location of these

convectively active objects (red and yellow dots in Fig. 4.3).

4.3.3 Object-based verification of CI

To quantify the capability of each forecast experiment to predict CI, we apply both

probabilistic and deterministic verification methods based on the CI objects detected using

the previous method. The forecast probabilities are created using individual binary masks for

each ensemble member. Given that CI often occurs at only a few grid points, we determine

ensemble probabilities using unsmoothed neighborhood maximum ensemble probabilities

(NMEP) that Schwartz and Sobash (2017) recommend for locally rare events such as updraft

helicity tracks. NMEP measures the percentage of ensemble members that produce CI

within a selected neighborhood. Once NMEP has been calculated for each case, we then

verify the probabilistic forecast fields using FSS (Roberts and Lean 2008) which measures

how well each experiment predicts general regions of nocturnal CI.

The deterministic verification technique (Fig. 4.3) matches between forecast and ob-

served objects based on subjectively chosen spatiotemporal thresholds (Burghardt et al.

2014). We match between forecast and observed objects if (1) the centroid distance between

the pair is less than 150 km, and (2) if the absolute difference in their initiation times is

less than 2 h. We also perform various sensitivity tests that change these spatiotemporal
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thresholds and find little to no impact on the relative performance between the assimilation

experiments. If we find multiple potential matches between object pairs, then we match the

pair with the lowest composite error (E; Burghardt et al. 2014), defined as:

E = [E2
d +(Vc ∗Et)

2]1/2 (4.1)

where Ed is the centroid distance error, Et is the absolute timing error, and Vc is a represen-

tative storm motion calculated by averaging the simulated wind speed between 450 and 850

hPa at the location of the observed CI object (Burlingame et al. 2017).

After matching between the forecast and observed objects (yellow dots in Fig. 4.3),

we organize results into a 2 X 2 contingency table and calculate the standard verification

metrics (Wilks 2011) of probability of detection (POD), false alarm ratio (FAR), bias, and

critical success index (CSI). Recent studies (e.g., Skinner et al. 2016; Schwartz and Sobash

2017) explore various ways to compute similar object-based verification metrics across

an ensemble. Here, we compute these contingency metrics by combining hits, misses,

and false alarms from each forecast member into a single contingency table such that one

value of each metric is computed for the ensemble per case. Consequently, the limited

number of cases (n=13) prevents the estimation of statistical significance. In addition to the

contingency metrics, we also calculate timing, distance, speed, direction, aspect ratio, and

axis angle errors of the matched object pairs following the definitions in Davis et al. (2006).

We calculate the latter four attributes 1 h after CI such that the convection has had some

time to evolve from its original cellular shape.

4.4 Systematic impact of assimilating remote sensing profiles for forecasts

of nocturnal CI

We first assess the general impacts of assimilating the PECAN profilers by verifying

NMEP forecasts of both hourly precipitation exceeding 6.35 mm (0.25 in) and CI (Figs.
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4.4, 4.5). In general, each experiment performs similarly for precipitation with only slight

changes to the FSS when assimilating remote sensing data. Compared to SONDE, as-

similating the thermodynamic profilers in SONDE TQPROF slightly improves the mean

precipitation skill at most forecast hours and for both neighborhood sizes (Fig. 4.4a,b).

Most of the impact to the mean FSS skill in SONDE TQPROF is a result of three cases (i.e.,

outliers in Fig. 4.5a,b). Conversely, assimilating the kinematic profilers leads to a consistent

negative impact for precipitation. SONDE UVPROF produces lower skill compared to

SONDE, especially during the early and later forecast hours (Fig. 4.4a,b), leading to median

FSS impacts of -0.02 to -0.01 depending on the exact neighborhood size (Fig. 4.5a,b). When

assimilating both sets of profilers together in SONDE ALLPROF, we find little impact to the

FSS such that the negative impacts of assimilating the composite kinematic profilers likely

counteract the positive impacts of assimilating the thermodynamic profilers. Additionally,

though the forecasts are more skillful when verifying over a larger neighborhood, the impacts

remain generally the same magnitude at both r = 50, 150 km.

Similar to results found by Keclik et al. (2017), all experiments produce much lower

skill for CI forecasts compared to precipitation (Figs. 4.4,4.5). Though not necessarily

surprising, this suggests that convection-allowing NWP systems can predict general regions

where precipitation is likely to occur, but struggle to predict the precise timing and location

of initiation within those regions. We also find that assimilating the PECAN profilers has a

larger overall impact for CI compared to precipitation (Fig. 4.4c,d; Fig. 4.5c,d). Using a

50-km verification neighborhood, we find that SONDE TQPROF produces increased skill

compared to SONDE at ∼4.5 h (Fig. 4.4c), and between 3.5-6.5 h when using a 150-km

neighborhood (Fig. 4.4d). Conversely, SONDE UVPROF often produces similar or lower

skill compared to SONDE, most notably at ∼3 h using a 50-km neighborhood (Fig. 4.4c)

and at ∼5 h when using a 150-km neighborhood (Fig. 4.4d). Again, these impacts likely

cancel each other out when both datasets are assimilated, such that SONDE ALLPROF

produces similar skill to SONDE (Fig. 4.4c,d 4.5c,d). We discuss hypotheses for why
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Figure 4.4: Time series of fractions skill score (FSS) for varying neighborhoods. The time
series is created by averaging the time series of FSS for the 13 individual CI cases. The
statistics are calculated for (a,b) hourly precipitation exceeding 6.35 mm (0.25 in); and (c,d)
CI objects detected over the previous hour. Also shown in (a,b) are the average number of
grid points where observed hourly precipitation exceeds 6.35 mm, and (c,d) the average
number of observed CI objects. While each CI event during the 7 h forecast is verified
here, the timing of the primary CI event used to select the 13 cases is indicated by the gray
shading.
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Figure 4.5: Box-and-whisker plots for FSS differences between the indicated experiment
and SONDE (FSSEXPERIMENT – FSSSONDE) using varying neighborhoods. The statistics are
calculated for (a,b) hourly precipitation exceeding 6.35 mm (0.25 in); and (c,d) CI objects
detected over the previous hour. The line through the middle of the box represents the
median of the data. The bottom of the box represents the lower quartile and the top of the
box represents the upper quartile. The whiskers extend to the 1.5 times the interquartile
range (IQR). Any outliers above or below 1.5*IQR are plotted as circles.
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assimilating kinematic data sometimes degrades the nocturnal convective forecasts in later

sections. Additionally, the FSS for CI shows stronger case-to-case variability (as indicated

by the taller boxes in Fig. 4.5c,d) and more hourly variability than the FSS for precipitation

(Fig. 4.4c,d). The latter result is likely related to the large variability in the number of

observed CI objects, as Fig. 4.4c,d shows local minimums in skill when the observed object

counts decrease at forecast hour 6. These increased impacts for CI compared to precipitation

suggests that nocturnal CI forecasts are more sensitive to the boundary layer modifications

generated by assimilating the remote sensing data. While small changes to the low-level

pre-convective environment might slightly shift the location or magnitude of large-scale

precipitation regions, similar changes can also cause CI forecasts to entirely fail or new CI

events to occur (e.g., Martin and Xue 2006).

While the FSS metric quantifies how well each experiment predicts general regions of

CI, we also perform a deterministic verification technique that matches between specific

observed and forecast CI events (Table 4.4). This method allows us to not only compute

the percentage of CI events that are successfully predicted, but also measure the number

of false alarms and estimate various errors of the successful matches. We note that the

“POD-primary” in Table 4.4 evaluates only over objects associated with the primary CI

events used to select the 13 CI cases (Table 4.2), while the other detection statistics verify

over every CI object within the model domain.

Similar to the probabilistic verification results, we find that each experiment produces

similar contingency metrics with mean PODs and FARs of ∼0.50, biases of ∼1.101, and

CSIs of ∼0.33 (Table 4.4). While the assimilation impacts to these contingency met-

rics are small, we find measurable impacts that agree with the findings presented for the

probabilistic verification methods. First, assimilating the thermodynamic retrievals in

SONDE TQPROF produces the best results for many contingency metrics. Compared to

SONDE, SONDE TQPROF leads to small increases in POD (+0.01), POD-primary (+0.04),

1The mean bias for each experiment is greater than 1.0 despite a lower average number of forecast objects
compared to observed objects. This is due to most cases featuring a bias less than 1.0, but three cases producing
many forecast objects where the individual bias for that case is greater than 1.6.
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Table 4.4: Mean contingency statistics for each experiment including the number of observed
and forecast CI objects per case, probability of detection (POD), false alarm ratio (FAR),
bias, and critical success index (CSI). The number of forecast objects is also averaged across
the ten ensemble members. POD, FAR, bias, and CSI are calculated over every nocturnal CI
event within the forecast domain, while POD-primary is calculated over only the nocturnal
CI events corresponding to the primary ascent mechanisms listed in Table 4.2.

Statistics SONDE SONDE TQPROF SONDE UVPROF SONDE ALLPROF
# observed CI objects 15.5 15.5 15.5 15.5
# forecast CI objects 15.4 15.3 14.2 15.3
POD 0.53 0.54 0.50 0.52
FAR 0.48 0.48 0.47 0.50
Bias 1.13 1.09 1.04 1.14
CSI 0.34 0.35 0.33 0.33
POD-primary 0.66 0.70 0.64 0.68

and CSI (+0.01), and a small decrease in the bias (-0.04). Conversely, assimilating the

kinematic profilers produces the worst overall metrics for POD, CSI, and POD-primary.

SONDE ALLPROF performs similarly to SONDE, indicating that positive and negative

impacts of assimilating the two datasets again counteract each other. We note the average

POD is slightly higher when verifying over objects associated with the primary CI events

targeted by the data assimilation (∼0.64). In addition to being located closer to the mobile

observations, these events are often the largest within the domain and are likely easier to

capture. However, the impact on the rest of contingency statistics generally do not change

when limited to the primary CI events (not shown).

We also present performance diagrams (Roebber 2009) for each individual CI case in Fig.

4.6. In general, we find strong case-to-case variability in both the baseline performance and

for the impact of assimilating the remote sensing profilers. For example, SONDE ALLPROF

shows a large increase in CSI compared to SONDE for the 24 June frontal overrunning

case (pentagons in Fig. 4.6). However, assimilating both datasets together has the opposite

impact for the 26 June frontal overrunning case (stars in Fig. 4.6). Likewise, we also find a

few cases where assimilating the thermodynamic data degrades the forecast skill (e.g., 16

July given by triangles in Fig. 4.6) despite the mean contingency impacts being positive.

Romine et al. (2016) find similar results when assimilating dropsonde data, noting that
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the cases with the most positive impacts feature observations which sample broad regions

around the event of interest. Thus, the case-to-case variability shown here is likely sensitive

to both the number of observing sites assimilated and their location relative to the CI event

(see marker size and transparency in Fig. 4.6). We also compare the impact of assimilating

the remote sensing data to the strength of synoptic-scale ascent (Fig. 4.7). Cases that feature

an upstream trough at either 500 or 700 hPa are classified as strongly-forced (6 out of 13

cases), while other events are classified as weakly-forced (7 out of 13 cases). This subjective

analysis reveals that most of the impact to the mean CSI in SONDE TQPROF results from

assimilating the AERI data for strongly-forced cases (Fig. 4.7b). Instead, assimilating the

AERI observations for weakly-forced cases produces little-to-no impact, suggesting that

much of the case-to-case variability could also be related to the synoptic regime that the

nocturnal CI events develop within.

Finally, we also calculate mean attribute errors for the successful matched pairs (Table

4.5). We note that the timing and distance errors shown are likely biased, as an event

would only be included in this calculation if it passed certain thresholds of these errors to

be considered a match. Overall, each experiment produces near zero mean timing errors.

