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Abstract 

Credit risk is a critical area in finance and has drawn considerable research attention. As such, 

survival analysis has widely been used in credit risk, in particular, to model debt's time to 

default mechanisms. In this study, we revisit different survival analysis approaches as applied 

in credit risk defaulters' data and assess their performance in light of the Kenyan context. 

In practice, inconsistency in the validity of credit risk models used by many companies when 

predicting and analysis of loan default is a common phenomenon that occurs unexpectedly. 

Loan defaults often cause major loses to creditors' and can be of great benefit if quantified 

correctly in advance by using correct models. Here, we address the unbiasedness, analysis, and 

comparison of survival analysis approaches, particularly, the models of credit risk. vVe carry 

out data analysis using the Cox proportional hazard model and its extensions as well as the 

mixture cure and non-ctire model. VIe then compare the results systematically by investigating 

the most efficient awl prefera,blc model that produces best estimates in the Kenyan rcaJ data, 

sets. Results show the Cox Proportional Hazard (Cox PH) model is more efficient in the analysis 

of Kenyan real data set compared to the frailty, the mixture cure, and non-cure model. 
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Chapter 1 

Introduction 

1.1 Background To The Study 

--
1.1.1 Credit Risk 

Credit risk is described as the danger of default on a debt that may arise when a borrower fails 

to make contractual remittance of payments. Furthermore, Credit risk arises in the case that 

two counter-parties engage in borrowing and lending (Jarrow,2009). "Obligor" a counter-party 

vvho has a financial obligation; for example, a debtor who owes us money, a bond issuer who 

promises interest, or a counter-party in a derivatives transaction. "Default" failure to fulfill part 

of the bargain that is obliged, for instance, failure to repay the specified loan or interest/coupon 

on a loan/bond; generally due to lack of liquidity or insolvency; may entail bankruptcy. 

Credit risk remains a critical area both in banking and other lending institutions and is 

of great concern to many stakeholders,i.e, borrowers, institutions, and policy regulators. Since 

the advent of Value at Risk (VaR) models in the l990's, VaR has led to the evolution of risk 

management practices across the globe. This consequently led to the famous, Basel Committee 

of 1998, which allowed banks to seek mandatory supervisory approval for putting up capital 

requirements for market risks with respect to their internal models. 
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In order to mitigate the adverse effects associated with credit risk , the credit institu­

tions need to first quantify the risks then come up with policies pertaining to risk management. 

Consequently, the purpose of this dissertation is to review existing survival models in literature 

and systematically assess their performance using real data from the Kenyan setting. 

1.1.2 Kenya's Credit Sector Situation 

Currently, Kenya has 42 commercial banks, 8 representatiYe offices of foreign banks, 13 micro­

finance hanks, ancl one mortgage. finance comp;:wy, (CBK, 2016). According to the Central 

bank of Kenya 2016 annual report, the banking sector's performance was resilient. The re­

silience of the economy was attributed to the resilience of 1VIicro Small and rdedium Enterprises 

(MSMEs), public investment in infrastructure, increased growth of the digital economy, and 

strong performance of the .. tourism sector. 

However, despite being resilient, the public national debt . and publicly guaranteed 

debt by Kenya, increased by 14.3 percent during the financial year 2017/18, with both domes­

tic and external debt increasing at 17.4 percent and 11.6 percent, respectively. Public debt 

portfolio comprised of 49.2 percent and 50.8 percent domestic and external debt respectively 

by the end of the financial year 2017/18. The ratio of public debt to GDP declined marginally 

to 57 percent at end-June 2018 as the projected rate of economic expansion surpassed the rate 

of build-up in public debt. 

There has been an increase in non-performing loans as well. In a Credit Survey Report 

for the Quarter ended March 2018, the ratio of gross non-performing loans to gross loans grew 

from 10.66 percent in 2017 December, to 11.81 percent in :rviarch 2018. This was attdbuted to 

a slowdown in business activities. The ratio of core capital to total risk-weighted assets also 

rose slightly from 16.05 percent in 2017 December, to the tune of 16.15 percent as of :rviarch 2018. 

Given the above situation, credit providers required a more sophisticated credit risk 

measurement techniques that can better assess the risks of their clients. The country has 

currently adopted logistic regressions which model a dichotomous variable before predicting 

good and bad clients. This , however , does not inform subsidies on when the initial classification 
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will depreciate over time. Moreover, with the adoption of the International Financial Reporting 

Standards 9 (IFRS9) , credit providers will be required to forecast not only likelihoods for default 

but also the time to default. 

1.1. 3 Survival Analysis 

The pioneer of using survival analysis in the context of credit risk is documented to be N arain 

(1992); where he proposed a survival analysis approach as an improvement to logistic regres­

sion. Thomas et al, (2002) highlight that the critical reason for using survival analysis in credit 

risk setting is that default time could be modeled with other determining features. Conse­

quently, several authors have trailed the same approach and have even utilized more advanced 

methods. The Cox proportional hazard (Cox PH) model was the first substitute to the AFT 

model (Thomas et al, 1999) clue to its flexible non-parametric baseline hazard. When identi­

fying defaulters in the first year, the research suggested that the Cox PH models are relati,·ely 

competitive compared to the logistic regression approach, and correspondingly superior to that 

approach for determinirig significant covariates. Several authors have extended both Cox PH 

and AFT models. For instance, modeling the probability of default and early payment of loans 

(Stepanova and Thomas, 2002) suggests that categorizing continuous variables and using sur­

vival analysis techniques in ordering discrete ones, are more appropriate than the conventional 

technique of using risk ratios. 

1.2 Problem Definition 

Given the emerging of many financial services provider firms and the growth in the financial 

industry, there is a need for efficient credit risk measurement techniques. Standards such as the 

Basel II and International Financial Reporting Standards 9 (IFRS9) have furthermore implied 

the need for effective credit risk measurement models. 

