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CHAPTER I

INTRODUCTION

1.1 Motivation

Estimation and filtering of nonlinear dynamic systems is an important and ongoing

topic in academia and in industry. Estimation is the idea of combining available

measurements with knowledge of the system dynamics to produce an estimate of the

full system state, usually for the purpose of feedback control. When uncertainties

are present, either in the dynamic model or from noisy sensor measurements, these

estimators can also work as filters, providing the state estimate as a mean and un-

certainty from an assumed distribution. If the dynamic and measurement models are

linear then the Kalman filter is a minimum mean-squared estimator. For the case

of nonlinear models, extensions of the Kalman filter have been developed. The Ex-

tended Kalman Filter (EKF) is the widely accepted standard approach, even though

it loses the theorectical stability characteristics of the linear filter due to its use of lin-

earization. Another popular technique is the Unscented Kalman Filter (UKF) which

propagates the mean and uncertainty through the nonlinear dynamics by utilizing a

set of deterministically chosen ‘sigma points’ that represent the distribution. Both

of these approaches have their benefits and will usually provide decent performance.

However, neither of these estimators utilize symmetries that can exist in nonlinear

dynamic systems.

Symmetries in dynamic systems represent quantities that remain unchanged by

certain transformations. For this work, we are interested in continuous transforma-

tions, which can be represented by Lie groups. For dynamic models which represent
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the motion of physical systems, it is common that there exists symmetries correspond-

ing to relative position and orientation. In other words, the dynamics are invariant

with respect to translations and rotations of the coordinate system. The goal of

invariant observers is to leverage this invariance information to improve estimation

performance.

We are primarily interested in applications related to mobile robotic systems. Un-

manned systems are quickly becoming an important part of everyday life. There is

a wide range of civilian, commercial and military applications that already use un-

manned systems. Aerial video and photography, facility inspection and monitoring,

search and rescue and aerial delivery are just of few of many applications. As these

mobile systems become more ingrained in our society, taking on more responsibili-

ties, they will need to be capable of navigating in dynamic environments. Unmanned

aerial vehicles (UAVs) flying in the presence of wind and autonomous underwater

vehicles (AUVs) navigating in ocean currents are examples of such systems. For sys-

tems in these situations, the ability to simultaneously estimate the system state and

disturbance information will be valuable. Invariant observers are well suited for this

application due to the fact that most mobile robotic systems possess some inherent

symmetry, as stated above. Our interest is to determine whether we can utilize the

concept of system invariance to design novel observers capable of simultaneously esti-

mating the full state and disturbances online based on impartial noisy measurements.

1.2 Literature Review

Considering system symmetries for observer design can be traced back to the early

2000s. The idea of using an invariant error was first proposed in [1]. The idea was

motivated from a system describing a chemical process where the output was a ratio

of concentrations, and therefore invariant to scaling of the individual components.

Around this time there was also considerable interest designing observers on the
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special orthogonal group for attitude estimation of spacecraft [24] and UAVs [23],

[14], [20], [21]. A general framework for designing symmetry preserving observers was

given in [8], [9]. This approach, the details of which will be given in the next chapter,

provides a geometric framework for designing nonlinear observers with interesting

convergence properties, due to the use of an invariant error. This theory led directly

to the development of a symmetry preserving EKF, known as the Invariant EKF or

IEKF [11]. The main benefit of this design is that the observer gain matrix, converges

to constant values, around so-called ‘permanent trajectories’, because by design the

A and C matrices become constant around such trajectories.

Since then, the IEKF has gained attention as a tool well suited for applications

in localization of mobile robots and sensor fusion for navigation of unmanned aerial

vehicles. In [11] the authors apply the IEKF to the problem of estimating the atti-

tude and velocity of an aircraft using GPS velocity and measurements from on board

gyroscopes and accelerometers. The authors in [25] design a symmetry preserving

observer for fusing measurements from several sensors in different coordinate frames

for attitude heading systems for aircraft. Reference [3] develops an IEKF for use

with a low cost Kinect depth camera to perform Scan-Matching aided localization of

a mobile ground robot. They compare the performance of the IEKF to the Multi-

plicative EKF (MEKF) and show that the IEKF has better performance. In [12] the

authors apply the IEKF to the problem of relative localization for multiple mobile

robots. Reference [30] uses the IEKF in a visual inertial navigation system. In [31]

the authors show that an IEKF based SLAM (simultaneous localization and map-

ping) algorithm has better consistency and convergence properties over other EKF

based SLAM techniques.

Furthermore, the success of the IEKF has resulted in continuing research into

symmetric properties of nonlinear systems and how to exploit them for observer de-

sign. The authors in [29] provide checkable sufficient conditions on kinematic systems
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with symmetries to determine whether considered systems can be lifted to invariant

systems on symmetry groups. In [10] a separation principle for invariant systems on

Lie groups is established which holds for a larger set of time-varying trajectories than

for the typical nonlinear case. The authors in [4] propose a matrix Lie group frame-

work for the IEKF and show that for a class of systems referred to as ‘group affine’,

the Lie logarithm of the invariant error obeys a true linear system. The authors use

this fact to prove local stability around any trajectory. In [5] the authors generalize

the idea of linear systems to include systems defined on a general group. They show

that in this context invariant systems could be viewed as pure integrators and there-

fore, constitute a more restrictive class of systems than those that can possess linear

qualities. In [22] the authors provide a unifying theory that connects invariant, group

affine and equivariant systems on Lie groups. They prove that any kinematic system

defined on a Lie group can be embedded into another system by extending the input

space through a process they call the equivariant input extension. They also provide

a filter design, known as the Eq Filter, which for group affine or invariant systems

specializes directly to the IEKF.

1.3 Contribution

The contribution of this thesis is as follows. First, we expand upon the theory of

invariant systems by developing two sets of sufficient conditions that preserve the

invariance of systems under dynamic disturbances. Next, we propose a first order

approximation of the standard filtering covariance matrices to more accurately rep-

resent the uncertainties needed for the IEKF. Then, using the developed theory, we

provide two IEKF designs for a unicycle robot with disturbances that correspond to

the two sets of sufficient conditions identified. We provide simulation results that

compare the performance of both designs to the EKF and results that demonstrate

the benefit of the proposed covariance approximation. In addition to the two designs,
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we also show that the same dynamic model can be embedded into a matrix Lie group

framework that results in a third IEKF design.

1.4 Outline

This thesis is organized as follows. In Chapter II we review some topics related

to this research. This includes the Extended Kalman Filter, Lie Groups, Invariant

Systems and approaches to nonlinear observer design that incorporate symmetries. In

Chapter III we present several ideas for designing augmented IEKFs. In 3.1 are three

propositions for preserving the invariant properties of systems when disturbances are

applied. In 3.2 we address the issue of rotating the IEKF filter covariances. In

Chapter IV we apply the pre-existing theory from Chapter II and the developed

theory from Chapter III, to the problem of estimating the state and disturbances for

a unicycle robot. We provide two IEKF designs based on the approaches in 3.1 and a

third IEKF design based on the matrix IEKF formulation reviewed in 2.4. Then, we

provide simulation results and discussion that compare the performance of the three

IEKF designs with that of the traditional EKF.
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CHAPTER II

CONCEPT OVERVIEW

In this section we provide an overview of concepts that are relevant to this research.

2.1 Extended Kalman Filter (EKF)

As previously mentioned, the Extended Kalman Filter or EKF is the widely accepted

standard for filtering of nonlinear systems. It takes the formulation of the original

linear Kalman Filter and performs a linearization at each step about the current state

estimate. Consider the following general nonlinear system:

xk = f(xk−1, uk) + wk (1)

yk = h(xk, uk) + vk (2)

where x ∈ Rn is the state, u ∈ Rq is the input and y ∈ Rp is the output. w and v

are additive zero mean Gaussian noises with covariances Q and R, respectively. The

system is assumed to be observable. The discrete time formulation is broken into

two steps: the prediction and correction. Let x̂ be the estimate of x and P be the

corresponding covariance. The following equations are implemented at every time

step.

Prediction:

x̂−k = f(x̂+k−1, uk) (3)

P−k = Φk−1P
+
k−1Φ

>
k−1 +Q (4)
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where

Φk−1 =
∂f

∂x

∣∣∣∣
x̂+k−1

(5)

Correction

Kk = P−k C
>
k

(
CkP

−
k C

>
k +R

)−1
(6)

x̂+k = x̂k−1 +Kk (y − h(x̂k, uk)) (7)

P+
k = (I −KkCk)P

−
k (8)

where

Ck =
∂h

∂x

∣∣∣∣
x̂−k

(9)

The EKF works by combining information of the system dynamics with available

measurements. It does this through the Kalman gain, K, which is calculated as

the optimal gain that minimizes a quadratic cost function of the Q and R matrices.