Although this result agrees with previous evaluations of CI forecasts (Johnson and Wang

2017; Kain et al. 2013), we note that the mean absolute timing error for each experiment

is ∼45 min (not shown), indicating that NWP forecasts still struggle to predict the precise

timing of CI. Each experiment also produces a distance error of ∼70 km which is slightly

larger than previous studies (e.g., ∼50 km in Keclik et al. 2017), though these exact values

are likely sensitive to the specific ascent mechanism for each CI event. When assimilating

the thermodynamic profilers, the experiments show small improvements to the distance,

direction, and axis angle errors. Assimilating the composite kinematic profilers also slightly

improves the timing, distance, aspect ratio, and axis angle errors. When both datasets

are assimilated in SONDE ALLPROF, the forecasts produce the lowest errors in timing,

distance, direction, and axis angle. Thus, while we find that the impacts of assimilating the
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Figure 4.6: Performance diagrams for each nocturnal CI case. The x-axis is the success
ratio (1 – false alarm ratio) and the y-axis is the probability of detection. The critical success
index is represented by the curved black lines and the bias is represented by the straight blue
lines. The different marker styles indicate a different nocturnal CI event, while the marker
size indicates the number of sites assimilated and the transparency of the maker indicates
the average distance between the geographic center of the observing sites and the primary
CI event of interest (Table 4.2). Additionally, the hatched, circular markers near the center
of the plot represent the mean across all 13 nocturnal CI cases.
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Figure 4.7: As in Fig. 4.5 but for CSI differences between the indicated experiment and
SONDE (CSIEXPERIMENT – CSISONDE) for (a) weakly-forced; and (b) strongly-forced cases.
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Table 4.5: Mean attribute errors for the successful matches (hits) of each nocturnal CI event.
All errors are calculated as (forecast attribute – observed attribute) and all errors except for
distance can be either positive or negative. The timing and distance errors are calculated
at the valid time for CI, while the speed, direction, aspect ratio, and axis angle errors are
calculated 1 h after CI such that the convection has had some time to develop from its
original cellular shape.

Mean error SONDE SONDE TQPROF SONDE UVPROF SONDE ALLPROF
Timing (min) 2.5 3.5 -1.1 0.2
Distance (km) 70.4 68.9 69.2 65.5
Speed (ms−1) -0.2 -0.2 -0.4 -0.1
Direction (◦) 13.4 12.4 14.3 12.4
Aspect ratio 0.04 0.04 0.02 0.07
Axis angle (◦) -9.6 -9.0 -8.3 -2.6

two profiler networks counteract each other for detection of CI, we instead find improvements

to the attributes of the CI event when assimilating both thermodynamic and kinematic data

together.

4.5 Pre-convective analysis of observation impacts

To better understand why assimilating the thermodynamic profilers results in better

forecasts of nocturnal CI and precipitation, and why assimilating the kinematic datasets

often degrades these forecasts, we create composite time-height cross sections leading

up to the CI event. The cross sections are formed by averaging each case and ensemble

member over a 75-km radius centered on the primary observed CI event to capture the

average distance error between forecast and observed objects (Table 4.5). We then plot

differences in the convective ingredients (Johns and Doswell 1992) between SONDE and

other experiments in Figs. 4.8-4.10.

In general, separately assimilating the collocated profilers has similar impacts on the

midlevel divergence (Fig. 4.8a,b). Both the thermodynamic and kinematic profilers enhance

the midlevel ascent during the 2 h period prior to CI (i.e., reduced divergence in Fig.

4.8a,b), though SONDE TQPROF enhances the ascent in a slightly higher layer (1.5-3 km

AGL) compared SONDE UVPROF (1-2 km AGL). We note that the increased low-level
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divergence in all figures ∼1 h prior to CI is likely a result of stronger cold pools and their

associated downdrafts compared to SONDE. As Wilson and Roberts (2006) show that most

nocturnal convective events develop in environments featuring midlevel convergence, the

impacts shown here indicate that assimilating both sets of profilers generally yields a pre-

convective environment that is more supportive of nocturnal CI. When both sets of profilers

are assimilated together, SONDE ALLPROF (Fig. 4.8c) shows an elevated divergence

field similar to the individual experiments. Therefore, both datasets likely improve similar

deficiencies in the ascent forecast by SONDE such that there is no significant change when

assimilating the profilers together.

While the remote sensing profilers make similar modifications to the ascent prior to

CI, we instead find large differences in their impact on the pre-convective thermodynamic

fields (Fig. 4.9). For example, assimilating the AERIs results in a moister cross section

above 500 m AGL (+0.3 g kg−1; Fig. 4.9a). Assimilating the composite kinematic profilers

instead produces drying throughout the same layers (-0.3 g kg−1; Fig. 4.9b). We also

find that assimilating the AERIs results in weak low-level warming and midlevel cooling

(Fig. 4.9a), whereas assimilating the composite kinematic profilers leads to slight midlevel

warming throughout most of the cross section (Fig. 4.9b). The connection between the

thermodynamic modifications and the detection of nocturnal CI is clear when comparing

the assimilation impacts for convective indices (Fig. 4.10). The cooling and moistening in

SONDE TQPROF corresponds to increased CAPE (Fig. 4.10a) by∼100 J kg−1 for elevated

parcels originating between 500-1000 m AGL, and slightly reduced inhibition (Fig. 4.10a)

by ∼5 J kg−1 throughout the same layer. These modifications also correspond to ∼150 m of

less lifting required for parcels initiating between the surface and 1 km AGL to reach their

level of free convection (∆zLFC; Fig. 4.8a), though ∆zLFC is most strongly modified 1-3 h

prior to the observed CI time. As such, the modifications made in SONDE TQPROF result

in more buoyant parcels that require less lifting to reach their LFC and are thus more likely

to produce CI compared to the baseline SONDE experiment. Conversely, SONDE UVPROF
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Figure 4.8: Composite, or mean, time-height cross sections for differences in divergence
(10−5 s−1; shading) and ∆zLFC (m; contours) between SONDE and other experiments. The
cross sections are averaged over a 75-km radius around the observed CI event. The cross
sections are also plotted relative to the observed timing of CI such that the final point on the
x-axis indicates CI.
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Figure 4.9: As in Fig. 4.8 but for differences in water vapor mixing ratio (g kg−1; shading)
and temperature (◦C; contours).

results in modifications that are largely neutral including only a small increase in CAPE (Fig.

4.10b), almost no decrease in CIN (Fig. 4.10), and no reduction in ∆zLFC (Fig. 4.8b). These

findings likely explain why assimilating the thermodynamic data results in more members

being matched to the observed CI objects and overall better performance metrics, while

assimilating the kinematic data likely degrades the nocturnal convective forecasts through

updates to the pre-convective thermodynamic state that may hinder CI.

We perform various analyses to determine why assimilating the composite kinematic

profilers often results in drying and warming prior to CI, while the AERIs, which directly
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Figure 4.10: As in Fig. 4.8 but for differences in CAPE (J kg−1; shading) and CIN (J kg−1;
contours). Negative values of CIN represent a decrease in inhibition for that experiment
compared to SONDE.
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measure these thermodynamic variables, produce opposite effects. In Fig. 4.11, we compare

the assigned observation error standard deviations for the kinematic profilers at FP3 and FP6

to the RMSD between the profilers and collocated rawinsondes. Because the RSMD provides

a measure of the instrument error, it should always be less than the assigned error (σc) that

includes representation factors (Janjić et al. 2018). Although three of the six kinematic

profiling sites feature reasonable observation errors (FP6 shown in Fig. 4.11a), three

other sites show an RMSD that is often greater than the assigned observation errors (FP3

shown in Fig. 4.11b). The underestimated observation errors at FP3 become increasingly

problematic above 1.5 km AGL and could lead to erroneous observations near the top of

the wind profile being weighted more heavily than they should in the DA update. As such,

it is possible that these underestimated kinematic errors at some sites could contribute to

updates to the thermodynamic state that oppose the collocated AERIs. However, given

that the representation component of observation errors is case- and site-dependent, simply

increasing the errors by a constant amount might not improve forecast results for all cases.

Advanced methods are therefore needed that can diagnose flow-dependent observation errors

for kinematic profilers and remote sensing instruments in general.

4.6 Example cases

While assimilating kinematic profilers sometimes degrades the CI forecasts, three cases

also show complementary results when assimilating both the kinematic and thermodynamic

data together (Fig. 4.6). This final section explores two example cases in further detail,

one which featured both datasets complementing each other such that SONDE ALLPROF

produces the best forecast of the nocturnal CI event, and one in which assimilating the

composite kinematic data degrades the forecast.
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Figure 4.11: Root-mean-square differences (red and green; ms−1) between the composite
kinematic profilers and collocated soundings launched at (a) FP6 [n=10]; and (b) FP3
[n=21]. The location for each of these sites are shown in Fig. 4.1a. Also overlaid is the
mean, inflated observation error standard deviation (black; ms−1) for the same composite
kinematic observations.
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4.6.1 24 June frontal overrunning event

The 24 June event featured a large-scale CI episode that developed in central Iowa

(dashed black oval in Fig. 4.12) near a region of isentropic ascent of the LLJ above

a stationary surface boundary (Trier et al. 2020). The simulated CI was also partially

generated by additional convergence both along the northern terminus of the LLJ, and

along an outflow boundary generated by earlier convection in central Nebraska. Without

any remote sensing data assimilated, SONDE predicts this event with low neighborhood

ensemble probabilities (NEP; Schwartz and Sobash 2017) that are displaced too far south

compared to the observed event at 0700 UTC (Fig. 4.12b). Assimilating the thermodynamic

profilers increases the timing error for the initial CI event (Fig. 4.12a,d), but also correctly

enhances the NEP values by∼20% after the simulated CI occurs (Fig. 4.12c,f). We note that

SONDE TQPROF also enhances the NEP values of the spurious convection in northeastern

Nebraska at 0930 UTC (dashed red oval in Fig. 4.12c,f). Assimilating the kinematic profiles

reduces the overall extent of the predicted event and suppresses much of the spurious

convection produced by SONDE and SONDE TQPROF (Fig. 4.12i). When both remote

sensing datasets are assimilated together, SONDE ALLPROF predicts a convective system

with large NEP values (>75%) that better match the observed event compared to other

experiments (Fig. 4.12c,f,i,l). We note that the 24 June case features the largest positive

impact from assimilating the remote sensing data despite the observing sites being over 500

km from the CI event on average (Table 4.2).

We find that assimilating the thermodynamic profilers primarily enhances the convective

probabilities through increased midlevel moisture near the region of CI (Fig. 4.13). This

moisture originates from AERI observations collected between 700 and 750 hPa at FP3

and FP5. These observations show large, positive innovations and lead to differences

of +1-2 g kg−1 in SONDE TQPROF during the early assimilation cycles (Fig. 4.13a).

The southwesterly background flow then advects this additional moisture into eastern

Nebraska (Fig. 4.13c,e) and later into the region of CI. As a result, elevated parcels in
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Figure 4.12: Neighborhood ensemble probability of composite reflectivity exceeding 30
dBZ for the 24 June frontal overrunning case valid at (a,d,g,j) 0500 UTC; and (b,e,h,k)
0700 UTC, and (c,f,i,l) 0930 UTC. Each plot is computed using an 8-km neighborhood.
Also overlaid are the 30 dBZ contours of observed composite reflectivity. See text for a
description of the dashed ovals.
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SONDE TQPROF feature increased CAPE and reduced CIN compared to SONDE (not

shown). It is also likely that this additional moisture supports the enhanced probabilities

for convection in central Nebraska (dashed blue ovals in Fig. 4.12e,k) that later generates

the strong outflow boundary responsible for spurious CI events in northeastern Nebraska

(dashed oval region in Fig. 4.15b).

Although assimilating the kinematic profilers results in slight drying near the region

of CI (Fig. 4.13), we instead find that these data improve the CI forecast through an

enhancement of the ambient wind speed in northeastern Nebraska (Figs. 4.14, 4.15). During

early DA cycles, the FP3 and MP3 wind profilers observe faster wind speeds than the

ensemble backgrounds at 800 hPa (shaded dots in Fig. 4.14b,d). Assimilating these data

causes a large increase in the wind speeds around the Kansas and Nebraska border that

is then spread throughout the region of CI (Fig. 4.14d,f). As such, SONDE UVPROF

and SONDE ALLPROF produce stronger wind speeds in northeastern Nebraska by ∼2.5

ms−1 during the forecast period (Fig. 4.15c,d). When an outflow boundary produced by

earlier convection in central Nebraska passes through this region at later forecast times,

the enhanced background flow weakens the speed convergence (dashed oval region in Fig.

4.15) and thus the extent of the spurious convection (Fig. 4.12c,i,l). When both remote

sensing datasets are assimilated together, their impacts complement each other such that

SONDE ALLPROF features the benefits of both the enhanced moisture from assimilating

the thermodynamic data and the weakened convergence that reduces the spurious convection

when assimilating kinematic data (Fig. 4.15d). These combined effects likely explain why

SONDE ALLPROF produces the most accurate convective forecast overall (Fig. 4.12l).