Apart from Omoga, A.A. (2017), there has not been a systematic performance con­

trasting of different models in the Kenyan context. For instance in the Kenyan market the 

studies carried out on the probability of default by Wekesa, Samuel , and Peter (2012) use 

the product-life estimator, \tVagacha and Othieno (2016) use a Semi-iVIarkov approach, Obucla 
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(2016) uses the Cox PH model , and Gitahi and Othieno (2017) uses the Cox PH rate model. 

Most authors have not tried to fit different models and compare their performance. 

Thus, in this study, we fit different survival models into the Kenyan credit data and systemat­

ically compare the performance of models in order to evaluate the best model that takes into 

cm1sideratiou the time-varying aspect and produces effective results. 

1.3 Objectives of the study 

• Fit different survival models to Kenyan credit data. 

• Systematically investigates the most efficient and preferable model thFtt produces best 

estimates in Kenyan real data sets. 

1.4 Research Question 

The question that we intend to ans•v:er at the end of the study is which model is most effective 

in modeling credit risk according to Kenyan real data set. 

1. 5 Significance of the Study 

Results obtained from this study will be mainly useful to the commercial banks in computing 

the probability of default(behFtvior scoring) as well as the time to default(profit scoring) of their 

different clients. This is of importance since the adoption of International Financial Reporting 

Standards 9 (IFRS9) and the IRB framework, banks are required to compute both the prob­

ability and time to default for asset loss provisioning as well as capital requirements assessment. 
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This work attempts to evaluate and give recommendations on the best survival model 

in credit risk context in relation to the Kenyan data. This will help financial institutions that 

are credit providers in assessing their clients' risk of default thus lowering their chances of losses 

arising from default. 
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Chapter 2 

Literature Review 

2.1 Introduction 

In credit risk management, decisions are made on the basis of the creditworthiness of an incli-· 

vidual or institution which is determined through the use of credit scoring models. According 

to the CBK's annual supervision report (2016) , banks and CRBs must work hand in hand to 

deliver credible credit scores. The consistent credit scored would then be incorporated into 

pricing models and credit risk appraisal. 

In this section, we evaluate the conceptual foundations of credit risk analysis. Section 

2.2 reviews the literature on survival analysis while section 2.3 discusses a case for survival 

analysis in Kenya. 

2.2 . Survival Analysis 

Survival analysis was historically used in the medical and engineering fields where the duration 

until the occurrence of an event of interest is examined, for instance, the time until death or 

machine failure (Collett , 2003; Kalbeisch and Prentice, 2002; Cox and Oakes, 1984) . Therefore 

in 1992, Narain pioneered the introduction of using the survival analysis technique in the credit 

risk sector as an alternative to logit regression clue to its importance of modeling the time of 

default as opposed to only whether or not an applicant would default (Thomas et al, 2002). 

r-. 
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Since then improvements have been done in the field, for instance in a Quantitative 

Finance paper by Jose Angelo Divino, Edna Souza Lima and Jaime Orrillo (2013), they theo­

retically and experimentally analyzed the possibility of default in the financial market in Brazil 

considering both the contract and borrowers' specific characteristics and the nation's macroe­

conomic conditio!ls. A major Brazilian bank availed the data set of 445889 individual contracts 

of a short run credit operation. They had access to contracts signed between January 2003 and 

December 2007. However, the year 2007 did not enter the approximation, it vvas vital in the 

scrutiny of the forecasting performance of the model. The time-dependent covariates were also 

monthly in the stated span of time. 

The Cox proportional hazard model with time-varying covariates was estimated. The 

initial experimented outcomes indicated that the possibility of defaultjs sensitive to specie char- . 

acteristics of both contracts and borrowers as well as macroeconomic conditions. The findings 

based on theory, on the adverse effects coming from distinct interest r.ates over the probability 

of default were affirmed by the data. A decrease in the economy real interest rate , would im­

ply by an expansionist monetary policy, leads banks to assume more credit risks and ease the 

analysis of borrowers credit history. By expanding credit operations, banks could compensate 

for financial losses due to a lower real interest rate. This strategy will bring . borrowers with 

a higher probability of default to the financial market. Conversely, higher rates of interest on 

loans intensify the chances of default because it reduces the borrower's capacity to settle their 

debt. 

Jose Angelo Divino, Edna Souza Lima and Jaime Orrillo (2013), however , warned that 

the previous results were based on a particular data set and set of variables. They might not 

hold for other samples or financial assets. The positive relationship between the probability of 

default and the loan interest rate might also be a result of risk-based pricing when the lenders 

charge higher rates to those portfolio segments that have historically shown higher default rates . 

In recent studies, Dirick et al (2016), analyzes the performance of various survival 

analysis techniques applied to ten actual credit data sets. The sets of data were acquired from 
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the UK and Belgian financial institutions consisting of loans of small enterprises and personal 

loans, with varying loan terms. 

In their paper, (Dirick et al, 2016) analyzed ten dierent data sets from ve banks, using 

dierent classes of models, that is, Cox PH , Parametric/ AFT, Nonparametric, AFT /Cox PH + 

extensions, Multievent mixture cure and l\!Iixture cure, as well as using both statistical (AUC 

and default time predictions) and economic evaluation measures applicable to all model types 

considered, the "plain" survival models as 'vell as the mixture cure models. 

Since techniques for survival analysis are incapable to cope with missing data, and with several 

data sets having a significant count of missing inputs they preferred to employ the rule of thumb 

used in a benchmarking paper by Dejaeger et al (2012). 

- As a result , for continuous inputs , median imputation was put in use when ::; 25% 

of the values were missing, and the inputs were removed if more than 25%was missing. For 

categorical inputs, a missing value category was created if more than 15% of the values were 

missing, otherwise, the observations associated with the missing values were removed from the 

data set. 

In their paper, they used two opposing denitions for censoring. First, censoreq cases 

are the loans that did not reach their preclenecl end elate during the time of data gathering 

(called "mature" cases) and neither experienced default nor early repayment by this time. Ac­

cording to the second denition, a censored case corresponds to a loan that did not experience 

default by the moment of data gathering. Early loan settlement and mature cases are marked 

censored. This kind of censoring is used in models where the default is the only event of interest. 