Therefore, it encodes information about the relative uncertainties of the model and

the measurements. The EKF is a recursive algorithm that only requires information

from the previous time step to work. This is desirable as it does not require storing

large amounts of data, even for systems that need to run for large periods of time.

These equations are relevant, because the IEKF uses the same general structure, with

some changes.

Although the EKF is the most widely used nonlinear filter, it is not the only

approach available. Another technique is the Unscented Kalman Filter or UKF.

The UKF has a prediction and correction step and the gain minimizes the same

quadratic cost, however it does not utilize a linearization process. Instead, it uses a

deterministic set of ‘sigma points’ that captures the mean, covariance and potentially

higher moments of the distribution. These sigma points are propagated through the

nonlinear dynamics and measurement equations and the posterior distributions are

calculated using the Unscented Transform.
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2.2 Lie Groups and Invariant Systems

In the mathematical field of group theory, a group is simply a collection of things that

have common properties. More formally, a group is a set of mathematical objects

along with an operation that must satisfy four axioms: closure, associativity, identity

and inverse. Groups can be continuous or discrete. Lie groups are a special type of

group. They are continuous differentiable manifolds where the group operations of

multiplication and inversion are smooth maps.

Every Lie group has a corresponding Lie algebra, which is a vector space that is

the tangent space to the group at the identity element. Lie algebras have the same

dimensions as their Lie group. Let G be an n dimensional Lie group and G be its

Lie algebra. The Lie algebra maps to the group by the matrix exponential such that

∀a ∈ G, ∃b ∈ G, s.t. b = expm(a). There is also a linear mapping Lg : Rn 7→ G

which we will use later on. This allows for a mapping from Rn to the group G. For

example, let ξ ∈ Rn. Then ∃ g ∈ G, s.t. g = expm (Lg(ξ)).

Consider the general nonlinear system

ẋ = f(x, u) (10)

y = h(x, u) (11)

where the state x belongs to a general manifold Σ. Let G be a Lie group and denote an

element by g ∈ G. Define group actions on the states, inputs and outputs respectively

as

X = ϕg(x) U = ψg(u) Y = %g(y). (12)

From [8], the dynamics are said to be invariant if

f(ϕg(x), ψg(u)) =
∂

∂x
ϕg(x)f(x, u). (13)

The above equation can be understood as a statement that the original nonlinear dy-

namics remain satisfied, when the states and inputs have undergone a transformation.
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The outputs are said to be equivariant if

%g(y) = h(ϕg(x), ψg(u)). (14)

Equivalently, the conditions (13),(14) represented by the transformed variables

simply reads,

Ẋ = f(X,U) (15)

Y = h(X,U). (16)

Conceptually, this means that the original system dynamics are unchanged by

a transformation of variables defined by a Lie group. This can help provide some

intuition into whether certain systems possess symmetries. As previously mentioned

mobile robotic systems usually possess symmetries with regard to position and ori-

entation. This is due to the fact that the dynamics of these systems do not explicitly

depend on a globally defined position or attitude.

2.3 Symmetry Preserving Observers

If a system satisfies conditions (13),(14) with respect to a certain group G, then

a symmetry preserving observer can be constructed using the method given in [8].

Below is a summary of the method presented in that paper.

Assume that (10)–(11) with transformations defined in (12) satisfies (13),(14).

First, split the transformation on the states ϕg(x) into ϕag(x) and ϕbg(x) such that

ϕag(x) is invertible with respect to g. Solving

ϕag(x) = c (17)

for g, where c is a constant, results in g = γ(x), a mapping γ : Σ→ G, known as the

moving frame. Next, a complete set of invariants can be found by

I(x̂, u) =
(
ϕbγ(x̂)(x̂), ψγ(x̂)(u)

)
. (18)
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The invariant output error is calculated from

E(x̂, u, y) = %γ(x̂)(h(x̂, u))− %γ(x̂)(h(x, u)). (19)

Then the invariant frame is given by

W (x̂) = [w1, ..., wn] (20)

where

wi =

(
∂

∂x
ϕγ(x)(x)

)−1
· ∂
∂xi

, i = 1, ..., n (21)

and ∂
∂xi

is a basis for Σ. The invariant frame W (x̂) is a set of n independent G-

invariant vector fields. Then the general form of an invariant observer equation is

˙̂x = f(x̂, u) +W (x̂)LE(x̂, u, y). (22)

Define the invariant state error as

σ = ϕγ(x̂)(x)− ϕγ(x̂)(x̂). (23)

A remarkable result from this theory is that for an observer with equation (22) and

error coordinate defined by (23), the invariant error dynamics can be represented by

the general function

σ̇ = Γ(σ, I(x̂, u)) (24)

which is only a function of the invariant error σ and the previously defined invari-

ants (18). For nonlinear systems which possess symmetries, this result provides a

different approach to analyzing the convergence of the errors. For the purposes of

our research, at this point, we take the dynamics of (24) and linearize around σ = 0

to get a matrix for use in calculating the gain matrix L, from the standard Riccati

equation of the EKF.
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2.4 Invariant Extended Kalman Filter (IEKF)

In the previous section, the IEKF was formulated by considering the group action of

G on a system defined on a general manifold. If the original system dynamics can

instead be defined directly on a matrix Lie group then a matrix formulation of the

IEKF may be used. This requires that the state be written as an element of the

group, X ∈ G. The dynamics now become

Ẋ = f(X ) (25)

where f() is now a function that encodes the original system dynamics, but maps

from the group to the tangent space of the group. The theory from this section is

provided by [4].

In the paper, the authors extend the notion of linearity to include dynamic systems

defined on Lie groups and determine a sufficient condition referred to as the group

affine condition. In this paper the left invariant and right invariant errors are defined

similarly as

ηL = X−1X̂ (26)

ηR = X̂X−1. (27)

There is a theorem that states, for a, b ∈ G if the following group affine condition

is satisfied

f(ab) = f(a)b+ af(b)− af(I)b (28)

then the dynamics of the left or right invariant errors are independent of the state

trajectory.

In addition to the group affine condition, the measurements must also be able to

be written as left invariant

Y = Xd1, ...,Xdp (29)
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or right invariant

Y = X−1d1, ...,X−1dp (30)

where di are known vectors.

Moving forward, we will just include the specifics for left invariant systems, since

that is what was applied for this research, however there is a parallel formulation for

right invariant systems.

For a system defined as in (25) that satisfies (28) and has left invariant measure-

ments, the following matrix formulation of the IEKF can be applied.

Prediction:

d

dt
X̂ = f(X̂ ) (31)

Correction:

X̂+ = X̂ expm

Lg
L


X̂−1Y1 − d1

...

X̂−1Yp − dp



 . (32)

Alternatively, if we let

ξc = L


X̂−1Y1 − d1

...

X̂−1Yp − dp

 (33)

be a correction vector, then the correction step could be seen as

X̂+ = X̂ expm (Lg(ξc)) (34)

or simply as

X̂+ = X̂Xc (35)

an intuitive correction in the context of Lie groups.

The dynamics of the invariant error are given by

η̇ = f(η)− f(I)η. (36)

12



Define a vector ξ ∈ Rn by η = expm(Lg(ξ)), which is the Lie logarithm of the invariant

error. One of the remarkable results from [4] is that if the group affine condition is

satisfied, the measurements are invariant and an update equation of the form of (22)

is used, then the Lie logarithm of the invariant error follows truly linear dynamics.

Thus,

ξ̇ = Aξ (37)

ξ+ = ξ + L


−Lg(ξ)d1

...

−Lg(ξ)dp

 (38)

is an underlying linear error system for which the Kalman gain L can be calculated.

It is this knowledge that allowed the authors to prove local stability of the IEKF for

any trajectory.

In addition to the two previously mentioned formulations, the authors in [22]

provided their own formulation called the equivariant or Eq Filter. This design is

applicable to equivariant systems on Lie groups. However, in the paper they also

provide a method of embedding any kinematic system on a Lie group into an equiv-

ariant system by means they call an Equivariant Input Extension. Therefore, they

propose that their design can be applied to any kinematic system defined on a Lie

group. To the author’s knowledge, the definition of equivariance in [22] is equivalent

to the definition of invariance in [8]. The proposed Eq Filter, may differ in the sense

that no explicit condition on the measurements is stated. Instead, the resulting filter

derivation could rely on a linearization of the measurement equations evaluated at

the current estimate of the state. Nevertheless, it is a new approach to the design of

symmetry preserving observers that deserves attention.
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CHAPTER III

AUGMENTED IEKF DESIGNS

In this chapter, we provide some theoretical contributions related to invariant systems

and the IEKF. In the first section, we identify two sets of sufficient conditions that

preserve the invariant properties of systems under additive dynamic disturbances.