4.6.2 26 June frontal overrunning event

The nocturnal CI event on 26 June (also detailed in section 3.2) featured similar ascent

mechanisms to the 24 June event, including frontal overrunning by the LLJ over a stationary

boundary and enhanced convergence at the terminus of the LLJ. When assimilating the
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Figure 4.13: Differences in 700 hPa analyzed ensemble mean water vapor mixing ratio
(g kg−1) for (a,c,e) SONDE TQPROF and SONDE; and (b,d,f) SONDE UVPROF and
SONDE. The plots are valid at (a,b) 1930 UTC 23 June; (c,d) 0130 UTC 24 June; and (e,f)
0300 UTC 24 June. Also contoured is the ensemble mean water vapor mixing ratio (every
2 g kg−1) for SONDE. The shaded dots in (a,c,e) represent innovation values (observation
minus background; same color and scale as fill) for the AERI observation closest to 700 hPa
and assimilated in SONDE TQPROF. The cyan triangles in (b,d,f) represent the location
of composite kinematic profilers assimilated in SONDE UVPROF. The dashed red ovals
correspond to the primary location of the frontal overrunning CI event for 24 June.
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Figure 4.14: As in Fig. 4.13 but for differences in 800 hPa analyzed wind speed (ms−1).
Also contoured is the ensemble mean wind speed (every 2 ms−1) for SONDE. The green
dots in (a,c,e) represent the location of AERI observations assimilated in SONDE TQPROF.
The shaded dots in (b,d,f) represent the innovation values (observation minus background;
same color and scale as fill) for the composite kinematic profiler observations closest to 800
hPa and assimilated in SONDE UVPROF. The dashed pink ovals correspond to the primary
location of the frontal overrunning CI event for 24 June.
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Figure 4.15: Ensemble mean forecasts of 800 hPa winds (ms−1; shading and barbs) and
horizontal convergence (contoured in black every +5−6 s−1) valid at 0700 UTC 24 June.
The half barbs represent wind speeds of 2.5 ms−1 and the full barbs represent wind speeds
of 5 ms−1. See text for a description of the dashed red ovals.
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thermodynamic data, we find general improvements to the CI forecast compared to SONDE,

such that higher NEPs are predicted along the central portion of the linear CI event and

spurious convection to the southwest is suppressed (dashed black ovals in Fig. 4.16a,c).

Conversely, SONDE UVPROF predicts lower NEP values along most of the event (Fig.

4.16e). Additionally, at later forecast times when additional convection develops northwest

of the main linear band, SONDE UVPROF generates fewer convective cells and with lower

probabilities compared to SONDE (dashed pink ovals in Fig. 4.16b,f). SONDE ALLPROF

also shows similar problems compared to SONDE UVPROF such that the linear nocturnal

CI event is predicted with a southeastern bias (Fig. 4.16g), and the second CI event is almost

entirely missed (Fig. 4.16h).

As was discussed in the previous section, assimilating thermodynamic or kinematic

data often has opposite effects on the pre-convective moisture environment. Fig. 4.17

demonstrates an example of this for the 26 June CI event. Assimilating the thermodynamic

data introduces additional midlevel moisture (Fig. 4.17a), primarily originating from FP3,

that is later advected into the region of CI and enhances the environment for new convective

events (red dashed oval region in Fig. 4.17c,e). Conversely, assimilating the wind profiler

data from the same site introduces drying that suppresses new development (Fig. 4.17b,d,f).

We hypothesize that this drying in SONDE UVPROF results from assimilating wind data

near the top of the composite kinematic profile at FP3 (Fig. 4.18b). The wind observation at

1930 UTC is much slower than the background wind between 700-800 hPa and causes a large

reduction in the analyzed v-wind when assimilated (Fig. 4.18b). Given the negative north-

south moisture gradient near FP3 (Fig. 4.17b), assimilating this slower v-wind also weakens

the northward moisture advection into central Kansas. Though we have no independent

observations to verify the weakened moisture advection, the convective forecast serves as

an indirect verification tool. Thus, compared to the moistening and improved CI forecast

that results from assimilating the thermodynamic data, we assume that the data near the

top of the wind profile at FP3 are likely incorrect. Without an accurate representation of
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Figure 4.16: As in Fig. 4.12 but for the 26 June frontal overrunning case valid at (a,c,e,g)
0300 UTC; and (b,d,f,h) 0500 UTC.
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their observation errors (Fig. 4.11b), such data are thus likely responsible for the degraded

forecast quality.

4.7 Discussion

This chapter evaluates the systematic impact of assimilating a network of ground-

based remote sensing instruments alongside collocated rawinsondes for 13 nocturnal CI

events. The PECAN project provides a valuable dataset for determining these impacts

given the diverse forcing mechanisms and environments for each case. Additionally, as

most nocturnal convection is forced by mechanisms above the surface, such events serve as

useful examples to understand the benefit of profiling instruments specifically. Although

the limited number of nocturnal CI events sampled during PECAN prevents the estimation

of statistical significance of the observation impacts, the results shown here offer valuable

information compared to previous case studies that only assimilate data for one case or from

a single observing site.

We find small but consistent improvements across nearly all verification metrics when

assimilating thermodynamic profilers alongside collocated rawinsondes. These improve-

ments include an increase in mean FSS in addition to improvements to standard contingency

metrics such as POD, CSI, and bias. We find that assimilating the thermodynamic profiling

data primarily results in midlevel cooling and moistening prior to CI, thus enhancing the

likelihood of convective development and improving the detection of observed events. These

results provide further evidence that a network of thermodynamic remote sensing profilers

can have positive impacts on convective-scale forecasts.

Conversely, assimilating the collocated kinematic profilers often degrades the forecast

performance for the detection of nocturnal CI, likely due to opposite impacts to the pre-

convective thermodynamic fields compared to the direct observations from the AERIs.

When both datasets are assimilated together, these detriments often counteract the benefits

of assimilating the thermodynamic data. However, while assimilating the kinematic data
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Figure 4.17: As in Fig. 13 but for 750 hPa water vapor mixing ratio (g kg−1) and valid at
(a,b) 1930 UTC 25 June; (c,d) 2230 UTC 25 June; and (e,f) 0000 UTC 26 June. The dashed
red ovals correspond to the primary location of the frontal overrunning CI event for 26 June.
The blue circle in (b) indicates the location of the FP3 profile shown in Fig. 4.18.
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Figure 4.18: Ensemble mean background (green) and analysis (red) wind profiles for the
1930 UTC composite kinematic observation assimilated from FP3 (black; location circled in
blue in Fig. 4.17b).

often degrades the detection of nocturnal CI, we find some forecast improvements when

assimilating both datasets together. For example, the CI events that are successfully detected

in SONDE ALLPROF show lower timing, location, and orientation errors. To further

improve the precise timing and location of CI, denser observing networks would likely need

to be assimilated compared to the 2-6 sites assimilated here. Assimilating such a wider

network of profilers would likely better constrain the location of convergence boundaries

for which we saw little impact in this chapter. Finally, we also find strong variability

in the impact of assimilating these datasets for different cases, likely due to the diverse

mechanisms responsible for each nocturnal CI event and the number and relative location of

each observing site.

We hypothesize that the forecast degradations from assimilating kinematic data are

related in part to underestimated observation errors at some sites. These findings, along

with the relationship between error inflation and forecast skill discussed in Chapter 3,

suggest a large sensitivity between observation impacts and their assigned observation errors

when assimilating high-frequency, remote sensing data. This sensitivity is likely further

compounded by the large number of profilers that are assimilated at one time in this chapter

(as many as 12 profiles from the same site during one DA cycle). As representation errors
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vary by environment, empirical error inflation methods such as the one applied here are

likely not valid for a large set of cases. Thus, the next chapter of this dissertation examines

flow-dependent methods to diagnose observation error variances for high-frequency profilers,

including adaptively inflating observation errors (e.g., Minamide and Zhang 2017) or using

background and analysis-error statistics to derive optimal observation errors (e.g., Desroziers

et al. 2005).
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Chapter 5

Convective-scale forecast impacts of flow-dependent and static

observation error estimation for the frequent assimilation of

thermodynamic profilers

5.1 Introduction

As discussed in Chapter 1, DA involves computing the posterior probability density

function of a model state given prior probabilities and observation likelihoods (Kalnay

2003). Much previous DA research focuses on improving the structure of the former through

ensemble- or hybrid-based methods that can diagnose flow-dependent background error

correlations (Whitaker and Hamill 2002; Wang et al. 2007, 2008a,b, 2009, 2013; Buehner

et al. 2010; Johnson et al. 2015). Conversely, few studies explore potential improvements to

the estimate of the observation error covariance, R, despite the background and observation

errors playing an equally important role. Much of this research gap is due to the prior

assumption that conventional observations feature errors that change little in time or space

and thus can be represented by a constant, Gaussian-distributed error variance (Fowler and

Van Leeuwen 2013). However, novel remote sensing instruments have become increasingly

common for assimilation in operational systems across the globe (e.g., Geer et al. 2018).

Such instruments can be highly beneficial in improving NWP forecasts (Hu et al. 2019;

Degelia et al. 2019; Chipilski et al. 2020) but are also known to feature highly variable

observation errors. As such, it has become clear that adaptive and flow-dependent methods

for diagnosing R should be further explored (Minamide and Zhang 2017; Fielding and

Janiskova 2018; Fielding and Stiller 2019).

Observation errors are primarily composed of three main sources: instrument errors,

systematic errors, and representation errors (Fowler and Van Leeuwen 2013). Instrument
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errors represent random observation noise that is typically small and can be represented by

a constant error. Systematic errors are those that occur when observations are increasingly

inaccurate in certain scenarios, such as when measuring a specific feature or at a different

time of day. For example, some remote sensing profilers are known to perform poorly in

the presence of clouds or temperature inversions (e.g., Turner and Löhnert 2014). Finally,

representation errors occur due to mismatches between the observed and modeled variable.

These can include errors associated with the observation operator that occur when mapping

the model state into the observed state (e.g., errors in a radiative transfer model). Represen-

tation errors can also occur due to mismatched scales between the observation and model

state, such as when a coarse model grid box smooths through a frontal boundary or shallow

inversion. Given their relation to the atmospheric state, systematic and representation errors

are sometimes referred to as “flow-dependent” observation errors (Minamide and Zhang

2017).

Many datasets are known to feature heavily flow-dependent observation errors. For

example, Fielding and Janiskova (2018) show that satellite-based, radar observation errors

increase from ∼1 dB in the stratiform region to ∼8 dB within the convective core of a

simululated MCS. Despite the strong variation in these errors, most operational DA systems

assume constant (static) observation errors that do not vary in time or location (Bormann

et al. 2016). These assumptions naturally result in some observations being underweighted

(overestimated observation errors) or overweighted (underestimated observation errors)

during DA. We document such problems in Chapter 4 when assimilating ground-based

remote sensing data collected during PECAN. When using a static error inflation method

across the entire network of profilers, we find that some profiling sites feature underestimated

errors. Assimilating data from these sites are then shown to weaken midlevel moisture

advection and degrade subsequent forecasts of nocturnal CI.
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To resolve these problems, a few recent studies propose methods for diagnosing flow-

dependent observation errors in DA. Geer and Bauer (2011) adaptively inflate static ob-

servation errors for cloud-top observations based on an empirical function of brightness

temperature. Minamide and Zhang (2017) use a similar method but only apply the error

inflation when the difference between the observed and simulated brightness temperature

(i.e., the innovation) is large. Both methods reduce analysis errors by limiting the use of large

observation increments due to mismatched scales. Instead of relating representation errors to

an empirical function, Fielding and Stiller (2019) develop a method for directly computing

representation errors based on the local variance of an observation and a climatological

correlation factor. Though they do not assimilate observations using these methods, they

show that such methods can accurately estimate representation errors routinely observed by

satellite-based radar instruments. Finally, a variety of studies also employ a method derived

in Desroziers et al. (2005, hereafter “D05”) for computing the full observation error matrix

(i.e., all three error components; Weston et al. 2014; Bormann et al. 2016; Cambell et al.

2017). The D05 method uses observation-space diagnostics, including the innovation and

analysis residuals, to compute an estimate of R.