The number of input variables in the resulting data sets did vary from 6 to 31, and 

the number of observations from 7521 to 80 ,641. For each observation, an indicator for default , 

early repayment and maturity were included, taking the value of 1 for the respective event of 

interest that took place, and 0 for the others (note that only one event type can occur for each 

observation). For censored observations according to the rst censoring denition, all indicators 

are zero. According to the second censoring denition, only defaults are considered uncensored. 
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In terms of our data sets, this means that censoring rates are ranging from around 20 to 85% 

according to the first definition (used for the multiple event mixture cure model) , vvhereas cen­

soring percentages are not lmver than 94.56% up to 98.169( according to the second definition. 

A test set consisting of 2/3 and 1/3 of the observations, respectively was reached by 

splitting each data set randomly. Estimation .of the training sets are made on the models, and 

the corresponding test sets are used for evaluation. For all the models , the software R is used. 

In companson, Cox PH-based models were all proven to work predominantly well, 

more so a Cox PH model in combination with penalized splines for the continuous covariates. 

The Cox PH model often outperforms the multiple event mixturecure model. However, the 

mixture cure model is among the top models using economic evaluation. It does not perform 

signicantly dierent in most of the cases. This model does not require the survival function to 

go_ to zero when time goes to innity as often regarded as appropriate for credit scoring data, 

making it advantageous. However, the study also notes that finding a suitable evaluation mea­

sure to compare survival analysis persisted as an interesting setback, as the AUC did not seem 

to have the right properties to really differentiate one method from the other. 

The fact that , in the existing literature, some questions remain inspired by the re­

searchers. Except for Zhang and Thomas (2012) , no attempt has been made primarily to 

contrast the available methods in one paper. Secondly, in most recent papers conclusions on 

the type of survival methods to use could not be made explicitly, since only one data set was 

analyzed. Finally, the assessment remains mostly fixated on classication and the area under 

the receiver operating characteristics curve (AUC) as presented in most of the papers. 
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2.2.1 A Case for Survival Analysis in Kenya 

Bellotti and Crook (2009), uses time-varying covariates and in their conclusion, they show 

that when compared to the benchmark survival model and logistic regression, the inclusion 

of macroeconomic variables progresses the predictive performance of the model. Despite the 

analysis of the explanatory model giving enlightenment of how each macroeconomic variable 

contributes to modeling the data, they recommended extensive experimental work to assess the 

separate effect of each of the macroeconomic variable on the estimation of PD. 

In the recent studies, Pauline N., Lucy M. and Collins 0. (2018), contributed to the 

study by analysis different variables that can lead to Higher Education Loans Board (HELB) 

loan default in Kenya. They perform a quantitative analysis of loan applications by computing 

the probability of default of students who apply for Kenyan Higher Education Loans Board 

(HELB) loans to help in financing their st udies. They used the information provided in the 

Kenya Higher Education Loans application forms. Taking into account of different factQrs lead­

ing into student default of the loan as independent , they use multiple logistic regression with 

the binomial nominal variable defined as a defaulter or a non-defaulter. 

They opted for Multiple logistic regression given its ability to predict a nominal de­

pendent variable from one or more independent variables. From their study, they conclude that 

the amount of loan being reimbursed was the main factor affecting default. However, they were 

faced with a challenge of lacking time to defaulting variables which are of interest in survival 

analysis. 

Gitahi and Othieno (2017) analyzes the survival probabilities and hazard rates using 

the Cox PH model on real data sets obtained from the Metropol Credit Reference Bureau then 

use the probabilities in estimating the probability of default. In their research, they conclude 

that the Cox PH model can predict with over 60 percent accuracy both in the probability 

and time of default. However, in the proportionality test, Gitahi and Othieno(2017) use the 

-log(-log) test which computationally reduces the covariates used to an expression that drops 

the baseline hazard function and therefore does not involve time. Thus there was a need to do 

analysis taking into account time-varying covariates. This was addressed by Omago A.(2017) 

10 



in his research dissertation PTedictive modeling in cr·edit Tisk: a survival analysis case. 

In his study Omago A. (2017), fits the Accelerat ed Failure Time (AFT) .i\llodels, Cox 

proportional hazard (PH) lVIodel and the 1vlixture Cure 1Vlodel (MCM) to a data set consisting 

of 33,238 active credit facilities from a financial institution operating in Kenya. He evaluates 

the performance of the models using the Area under the Cun·e (AUC) and financial evaluation 

using the annuity theory. He concluded that the Cox Proportional Hazard (PH) and the Mix­

ture cure model performed significantly well. 

From the study, Omago established that an appropriate valuation measure for relating 

survival models remained a challenge since the Area under the Curve (AUC) alone does not 

have the suitable properties show apart from the different survival model. The results from a 

datFI. set which comprised of Fl. credit facility of the individu FI.l unsecured facility frolll a fin FI.nciFI.l 

institution based in Kenya, cannot be generalized to another portfolio since only a single sample 

was analyzed. He, therefore, proposed_a survival analysis modeling benchmark on revolving 

products such as overdrafts and credit cards and the suitability of the mixture cure model to 

those products where the facility term is long due to its rotating nature. Omago also proposed 

an extension of the research t o a mobile lending scheme such as the Mshwari loans offered by 

the commercial bank of Africa through Mpesa platform. 

11 



Chapter 3 

Methodology 

The study relies on Cox Proportional Hazard (Cox PH) model and it 's extensions, that is, 

Penalized Splines and Frailty model as well as the mixture cure and non-cure model in devel­

oping the probability of default model for a consumer loan portfolio. This chapter contains the 

research design, data collection, · and model framevvork. 