In the second section, we propose a correction to the IEKF covariances to better

represent uncertainties in the invariant frame.

3.1 Augmenting Invariant Systems

Consider the following nonlinear system

ẋ = f(x, u) (39)

y = h(x, u)

where x ∈ Rn, u ∈ Rq and y ∈ Rp. Let G be an n dimensional Lie group, such

that g ∈ G, and define local transformations on the state and input by ϕg(x) and

ψg(u), respectively. By definition, the system (39) is invariant with respect to G if

f(ϕg(x), ψg(u)) = ∂
∂x
ϕg(x)f(x, u) for all g, x and u. Similarly, the output is said

to be equivariant with respect to G if there exists a transformation %g such that

h(ϕg(x), ψg(u)) = %g(h(x, u)) [8].

Assumption 1 The system (39) is invariant with respect to the transformations

ϕg(x) and ψg(u).
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Consider (39) cascaded with nonlinear dynamic disturbances d

ẋ = f(x, u) + Cd

ḋ = J(d) (40)

y = h(x, u)

where d ∈ Rm, C ∈ Rn×m and J(·) is a smooth nonlinear function. Note that we

choose to write the disturbances affecting the states as Cd instead of an arbitrary

nonlinear function g(d). The nonlinear disturbance model (ḋ = J(d), z = Cd) is

general since a nonlinear dynamical system with nonlinear outputs of full row-rank

can be converted to a system with linear outputs through a nonlinear coordinate

transformation, e.g., based on its normal forms [17, Section 13.2] [28].

Define two transformations βg(C) : G×Rn×m 7→ Rn×m and ξg(d) : G×Rm 7→ Rm.

We next derive sufficient conditions on βg(C) and ξg(d) such that the cascaded system

(40) remains invariant under the group actions (ϕg(x), ψg(u), βg(C), ξg(d)). We do

this by proposing two different approaches outlined in Proposition 1 and Proposition

2. Proposition 1 takes ξg(·) to be the identity operator and examines invariance

conditions on βg(·). Proposition 2 takes βg(·) to be the identity operator and examines

invariance conditions on ξg(·). Our results rely on the following assumption.

Assumption 2 ϕg(x) and ξg(d) are linear in x and d, respectively.

We define

α(g) =
∂

∂x
ϕg(x) ∈ Rn×n (41)

κ(g) =
∂

∂d
ξg(d) ∈ Rm×m. (42)

Proposition 1 Suppose that Assumption 1 and 2 hold. Then (40) is invariant with

respect to G if βg(C) and ξg(d) are selected as βg(C) = α(g)C and ξg(d) = d, respec-

tively.
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Proof. It follows from the definition of invariance that (40) is invariant if the following

two equations hold:

f(ϕg(x), ψg(u))+βg(C)ξg(d)

=
∂

∂x
ϕg(x) (f(x, u) + Cd)

(43)

J(ξg(d)) =
∂

∂d
ξg(d)J(d). (44)

Let ξg(d) = d. Then (44) is trivially satisfied. Since f(x, u) is invariant with respect

to G, (43) reduces to

βg(C)d =
∂

∂x
ϕg(x)Cd = α(g)Cd. (45)

Since βg(C) can only be a function of g, it follows from (45) that ∂
∂x
ϕg(x) cannot be

a function of x, which means that ϕg(x) is linear in x. Therefore, invariance with

respect to G is preserved by leaving the disturbances (d) unchanged and transforming

C with a transformation defined by βg(C) = α(g)C.

From the proof, we see that invariance can be preserved in the augmented system (40)

by performing a transformation on the system parameter C, instead of on the distur-

bances d. In Proposition 2 below, we preserve the invariance property by performing

a transformation directly on d instead of on C.

Proposition 2 Suppose that Assumption 1 and 2 hold. Then (40) is invariant with

respect to G if βg(C) and ξg(d) satisfy βg(C) = C, Cκ(g) = α(g)C and J(κ(g)d) =

κ(g)J(d).

Proof. Let βg(C) = C. From Assumption 1 it follows that ϕg(x) = α(g)x and ξg(d) =

κ(g)d. Then (43) reduces to Cκ(g)d = α(g)Cd which implies that Cκ(g) = α(g)C

must be satisfied. The second equation (44) becomes J(κ(g)d) = κ(g)J(d).

Proposition 1 and 2 provide two approaches to defining transformations that pre-

serve invariance of a nonlinear system when state dynamic disturbances are included.
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Both approaches assume that the original group action is linear with respect to the

states. Motivated by internal model control and disturbance rejection literature (see

e.g., [15], [16]), we next focus on dynamic disturbances resulting from a linear dy-

namic model, i.e., J(d) = Ad, A ∈ Rm×m. In this case, the conditions in Proposi-

tion 2 become Cκ(g) = α(g)C and Aκ(g) = κ(g)A, the second signifying that the

Lie bracket of the vector fields Ad and ξg(d) must be zero. Assuming that the dis-

turbances affecting the individual dimensions of x share the same generating model,

i.e., J(d) = Ad = (In⊗A)d, Proposition 3 below establishes a sufficient condition on

(C, α(g)) such that the augmented system (40) remains invariant.

Proposition 3 Suppose that Assumption 1 and 2 hold. Suppose that J(d) = Ad =

(In ⊗A)d and C = blkdiag{Is ⊗ C, 0(n−s)×m(n−s)
n

}, 0 < s ≤ n, where A ∈ Rm
n
×m
n and

C ∈ R1×m
n . Assume that α(g) has the following form

α(g) =

α1(g) α2(g)

0 α3(g)

 , (46)

where α1(g) ∈ Rs×s, α2(g) ∈ Rs×(n−s) and α2(g) ∈ R(n−s)×(n−s). Then (40) is invari-

ant with respect to G by choosing βg(C) = C and

κ(g) =

α1(g)⊗ Im
n

0

0 0

 . (47)

Proof. Using Kronecker product properties and the forms of C and α(g), we have

α(g)C =

α1(g)(Is ⊗ C) 0

0 0

 =

α1(g)⊗ C 0

0 0

 , (48)

which can be further rewritten asα1 ⊗ C 0

0 0

 =

(Is ⊗ C)(α1 ⊗ Im
n

) 0

0 0

 = Cκ, (49)
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where we have dropped the dependency of α1(g) and κ(g) on g. Similarly, we verify

that

(In ⊗A)κ = blkdiag{(Is ⊗A)(α1 ⊗ Im
n

), 0} (50)

= blkdiag{α1 ⊗A, 0} (51)

= blkdiag{(α1 ⊗ Im
n

)(Is ⊗A), 0} (52)

= κ(In ⊗ A). (53)

Thus, the invariant conditions in Proposition 2 are satisfied with the choice of κ(g)

in (47).

In Proposition 3, the first s elements (0 < s ≤ n) of x are affected by the disturbances.

The disturbance affecting each element of x is generated from the same dynamic

system specified by (A, C) with possibly different initial conditions. When s = n,

Proposition 3 holds for any α(g). When s < n, α(g) needs to satisfy (46) to ensure

invariance. The condition (46) means that after the transformation ϕg(x), the last

n− s elements of x remain unaffected by the disturbances.

In Chapter IV, we employ Proposition 1 and 2 to design invariant EKFs for a

unicycle robot under linear dynamic disturbances and compare their performance

using simulations. We show that 1) IEKF 1 (the design based on Proposition 1)

is applicable and provides improvement over a standard EKF; 2) If the invariant

conditions in Proposition 2 are satisfied, IEKF 2 (based on Proposition 2) should be

considered since it can provide further improvement in transient performance. We

also show that when applied to the unicycle robot problem, Proposition 2 allows a

broader class of dynamic disturbances than Proposition 3.

3.2 Rotated Covariances

Instead of using the typical linear output error used by the EKF, the IEKF uses an in-

variant output error, which is defined as a group action on the output space. Because
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of this, the measurement covariance, R, no longer accurately represents the uncer-

tainty of the transformed output. Therefore, we propose that the original measure-

ment covariance should be transformed to better represent the correct measurement

covariance.

Let X = [x1, ..., xn]> be the full system state. The general equation for the

invariant output error is given in (19). Here we choose to define it more specifically

as

E = T (X̂)
(
Ŷ − Y

)
. (54)

where we make the assumption that it can be written as the product of a matrix and

the linear error. This is not the most general case, however it is still applicable for

certain systems, including the unicycle model used in the next chapter.