While these previous studies present some advantages of assigning flow-dependent

observation errors, many questions are still yet to be addressed. First, the methods described

in Geer and Bauer (2011) and Minamide and Zhang (2017) are designed to inflate errors

only due to representation errors resulting from mismatched scales. This ignores poten-

tial systematic errors that occur when instruments are less accurate in certain conditions.

Additionally, previous applications of the D05 method typically compute a statistically

robust estimate of R by collecting innovation and analysis statistics from many DA cycles

(e.g., Weston et al. 2014; Bormann et al. 2016; Cambell et al. 2017). These applications

effectively average the observation errors and ignore potential variations that can occur in

some meteorological conditions. Finally, apart from Minamide and Zhang (2017), most

studies described above only evaluate the impact of observation errors on synoptic or coarser
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mesoscale models. As such, no known work has determined the convective-scale forecast

impact of utilizing flow-dependent observation errors. To address these research gaps, we

propose two methods for estimating observation errors that account for both time-varying

systematic and representation errors. Specifically, we compare static and flow-dependent

methods to evaluate whether such novel methods can improve forecasts of a nocturnal MCS

observed during PECAN on 15 July 2015. We evaluate these methods by assimilating

data collected by AERIs, as these instruments are known to feature variable performance

statistics depending on the meteorological conditions (Turner and Löhnert 2014; Turner and

Blumberg 2019).

The outline of this chapter is as follows: section 5.2 presents an overview of the methods

used to assign the observation errors including their static formulation and a flow-dependent

extension. System configuration and details of the 15 July nocturnal MCS used to evaluate

these methods are discussed in section 5.3. Attributes of the error profiles diagnosed by

each method are presented in section 5.4. The impacts of assimilating these error profiles

for the convective event are detailed in section 5.5, and the impacts on the DA cycling are

discussed in section 5.6. Finally, a discussion of results is found in section 5.7.

5.2 Methods for assigning observation errors: static methods and their

flow-dependent counterparts

This study compares the convective-scale impact of assimilating AERIs using both static

and novel, flow-dependent methods to assign observation errors. These remote sensing

instruments retrieve simultaneous profiles of temperature and water vapor mixing ratio

up to 3 km AGL every 5-15 minutes. As the accuracy of AERI retrievals is sensitive to

various atmospheric parameters including clouds and precipitable water vapor (Turner and

Löhnert 2014; Turner and Blumberg 2019), observation errors for these data are likely

highly flow-dependent and therefore act as a useful tool to evaluate various observation

estimation methods. The following is a summary of the methods evaluated in this study
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including descriptions of both their static and flow-dependent implementations. We note

that the serial EnKF applied here (described in section 2.1) assumes a diagonal R with no

observation error correlations. As such, the methods below are only designed to compute

observation error variances instead of covariances.

5.2.1 Inflation of AERIoe retrieval errors

We originally introduce a method that assigns observation errors for AERI data by

statically inflating the retrieval errors generated by AERIoe (refer to section 3.3.1 and Eq.

3.1). This method inflates the errors using the difference between the full error profiles used

for assimilating rawinsondes in GSI and rawinsonde instrument errors. The weight of the

error inflation is controlled by the tunable parameter α that is different for temperature and

moisture and linearly increases with height. Though the initial retrieval errors are unique for

each observing time, the additive inflation (second term on RHS of Eq. 3.1) tends to be much

larger such that Eq. 3.1 produces a primarily static error profile with little variance between

observing times. By comparing profiles of the final, inflated error to RMS differences

(RMSD) from collocated rawinsondes, we find that this static inflation method produces

a reasonable shape and magnitude for the mean error profiles but greatly underestimates

the variability in the observation errors (Fig. 5.1). Upper-level moisture observations often

differ from rawinsonde observations by 0.5-4 g kg−1, while the observation errors diagnosed

using Eq. 3.1 only vary by 1.8-2.2 g kg−1. As such, the inflation method from section 3.3.1

can sometimes cause upper-level observations to be underweighted (overestimated errors) or

overweighted (underestimated errors), likely leading to suboptimal observation increments.

To introduce flow-dependence into the AERIoe inflation method, we modify the method

from section 3.3.1 to include the effective vertical resolution profile for the retrieval (γ;

units of km). AERIoe outputs a unique profile of γ for each observing time that measures
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Figure 5.1: RMS differences between AERI retrievals and collocated rawinsonde launches
for all retrievals assimilated in Chapter 4 (black). AERI retrievals are only shown if
rawinsonde data is available at the same site within a ±15 min window. The error bars in
black represent one standard deviation of the absolute differences between the retrievals
and rawinsondes. The RMS error for rawinsondes has also been subtracted from the black
curve. Also shown in red are the mean and standard deviation of the observation error
profiles assigned for the same retrievals using Eq. 3.1. The mean differences are computed
by interpolating each AERI retrieval and rawinsonde onto a standard vertical grid with 25
hPa spacing.
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Figure 5.2: Example of AERIoe moisture retrievals collected between 0600-2000 UTC 23
June during PECAN. Included are the (a) moisture observations (g kg−1), (b) retrieval errors
(g kg−1), and (c) retrieval effective resolution profiles (km). Also overlaid on each panel is
the cloud base height (km) indicated by a collocated lidar or ceilometer (white).

the vertical smoothing used in the retrieval. We refer to Turner and Löhnert (2014) for the

derivation of γ within AERIoe. Following this modification, Eq. 3.1 becomes:

σ
2
P f = σ

2
Pi +βγ(σ2

S f −σ
2
Si) (5.1)

where β represents a similar tunable parameter to α but now has units km−1. The AERIoe

effective resolution typically increases with height (i.e., more smoothing at the top of the

profile; Fig. 5.2a). This results in Eq. 5.1 producing a similar effect to Eq. 3.1 wherein the

error inflation increases with height. As such, we do not require β to increase with height as

with α in Eq. 3.1.
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Whereas the method in Eq. 3.1 equally inflates each error profile, Eq. 5.1 instead causes

the AERI retrieval errors to be adaptively inflated. For example, this method often inflates

errors more in the shallow layer below cloud base, where Turner and Blumberg (2019)

note that the AERI effective resolution becomes large due to problems separating cloud

emission from atmospheric emission. An example of this issue is shown for a PECAN case

in Fig. 5.2 where the AERI vertical resolution rapidly grows through a layer beginning

∼500 m below cloud base after 1100 UTC. While the retrieval errors increase by a factor of

5 relative to the surface (Fig. 5.2b), the effective vertical resolution instead increases by a

factor of 20 throughout the same layer (Fig. 5.2c). This indicates considerable smoothing in

the observations that is not fully accounted for by the retrieval errors. Thus, applying the

flow-dependent error inflation in Eq. 5.1 can correspondingly inflate the retrieval errors to

account for such problems.

5.2.2 Desroziers et al. (2005) diagnostic

In addition to inflating errors produced by AERIoe, we also evaluate the impact of

assigning error variances derived from observation-space diagnostics (Tandeo et al. 2018).

The most common implementation for this follows from D05 who derive an estimate

of R as a relationship between the innovation (do
b = yo−Hxb) and analysis residuals

(do
a = yo−Hxa). Here, yo is the observation vector, and Hxb and Hxa are the background

and analysis vectors in observation space. Assuming that observation and background errors

are uncorrelated and that the covariances used to compute xa are consistent with the true

matrices, D05 show that:

R̃ = E[do
a(d

o
b)

T ] (5.2)

where R̃ approximates the true R. Because R̃ contains information about the model departure

from the observation, it should ideally contain all components of the observation error

including systematic errors and errors related to representation. We note that the D05

diagnostic is often referred to as a posterior “consistency check” on the assigned observation
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errors given its requirement for an existing analysis vector. To assimilate observations

using the D05 diagnostic, Bormann et al. (2011) propose a method wherein an assumed

set of errors are used to compute an initial analysis. R̃ is then diagnosed using Eq. 5.2 and

the analysis update is repeated using the new observation error covariance matrix. This

analysis-diagnostic cycle can also be iterated to improve the estimate of R̃.

Recently, Cambell et al. (2017) show that remote sensing instruments often feature

large, correlated observation errors. For such instruments, the ability of the D05 method

to diagnose a full error covariance matrix, including off-diagonal terms related to error

correlations, could be particularly useful. Nevertheless, many operational DA systems

require a diagonal R under the assumption that conventional datasets do not typically

feature significant observation error correlations. Previous studies show that ignoring the

off-diagonal terms of R̃ by only assigning observation error variances (i.e., the diagonal

terms of R̃) can lead to sub-optimal analyses (Bormann et al. 2016). This problem can be at

least partially alleviated by applying a multiplicative inflation to the error variances (Stewart

et al. 2013; Bormann et al. 2016). Following these findings, we use the D05 diagnostic for

assigning AERI observation errors through:

σ
2
P f =Cdiag(R̃) (5.3)

where C is a constant multiplicative inflation factor.

Previous studies typically compute R̃ using a large subset of observations to increase the

statistical robustness of the estimated errors. For example, Bormann et al. (2016) compute R̃

from a collection of satellite data assimilated over one month. Given that a large observation

subset essentially averages the observation errors over an extended period, this standard

implementation of Eq. 5.3 produces static errors that are not a function of the background

state. However, previous research supports potentially reducing the window used for the

D05 diagnostic, as Weston et al. (2014) find that R̃ for sounder observations converges on

a solution within one day. Cambell et al. (2017) also note finding little daily variability
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Figure 5.3: (a) AERI moisture retrievals (dewpoint temperature; ◦) and corresponding
background and analysis profiles from FP5 and assimilated during the 0400 UTC 15 July DA
cycle. Also shown are (b) the observation error covariance matrix (R̃; g2 kg−2) diagnosed by
Eq. 5.2 for the same retrievals; and (c) the uninflated and inflated diagonal of R̃ assimilated
in the DESROZIERS FD experiment (g kg−1; Eq. 5.3). In (c) Eq. 5.3 is computed using C
= 1.25. We note that the matrix in (b) is not symmetric given that R̃ is only an estimate of
the true R.

in the computed diagnostics. Following these findings, we also evaluate a flow-dependent

implementation of D05 wherein a unique R̃ is computed during each DA cycle. This method

effectively sacrifices statistical robustness for time-dependent observation errors. As shown

in Fig. 5.3, the error profiles diagnosed by the flow-dependent implementation of D05 are

primarily related to the magnitude of the innovation and analysis residuals such that the

errors increase near the top of the profile due to the AERI retrievals differing from the model

state.

5.2.3 Experimental design and implementation of error methods

To evaluate the convective-scale impact of these methods, we design a set of experiments

that differ only in their methods used to assign the observation errors when assimilating

AERI retrievals (Table 5.1). First, we perform a reference experiment where no AERI

data are assimilated (NOAERI) to ensure that the latter experiments do not overinflate

the observation errors and result in little impact on the analysis. Next, we perform two
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experiments that inflate the AERIoe retrieval errors, including a method based on the static

error inflation from Eq. 3.1 (AERIOE), and another that uses the flow-dependent extension

in Eq. 5.1 wherein the errors are adaptively inflated (AERIOE FD). Additionally, this

study performs one of the first known evaluations of applying the D05 observation-space

diagnostics for convective-scale DA. Two experiments are included that use this method,

including a static but statistically robust implementation where Eq. 5.3 is computed a priori

using the 13 cases evaluated in Chapter 4 (DESROZIERS). For this experiment, separate

error profiles are computed for each assimilation domain given that representation errors

are highly related to model grid spacing (Fielding and Stiller 2019). We also evaluate a

flow-dependent extension of the D05 method where Eq. 5.3 is computed “in-line” during

the assimilation cycling (DESROZIERS FD). For this experiment, we apply the iterative

method for computing R̃ (Bormann et al. 2011) and find that the error profiles converge

within three iterations. We also note that separate error profiles are computed for each AERI

observing site in both DESROZIERS and DESROZIERS FD.