3.1 Study Design 

The study contributes to the body of knowledge of credit risk modeling using survival analysis 

npproachcs. The study fits the Cox PH model aud its cxtcusious, that is, penalized splines 

and frailty model, as well as the mixture cure and no-cure model to real Kenyan data, set. 

Assessment is done to ascertain the most effective model in analyzing credit risk. 

3.2 Data 

The data used for the study was obtained from the rvletropol Credit Reference Bureau for the 

period 2014 to 2017. The data comprised of 20299 individuals and included various covariates 

namely: the age of the individuals(from 22 years to 75 years),age bracket(18-33, 34-43, 44-

53, >54), gender(male and female) , marital status(married,single,divorced and widowed),the 
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type of the account( credit card, loan account and current account) ,status of the loan (active 

or defaulted), loan amount(ranged from kshs 1,000.00 to kshs 229,068,599.00) and the loan 

amount group. 

3.3 Survival Analysis Framework 

In survival analysis, we are usually concerned with the time variable, T, of an event of interest. 

The survival function is usually, articulated as the likelihood of not experiencing the incident of 

concern at some observed timet, hence yielding S(t) = P(T > t). In the setting of credit risk, 

where the default is the event of interest. See Dirick et al (2016). Given the survival function, 

the probability density function f( u) is given by 

f(u)--==- d~ S(u) - - (3.3 .1) 

and the hazard function 

h( ) 
_ 

1
. P(t 5, T < t + r!T > t) _ f(t) 

t - 1m - S( ) , 
T-tO T t 

(3.3.2) 

where T i~ the ~t (change in time). 

The hazard function models the instantaneous risk. 

·when carrying out survival analysis censoring is clone, that is, the incident of concern 

has not been witnessed at the time of assembling data. For instance, Dirick et all (2016) con­

siders two types of censoring, one where some credit applicants had failed to pay, replayed in 

advance or some loans were completely paid back at the completion of the loan period. Cen­

soring is done to the cases where none of the above events had been observed. In the second 

scenario, censoring is entirely labeled on the cases that matured or repaid their loans early. 

Thus only censoring and default states are been considered. 

13 



3.3.1 Cox Proportional Hazard Model 

The Cox proportional hazard model is more flexible than any accelerated failure time (AFT) 

model as it contains a non-parametric baseline hazard function, h0 (t) , along with a parametric 

part (Cox, 1972). The Cox model has the advantage of preserving the variable in its original 

quantitative form, and of using a maximum of information. However, very restrictive conditions 

of application of this model make its use rather limited (Bugnard F., 1994). The model's hazard 

function is denoted as; 

h(tl x ) = h0 (t) exp((3'x ) (3.3.1.3) 

where the covariate vector is denoted by x and the parameter vector by (3'. 

The. survival function is denorted as; 

S(ti x) = exp( -exp((3'x ) 1t h0 (u)du (3.3.1.4) 

where J~ h0 (u)du can be expressed as H0 (t) which is the cumulative baseline hazard 

function and can be estimated by Breslow's method as; 

1 
Ho(t) = L , 

LnR(t ·) exp((J x,.) t; :S;t ' 

(3.3.1.5) 

with R(ti) denote the set of people that haven't failed to pay at time ti 
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3.3.2 Cox Proportional Hazard Model with Penalized Splines 

The hazard function in the Cox PH model assumes a proportional hazards structure with a 

log-linear model for the covariates. Thus for any continuous variable , e.g., age, the default 

hazard ratio between 5-10 years is the same as the hazard ratio between 50-55 years. This as­

sumption nonnally doesn't hold thus splines are used clue to their flexible functions defined by 

piecewise polynomials that are joined in points called "knots." (Therneau and Grambsch, 2000). 

When a total sum of knots in a given spline turns out to be sufficiently huge, a fitted 

function of the spline depicts more variation than justified by the data. The penalized spline can 

be considered as a variant of smoothing spline with a more flexible choice of knots, bases, and 

penalties. A smoothness penalty was introduced by O'Sullivan (1986) ·when he implemented 

the procedure by incorporating the square of the ·second derivative of the fitted spline function. -

Thereafter, Eilers et aL (1996), reve_alecl that this penalty could also be based on higher-order 

finite differences of adjacent B-splines. 

3.3.3 Frailty Model 

Vaupel et al. (1979), came up with the term frailty and used it in univariate survival models. 

Frailty models offer an improved way for integrating random effects in a given model to account 

for association and heterogeneity that is not observed. Generally, a frailty model can be consid­

ered as an unobserved random factor that modifies multiplicatively the hazard function of an 

individual, group or cluster of individuals. Andreas W. (2010), revealed that frailty proposes 

an appropriate way of introducing unobserved heterogeneity and associations into models for 

survival data. In his book Andreas W. (2010) , the model is represented by the following hazard 

given the frailty: 

-\(tiZ, X) = ZA(tiX) (3.3.3.1) 

·where A is the hazard function and the frailty Z is an unobservable random variable varying 

over the sample which increases the individual risk if Z > 1 or decreases if Z < 1. 
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The conditional survivor function for the model is presented as: 

S(tiZ, X)= exp(Z it /\(uiX)du) = exp(ZA(tiX)), (3.3.3.2) 

where 

A(tiX) =.fat ,\(uiX)du.S(tiZ, X) 

represents the portion of individuals surviving until time t given Z and given the vector of 

observable covariates X. 