We now derive the transformation rule for the measurement noise matrix R. We

use the notation N (µ,Σ) to denote the Gaussian distribution with mean µ and co-

variance Σ.

Proposition 4 Let ε = Ŷ − Y ∼ N (0, R). Let X̂ be the estimate of X such that

δX = X̂ − X ∼ N (0, P ).We assume that ε and δX are uncorrelated. Then, the

covariance of the invariant output error up to first order accuracy is given by

cov(T (X̂)ε) = T (X)RT (X)> +
n∑
i=1

n∑
j=1

Pij
∂T

∂xi
R
∂T

∂xj

>
(55)

for a sufficiently small P .

Proof. We have

cov(T (X̂)ε) = cov(T (X + δX)ε),

where ε ∼ N (0, R). Since δX ∼ N (0, P ) with P sufficiently small and since δX is

uncorrelated with ε, we use the first order approximation and obtain

E(T (X + δX)ε) = E
((

T (X) +
∂T

∂x1
δx1 + ...+

∂T

∂xn
δxn

)
ε

)
= 0

19



The covariance of T (X̂)ε is computed as

cov(T (X̂)ε) = E(T (X̂)εε>T (X̂)>) (56)

= E

((
T (X) +

∂T

∂x1
δx1 + ...+

∂T

∂xn
δxn

)
εε>
(
T (X) +

∂T

∂x1
δx1 + ...+

∂T

∂xn
δxn

)>)
(57)

= T (X)RT (X)> + E

(
n∑
i=1

n∑
j=1

∂T

∂xi
δxiεε

>δx>j
∂T

∂xj

>
)

(58)

= T (X)RT (X)> +
n∑
i=1

n∑
j=1

Pij
∂T

∂xi
R
∂T

∂xj

>
(59)

Because δX is zero mean with a covariance P , it follows from [13] that E(δxiεε
>δx>j ) =

PijR and thus (55) is recovered.

This same process can be applied to find the transformation rule for the initial state

covariance P0, where the initial state error at time t = 0 is given by η0 = X̂0 −X0 ∼

N (0, P0). For finding the transformation law for the process noise matrix, Q, the same

steps are taken where instead of T (X̂), we use W (X̂)>. Suppose that the process

noise is given by ν ∼ N (0, Q). Extending the process in the proof of Proposition

4 results in the transformations for the state covariance and process noise matrices

given by

cov(W (X̂0)
>η0) ≈ W (X0)

>P0W (X0) +
n∑
i=1

n∑
j=1

Pij
∂W

∂xi

>
P0
∂W

∂xj
(60)

cov(W (X̂)>ν) = W (X)>QW (X) +
n∑
i=1

n∑
j=1

Pij
∂W

∂xi

>
Q
∂W

∂xj
. (61)

The transformation on the initial state covariance, (60), is an approximation, due

to the correlation between X̂0 and η0. In implementation, for all transformations

we replace X with its estimate X̂, assuming that they are close. Note that [4] uses

only the first term in (55) in their examples (Section IV-B-3), which corresponds to

the zeroth-order approximation of the covariance. Through simulations in Section
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4.5, we demonstrate the significant improvement due to the second term when the

measurement noise is non-isotropic.

Having found the rotated covariances, we present the IEKF algorithm in Algo-

rithm 1 below. Algorithm 1 follows the standard steps of an EKF except line 2, 7, and

9 where the covariance matrices are modified, line 5 where the linearized Ak is com-

puted based on the invariant error dynamics (see Ak in (80) and (96) for the two IEKF

designs), and line 11 where the update equation is modified with transformations of

the innovation.

Algorithm 1 The IEKF

1: Initialize X̂0, P0 in the original coordinates.

2: P = W (X̂0)
>P0W (X̂0) +

∑n
i=1

∑n
j=1 Pij

∂W
∂xi

>
P0

∂W
∂xj

3: for k = 1 to n do

4: X̂−k = f(X̂+
k−1, U)

5: Compute Ak

6: Compute Hk

7: Qrot = W (X̂)>QW (X̂) +
∑n

i=1

∑n
j=1 Pij

∂W
∂xi

>
Q∂W
∂xj

8: P−k = AkP
+
k−1A

>
k +Qrot

9: Rrot = T (X̂)RT (X̂)> +
∑n

i=1

∑n
j=1 Pij

∂T
∂xi
R ∂T
∂xj

>

10: Lk = P−k H
>
k

(
HkP

−
k H

>
k +Rrot

)−1
11: X̂+

k = X̂−k +W (θ̂)LkT (θ̂)(Y − h(X̂−k , U))

12: P+
k = (I − LkHk)P

−
k

13: end for
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CHAPTER IV

UNICYCLE ROBOT UNDER LINEAR DISTURBANCES

In this chapter, we explore three IEKF designs for a unicycle model subject to distur-

bances modeled as the output of a linear time-invariant system. A unicycle robotic

model is widely used to model the kinematics of a differential drive mobile vehicle,

underwater vehicle motion [27], and the simplified kinematics of a fixed wing aerial

vehicle in planar flight [6]. Furthermore, some applications include estimating the

states of these types of vehicles for the purpose of localization [7], trajectory track-

ing [18], or flow field reconstruction [2], [26]. The linear disturbance models can

represent uniform flow and sinusoidal wave disturbances with known frequencies.

We design three augmented IEKFs for the unicycle to estimate both its heading

and disturbance based on position information. The first two designs are based on

the two identified scenarios where the augmented dynamics are invariant. We show

that the first design is applicable to general linear dynamic disturbances while the

second design is restricted to a class of systems that satisfy ‘rotational invariance’

conditions on the dynamics and the output matrices. The third design is based on

a matrix implementation of the IEKF, where the system dynamics are defined on a

matrix Lie group and the observer state is an element of the defined group.
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4.1 Problem Formulation

Consider a unicycle robot subject to velocity disturbances. The kinematic model of

the robot is given by

ẋ = v cos θ + Cxd

ẏ = v sin θ + Cyd (62)

θ̇ = ω,

where (x, y) is the position of the robot, θ is the heading, v is the linear velocity and

ω is the turning rate. We assume that (Cxd, Cyd) are outputs from a linear system

given by

ḋ = Ad (63)

where d ∈ Rm×1, A ∈ Rm×m and Cx, Cy ∈ R1×m. The matrices A, Cx, and Cy are

assumed known and constant. For example, Cxd and Cyd can represent constant

disturbances and sinusoidal disturbances with known frequencies.

The robot is equipped with a positioning device, such as a GPS or a suite of range

and bearing sensors, measuring its position (x, y). The position measurement can be

in a global frame or with respect to a known landmark. In the latter case, without loss

of generality, we assume that the landmark is at the origin. Then (x, y) represents the

relative position between the robot and the landmark. The measurement equation of

the system is

Y =

x
y

 . (64)
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We augment (62) with the disturbance dynamics (63) and obtain

ẋ = v cos θ + Cxd

ẏ = v sin θ + Cyd

θ̇ = ω (65)

ḋ = Ad.

In [8], it was shown that the undisturbed form of (62) is invariant with respect to

actions of the special Euclidean group SE(2), the group of translations and rotations

in 2 dimensions. With the additive disturbances, our objective is to design an IEKF

to estimate both the states and the disturbances. In the following two sections, we

design two invariant IEKFs that correspond with Propositions 1 and 3 introduced in

Chapter III.

4.2 IEKF Design 1

Let G be the group SE(2). Any element g of G can be represented by (xg, yg, θg).

Let X = [x, y, θ]> and define two transformations as

ϕg(X) =


x cos θg − y sin θg + xg

x sin θg + y cos θg + yg

θ + θg

 (66)

ξg(d) = d. (67)

Notice that the disturbances d remain unchanged by the transformation. We now

use the result of Proposition 1 to find the transformations on Cx and Cy. Since the

disturbances do not affect θ, we concatenate Cx and Cy with a row of zeros and define
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βg(·) as

βg



Cx

Cy

0


 =

∂

∂X
ϕg(X)


Cx

Cy

0



=


cos θg − sin θg 0

sin θg cos θg 0

0 0 1



Cx

Cy

0



=


Cx cos θg − Cy sin θg

Cx sin θg + Cy cos θg

0

 . (68)

Let U = (v, ω,A) and define a transformation of U as

ψg(U) =


v

ω

A

 . (69)

Corollary 1 The system (65) is invariant with respect to SE(2).

Proof. Note that the undisturbed system (62) without (dx, dy) is invariant with re-

spect to SE(2). With the transformations defined in (67) and (68), it follows from

Proposition 1 that the augmented system (65) is invariant with respect to SE(2).