The two flow-dependent experiments (AERIOE FD, DESROZIERS FD) are likely

more impactful in certain situations depending on the atmospheric state. For example, we

hypothesize that AERIOE FD can improve analysis results by inflating observation errors

below cloud base where systematic errors often occur. DESROZIERS FD could instead

limit observation impacts in situations where the retrieval smooths through an inversion or

shallow moist layer, resulting in a large innovation. To combine the benefits of these two

methods, we perform an additional experiment (MAX) that assigns observation errors based

on the maximum value diagnosed by either AERIOE FD or DESROZIERS FD:

σ
2
P f = max[σ2

P f (AERIOE FD),σ2
P f (DESROZIERS FD)] (5.4)

MAX follows a similar approach to Minamide and Zhang (2017) who select the maximum

error between a baseline observation error (instrument error plus a constant representation

error) and an error estimate derived from observation-space diagnostics similar to Eq. 5.2.
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Table 5.1: List of experiments in Chapter 5, a description of the method used to assign their
observation errors, and values for the tunable parameters in each equation

The MAX experiment is also designed to alleviate instances where DESROZIERS FD

produces an observation error that is too low, such as when the innovation or analysis

residuals are near zero.

Each assimilation method described above uses a tunable parameter (α , β , C) to control

the magnitude of the observation errors (values listed in Table 5.1). To be consistent

with previous results, we use the values of α applied in section 3.3.1 for the AERIOE

experiment (see Fig. 3.3). For the parameter β used in AERIOE FD, we select values

that result in the lowest mean absolute difference between observation errors produced

by AERIOE and AERIOE FD. As such, this flow-dependent modification increases the

profile-to-profile variation of the errors in AERIOE FD while only slightly changing the

mean errors (primarily at the top of the profile). Finally, to be consistent with the other
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experiments, we also tune C using the 26 June 2015 case that is used to select α in Chapter

3. We find that C=1.25 produces the highest FSS and thus we also use that value to simulate

the 15 July MCS presented herein.

5.3 Case description and system configuration

5.3.1 Overview of the 15 July 2015 MCS

We evaluate each experiment for the nocturnal MCS observed during PECAN on 15

July 2015 (IOP30). Grasmick et al. (2018) provide a detailed overview of this event which

we summarize here. On the late afternoon of 14 July, a cluster of disorganized convective

cells developed in eastern Colorado along a group of shortwave troughs embedded within

an upper-level ridge. Additional convection initiated along outflow boundaries produced by

these storms shortly after sunset, eventually growing upscale into the MCS of interest (Fig.

5.4a). By 0700 UTC, this MCS developed the traditional leading-line, trailing stratiform

structure with the strongest precipitation located along the northern half of the MCS (Fig.

5.4b). An additional band of convection, oriented primarily east-west, developed just north of

the main convective line near the Nebraska border at 0800 UTC (Fig. 5.4c). This secondary

convective line will be discussed throughout this chapter. The main MCS continued to

propagate eastward, maintaining its structure before eventually decaying around 1200 UTC

(Fig. 5.4d). Though not considered a severe MCS (Grasmick et al. 2018), the NWS reported

three heavy wind events (30 ms−1 or 60 kt) and one large hail event during its evolution.

We previously assimilate both thermodynamic and kinematic profilers for this case as

part of the systematic study detailed in Chapter 4. While the baseline forecasts perform well,

we find that assimilating the AERI data results in reduced skill for accumulated precipitation

forecasts (not shown). The forecasts are most degraded between 0700-0900 UTC during

which the MCS is heavily organized and when the secondary, east-west convective band

develops to the north (Fig. 5.4c). As discussed in section 4.7, these forecast degradations

could partially be a result of using static observation errors for datasets that feature large,
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Figure 5.4: RAP analyses for the 15 July 2015 nocturnal MCS event including composite
reflectivity (dBZ; bottom color scale), 850 hPa winds (ms−1; right color scale), and 850
hPa water vapor mixing ratio (g kg−1; green contours). The location of the AERI platforms
assimilated here are overlaid in each panel and labeled in (a).
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Table 5.2: As in Table 2.3 but only for the AERI instruments assimilated in Chapter 5.

flow-dependent error components. Given these findings, the 15 July MCS is selected to

evaluate the impact of these novel methods. Additionally, we note that no kinematic profilers

are assimilated here given that the methods discussed in section 5.2 are primarily designed

for AERIs (see assimilated sites in Table 5.2 and Fig. 5.4).

5.3.2 Configuration of DA cycling

We evaluate the experiments described above using the same multi-scale DA and forecast

system described in Chapter 2. The cycled DA begins by generating initial and lateral

boundary conditions at 1600 UTC 14 July. Next, conventional data and AERI retrievals are

assimilated on the 12-km outer domain (d01 in Fig. 5.5) at 3-h intervals until 0400 UTC

15 July. After DA on d01, we then downscale to the inner, 4-km domain (d02 in Fig. 5.5)

during which conventional data, AERI retrievals, and radar observations are assimilated

at 15-min intervals until 0530 UTC 15 July. Finally, we initialize 7-h forecasts from the

first 10 ensemble members following Chapter 4. However, unlike Chapter 4 where we

analyze small-scale nocturnal CI events on a 1-km grid, this study focuses on the larger-scale

MCS that spans from southern Nebraska to northern Oklahoma. As such, we only analyze

forecasts on the 4-km domain to limit computational costs.

5.4 Diagnosed observation error profiles

To examine the general properties of the observation errors diagnosed by each method,

we first present mean error profiles computed over all DA cycles (Figs. 5.6-5.7). The error
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Figure 5.5: Overview of experimental design for Chapter 5 including (a) domain configu-
ration for the outer (d01, 12-km) and inner (d02, 4-km) assimilation domains. The inner
assimilation domain is also used as the forecast domain. The location of each AERI platform
assimilated here are also overlaid. (b) Flowchart for the cycled assimilation, including
the four 3-h assimilation cycles on d01 beginning at 1600 UTC 14 July, the six 15-min
assimilation cycles on d02 beginning at 0415 UTC 15 July, and the 7-h forecast period
beginning at 0530 UTC 15 July.
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bars represent the standard deviation of the diagnosed errors and should not be confused

with the “error standard deviation” used to assign observation errors within the DA system.

Additionally, we choose not to present MAX here given that its observation errors are exactly

equal to the larger errors between AERIOE FD and DESROZIERS FD.

In general, each method diagnoses similar error magnitudes for midlevel (∼900-750 hPa)

temperature and moisture observations with larger differences appearing at the bottom and

top of the retrievals. These differences primarily occur between the two main experiment

sets (i.e., AERIOE and AERIOE FD versus DESROZIERS and DESROZIERS FD). When

averaged across all sites, the methods which inflate the AERIoe retrieval errors produce

vertically increasing errors up to 700 hPa for both temperature (Fig. 5.6a) and moisture

(Fig. 5.7a). The DESROZIERS and DESROZIERS FD methods instead show a local

maximum in errors near the surface that decreases through the PBL. This result indicates

that the innovation and analysis residuals are largest near the surface, potentially due to local

circulations sampled by AERIs that cannot be resolved in the 12-km and 4-km simulations

(i.e., larger representation errors). Differences between the two experiment groups are

magnified at certain sites and especially for moisture errors. For example, DESROZIERS

and DESROZIERS FD indicate much larger errors in the midlevels at FP4, FP5, and FP6

(Fig. 5.7c,d,e), whereas the AERIoe inflation methods produce larger errors at SPARC

(Fig. 5.7f). Overall, the DESROZIERS and DESROZIERS FD methods also produce much

more site-to-site variability due to their additional sensitivity to the background and analysis

states.

The flow-dependent extensions of each method follow generally similar shapes to their

static counterpart. AERIOE and AERIOE FD produce similar error profiles below 750 hPa

due to β in Eq. 5.1 being tuned to produce the lowest RMSD between the two experiments.

However, the AERIOE FD errors become much larger than AERIOE in the upper portions

of the profile, especially for temperature (Fig. 5.6). This increase partially results from

the effective vertical resolution term in Eq. 5.1 often increasing exponentially with height
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Figure 5.6: Mean and standard deviations of the observations error profiles for temperature
(◦C) from each site assimilated in Chapter 5 (except for FP1). The profile in (a) is computed
using observation error profiles from all sites. When computing the statistics, each profile is
interpolated onto a standard vertical grid with 25 hPa spacing.
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Figure 5.7: As in Fig. 5.6 but for water vapor mixing ratio observation errors (g kg−1).
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compared to the linearly-varying α in Eq. 3.1. Additionally, the presence of clouds

often contributes to a higher effective resolution and corresponding errors in AERIOE FD

compared to AERIOE. For the D05 methods, DESROZIERS FD generally features a similar

shape to DESROZIERS but with larger error magnitudes at some sites (e.g., moisture errors

at FP4 in Fig. 5.7c).

The largest impact when utilizing the flow-dependent methods results from the increased

temporal variance of the observation errors at all sites and for both temperature and moisture

(see error bars in Fig. 5.6-5.7). AERIOE FD features more variability than AERIOE

throughout most of the profile due to the addition of γ in Eq. 5.1 that changes for each

retrieval. AERIOE FD also features much larger error variability near the top of the

profile, likely due to the presence of clouds increasing the effective resolution of some

retrievals. Next, given its relationship to the innovation and analysis residuals which can

vary considerably for each DA cycle, DESROZIERS FD produces the largest error variance.

We note that no variation is shown for DESROZIERS since only a single, static error profile

is computed for each site. The larger standard deviation of the flow-dependent methods

(AERIOE FD, DESROZIERS FD) also more closely matches the observed variability in

the RMSD between AERI retrievals and observed rawinsondes (Fig. 5.1; a proxy for the

true observation error). This finding suggests that these advanced methods might better

capture potential systematic errors wherein the observation uncertainty increases in specific

meteorological conditions.

5.5 Impact of observation errors on the prediction of the 15 July 2015

MCS

Next, we evaluate the forecast impacts of assimilating AERI data using the above

observation error profiles generated by each method. We primarily analyze the evolution

of the 15 July MCS through NEP and FSS computed over a 16-km neighborhood. We

113



Figure 5.8: Neighborhood ensemble probabilities (NEP; %) for each observation error
experiment and valid at (a-f) 0730 UTC; (g-l) 0830 UTC; and (m-r) 1015 UTC 15 July. The
probabilities are computed for composite reflectivity exceeding 30 dBZ. Also overlaid in
black are the 30 dBZ contours of observed composite reflectivity from MRMS. See text for
a description of the circled regions.

note that the interpretation of these results does not change when verifying over different

neighborhoods or forecast products (e.g., reflectivity or precipitation).

Without assimilating any AERI data, an MCS develops in the correct location with

maximum probabilities located along the main convective line and in the trailing stratiform

region in northwestern Kansas (Fig. 5.8a). Although NOAERI correctly predicts the early

structure of the MCS, a large region of spurious precipitation develops to the north of the

primary convective line (blue circle in Fig. 5.8a). This spurious convection, which we

discuss at length throughout the rest of this chapter, eventually expands into a large area of

precipitation and results in an apparent northern shift of the MCS relative to observations

(circled region in Fig. 5.8m). Additionally, we note that NOAERI fails to maintain the MCS

in Kansas such that ensemble probabilities along the observed convective line weaken to

<60% by 1030 UTC (forecast hour 4; Fig. 5.8m).
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Assimilating the AERI data using the static inflation method introduced in section 3.3.1

(AERIOE; Fig. 5.8b,h,n) slightly degrades the forecast quality during forecast hours 0-3.

Primarily, the observation errors in AERIOE reduce the convective probabilities within the

stratiform region of the MCS by ∼30% (southern black circles in Fig. 5.8a,b). AERIOE

also displaces, but does not suppress, much of the spurious convection further south such

that it connects with the main convective line of the MCS (Fig. 5.8b). This shift causes the

MCS to orient increasingly north-south and again extend too far north in AERIOE. By 1015

UTC (Fig. 5.8m,n), AERIOE eventually begins to indicate a better forecast than NOAERI

due to improvements in both the spurious precipitation (reduced probabilities by∼20%) and

better maintenance of the convective line in the MCS (increased probabilities by ∼20%).

However, the early forecast degradations within the trailing stratiform region, along with

little improvement in the spurious precipitation, contribute to AERIOE producing a lower

mean FSS than NOAERI for the weaker precipitation threshold (Table 5.3).

While the static inflation method slightly degrades the forecast relative to the baseline

simulation, its flow-dependent extension (AERIOE FD; Fig. 5.8c,i,o) improves upon many

of the above-mentioned problems. Primarily, we find that AERIOE FD results in reduced

probabilities for the spurious precipitation across most of southern Nebraska (Fig. 5.8c,i).