Until now, the model is described at the individual level, but this individual model is 

not observable. Hence, it is essential to consider the model at a population level. The survival 

of the total population is the mean of the individual survival functions 

. Hougaard (1984) introduced the Laplace transform for these calculations. The Laplace 

transform of a random variable Z is defined as: 

L(s) = J exp( -sz)g(z)dz = E[exp( -sZ)] (3.3.3.3) 

where g(z) is the density of Z. The integral is over the range of the distribution. The marginal 

survivor function can be calculated by 

S(tiX) = J S(tiZ, X)g( z )dz = E[S(tiZ, X)] = L(A(tiX)) (3.3.3.4) 

Univariate frailty models are not identifiable from the survival information alone. However, 

Elbers and Ridder (1982), proved that a frailty model with finite mean is identifiable with 

univariate data when covariates are included in the model. 
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3.3.4 Mixture Cure and Non-Cure Model 

Conventionally, mixture cure models have been inspired by the presence of disaggregated long­

term survivors (Taylor, 2000; Peng and Dear, 2000).0n the other hand , under non-mixture 

survival models , the incident of concern is anticipated to occur eventually. Both mixture cure 

and non-cure models are used in the setting where a given fraction of the population under 

study will not experience the event of interest. Therefore, the mixture cure model can be viewed 

as a combination of distributions where a logit regression model generates a mixing proportion 

of non-susceptibility while the survival model, on the other hand, defines the survival function 

of the cases subject to the event of interest. The models are of particular interest in credit risk 

modeling as default , which is the main event of interest will not occur for a huge proportion of 

the cases. This idea was introduced in the credit risk setting for the first time by Tong et al 

(2012). 

The survival function of the mixture cure model is given as; 

S(t lx) = 1r(x)S(tiY = 1, x) + 1- 1r(x)t (3.3.4.1) 

where Y is the susceptibility indicator (Y = 1 if an account is susceptible, and Y = 0 if not). 

The conditional survival function modeling the cases that are susceptible is given by a Cox 

proportional hazards model: 

s(tiY = 1, x) = exp( -exp((J'x) it h0 (uiY = 1)du) (3.3.4.2) 

In a non-cure mixture context, the Breslow-type estimator is used for estimation of the 

cumulative baseline hazard similar to the Cox proportional hazards model. Excellent summary 

on the non-cure mixture model can be found in Tong et al (2012) 
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3.4 Model Parameters Estimation 

3.4.1 The Proportional Hazard Model 

The (3 information is obtained from the orderings of survival times. Let Ai be the incident that 

the individual i experiences default in [u.u+t..u] and ti, .. , tu define individui'tl default times, t lwu 

P[I(u) = i (u)IF(u) = f(u); Ao(.), (3] 

= P[Ai(u) IA1 U ... An] 

P[Ai(n) ] 

2::~= 1 P[AL] 

,\0 ( u )exp(x~~~)(3)t..u 

2::~= 1 Ao(u) exp(x~11 )(3 )Yi(u)t..u 

exp( x~~~ ),B) 

Where Yi(u)(u) = 1 when the individual is at risk atu.The Partial Likelihood is expressed as; 

The function is dependent on (3, the parameter of interest , and is free of the baseline hazard 

Ao(t). 

"We then express the Log partial likelihood function of (3 as; 
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The log-likelihood has a novel maximizer and can be gotten by solving the partial 

likelihood equation 

U((3) = dl((3) L dN(u)[xi(u)f3- L~=l exp(x~,8)1~(u)) =OJ 
d(3 . LL=I exp(xt f3)~(u)) 

3.4.2 The Frailty Model 

We use gamma distribution because it is easy to derive the closed form expressions of survival, 

density and the hazard function. This is due to the simplicity of the Laplace transform. The 

density function of the gamma distribution gamma (z; e, (3) is given by 

g(z) = e13 z13 - 1exp( -Bzl 1(!3)) 

where e > 0, (3 > 0 and z > o.e is a scale parameter and (3 is a shape parameter. Vve define the 

hazard function 

as the hazard function of the lh individual of group i given the frailty of group i(Zi), where 

.\0 ( tij) is an arbitrary baseline hazard rate and Xij is the corresponding covariate vector. Vl/e 

denote the joint survival function as 

k·i 

= [1 + t :Z:::Ao(tij)exp((3txij)te 
j=l 

we obtain (3 , () ancl A0 (t) using the EM (Expectation Maximization) algorithm (Dempster et 

al. , 1977) which provides a means of maximizing complex likelihoods. The likelihood of the 

frailty is give as lfull = h(B) + l2 (A0 ) where 

n 

h(fJ) = n[fJlogH -logE (fJ)] + L[(Di + (}- 1)logZi - f;)Zi] 
i =l 
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ll ki 

l2(Ao, (3) = L L di.i[(YXi.i + log.Ao(ti:i)]- Zi.Ao(ti.i)exp((3tXi.i ) 
i= l .i=i 

In the E step we complete the expected value of the full likelihood given the current estimates 

of the parameters and the observable data. In the l\11 step the estimates of the parameters 

which maximize the expected value of the full likelihood from the Estep are obtained.(Klein 

and Moesch berger ( 1997)). 

3.4.3 The Mixture Cure Model 

Note; 

Ym denotes the matured observation, hence repaid at the maturity date. 

Yd denotes the occurrence of the event of interest, default. 

Ye denotes early i·epayment. 

For a singl_e event we use a semi-parametric regression model where the conditional survival 

· probability at time t is modelled yielding the unconditional survival function and the corre­

sponding observed likelihood; 

given full information of Y , the complete likelihood function is given as . 

In a multiple event the three indicators (Ye, Yd, Ym) are used in the formulation ofthis 

model.Using the dummy variable '1' denoting a credit event default 'd' and '2' denoting early 

repayment 'e', the observed likelihood is; 

2 

Lobs( G)= rr~=l {1f]=11fj(xi; bj)fi(tillj ,i = 1, Xj,i; (3j )Yi,;(1- L 1fj(xi ; bj))Ym,i }8i* 
j=l 

2 2 

{(1- L1f.i (xi;b.i ) + L(xi;b.i)S.i(ti.ilYi.i = 1,xi.i;xJ3,j )p-t5; 
j =l j=l 

where 8=be, bd, f3e, .Bd. Maximum of the observed likelihood does not exist hence Zeng and 

Lin ( 2007), proposed maximization of the Kernel smoothed profile likelihood using an EM 

Algorithm. The model can then be rewritten starting from the complete likelihood, hence 
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the likelihood expression under the assumption that the full information on Y = Ye , Yd , Ym is 

present. 