Following the methods outlined in [8], ϕg(X) can be split into ϕag(X) and ϕbg(X)

such that ϕag(X) is invertible with respect to g. Setting ϕag(X) = 0 and solving for g

result in 
xg

yg

θg

 = γ


x

y

θ

 =


−x cos θ − y sin θ

x sin θ − y cos θ

−θ

 . (70)
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The invariants are

I(X̂, U) =
(
ϕb
γ(X̂)

(
X̂
)
, ψγ(X̂) (U)

)
=(

v, ω, Cx cos θ̂ + Cy sin θ̂,−Cx sin θ̂ + Cy cos θ̂, A
)
, (71)

where X̂ is the estimate of X. The invariant output error is given by

E = %g(x̂, ŷ)− %g(x, y)

=

x̂ cos θg − ŷ sin θg + xg − x cos θg + y sin θg − xg

x̂ sin θg + ŷ cos θg + yg − x sin θg − y cos θg − yg



= T (θ̂)

x̂− x
ŷ − y

 , (72)

where

T (θ̂) =

 cos θ̂ sin θ̂

− sin θ̂ cos θ̂

 . (73)

The invariant frame is given by

W (θ̂) =


T (θ̂)> 0 0

0 1 0

0 0 Im

 . (74)

Thus, the observer equation has the following form

˙̂
X = f(X̂) +W (θ̂) · L · T (θ̂)

(
Y − Ŷ

)
, (75)

where L is a gain matrix to be designed. For notation convenience, we let

L =



L11 L12

L21 L22

L31 L32

Ld1 Ld2


, (76)
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where Lij are scalars for i = 1, 2, 3, j = 1, 2, and Ld1, Ld2 ∈ Rm×1. The invariant

state error is given by

σ(X̂,X) = ϕγ(X̂)(X)− ϕγ(X̂)(X̂)

=



x cos θ̂ + y sin θ̂ − x̂ cos θ̂ − ŷ sin θ̂

−x sin θ̂ + y cos θ̂ + x̂ sin θ̂ − ŷ cos θ̂

θ − θ̂

d− d̂



= W (θ̂)>



x− x̂

y − ŷ

θ − θ̂

d− d̂


. (77)

To find the invariant error dynamics, we differentiate (77) and obtain

σ̇ = W (θ̂)>





v cos θ + Cxd− v cos θ̂ − Cxd̂

v sin θ + Cyd− v sin θ̂ − Cyd̂

0

Ad− Ad̂



−W (θ̂)L

 cos θ̂ sin θ̂

− sin θ̂ cos θ̂


x− x̂
y − ŷ




+



˙̂
θσy

− ˙̂
θσx

0

0


, (78)
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which yields

σ̇x = v (cosσθ − 1) + ωσy +
(
Cx cos θ̂ + Cy sin θ̂

)
σd

+ L11σx + L12σy + L31σxσy + L32σ
2
y

σ̇y = v sinσθ − ωσx +
(
−Cx sin θ̂ + Cy cos θ̂

)
σd

+ L21σx + L22σy − L31σ
2
x − L32σxσy (79)

σ̇θ = L31σx + L32σy

σ̇d = Aσd + Ld1σx + Ld2σy.

Note that the invariant error dynamics (79) depend only on σ and the invariants

I(X̂, U) in (71).

Linearizing (79) around σ = 0 yields the state matrix needed for implementing

the IEKF at time step k:

Ak =



0 ωk 0 Cx cos θ̂k + Cy sin θ̂k

−ωk 0 vk −Cx sin θ̂k + Cy cos θ̂k

0 0 0 0

0 0 0 A


. (80)

The Ak matrix is used in the IEKF algorithm to propagate the state covariance

matrix. Next, we illustrate a second IEKF design for (65) based on Proposition 3.

4.3 IEKF Design 2

Compared with the design in Section 4.2, this design assumes the same state trans-

formation ϕg(X) in (66) and introduces transformations on the disturbances. We
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define

βg



Cx

Cy

0


 =


Cx

Cy

0

 (81)

ξg(d) =
(
R(θg)⊗ Im

2

)
d (82)

where

R(θg) =

cos θg − sin θg

sin θg cos θg

 (83)

and Im
2

is the identity matrix of dimension m
2

. Notice that ξg(d) is linear in d.

Applying Proposition 2, we note that in order to preserve the invariance property, we

need 
Cx

Cy

0

(R(θg)⊗ Im
2

)
=


cos θg − sin θg 0

sin θg cos θg 0

0 0 1



Cx

Cy

0

 (84)

and

A
(
R(θg)⊗ Im

2

)
=
(
R(θg)⊗ Im

2

)
A. (85)

Proposition 5 Equations (84) and (85) are satisfied if A and [C>x C>y ]> satisfy

A =

M N

−N M

 , (86)

Cx
Cy

 =

 D E

−E D

 , (87)

where M,N ∈ Rm
2
×m

2 and D, E ∈ R1×m
2 are arbitrary matrices.

Proof. Let Cx
Cy

 =

C1 C2
C3 C4

 , (88)
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where C1, C2, C3, C4 ∈ R1×m
2 . Then (84) becomesCx

Cy

 =

 cos θa sin θa

− sin θa cos θa


C1 C2
C3 C4


Im2 cos θa −Im

2
sin θa

Im
2

sin θa Im
2

cos θa

 .
Multiplying the matrices together and simplifying the 2 independent equations lead

to



− sin2 θa − cos θa sin θa

cos θa sin θa − sin2 θa

cos θa sin θa − sin2 θa

sin2 θa cos θa sin θa



> 

C1

C2

C3

C4


=

0

0

 . (89)

Thus, [CT1 , C>2 , C>3 , C>4 ]> must lie in the non-trivial null spaces spanned by

0

−1

1

0


and



1

0

0

1


, (90)

which means that C1 = C4 and C2 = −C3. Therefore, we haveCx
Cy

 =

 C1 C2

−C2 C1

 . (91)

A similar analysis of (85) shows that A must also have the specific form in (86).

Thus, the cascaded system (65) remains invariant under the transformations given

in (81)–(82) if A and

[
C>x C>y

]>
satisfy (86) and (87), respectively. Characterizing

what linear systems can be transformed to satisfy (86) and (87) is beyond the scope

of this thesis. However, we note that an important case where (86) and (87) are
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satisfied is when N and E are zero matrices, which means that the disturbances

along the x and y directions are decoupled and share the same dynamic model. The

case where N and E are zero can also be proved using Proposition 3. Note that

Proposition 3 is applicable to any group operations satisfying (46). However, because

Proposition 5 is specific to ϕg(X) in (66) and the rotation operation (82), it allows

N and E to be nonzero, thereby encompassing a wider class of disturbance systems

than Proposition 3.

For the remainder of the section, we assume that the disturbance subsystem is in

the form of (86)–(87). Applying the same process as in Section 4.2, we obtain the

observer equation as

˙̂
X = f(X̂) +W (θ̂) · L · T (θ̂)

(
Y − Ŷ

)
, (92)

where T (θ̂) is the same as (73). The invariant frame is now given by

W
(
θ̂
)

=


T (θ̂)> 0 0

0 1 0

0 0 T (θ̂)> ⊗ Im
2

 . (93)

The invariant error is given in (77) with the the invariant frame now defined by (93),

where the error of the disturbances is also rotated. This results in the following

invariant error dynamics

σ̇x = v (cosσθ − 1) + ωσy + Cxσd + L11σx + L12σy + L31σxσy + L32σ
2
y

σ̇y = v sinσθ − ωσx + Cyσd + L21σx + L22σy − L31σ
2
x − L32σxσy (94)

σ̇θ = L31σx + L32σy

σ̇d = Aωσd + Ld1σx + Ld2σy

where

Aω = A+


 0 ω

−ω 0

⊗ Im
2

 . (95)
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Linearizing (94) around σ = 0 results in the state matrix needed for implementing

this IEKF design:

Ak =



0 ωk 0 Cx

−ωk 0 vk Cy

0 0 0 0

0 0 0 Aω


. (96)

Note that unlike (80), the state matrix given in (96) is not a function of the estimated

state θ̂.

4.4 Matrix IEKF

In this section, we derive an IEKF to estimate the states of (62) and the disturbance

in (63) and explain the necessary conditions that must be imposed to achieve true

linear error dynamics.