AERIOE FD also better maintains the stratiform region of the MCS as indicated by higher

probabilities in northwestern Kansas from 0730-0830 UTC (Fig. 5.8c,i). These results

contribute to an overall more skillful forecast in AERIOE FD compared to NOAERI and

AERIOE (Table 5.3) and suggest that some of the forecast degradations discussed in Chapter

4 can be alleviated by assigning flow-dependent observation errors for remote sensing data.

However, the forecast in AERIOE FD eventually converges with AERIOE after 1030 UTC

(not shown), indicating that the impact from modifying the observation errors only lasts ∼4

h.

This study also represents one of the first known works to evaluate the impact of using the

D05 method to assign observation errors for convective-scale DA and prediction. The static
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implementation of this method, DESROZIERS (Fig. 5.8d,j,p), similarly improves upon

many of the issues discussed above. DESROZIERS simulates less spurious precipitation

in central Nebraska and enhances probabilities within the trailing stratiform region of the

MCS compared to both AERIOE and AERIOE FD. However, DESROZIERS still develops

low probabilities for unobserved convection along the Nebraska-Kansas border that leads

to a slight misorientation of the MCS at later lead times (Fig. 5.8j). While the spurious

precipitation is better suppressed in AERIOE FD, DESROZIERS instead shows larger

improvements to the convective line of the MCS as indicated by higher probabilities in

north-central Kansas from 0730-0830 UTC (Fig. 5.8d,j).

Finally, the flow-dependent extension of the D05 method (DESROZIERS FD; Fig.

5.8e,k,q) produces large improvements upon DESROZIERS (Table 5.3) and produces

the best forecast of any experiment apart from MAX. At 0730 UTC, DESROZIERS FD

accurately simulates nearly all the convection in Nebraska and only fails to capture a

weak region of precipitation in northeast Nebraska that no experiment simulates until later.

DESROZIERS FD also produces the best forecast for the MCS in Kansas, including high

probabilities both within the convective line and in the stratiform region (Fig. 5.8e,k). At

0830 UTC, the bowing structure of the MCS is well captured in DESROZIERS FD as

indicated by the northwest-southeast orientation in convective probabilities just north of the

Kansas-Nebraska border (Fig. 5.8k).

Table 5.3 summarizes this NEP analysis and reveals three major results, including: (1)

each method, apart from AERIOE, results in a positive impact for the convective forecast

when assimilating AERI data compared to NOAERI; (2) the experiments based on the

observation-space diagnostics in D05 (DESROZIERS, DESROZIERS FD) produce higher

skill than the inflation of the AERIoe retrieval errors (AERIOE, AERIOE FD); and (3) the

flow-dependent extensions of each method produce higher skill than their static counterparts.

Each result is primarily related to improved suppression of spurious convection, with a small

contribution stemming from increased probabilities within the MCS. Though not discussed
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Table 5.3: Fractions Skill Score (FSS) values computed for accumulated precipitation
exceeding 2.54 mm hr−1 and 6.35 mm hr−1. Each score is computed across the entire
forecast domain (d02 in Fig. 5.5) using a 16-km neighborhood and then averaged over the
7-h forecast period. The verifying precipitation observations are obtained from MRMS.

Experiment FSS (2.54 mm hr−1) FSS (6.35 mm hr−1)
NOAERI 0.49 0.54
AERIOE 0.47 0.56
AERIOE FD 0.50 0.61
DESROZIERS 0.50 0.60
DESROZIERS FD 0.51 0.61
MAX 0.51 0.63

above, we also find that MAX (Fig. 5.8f,l,r) produces a subjectively similar forecast to

DESROZIERS FD but with higher probabilities within the main convective line (Fig. 5.8l).

As such, MAX produces the most skillful forecast compared to other experiments (Table 5.3).

This finding suggests that both sets of methods have individual benefits that are optimized

when utilized together.

5.5.1 Analysis of spurious precipitation

Given that modifications to the spurious precipitation in Nebraska are responsible for

much of the skill differences between the experiments, we perform an additional analysis

to determine what mechanisms lead to the spurious CI. We compare member 1 from

AERIOE and MAX for this analysis, as these two simulations produce the most and least

spurious convection between the experiments that assimilate AERI data, respectively (Fig.

5.9). Member 1 also best illustrates the differences highlighted in the previous section,

as AERIOE generates a north-south oriented line of unobserved convection (Fig. 5.9a,c)

whereas MAX produces a small amount of east-west oriented convection that is observed

at earlier lead times (Fig. 5.9b,d). As with DESROZIERS FD, MAX instead produces a

secondary northwest-southeast oriented convective event that matches the observed system

well (circled in Fig. 5.9f). This secondary CI event in MAX occurs due to northerly

117



winds converging with outflow associated with the MCS (yellow circle in Fig. 5.10b).

Due to the large amount of spurious convection inhibiting the northwesterly winds in

southwestern Nebraska (Fig. 5.10a), AERIOE does not simulate the convergence and

associated convective band. As such, we hypothesize that the improved structure of the MCS

in DESROZIERS FD and MAX also results from improved suppression of the spurious

convection.

We find that the spurious convection develops within a north-south oriented midlevel

moist layer located along the Kansas-Nebraska border (Fig. 5.11a). This moisture bulge

results in enhanced midlevel instability, as denoted by air parcels at 1 km AGL featuring

∼3000 J kg−1 of CAPE (Fig. 5.11c). In addition to the enhanced instability, this region

also features low-level convergence due to the strong westerly winds associated with the

MCS outflow (Fig. 5.11a). The spurious convection of interest is primarily supported by

this enhanced instability and convergence. Although the convergence ahead of the MCS is

predicted similarly in MAX, using the flow-dependent observation errors produces a weaker

moist layer that is displaced further south (Fig. 5.11b). We note that a similar moisture

bulge is seen in RAP analyses at 0500 UTC (Fig. 5.2a) but does not extend as far north as is

simulated in AERIOE (Fig. 5.11a), further supporting the corrections shown in MAX. As

such, MAX simulates lower MUCAPE in southern Nebraska, leading to a suppression of

the spurious convection relative to AERIOE (Fig. 5.11d).

5.6 Impact of observation errors during DA cycling

In this final section of results, we relate improvements in the convective forecast to

individual observation error profiles. We present difference and ensemble correlation plots

to evaluate the impacts specifically for the spurious convection and the trailing stratiform

region. Note that the differences in Fig. 5.12, apart from the first column, are plotted relative

to AERIOE as that method has been applied for our previous studies (Chapters 3, 4) and can

be treated as a baseline assimilation method.
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Figure 5.9: Simulated composite reflectivity from member 1 of AERIOE and MAX valid at
(a,b) 0630 UTC; (c,d) 0730 UTC; and (e,f) 0830 UTC. Also overlaid in black are the 30
dBZ contours of observed composite reflectivity from MRMS. See text for a description of
the circled regions.
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Figure 5.10: Simulated 850 hPa winds (ms−1; shading and barbs), horizontal convergence
(contoured in black every +5−6 s−1), and composite reflectivity (30 dBZ contours in red)
from member 1 of AERIOE and MAX. Each plot is valid at 0730 UTC 15 July. The half
barbs represent wind speeds of 2.5 ms−1 and the full barbs represent wind speeds of 5
ms−1. The yellow circle in (b) indicates convergence band that results from northerly winds
converging with outflow.
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Figure 5.11: Simulated pre-convective thermodynamic fields from member 1 of the AERIOE
and MAX experiments, including (a,b) 850 hPa dewpoint temperatures (◦C; shading) and
winds (ms−1; barbs); and (c,d) most unstable CAPE (J kg−1, shading) and lifted parcel levels
for the most unstable parcels (m AGL; black contours). In (a,b), the half barbs represent
wind speeds of 2.5 ms−1 and the full barbs represent wind speeds of 5 ms−1. The white
circles represent regions corresponding to the spurious convection discussed in the text.

121



5.6.1 Impact to spurious precipitation

The difference plots reveal two moisture surges during DA that contribute to the spurious

convection simulated in AERIOE. The first of these surges occurs at 0100 UTC just east of

FP3 when AERIOE increases the 850 hPa mixing ratio by ∼3 g kg−1 relative to NOAERI

(red circle in Fig. 5.12a). This region of enhanced moisture is advected to the northwest

between 0100-0530 UTC. At 0400 UTC, a second region of enhanced moisture develops in

AERIOE, again just east of FP3 (Fig. 5.12f). These two moisture surges merge during later

DA cycles, eventually producing a convective-scale region of enhanced moisture compared

to NOAERI (+1.03 g kg−1, red box in Fig. 5.12k). The final location of this positive

moisture increment corresponds to the enhanced MUCAPE shown in Fig. 5.11a,c.

Assimilating the retrievals in experiments other than AERIOE increasingly reduces

the impact of both moisture surges (see negative values in the red boxes of Fig. 5.12l-

o). The moistening is least reduced in AERIOE FD (-1.52 g kg−1) and DESROZIERS

(-2.21 g kg−1), and most reduced in DESROZIERS FD (-2.92 g kg−1) and MAX (-2.80

g kg−1). We note that in general, each difference field features the same spatial structure

as (AERIOE – NOAERI) except for the opposite sign, indicating that the various methods

only modify the magnitude of the observation impacts. We also summarize the moisture

impacts corresponding to the spurious convection by computing average soundings during

the final DA cycle (Fig. 5.13a). Here, each experiment reduces MUCAPE and enhances

MUCIN compared to AERIOE. Again, AERIOE FD features the smallest relative impact

while DESROZIERS FD and MAX produce the largest impact. Given the modifications

to the convective indices, these relative differences likely explain why AERIOE FD and

DESROZIERS reduce the amount of spurious convection while DESROZIERS FD and

MAX almost entirely suppress it.

Next, we perform an ensemble correlation analysis to determine which AERI retrievals

contribute most to the positive moisture increments. While both moisture surges occur near

FP3, Fig. 5.14 reveals that the impacts are likely related to AERI observations assimilated
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Figure 5.12: Ensemble mean differences of 850 hPa water vapor mixing ratio (g
kg−1) for (a,f,k) AERIOE minus NOAERI; (b,g,l) AERIOE FD minus AERIOE; (c,h,m)
DESROZIERS minus AERIOE; (d,I,n) DESROZIERS FD minus DESROZIERS; and (e,j,o)
MAX minus AERIOE. The black contours indicate the ensemble mean 850 hPa water vapor
mixing ratio simulated by AERIOE. Also overlaid are the innovations for AERI moisture
retrievals closest to 850 hPa and assimilated at each cycle using the same color scale. The
red regions correspond to positive moisture increments in AERIOE that enhance spurious
convection in southern Nebraska, and the purple regions correspond to negative moisture
increments in AERIOE that degrade the trailing stratiform region of the 15 July MCS. In
(k-o), a mean difference value corresponding to the dashed rectangles are annotated.

123



Figure 5.13: Ensemble mean soundings computed over the (a) dashed red box; and (b)
dashed purple box in Fig. 5.12k-o at 0530 UTC 15 July. Also annotated on each sounding
are the most unstable CAPE (J kg−1; first metric in brackets) and CIN associated with the
most unstable parcel (J kg−1; second metric in brackets).
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Figure 5.14: Background ensemble correlations between 850 hPa water vapor mixing ratio
at an AERI platform and the rest of the domain. The plots are computed at (a) FP4 valid at
0100 UTC; and (b) FP6 valid at 0400 UTC. The location of the (a) FP4; and (b) FP6 sites
are annotated with the green dots, and the mean values of their 850 hPa moisture innovations
are overlaid (do

b ; g kg−1). Also overlaid in black contours are the analysis increments for the
AERIOE experiment. See text for a description of the yellow circles.

from FP4 (Fig. 5.14a; 0100 UTC surge) and FP6 (Fig. 5.14b; 0400 UTC surge). Both

sites feature very moist midlevels (innovation > 3 g kg−1), meaning that assimilating these

data results in strong, positive increments in regions of positive correlation and strong,

negative increments in regions of negative correlation. Though the analysis increments are a

superposition of all sites and observation levels assimilated, the correlation structures at FP4

and FP6 roughly correspond to the moisture surges highlighted above (yellow circles in Fig.

5.14).

Finally, we present the AERI retrievals assimilated at FP4 and FP6 to better understand

how the observation errors relate to these moisture impacts (Fig. 5.15-5.16). We note that
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the background and analysis profiles are only shown for AERIOE as the corresponding

profiles for other experiments do not significantly differ. As with Fig. 5.14, both retrievals

indicate positive innovations due to the very moist retrievals above 900 hPa relative to the

background. AERIOE indicates the lowest observation error at both sites (Fig. 5.15c, Fig.