Using the model density with parameters 8 1 we compute the expected value by converting the 

Likelihood to a log likelihood translating to the Q - function 

n 2 

= L {1Vji log(nj(xi ; bj)) + H'milog(1- L nj(xi; bj ))+ 
i =l .i=l 

2 

L V1ij,i6ilog(hi(tJrj = 1, Xj,i ; P'i)) + 1Vijlog(hi(t.JYj = 1, xi ,j; P'.i ))} 
j=l 

The conditional expectations of ~,j (j = 1, 2) , E1 [~1Ti lbil8 1 ] are calculated with re­

spect to the model density using parame..ter81 denoted by l!Vii with l'Vmi = 1- 1V1i - W2i and 

for j=1,2, YVmi = 11Vmi (8) = P(~,j = 1h = t ; 6i; 8 ) 

1 for Yi ,i = 1 and 6i = 1 

0 for Yi ,j = 0 and b"i = 1 
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Chapter 4 

Presentation of Research Findings 

4.1 Data Overview 

The data used for analysis was from Kenya Metropol and comprised of 20,299 individuals. The 

data was extrnctcd between December 2014 and December 2017 where different imliviclurtl nc:...: 

counts were tracked over a certain period of time to obtain the accounts where the individuals 

went into default as well as those that did go into default within the period of the study. The 

date captured various covariates, that is, time difference, gender, age, type of the product, 

marital status, year of data retrieval and the loan amount groups. 

The time difference means for nctive individuals is 24.17 months, with a lower couti­

dence interval of 24.04 months and an upper confidence interval of 24.30 months. For defaulters, 

the mean time difference is 24.70 months with a lower confidence interval of 24.45 months and 

an upper confidence interval of 24.94 months. The mean original amount for active individuals 

is Kshs 300,077.82 with a lower confidence interval of Kshs 247,589.00 and an upper confidence 

interval of Kshs 352,566.63. For the defaulters, the mean original amount is Kshs 195,210.76 

with a lower confidence interval of Kshs 137,670.56 and an upper confidence interval f Kshs 

252,750.95. The mean age for active individuals is 41 years with a lower confidence interval of 

40.83 years and an upper confidence interval of 41.17 years. For the defaulters, the mean age 

is 38.11 years with a lower confidence interval of 37.81 years and an upper confidence interval 

of 38.40 years. 
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The time (in years) \:vhen data was retrieved is December 2014, 2015, 2016 and 2017. 

The gender for the individuals under study is male and female, we shall denote male as gender 1 

and female as gender 2 for our analysis part. The individuals are grouped into the age brackets 

of 18-33, 34-43, 44-53 and above 54 years. The amounts of the individuals are under different 

products namely; current account, loan account , and the credit card. The individuals under 

study are considered to be either marriE~d , divorced, single or widowed. 

The individuals amount is also grouped in ranges starting from 0-50,000, 50,001-

100,000, 100,001-250,000, 250,001-500,000 , 500,001-1000,000 and over 1000,000. Note that all 

the covariates have a p-value of less than 0.001 apart from the marital status which has a 

p-value of 0.006. The data can be summarized in a table as shown below. 

Active Defaulter P-Value 

Mean Time Difference 24.17(LCI=24.04, 24. 70(LCI=24.4), <.001 
(95%CD UCI=24.30) UCI=24.94) 
Mean Original Amount "00 0'' SI(LCI-?4~ 589 00 ;) ' I I . - -_, I' ' . ' 195,21 0.76(LCI=l3 7 ,670.56, <.001-
(95% CI) UCI=352,566.63) UCI=252,750.95) 
!Mean Age 4l.OO(LCI=40.83, 38.11(LCt=37.81, <.001 
(95% CI) UCI=4L17) UCI=38.40) 
Year of 2014 68 (71.58%) 27 (28.42%) <.001 
Data 2015 2827(81.54%) 640 (18.46%) <.001 
Retrieval 2016 6486 (77.18%) 1918 (22.82%) <.001 

2017 6465 (77.58%) 1868 (22.42%) <.001 
Gender Female 7857 (82.61 ~·o) 1654 (17.39%) <.001 

Iviale 7989 (74.05%) 2799 (25.95%) <.001 

Age 18-33 4652 '(71.95%)) 1814 (28.05%) <.001 
Bracket 34-43 4908 (78.73%) 1326 (21.27%) <.001 

44-53 4136(81.05%) 967 (18.95%) <.001 
>54 2150(86.14%) 346(13.86%) <.001 

Product Current Account 2419 (78.36%) 668 (21.64%) <.001 
Name Loan Account 10877 (83.75%) 2111 (16.25%) <.001 

Credit Card 2550 (60.37%) 1674 (39.63%) <.001 
wiarital Divorced 43 (75.44%) 14 (24.56%) 0.006 
Status Married 10483 (78.60%) 2854 (2L4og·o) 0.006 

Single 5311 (77.11%) 1577 (22.89%) 0.006 
\Vidowed 9(52.94%) 8 (47.06%) 0.006 

Amount 0-50,000 9808 (76.55%) 3004 (23.45%) <.001 
Group 50,001-100,000 1657 (75.66%) 533 (24.34'YQ) <.001 

100,001-250,000 1473 (78.94%) 393 (21.06%) <.001 
250,001-500,000 1527 (84.32%) 284 (15.68%) <.001 
500,001-1,000,000 848 (84.38%) 157 (15.62%) <.001 
Over 1,000,000 533 (86.67%) 82 (13.33%) <.001 

Table 1: Summary of data covariates with there correspondent counts and p-values 



4.2 Performance Evaluation Measure 

4.2.1 Aikaike Information Criteria (AIC) 

Collett (1994) , documents the Aikaike Information Criteria (AIC) for a given model as a func­

tion of its mCL'\:imized log-likelihood (e) and the number of (number of independently adjusted 

parameters within the model (K) 

AIC = -2f+2K 

The criteria used for this study is the Akaike Information Criterion (AIC), as is assigns 

scores to every single model and provides us which a choice of choosing the model with the 

best score. The lower the AIC compared to the null deviance, the better the model will be. 