Let G be the matrix Lie Group of double direct spatial isometries. We define our

system state, X ∈ G, as

X =



cos θ − sin θ x d>1

sin θ cos θ y d>2

0 0 1 0

0 0 0 Im
2


(97)

where Im
2

is the identity matrix of dimension m
2

and d1, d2 ∈ R
m
2
×1 such that

d =

d1
d2

 . (98)

With the state defined as X , the augmented system (65) is represented by defining

a matrix function f such that

d

dt
X = f (X ) (99)
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where

f (X ) =



−ω sin θ −ω cos θ v cos θ + Cxd d>A>1

ω cos θ −ω sin θ v sin θ + Cyd d>A>2

0 0 0 0

0 0 0 0


, (100)

in which A1 and A2 are defined as the top and bottom m
2

rows of A, respectively, i.e.,

A =

A1

A2

 . (101)

An IEKF that acts on this matrix state exists only if m is an even number. Thus,

the decomposition in (101) is valid. The measurements given in (64) are

Y = X q (102)

where q = [0, 0, 1, 0, · · · , 0]>. Note that the measurements are left invariant. For any

true state, X , and state estimate, X̂ , we define the left invariant error as

η = X−1X̂ =



cos ηθ − sin ηθ ηx η>d1

sin ηθ cos ηθ ηy η>d2

0 0 1 0

0 0 0 I


, (103)

where

ηx = (x̂− x) cos θ + (ŷ − y) sin θ

ηy = − (x̂− x) sin θ + (ŷ − y) cos θ

ηθ = θ̂ − θ (104)

ηd1 =
(
d̂1 − d1

)
cos θ +

(
d̂2 − d2

)
sin θ

ηd2 = −
(
d̂1 − d1

)
sin θ +

(
d̂2 − d2

)
cos θ.

Recall the group affine condition for invariant systems on Lie groups

f(ab) = f(a)b+ af(b)− af(I)b. (105)
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Next, we’ll show that imposing (105) on the dynamics of X leads to the same restric-

tions on A and

[
C>x C>y

]>
that were required for IEKF design 2.

Define a, b ∈ G as

a =



cos θa − sin θa xa d>1a

sin θa cos θa ya d>2a

0 0 1 0

0 0 0 I


(106)

b =



cos θb − sin θb xb d>1b

sin θb cos θb yb d>2b

0 0 1 0

0 0 0 I


. (107)

Then

ab =



cos θab − sin θab xab d>1ab

sin θab cos θab yab d>2ab

0 0 1 0

0 0 0 I


(108)

where

xab = xa + cos θaxb − sin θayb

yab = ya + sin θaxb + cos θayb

θab = θa + θb

d>1ab = d>1a + d>1b cos θa − d>2b sin θa

d>2ab = d>2a + d>1b sin θa + d>2b cos θa.

Substituting (106), (107) and (108) into (105) and examining the (1, 3)th and (2, 3)th
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elements lead to

v

cos θab

sin θab

+

Cx
Cy

 dab =

−ωxb sin θa − ωyb cos θa

ωxb cos θa − ωyb sin θa

+ v

cos θa

sin θa

+

Cx
Cy

 da
+

cos θa − sin θa

sin θa cos θa


v cos θb + Cxdb

v sin θb + Cydb

− v
cos θa

sin θa


−

−ωxb sin θa − ωyb cos θa

ωxb cos θa − ωyb sin θa

 ,
which is simplified toCx

Cy


d1ab
d2ab

 =

Cx
Cy


d1a
d2a

+

cos θa − sin θa

sin θa cos θa


Cx
Cy


d1b
d2b

 .
Substituting the expressions for d1ab and d2ab yieldsCx

Cy



d1a
d2a

+

Im2 cos θa −Im
2

sin θa

Im
2

sin θa Im
2

cos θa


d1b
d2b


 = (109)

=

Cx
Cy


d1a
d2a

+

cos θa − sin θa

sin θa cos θa


Cx
Cy


d1b
d2b

 ,
which results inCx

Cy


Im2 cos θa −Im

2
sin θa

Im
2

sin θa Im
2

cos θa

 =

cos θa − sin θa

sin θa cos θa


Cx
Cy

 . (110)

A similar analysis of the elements corresponding with d1 and d2 in (105) reveals

the necessary conditions on the matrix A:

A

Im2 cos θa −Im
2

sin θa

Im
2

sin θa Im
2

cos θa

 =

Im2 cos θa −Im
2

sin θa

Im
2

sin θa Im
2

cos θa

A. (111)
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Notice how (110) and (111) are identical conditions as were required for IEKF design

2, Proposition 5.

We continue this section by showing the LIEKF formulation, under the assump-

tions of A and

[
C>x C>y

]>
in Proposition 5.

The prediction and update equations of the LIEKF are given by [4]

d

dt
X̂ = f

(
X̂
)

(112)

X̂+ = X̂ exp
(
K
[
X̂−1y − q

])
(113)

where K is the Kalman gain matrix, computed from the Ricatti equation with ma-

trices that will be given at the end of the section. With respect to the left invariant

error defined in (103), the above equations can be written as

d

dt
η = f (η)− f (I) η (114)

η+ = ηexp
(
L
[
η−1q − q

])
. (115)

Expanding the expression in (114) results in the following matrix where the individual

elements are the expressions for the error of the corresponding original states with

respect to the invariant error.

η̇ =



0 −η̇θ η̇x η̇d1

η̇θ 0 η̇y η̇d2

0 0 0 0

0 0 0 0


(116)
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where

η̇x = v (cos ηθ − 1) + ωηy + Cx

[
η>d1 η>d2

]>
η̇y = v sin ηθ − ωηx + Cy

[
η>d1 η>d2

]>
η̇θ = 0

η̇d1 =

[
η>d1 η>d2

]
A>1 − ωη>d2

η̇d1 =

[
η>d1 η>d2

]
A>2 + ωη>d1 .

The expressions in (116) are still nonlinear functions of η. We next show that the

dynamics of the Lie algebra of η is indeed linear. Towards this end, we derive the Lie

algebra of G.

Proposition 6 Let η ∈ G. The corresponding Lie algebra of G satisfying exp (Lg(ξ)) =

η is given by

Lg(ξ) =



0 −ξ3 ξ1 ξ>d1

ξ3 0 ξ2 ξ>d2

0 0 0 0

0 0 0 0


, (117)

where

ξ =



ξ1

ξ2

ξ3

ξd1

ξd2


=



ηyηθ
2
− ηxηθ sin ηθ

2(cos ηθ−1)

−ηxηθ
2
− ηyηθ sin ηθ

2(cos ηθ−1)

ηθ

ηd2ηθ
2
− ηd1ηθ sin ηθ

2(cos ηθ−1)
−ηd1ηθ

2
− ηd2ηθ sin ηθ

2(cos ηθ−1)


, (118)

in which η has the form of (103).

Proof. We show exp (Lg(ξ)) = η with ξ and η defined in (118) and (103). We orga-
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nize (117) into a block matrix

Lg(ξ) =

G1 G2

0 0

 (119)

where

G1 =

 0 −ξ3

ξ3 0

 (120)

and

G2 =

ξ1 ξ>d1

ξ2 ξ>d2

 . (121)

Recall that for the Lie group of planar rotations, SO(2), the Lie algebra is

Lso(2)(θ) =

0 −θ

θ 0

 (122)

which is then mapped to an element of the group by the matrix exponential map

exp
(
Lso(2)(θ)

)
=

cos θ − sin θ

sin θ cos θ

 . (123)

Thus, G1 is the Lie algebra of SO(2).

Using the series expansion of the matrix exponential we get

exp (Lg(ξ)) =
∞∑
i=0

1

i!
(Lg(ξ))i . (124)

Substituting (119) into (124) yields

exp (Lg(ξ)) = (125)

= I +

G1 G2

0 0

+
1

2!

G2
1 G1G2

0 0

+ · · ·

=

∑∞i=0
1
i!
Gi

1 G2 + 1
2!
G1G2 + 1

3!
G2

1G2 + · · ·

0 I

 . (126)
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Since G1 is the Lie algebra of SO(2), the top left block element of (126) is simplycos ξ3 − sin ξ3

sin ξ3 cos ξ3

 . (127)

Setting exp (Lg(ξ)) = η and noting η in (103), we obtain ξ3 = ηθ.

Letting

S =

cos ηθ − sin ηθ

sin ηθ cos ηθ

 . (128)

and using algebraic manipulations to simplify the top right element of (126), we

further obtain

G2 +
1

2!
G1G2 +

1

3!
G2

1G2 + . . .

=

(
I +

1

2!
G1 +

1

3!
G2

1 + . . .

)
G2

=

(
G1 +

1

2!
G2

1 +
1

3!
G3

1 + . . .

)
G−11 G2

=

[(
I +G1 +

1

2!
G2

1 +
1

3!
G3

1 + . . .