5.16c) and thus assigns the largest weight to the moist retrievals during DA. AERIOE FD

features only slightly larger errors than AERIOE due to a marginally larger vertical resolution

compared to the median (Fig. 5.15b, Fig. 5.16b). Despite this, the small error increases in

AERIOE FD appear to have been significant enough to reduce the impact of the moistening.

Conversely, both DESROZIERS and DESROZIERS FD produce much larger observation

errors around 850 hPa, with DESROZIERS FD reaching 4.5 g kg−1 at FP6 (Fig. 5.16c)

due to the very large innovation and analysis residuals (Fig. 5.16a). These larger errors

reduce the weight assigned to the moist AERI retrievals and thus support the significant

reduction in spurious convection in DESORIZERS and DESROZIERS FD. Apart from

the improved forecast results when assimilating the larger observation errors, the increased

errors are further supported by a collocated rawinsonde launched at FP6 that indicates a

strong moisture bias in the AERI retrievals (Fig. 5.16a). As the observation errors for MAX

are approximately equal to DESROZIERS FD for the FP4 and FP6 retrievals, these error

profiles also demonstrate why MAX similarly suppresses the spurious convection in central

Nebraska as in DESROZIERS FD.

5.6.2 Impact to trailing stratiform precipitation

Finally, we also analyze the impacts of the observation errors on the low-level moisture

near the trailing stratiform region of the 15 July MCS (purple regions in Fig. 5.12k-o).

Although the small NEP increases in this region do not impact the skill as much as the

improvements to the spurious precipitation, each method still shows a measurable benefit

compared to the original static inflation method applied in Chapters 3-4.
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Figure 5.15: (a) AERI water vapor mixing ratio (g kg−1) observations assimilated at FP4
during the 0100 UTC cycle, along with corresponding background and analysis profiles
from the AERIOE experiment. (b) Median effective vertical resolution (km) profiles output
by the AERIoe retrieval at the same time. The black profile indicates the median computed
over all PECAN retrievals, while the brown profile indicates the median computed only over
the profiles assimilated during this cycle. (c) Observation error (g kg−1) profiles for these
data assigned in each experiment.
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Figure 5.16: As in Fig. 5.15 but for the FP6 moisture observations assimilated at 0400 UTC.
Also overlaid now are the cloud base height indicated by a collocated lidar or ceilometer
(dashed cyan line), and a corresponding moisture profile collected by a collocated rawinsonde
(purple line in [a]).

128



In general, we find that assimilating the AERI retrievals in the baseline AERIOE ex-

periment produces moderate drying in northwestern Kansas, especially during the 0100

UTC cycle near FP5 (Fig. 5.12a) and the 0415 UTC cycle near SPARC (not shown). These

moisture impacts are mostly stationary and eventually lead to a moderate drying effect

underneath the ongoing MCS during the final DA cycle (-0.89 g kg−1, Fig. 5.13k). The

moisture impacts are also illustrated by computing an average sounding that reveals reduced

dewpoint temperatures below 600 hPa and 200 J kg−1 less of MUCAPE in AERIOE com-

pared to NOAERI (Fig. 5.13b). The reduced instability likely explains why convection in

the trailing stratiform region decays in AERIOE compared to other experiments. Conversely,

assigning observation errors using the other three methods reduces the impact of this drying

(Fig. 5.12l-o) and correspondingly increases the MUCAPE (Fig. 5.13b). As before, the

relative magnitude of these differences is smallest in AERIOE FD (Fig. 5.12l), moderate

in DESROZIERS (Fig. 5.12m), and largest in DESROZIERS FD (Fig. 5.12n). Unlike the

previous analysis, we find here that MAX produces a smaller impact for the moisture in the

stratiform region compared to DESROZIERS FD (Fig. 5.12o).

We do not present a correlation analysis for this section, as the moisture impacts near

the trailing stratiform region occur directly above FP5 and SPARC (Fig. 5.17-5.18). Unlike

the previous section which details moist biases, these AERI observations instead feature

dry layers that are not supported by collocated rawinsondes. Specifically, the 0100 UTC

retrieval at FP5 is too dry between 875-750 hPa (Fig. 5.17a), while the 0415 UTC retrieval at

SPARC is too dry above 850 hPa (Fig. 5.18a). At FP5, AERIOE and AERIOE FD generally

feature similar observation errors and thus assign the heaviest weight to these dry biases

(Fig. 5.17c). Due to the large residuals at FP5 between 850-750 hPa, DESROZIERS FD

again diagnoses the largest observation errors to reduce the impact of the drying (Fig.

5.17c). This midlevel error increase is also partially represented by the static DESROZIERS

experiment, indicating a potential bias in the moisture retrievals from FP5. At SPARC,

the dry bias occurs just below cloud base, indicating that it could potentially be related
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Figure 5.17: As in Fig. 5.16 but for the FP5 moisture observations assimilated at 0100 UTC.

to the emission issues detailed in Turner and Blumberg (2019). The issue is represented

in the vertical resolution profile above 850 hPa (Fig. 5.18b) and as such, the observation

errors are correspondingly inflated in AERIOE FD (Fig. 5.18c). Conversely, DESROZIERS

and DESROZIERS FD produce much lower observation errors here due to the near-zero

analysis residuals throughout much of the profile (Fig. 5.18a,c).

5.7 Discussion

This dissertation chapter evaluates the impact of using static and flow-dependent methods

for assigning observation errors in a convective-scale DA system. Using high-frequency

thermodynamic profiles collected by AERIs, we compare two sets of experiments including

a method that inflates retrieval errors, and another that computes the full observation error
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Figure 5.18: As in Fig. 5.16 but for the SPARC moisture observations assimilated at 0415
UTC.
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based on the D05 diagnostic. In general, the inflation-based methods produce a smooth

error profile that increases with height, while the D05 methods produce larger errors in

the boundary layer. When the static inflation and D05 methods are extended to be flow-

dependent, the latter produce more variable errors that better match the wide distribution

of observed statistics. Additionally, the flow-dependent application of the inflation method

produces larger errors below cloud layers likely due to issues separating cloudy emissions

from atmospheric emissions (Turner and Blumberg 2019).

When assimilating the AERI data using these observation errors, we find that the static

error inflation applied in previous studies can reduce skill compared to a reference experi-

ment that does not assimilate any profiling data. Specifically, the static error inflation results

in reduced probabilities within the trailing stratiform region of the 15 July MCS due to high

weights assigned to retrievals with a dry bias. However, these forecast degradations are

removed when assimilating AERI data using the flow-dependent inflation method. This

extension improves the probabilities within the trailing stratiform region and suppresses spu-

rious convection developing near the MCS. These results indicate that constant observation

errors or static inflation methods are likely inaccurate for remote sensing datasets and that

careful attention needs to be paid to how these errors are assigned.

We find additional forecast improvements when assimilating thermodynamic data using

the D05 method relative to the inflation method. While the static implementation of D05

demonstrates advantages over the inflation methods, a flow-dependent implementation of

this method provides further improvements due to its ability to increase observation errors for

any retrieval that differs strongly from the background or analysis ensemble. However, the

advantages of the flow-dependent implementation over the static version of D05 are small,

suggesting that such benefits might not be worth the increased cost of computing multiple

analyses per DA update. Furthermore, the similarity between the two implementations

suggest that AERI retrievals feature somewhat constant systematic errors that could perhaps

be better controlled through a bias correction scheme.
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In general, we find that most of these benefits result from increasing the observation

errors relative to the baseline (i.e., decreasing weights) for retrievals with a moisture bias.

This result is exemplified by MAX producing the highest skill compared to any experiment

and indicates that larger errors are often required to account for potential systematic obser-

vation errors. Conversely, we instead find little evidence of improvements from adaptively

assigning a lower observation error. Additionally, we find that the convective impacts are

largely related to changes to the moisture error profile as opposed to temperature errors.

This follows Peters et al. (2017) who document the strong sensitivity of MCS forecast errors

to moisture errors. We also note larger impacts to the moisture field when assimilating

thermodynamic profilers in Chapters 4 and 5.

This study constitutes a proof-of-concept work for using flow-dependent methods and

the D05 diagnostic for assigning observation errors for convective-scale DA. However,

by definition, the flow-dependent component of observation errors (representation and

systematic errors) varies considerably by case and observation type. As such, we plan to

continue this work using additional observation types including Doppler lidars and satellite

data, both of which are also known to feature flow-dependent observation errors (e.g.,

Chapter 4; Fielding and Stiller 2019). Finally, a large advantage of the D05 method is

its ability to diagnose a full covariance matrix including observation error correlations.

Though horizontal error correlations are likely small for profiling instruments (i.e., site to

site correlation), vertical correlations can be large (Turner and Löhnert 2014). Thus, our

future work will also include adopting other DA methods such as EnVar (e.g., Wang et al.

2013; Wang and Lei 2014) to evaluate the impact of assimilating the full R̃ diagnosed by

the D05 method instead of only inflating the observation error variances.
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Chapter 6

Conclusions

Convection-allowing NWP systems typically perform poorly when predicting elevated,

nocturnal thunderstorms compared to surface-based convection. This deficiency partially

results from the inability of current models to correctly simulate the mechanisms responsible

for generating and sustaining nocturnal convection (e.g., the nocturnal LLJ, elevated moist

layer, atmospheric bores, etc.). Additionally, initial condition errors contribute to the poor

forecast skill of NWP when predicting nocturnal CI and the evolution of MCSs at night.

These initial condition errors result from the lack of high-frequency profiling observations

that sample important elevated mechanisms. To improve the prediction and understanding

of nocturnal convection, scientists conducted the PECAN field campaign during 2015

(Geerts et al. 2017). As part of PECAN, a large network of fixed and mobile instruments

was deployed that included ground-based remote sensing profilers and high-frequency

rawinsonde and surface observations. This dissertation conducts detailed experiments to

explore whether assimilating these novel datasets can improve predictions of nocturnal

convection.

We first evaluate the impact of assimilating the PECAN dataset for a single nocturnal

CI event observed during PECAN on 26 June 2015. Compared to operational forecasts,

assimilating the PECAN dataset improves the timing, location, and orientation of the CI

event. We also find that the largest forecast improvements result when assimilating these

data on a 12-km grid as opposed to the inner, convection-allowing domain. These results

suggest that mesoscale errors heavily contribute to reduced forecast skill and that even a

coarse network of profilers can alleviate such problems. By conducting experiments in

the data denial framework, we find that assimilating AERIs, RWPs, and high-frequency

rawinsondes produces the largest and most sustained impact by enhancing the elevated moist
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layer in the region of CI. Assimilating Doppler lidar and surface observations also improve

the CI forecast, though the impacts are not sustained for as long as other observation types.

Motivated by the diverse forcing mechanisms and environments that can generate noc-

turnal convection, we next expand our work into a systematic evaluation of the impact of

assimilating remote sensing profilers for forecasts of nocturnal CI. Given that Stalker et al.

(2013) propose implementing new observation networks alongside pre-existing infrastruc-

ture, we also modify our methods such that we only evaluate the impact of assimilating

collocated datasets.

Our systematic study shows that assimilating remote sensing, thermodynamic profilers

again produces small but consistent improvements across a larger set of cases. Assimilating

these data contributes to improved forecasts by enhancing the elevated moist layer prior to

CI. These results confirm a systematic benefit for nocturnal CI forecasts when assimilating

ground-based thermodynamic profilers. Given the relatively small number of instruments

assimilated here, it is likely that expanding the network could lead to even further improve-

ments. Conversely, assimilating the kinematic data often degrades the forecast performance

for the detection of nocturnal CI, likely due to opposite impacts to the pre-convective ther-

modynamic fields compared to other experiments. Despite this, assimilating both datasets

together leads to slight improvements to various CI properties (e.g., timing, location, and

orientation).

We hypothesize that some of the forecast degradations from assimilating remote sensing

data could be a result of underestimated observation errors at some sites. This problem

occurs when using a static method to inflate the provided instrument error and thus assigning

very similar errors across the entire network. Such methods are not likely accurate given

that remote sensing datasets are known to feature strong flow-dependent components to

their observation errors (Fielding and Stiller 2019). To further test this hypothesis, we

design our final set of experiments that evaluates the impact of utilizing novel methods to

assign observation errors for remote sensing datasets. We compare static to flow-dependent
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methods, along with methods that inflate the retrieval errors against methods that compute

the full observation error variance.