Akaike Information Criteria (AIC) provides a versatile procedure for statistical model 

identification which is free from the ambiguities inherent in the application of conventional hy­

pothesis testing procedure. The fact that the maximum likelihood estimates are under certain 

regularity conditions, asymptotically efficient shows that the likelihood function tends to be a 

quantity which is most sensitive to the small variations of the parame~ers around the true values. 

4.2.2 Fisher Scoring 

Fisher scoring iteration is concemed with how the model was estimated (Pauline, (2018)). 

Newton-Raphson iterative algorithm is used by default in R for logistic regression. Based on 

an approximation of estimates a model if fit and the algorithm explores for an enhanced fit by 

using alternative approximations. Thus engrosses the same route using higher values for the 

estimates and fits the model again. The algorithm quits when it notices that searching over 

can't result in any other additional enhancements. In our model , v.re had 719 iterations before 

the process quit and output the results. 
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4.3 Results 

A log rank test was first clone using R statistical software before any analysis to check the 

signifieR-nee of the variables. Spline graphs, box plots. and the Kaplan-Meier curves were then 

generated for visualization of variables relationship in determining the probability of default. 

Thereafter the data was analyzed using survival analysis approaches in the study to determine 

the most efficient in modeling credit risks. 

4.3.1 Log Rank Estimation 

Log Rank test estimation was clone using R statistical software in an attempt to study the signif­

icance of the variables in our data set. The log-ra.nk test is used to test the null hypothesis that 

there is no difference between the populations in the probability of an event at any time point. 

The analysis is based on the times of events. The log rank test is based on the same assumptions 

· as of the Kaplan 1\lleier survival curve3-namely, that censoring is unrelated to prognosis, the 

survival probabilities are the same for subjects recruited early and late in the study, and the 

events happened at the times specified. Deviations from these assumptions matter most if they 

are satisfied differently in the groups being compared, for example, if censoring is more likely 

in one group than another. Because the log rank test is purely a test of significance it can­

not provide an estimate of the size of the difference between the group~ or a confidence interval. 

Lo!!. Rank Estimate Chi-Square df si£nificance 

Gender 159.257 1 0.000 

A!!e Bracket 248.220 3 0.000 

Marital Status 4.825 3 0.185 

Table 2: Overall Comparison of Log Rank Tests 

From Table 2 above, it 's clearly evidenced that the variables in our data set are 

significant to our study since they all had a significant difference value of less than 0.5. 
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4.3.2 Kaplan-Meier (KM) curves 

The Kaplan-Meier was used in generating the variables KM curves. The curves were only 

obtained for the age bracket, gender, marital status, and product name covariates. Its shown 

from the KM curves that the young people between the age of 18-33 years, the male, single and 

individuals with a credit card account are more likely to default a loan as shown below; 
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Figure 4.1: Kaplan Meier Curves 
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4.3.3 Age and Time Difference Boxplots generated using SPSS ver­

sion 25. 

Age and time difference boxplots were generated using SPSS version 25. From it is evidence that 

time difference is not a sip;nificant variable in rlct.ermininp; the probability of default. However, 

age is a significant variable in determining the probability of default as shown below; 

(a) [Age Boxplot (b) Time BoA"}) lot 

Figure 4.2: Age and Time Difference Boxplots 

4.3.4 Spline graphs for age and loan dispatched predicting default 

The Cox spline was also applied to all the covariates in the data set but it only worked with 

age and the loan dispatched as shown above. From the graphs, it's shown clearly that the age 

r.ov::u:iate is a sufficient predictor of a loan defaulter as it has a smooth curve. For the amount 

of loan dispatched graph, it's clear that it's not a sufficient predictor of a loan defaulter. 
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Figure 4.3: Spline graphs for age and loan dispatched predicting default 
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4.3.5 Survival Analysis Models Estimation 

The survival analysis models were analyzed using R statistical software. The Cox Proportional 

hazard model was significant generally. The model worked well with all the covariates in the 

estimation of PD. The frailty model as well worked better ·with all the covariates. 

The individual in the age bracket of 18 years and 33 years are more likely to default. 

This can be attributed to most of them being youths who are still studying and depend on 

their rmrent for firwnc.ial support. l\iost ly they rtre unemployed thus lacking financial stability. 

The males are more likely to default a loan compared to female. This can be attributed to men 

being breadwinners to their families as well as the extended responsibilities. This can lead to 

one having many loans and if not financially stable can lead to default. Individuals with credit 

card account are more likely to default followed by the ones with a current account then the 

loan account individuals. 

Those individuals that are single are also more likely to default a loan. This comes 

along in that they are not committed with any responsibilities as they have no one to depend 

on them. rviostly they live a luxurious life which may be unable to maintain thus they will 

borrow money to spend with no future thought of investments. 
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Covariates roef exp{coef) se{coef) z Pr(>lzl) exp(coef) Exp(-coef) LCI UCI 
(95%) (95%) 

gender2 -3.190e-{}1 7.269::-01 3.122e-02 -10.218 < 2e-15 0 .7269 1.3757 0.6837 0.7728 

age_ bracket -2.667e-{}1 7.659.:- 3.622e-Q2 -7.363 1.8e-l3 0.7684 1.3014 0.7157 0.8250 
i34-43i 
age_bracket -4.569e-{}1 ·6.333::-01 3 .985e-02 -11.463 < 2e-16 0.6321 1.5821 0.5845 0.6335 
(44-53) 
age_bracket -6.933e-{}1 4.999e-Ol 5.379e-Q2 -11.792 < 2e-15 0.5039 1 . 98 ~-~ 0.4491 0.5655 
f>54l 
Divorced -2.756e-Q1 7.591e-D1 2.680e-01 -1.028 0.3038 1.0000 1.0000 1.0000 1.0000 