)
− I
]
G−11 G2

= (S − I)G−11 G2. (129)

Setting the simplified equation (129) equal to the corresponding block of η in (103)

yields

G−11 G2 = (S − I)−1

ηx η>d1

ηy η>d2

 . (130)

In (130) the left hand side is a 2 × m
2

matrix whose elements are functions of the

elements of ξ, and the right hand side is a 2 × m
2

matrix whose elements are the

elements of η. Simplifying this equation gives ξ2 ξ>d2

−ξ1 −ξ>d1

 =

 −ηθ
2

−ηθ sin ηθ
2(cos ηθ−1)

ηθ sin ηθ
2(cos ηθ−1)

−ηθ
2


ηx η>d1

ηy η>d2

 . (131)

Solving this equation gives an expression for each element of the vector, ξ, in terms

of the elements of the matrix, η, which are given in (118).

39



To find the dynamics of ξ, we differentiate both sides of (118) with respect to time.

Due to the form of the equations and the fact that η̇θ = 0, ξ̇ has the following

convenient form

ξ̇1 =
η̇yηθ

2
− η̇xηθ sin ηθ

2 (cos ηθ − 1)

ξ̇2 =
−η̇xηθ

2
− η̇yηθ sin ηθ

2 (cos ηθ − 1)

ξ̇3 = η̇θ (132)

ξ̇d1 =
η̇d2ηθ

2
− η̇d1ηθ sin ηθ

2 (cos ηθ − 1)

ξ̇d2 =
−η̇d1ηθ

2
− η̇d2ηθ sin ηθ

2 (cos ηθ − 1)
.

Substituting the η̇ terms in (116) and rearranging yields

ξ̇1 = ω

(
−ηxηθ

2
− ηyηθ sin ηθ

2 (cos ηθ − 1)

)
+D

(
ηd2ηθ

2
− ηd1ηθ sin ηθ

2 (cos ηθ − 1)

)
+ E

(
−ηd1ηθ

2
− ηd2ηθ sin ηθ

2 (cos ηθ − 1)

)
ξ̇2 =− ω

(
ηyηθ

2
− ηxηθ sin ηθ

2 (cos ηθ − 1)

)
+ vηθ − E

(
ηd2ηθ

2
− ηd1ηθ sin ηθ

2 (cos ηθ − 1)

)
+D

(
−ηd1ηθ

2
− ηd2ηθ sin ηθ

2 (cos ηθ − 1)

)
ξ̇3 = 0

ξ̇d1 = M
(
ηd2ηθ

2
− ηd1ηθ sin ηθ

2 (cos ηθ − 1)

)
+ (N + Iω)

(
−ηd1ηθ

2
− ηd2ηθ sin ηθ

2 (cos ηθ − 1)

)
ξ̇d2 = − (N + Iω)

(
ηd2ηθ

2
− ηd1ηθ sin ηθ

2 (cos ηθ − 1)

)
+M

(
−ηd1ηθ

2
− ηd2ηθ sin ηθ

2 (cos ηθ − 1)

)
which is indeed linear in ξ, i.e.,

d

dt
ξ =



0 ω 0 Cx

−ω 0 v Cy

0 0 0 0

0 0 0 Aω


ξ, (133)
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where

Aω = A+

 0 Im
2
ω

−Im
2
ω 0

 . (134)

The Kalman Filter update equation (113) becomes

ξ+ = ξ + L (−Lg(ξ)q) (135)

where

Lg(ξ)q =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


ξ. (136)

Thus, we have shown that the error coordinate ξ follows linear dynamics. The

Kalman gain K can then be computed based on linear Kalman filter equations. Al-

gorithm 2 below is the IEKF algorithm for the matrix implementation which includes

the rotated covariance terms in Section 3.2. Applying the algorithm to the unicycle

problem, Ak and Hk in lines 6 and 7 are computed from (133) and (136), respectively.

In summary, we have shown that the system in (65) is group affine with respect

to G under the conditions (84)–(85) of A and

[
C>x C>y

]>
. When these conditions

are satisfied and with the measurements given in (64), a LIEKF design is proposed.

Through a connection to the Lie algebra, an underlying error coordinate system is

shown to possess truly linear dynamics.
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Algorithm 2 The Matrix IEKF

1: Initialize X̂0, P0 in the original coordinates.

2: Create X̂0 from X̂0

3: P = W (X̂0)
>P0W (X̂0) +

∑n
i=1

∑n
j=1 Pij

∂W
∂xi

>
P0

∂W
∂xj

4: for k = 1 to n do

5: X̂−k = f(X̂+
k−1)

6: Compute Ak

7: Compute Hk

8: Qrot = W (X̂)>QW (X̂) +
∑n

i=1

∑n
j=1 Pij

∂W
∂xi

>
Q∂W
∂xj

9: P−k = AkP
+
k−1A

>
k +Qrot

10: Rrot = T (X̂)RT (X̂)> +
∑n

i=1

∑n
j=1 Pij

∂T
∂xi
R ∂T
∂xj

>

11: K = P−H>k
(
HkP

−
k H

>
k +Rrot

)−1
12: X̂+

k = X̂−k exp
(
K
[
X̂−1y − q

])
13: P+

k = (I − LHk)P
−
k

14: Extract actual state estimate (X̂+
k ) from elements of X̂+

k

15: end for
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4.5 Simulations

In this section, we compare the performances of the proposed IEKF designs against

the EKF in a simulation environment. Each graph represents a Monte Carlo simula-

tion with 100 trials. The simulations were run with the robot maintaining a constant

linear velocity and constant turning rate, collecting measurements at a rate of 10 Hz.

A sample trajectory is shown below with the oscillating being caused by a disturbance.
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Figure 1: Sample simulation trajectory.
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The following parameters were used in all the simulations:

v = 13 m/s

ω = 4 deg/s

µ0 = 0n×1

P0 = diag(102, 102, (π/2)2, 22, 22, 22, 22)

X0 ∼ N (µ0, P0)

X̂0 = µ0.

Our metric of performance is the root mean square error (RMSE) of each filter’s

estimate with simulated ‘truth’ data, calculated at every time step. Let xi(t) be the

ith element of X at time t. Then the RMSE of xi(t) is given by

RMSEi(t) =

√∑n
j=1 (xi(t)− x̂i(t))2

n
(137)

where n is the number of trials.

The simulated measurement noise in the truth data was generated from a zero

mean Gaussian distribution with a non-isotropic covariance given by

R =

9 8

8 9

 . (138)

The disturbances were generated from a linear time-invariant model with

A =



0 0 1 1

0 0 0 0

−1 −1 0 0

0 0 0 0


, (139)

C =

1 0 0 1

0 −1 1 0

 . (140)
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The outputs from the linear system are two signals containing both sinusoidal oscilla-

tions plus a constant offset. Note that (139) and (140) satisfy the specific form given

in Proposition 5. Thus, all IEKF designs can be applied.

4.5.1 Effect of Transformed Noise

First, using the defined invariant output error for the unicycle (72) and Monte Carlo

simulations we compare the covariance transformation proposed in Proposition 4 with

a numerically generated one. 2,000,000 simulated measurement errors were drawn

from the original distribution, ε ∼ N (0, R) and rotated by a nominal angle θ with

an uncertainty δθ ∼ N (0, qθ). After the rotation, the ‘true’ covariance was computed

numerically. This was compared with three different approaches to handling the

covariance. The first approach, denoted as ‘0-term’ does not transform the original

R matrix. The second approach, referred to as ‘1-term’, includes only the first term

on the right side of (55), excluding the first derivative terms. This ‘1-term’ approach

corresponds to noise covariance used in [4, Section IV-B-3]. Lastly, ‘Both terms’ refers

to the case when the transformation in (55) is used entirely.

To determine ‘closeness’ of the various approaches to the ‘true’ transformed covari-

ance, we employ two metrics: the Frobenius norm and a geodesic distance explored

in [19]. Let R̃ and R̂ denote the numerically computed covariance and the covariance

computed from an analytical transformation, respectively. The Frobenius norm is

then

‖R̃− R̂‖F =

√√√√ p∑
i=1

π2
i (R̃− R̂) (141)

where p is the number of measurements and πi(R̃− R̂) are the singular values of the

matrix R̃−R̂. The geodesic distance is a geometric distance between positive definite

matrices given by

δ2(R̃, R̂) =

√√√√ p∑
i=1

log2λi(R̃−1R̂) (142)
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where λi(R̃
−1R̂) are the generalized eigenvalues of (R̃, R̂).

qθ = 1e− 3 qθ = 1e− 2 qθ = 1e− 1

Frob Geo Frob Geo Frob Geo

0-term 19.5582 3.6379 19.3992 3.5461 17.8555 3.0485

1-term 1.2567 0.3034 0.3780 0.1626 5.6348 1.3447

Both terms 1.2560 0.3016 0.3476 0.0693 5.2216 0.7720

Table 1.: Table of norms comparing different noise transformations for unicycle in-

variant error.