Evaluating these methods for a nocturnal MCS on 15 July 2015 confirms that using the

static error inflation method can degrade convective forecasts relative to an experiment where

no remote sensing data are assimilated. We find that adaptively inflating the observation

errors instead can alleviate some problems and improve the convective forecast. Further

improvements occur when using the Desroziers et al. (2005) method that computes the full

observation errors based on observation-space diagnostics. A flow-dependent extension

of the Desroziers et al. (2005) methods leads to some additional improvements, though

the limited benefits might not be worth the increased cost. All of the above benefits are

primarily linked to adaptively increasing the observation errors for problematic retrievals.

This proof-of-concept study suggests a large sensitivity of observation impacts to the

assigned observation errors and motivates future work in this area for other remote sensing

instruments (e.g., satellite-based profilers).

This dissertation is partially motivated by the Nationwide Network of Networks vision

(National Research Council 2009) that aims to identify potential observation networks

to improve forecasts of high-impact weather impacts. We show here that ground-based

thermodynamic profilers are especially impactful and result in the largest improvements to

the forecast skill for nocturnal convection compared to other instruments. Like previous

works (e.g., Coniglio et al. 2019; Chipilski et al. 2020; Hu et al. 2019), we find that the

main advantage of the thermodynamic profilers is their ability to detect frequent changes in

elevated moisture and instability. The impacts of these instruments can be further improved

through the proper assignment of their observation errors. While some aspects of their

assimilation remain unaddressed (e.g., diagnosis of correlated observation errors), these

results presented herein show that a nationwide network of AERIs could greatly improve

the capabilities of convective-scale NWP systems to predict severe convection.

136



Bibliography

Adams-Selin, R., and R. S. Schumacher, 2019: Observations of low-frequency gravity waves
during the PECAN field campaign. 18th Conf. on Mesoscale Meteorology, Savannah, GA,
Amer. Meteor. Soc., 3.5.

Banta, R. M., R. K. Newsom, J. K. Lundquisi, Y. L. Pichugina, R. L. Coulter, and L. Mahrt,
2002: Nocturnal low-level jet characteristics over Kansas during Cases-99. Bound.-Layer
Meteor., 105, 221–252.

Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W.
Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde,
VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation
cycle. Mon. Wea. Rev., 138, 1319–1343.

Benjamin, S. G., B. E. Schwartz, E. J. Szoke, and S. E. Koch, 2004: The value of wind
profiler data in U. S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 1871–1886.

Benjamin, S. G., and Coauthors, 2016: A north american hourly assimilation and model
forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 1669–1694.

Berger, 2004: Satellite wind superobbing. NWPSAF–MO–VS–016, 33 pp,
https://www.ssec.wisc.edu/ howardb/Papers/superob nwpsaf final.pdf.

Blumberg, W. G., T. J. Wagner, D. D. Turner, and J. Correia, 2017: Quantifying the accuracy
and uncertainty of diurnal thermodynamic profiles and convection indices derived from the
Atmospheric Emitted Radiance Interferometer. J. Appl. Meteor. Climatol., 56, 2747–2766.

Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833–850.

Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally,
2016: Enhancing the impact of IASI observations through an updated observation-error
covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 1767–1780.

Bormann, N. A., A. J. Geer, and P. Bauer, 2011: Estimates of observation-error charac-
teristics in clear and cloudy regions for microwave imager radiances from numerical
prediction models. Quart. J. Roy. Meteor. Soc., 137, 2014–2023.

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Inter-
comparison of variational data assimilation and the ensemble Kalman filter for global
deterministic NWP. Part i: Description and single-observation experiments. Mon. Wea.
Rev., 138, 1550–1566.

Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convec-
tion initiation in the high plains using an object-based approach. Wea. Forecasting, 29,
403–418.

137



Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parame-
terization on the practical predictability of convection initiation during the Mesoscale
Predictability Experiment (MPEX). Wea. Forecasting, 32, 1161–1183.

Calhoun, R., R. Heap, M. Princevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual
towers using coherent doppler lidar during the Joint Urban 2003 Dispersion Experiment.
J. Appl. Meteor. Climatol., 45, 1161–1126.

Cambell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for
correlated observation error in a dual-formulation 4D variational data assimilation system.
Mon. Wea. Rev., 145, 1019–1032.

Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictabil-
ity associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056.

Chen, I.-H., J.-S. Hong, Y.-T. Tsai, and C.-T. Fong, 2020: Improving afternoon thunderstorm
prediction over taiwan through 3DVar-based radar and surface data assimilation. Wea.
Forecasting, 35, 2603–2620.

Chipilski, H. G., X. Wang, and D. B. Parsons, 2020: Impact of assimilating PECAN profilers
on the prediction of bore-driven nocturnal convection: A multi-scale forecast evaluation
for the 6 July 2015 case study. Mon. Wea. Rev., 143, 1147–1175.

Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/NCAR - Earth Observing
Laboratory, accessed 01 June 2018. doi:https://dx.doi.org/10.5065/D6GM85DZ.

Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2011: Environment and early evolution of the
8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 1083–1102.

Coniglio, M. C., S. J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-
allowing WRF model forecasts of the planetary boundary layer using sounding observa-
tions. Wea. Forecasting, 28, 842–862.

Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted
AERI and doppler lidar wind retrievals on short-term forecasts of the initiation and early
evolution of thunderstorms. Mon. Wea. Rev., 147, 1149–1170.

Corfidi, S. F., S. J. Corfidi, and D. M. Schultz, 2008: Elevated convection and castellanus:
Ambiguities, significance, and questions. Wea. Forecasting, 23, 1280–1303.

Crook, N. A., 1990: Sensitivity of moist convection forced by boundary layer processes to
low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.

Crook, N. A., and J. B. Klemp, 2000: Lifting by convergence lines. J. Atmos. Sci., 57,
873–890.

Davis, C. A., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation
forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev.,
134, 1772–1784.

138



Davis, C. A., K. W. Wanning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence
of warm-season continental rainfall in numerical weather prediction models. Mon. Wea.
Rev., 131, 2667–2679.

Degelia, S. K., X. Wang, and D. Stensrud, 2019: An evaluation of the impact of assimilating
AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast
of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea.
Rev., 147, 2739–2764.

Degelia, S. K., X. Wang, D. Stensrud, and A. Johnson, 2018: Understanding the impact of
radar and in situ observations on the prediction of a nocturnal convection initiation event
on 25 June 2013 using an ensemble-based multiscale data assimilation system. Mon. Wea.
Rev., 143, 3087–3108.

Degelia, S. K., X. Wang, D. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the
impact of assimilating a network of ground-based remote sensing profilers for forecasts
of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 4703–4728.

Delgado, R., and K. Vermeesch, 2016: FP2 UMBC surface weather station data, version
1.0. UCAR/NCAR - Earth Observing Laboratory, accessed 01 June 2018. doi:https:
//dx.doi.org/10.5065/D6SJ1HSG.

Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, back-
ground and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131,
3385–3396.

Djalalova, I. V., and Coauthors, 2016: The POWER experiment: Impact of assimilation of a
network of coastal wind profiling radars on simulating offshore winds in and above the
wind turbine layer. Wea. Forecasting, 31, 1071–1091.

Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and
temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble
Kalman Filter Experiments, journal=Mon. Wea. Rev., volume = 132, pages=1982-2005,.

Du, J., and Coauthors, 2014: NCEP regional ensemble update: Current systems and
planned storm-scale ensembles. 26th Conf. on Weather Analysis and Forecasting/22nd
Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., J1.4,
https://ams.confex.com/ams/94Annual/webprogram/Paper239 030.html.

Earth System Research Laboratory, 2016: The high-resolution rapid refresh (HRRR),
rapidrefresh.noaa.gov/hrrr/.

Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary
layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5, 432–441.

Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Yano, and J. Tarpley,
2003: Implementation of Noah land surface model advances in the national centers

139



for environmental prediction operational mesoscale Eta model. J. Geophys. Res., 108,
8851–8867.

Fast, J. D., and Coauthors, 2019: Overview of the HI-SCALE field campaign: A new
perspective on shallow convective clouds. Bull. Amer. Meteor. Soc., 100, 821–840.

Feltz, W. F., W. L. Smoth, H. B. Howell, R. O. Knuteson, H. Woolf, and H. E. Revercomb,
2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using
the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584–597.

Fielding, M., and M. Janiskova, 2018: Assimilating profiles of cloud radar and lidar obser-
vations into the ECMWF 4D-Var system. International Symposium on Data Assimilation
2018, Munich, Germany, 3.6.

Fielding, M., and O. Stiller, 2019: Characterizing the representativity error of cloud profiling
observations for data assimilation. Atmospheres, 124, 4086–4103.

Fowler, A., and P. J. Van Leeuwen, 2013: Observation impact in data assimilation: the effect
of non-gaussian observation error. Tellus A: Dynamic Meteor. And Ocean., 65, 20 035.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three
dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.

Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J.
Roy. Meteor. Soc., 137, 2024–2037.

Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather
forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217.

Geerts, B., and Coauthors, 2017: The 2015 plains elevated convection at night (PECAN)
field project. Bull. Amer. Meteor. Soc., 98, 767–787.

Gero, J., H. Revercomb, D. D. Turner, J. Taylor, B. Ermold, K. Gaustad, R. Garcia, and
D. Hackel, 2014: Atmospheric Emitted Radiance Interferometer (AERISUMMARY)
from Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Atmospheric
radiation measurement (ARM) climate research facility data archive, accessed 01 June
2019. doi:http://dx.doi.org/10.5439/10251465.

Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation
between nocturnal MCS evolution and its outflow boundaries in the stable boundary
layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146,
3203–3226.

Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective
parameterization for weather and air quality modeling. Atmos. Chem. Phys., 13, 23 845–
23 893.

140



Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground
lightning at the kennedy space center, florida: A study of lightning initiation signatures as
indicated by the WSR-88D. Wea. Forecasting, 14, 640–649.

Haghi, K. R., and Coauthors, 2018: Bore-ing into nocturnal convection. Bull. Amer. Meteor.
Soc., 100, 1103–1121.

Hanesiak, J., and D. D. Turner, 2016a: FP3 University of Manitoba Doppler lidar wind
profile data, version 1.0. UCAR/NCAR - Earth Observing Laboratory, accessed 01 June
2018. doi:https://dx.doi.org/10.5065/D60863P5.

Hanesiak, J., and D. D. Turner, 2016b: FP6 University of Manitoba Doppler lidar wind
profile data, version 1.0. UCAR/NCAR - Earth Observing Laboratory, accessed 01 June
2018. doi:https://dx.doi.org/10.5065/D64F1NTN.

Hansell, R. A., and Coauthors, 2010: An assessment of the surface longwave direct radiative
effect of airborne Saharan dust during the NAMMA field campaign. J. Atmos. Sci., 67,
1048–1065.

Hitchcock, S. M., M. C. Coniglio, and K. H. Knopfmeier, 2016: Impact of MPEX obser-
vations on ensemble analyses and forecasts of the 31 May 2013 convective event over
Oklahoma. Mon. Wea. Rev., 144, 2889–2913.

Holdridge, D., and D. D. Turner, 2015: FP6 Hesston, KS radiosonde data, version 1.0.
UCAR/NCAR - Earth Observing Laboratory, accessed 01 June 2018. doi:https://dx.doi.
org/10.5065/D6765CD0.

Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme
(WSM6). J. Korean Meteor. Soc., 42, 129–151.

Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United
States. Bull. Amer. Meteor. Soc., 83, 211–225.

Horgan, K. L., D. M. Schultz, J. E. Hales, S. F. Corfidi, and R. H. Johns, 2007: A five-year
climatology of elevated severe convective storms in the united states east of the rocky
mountains. Wea. Forecasting, 22, 1031–1044.

Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble kalman filter for atmospheric
data assimilation. Mon. Wea. Rev., 144, 4489–4532.

Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based
remote sensing boundary layer observations on short-term probabilistic forecasts of a
tornadic supercell event. Wea. Forecasting, 34, 1453–1476.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D.
Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the
AER radiative transfer models. J. Geophys. Res., 113, D13 103.

141
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