In the table, we consider cases with different uncertainty of the rotation angle,

qθ. Both norms show that the addition of the first order term in the transformation

results in the best outcome. The smaller qθ is, the contribution of the additional term

is less significant. As qθ increases however, the significance of the contribution is more

noticeable.

We demonstrate the effect of the different rotated noise terms on the performance

of IEKF1 and IEKF2. In the simulation the filters are run using the 3 different

approaches previously mentioned, but applied to the measurement covariance R, the

model uncertainty Q and the initial state covariance P0.
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Figure 2: Effect of rotated noise terms for IEKF1.
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From Figure. 2 we see this comparison for IEKF1. Using both terms from equa-

tions (55), (60) and (61) results in the best transient performance and fastest conver-

gence rate for estimating x and d1. The rest of the states all have similar trends.
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Figure 3: Effect of rotated noise terms for IEKF2.

Figure. 3 shows the same comparison for IEKF2. From Figure. 3, we see that both

changes to the covariances improve the transient performance over the nominal case.

For IEKF2, the addition of the first order correction term has a less significant impact

than it does for IEKF1. However, it still improves the performance at the beginning

of the simulation, as seen in the left graph of Figure. 3. Again, only graphs of the

states x and d1 are provided, however these trends extend to all the remaining states.

Since it has been shown through simulations that adding the full noise correction

given by equations (55), (60) and (61) improves the performance of both IEKF1

and IEKF2, this implementation is included in the performance comparisons in the

following section.

4.5.2 EKF/IEKF Comparison

We now show the comparisons between the EKF and all three IEKF designs.

As can be seen from Figure 4, all three IEKF designs show significant improvement

over the EKF for all states shown. The additional two disturbances, d3 and d4, not
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Figure 4: RMSE comparison of EKF, IEKF1, IEKF2 and Matrix IEKF when the

disturbance conditions are satisfied.
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shown have the exact same trends. From the graphs, the relative performance from

best to worst goes: Matrix IEKF, IEKF2, IEKF1 and EKF. All four filters, converge

to the same steady state RMSE values. Although the matrix IEKF clearly has the

best estimation performance here, its performance is fairly similar to that of IEKF2.

This is not surprising since both filters have the same invariant error dynamics. As

mentioned previously, if the disturbance model satisfies the conditions in Proposition

5, then IEKF2 or the matrix IEKF should be used over IEKF1 since their error

dynamics do not depend at all on the trajectory. However, even with IEKF1 we still

see a significant improvement over the standard EKF for this case.

The results in Figure 5 show similar trends when the disturbance model varies

from trial to trial. This demonstrates the effectiveness of all three designs when

the disturbance conditions are satisfied. The disturbance models were generated by

random sampling the M,N ,D and E blocks from (86)–(87) and checking that the

resulting system was both stable and observable. Then, the real parts of the eigen-

values of A were scaled to be within (−.1, −.01) so that the generated disturbances

would not decay quickly. Determining the systems this way results in matrices that

satisfy the form of (86)–(87), but are more general than (139)–(140), in the sense

that all of the blocks M,N ,D, E are nonzero.

4.5.3 Disturbance Condition Not Satisfied

The next set of graphs show the results for the case when the conditions in Proposi-

tion 5 are not satisfied. In this case, the group action used in IEKF2, along with the

dynamics does not satisfy the invariance condition. Similarly, the group affine con-

dition for the matrix IEKF is also not satisfied. Therefore, those designs would not

be recommended for this case, and the graphs in Figures 6 and 7 demonstrate why.

The linear disturbance model used in this simulation, was calculated by performing

a similarity transformation on a system of the form, (86)–(87). The transformation
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Figure 5: RMSE comparison of EKF, IEKF1, IEKF2 and Matrix IEKF when the

disturbance conditions are satisfied with varying disturbance models.
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matrix was calculated using the following equation:

P = (I + εD) (143)

where ε is a relatively small value, 0.3 here, and D is a skew symmetric matrix, whose

elements are randomly generated. This equation was used with the idea, that for small

ε, such a transformation P , would preserve the 2-norm of the original disturbance d.

The original disturbance has the general form

ḋ = Ad (144)dx
dy

 = Cd (145)

where A and C are of the form of (86)–(87). After a similarity transformation where

d̃ = P−1d (146)

the new system becomes

˙̃d = Ãd̃ (147)d̃x
d̃y

 = C̃d̃ (148)

where

Ã = P−1AP C̃ = CP. (149)

The relative performance of IEKF1 compared to IEKF2 and matrix IEKF varies

depending on how ‘close’ the transformed Ã and C̃ are to the form of (86)–(87). If the

transformed system is still relatively close to the required form, IEKF2 and matrix

IEKF will still have good performance. The graphs in Figure 6 demonstrate such a

situation. IEKF2 and matrix IEKF have better transient performance than IEKF1,

which has large initial errors. However, once IEKF1 converges to its lower bound it

remains, where IEKF2 and matrix IEKF have growing errors as time progresses. The

EKF was left out of these graphs since it had diverged.

51



0 100 200 300

0

2

4

6

8

10

0 100 200 300

0

5

10

15

0 100 200 300
10

-3

10
-2

10
-1

10
0

0 100 200 300

10
-1

10
0

10
1

0 100 200 300

10
0

Figure 6: RMSE comparison of EKF, IEKF1, IEKF2 and Matrix IEKF when the

disturbance conditions are not satisfied.
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If the transformed system is ‘far’ enough from the required form of (86)–(87),

IEKF1 will still have better or comparable performance to the EKF, when IEKF2

and matrix IEKF may diverge completely. Figure 7 demonstrates a case when this is

true. The graphs in Figure 7 were generated using a different disturbance model than

shown in (139)–(140). However, like the graphs in Figure 6, the original disturbance

model was in the required form before the similarity transform with ε = 0.3. However

in this case we see that IEKF2 and matrix IEKF diverge, while IEKF1 still estimates

all the states with better performance that the EKF. The differences between, these

two scenarios are quite small, but with different outcomes. This points to a subtle

connection between the disturbance model and the stability of IEKF2 and matrix

IEKF that is still to be determined. Nonetheless, this demonstrates one example of a

situation where IEKF2 and matrix IEKF are not applicable, but IEKF1 still is. It is

worth noting, that for IEKF2 and matrix IEKF, the large errors in RMSE seen here

are not the result of a few bad trials. Instead, every trial for both filters diverged,

pointing to an inability to converge for the given disturbance model.

In summary, for the unicycle robot experiencing dynamic additive disturbances

knowledge of the disturbance model will dictate which IEKF design should be used.

IEKF1 is more consistent with less sensitivity to the specific form of the disturbance

model. Therefore, if the disturbance model is not accurately known or known to not

satisfy the conditions of Proposition 5, IEKF1 should be considered. However, if the

disturbance is more accurately known to satisfy the specific conditions, then better

estimation performance can be achieved by using IEKF2 or the matrix IEKF.
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Figure 7: RMSE comparison of EKF, IEKF1, IEKF2 and Matrix IEKF when the

disturbance conditions are not satisfied.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis has investigated the topic of invariant nonlinear systems and how to design

observers for these systems even when disturbances are applied. We have extended

the theory of invariant systems by analyzing the requirements for invariant systems

to remain invariant when dynamic additive disturbances are applied. This resulted

in two sets of sufficient conditions that apply to general invariant systems when dis-

turbances are applied that preserve the system invariance, allowing for symmetry

preserving observers to be designed. We also proposed a first order approximation

of the standard filtering covariance matrices that more accurately represents the un-

certainties needed by the IEKF. Using the two developed sufficient conditions and

the proposed approximation, we design two IEKFs for a unicycle robot with distur-

bances produced from a linear system. We applied additional theoretical concepts

from the literature to design a third IEKF in a matrix Lie group framework, and

showed that this design possesses an underlying error coordinate that has truly linear

dynamics. Finally, through Monte Carlo simulations we demonstrated the perfor-

mance improvement of all three designs when compared with the traditional EKF

and the contribution of the proposed first order approximation.

This is still a developing field of research, both in theory and in application. Hence

there are many opportunities for further research. Future work may include applying

these concepts to design an invariant observer for a six degree of freedom quadcopter

model experiencing disturbances. Additionally, effort could be spent working to make

these design approaches applicable to a more general set of nonlinear systems. Lastly,
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an interesting prospect would be studying the potential connections between constant

spatial varying disturbances with time varying spatially independent disturbances.
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