Sir.gle 4.053e-Q2 1.041e+OO 3.140::-02 1.291 0 .1967 1.3194 0.7579 0.7803 2.2310 

\'1Jidowed -1.233e..01 8.840.:-0l 3.54£::-01 -0.348 0.7280 1.3618 0.7343 0.8045 2.3052 

Loan -8.604e-{)1 4.230::-01 3.286::-02 -26.180 < 2e-16 NA NA NA NA 
Accoum 
Current -4.777e..01 5.202.:-01 4.583e-02 -10.423 < 2e-16 0.4375 2.2858 0.4101 0 .4557 
Accoun-
Original -3.098e-{}8 1.00Ce+OO 1.45Se-08 -2.110 0.0349 0.6339 1.5775 0.5793 0 .6935 
Amount 

Table 3: Summary of Survival analysis models estimates 
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Chapter 5 

Discussions and Recommendations 

5.1 Discussions 

In this study, we evalu-ate the effectiveness of five survival analysis models ir1_ credit risk scoring. 

vVe used the Akaike Information Criteria (AIC) as the main performance evaluation measure. 

From the study, it's clearly evidenced that all the models were significant in the analysis of a 

Kenyan real data set. However, the ·Cox PH model seemed to have outperformed the other 

models in comparison though the other models did not perform significantly different in most 

cases. The mixture cure and non-cure model performed significantly the same however the 

frailty model performed better. 

Comparison between the Cox PH model, frailty model , and mixture and non-mixture 

models assuming different distributions was assessed using the AIC, where a lower AIC value 

indicates a better model fit. The study concludes that the Cox PH model is more efficient in 

the analysis of Kenyan real data set compared to the frailty, penalized spline, and the mixture 

cure and non-cure model. This was as a result of it having the smallest AIC Of 39,747, followed 

by the frailty model which had an AIC of 42 ,100. The J\11ixture Non-Cure Model had an AIC of 

44,478 and lastly, the l\Iixture Cure Model <-~merged as the less efficient !:lmvival analysis model 

with an AIC of 44,503 as shown below; 
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:Model AIC 
Cox PH Model \Vith time independent 39.747 
Frailty Model 42,100 

Mi..""Cture Cure model 44,503 

Non- rvuxture Cure model 44_478 

Table 4: AIC Results for the Survival Analysis l\llodels 

5.2 Conclusions and Recommendations 

Survival analysis is advantageous in that the time to default can be modeled, and not just 

whether an applicant will default or not. Furthermore, the models revisited collectively have 

the advantage of not requiring the survival function to go to zero when t ime goes to infinity ; a 

situation that is seldom and appropriate for credit risk data 

In t he study, there was a challenge of finding an appropriate evaluation measure that 

is e~idenced across all the methods for survival analysis comparison. In the future, it could 

be appropriate to extend the mixture cure and non-cure model and study the performance of 

these models in contrast ·with a Cox PH model and some of its extensions. It would be also 

interesting to run all the models again over data that have been coarse-classified and compare 

its results with other researchers studies. 
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Appendix 

The R Code 

Packages required 

library (survival) 

library ( smcure) 

library( arm) 

library ( dplyr) 

library( ranger) 

library(ggplot2) 

library(survminer) 

library(rcure) 

libra,ry( ftexsurvcure) 

#########Fitting!( aplanl\II eiercurves####### 

head(LoanDefalt_Sammy) 

fitl <- survfit(Surv(time, Status) rv maritaLstatus , data=LoanDefalt_Sammy) 

ggsuTvplot(fitl, data=LoanDefalLSammy) 

summary(fitl) 

fit2j-survfit(Surv(time , Status) rv gender, data=LoanDefalLSamrny) . 

ggsuTvplot(fit2, data=LoanDe.falLSammy) 

summary(fit2) 

fit3j-survfit(Surv(time, Status) rv age, data=LoanDefalLSammy) 

ggsurvplot(fit3, data=LoanDe f alt_S am my) 

summary(fit3) 

fit4j-SUTV.fit(Surv(tirne, Status) rv product_name, data=LoanDefalLSmnmy) 

ggsurvplot(fit4, data=LoanDefalLSammy) 

summary(fit4) 

##########CoxP H M odelwithtimeindependent######## 

fit_CPH <- coxph(Surv(time, Status) rv age_bmcket+maritaLstatus+producLname+ 
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originaLarnmtnt, data=LoanDefalt_Sarnrny) 

summary(fit_CP H) 

###########Frailty####### 

rfit <- survreg(Surv(time, Status) ,......, age_bracket + nwr-itaLstatus + producLname + 
or-iginal_arnount 

+ frailty.gaussian(age , df=13, sparse=T RUE), data=LoanDefalLSarnrny) 

summary(r fit) 

###########spline####### 

par(mfrow = c(1,2)) 

sfit <- survreg(Surv(time, Status),......, pspline(age, df=2), data=LoanDe.falt_Samrny) 

plot( LoanDe falLS arnrny&age, predict( s fit), xlab=' age', ylab=" Splineprediction", 

main=" SplineGraph.for Predictionwithage") 

sfitlj-survreg(S'urv(time, Status) ,....., pspline(originaLarnount, df=2), data=LoanDe.falLSarnrny) 

plot( Loan De falLS arnrny&originaLarnount, predict( s.fit l), xlab=' originaLamount', 

ylab=" Splineprediction" , mai"n=" SplineGraphfor Predictionwithoriginalamount") 

##########Curemixturernodel####### 

cure_model <- fiexsurvcure(Surv(time , Status),....., age, data=LoanDefalLSarnmy, 

link=" logistic", dist=" weibullP H", rnixtuTe=T) 

pTint( cure_rnodel) 

cuTe_model2j- flexsurvcure(Surv(time, Status),....., rnaritalstatus, data=LoanDe.falLSamrny, 

link=" logistic", clist="weibu,llP H", rnixture=T) 

print( cure_rnodel2) 

cure_model3 j- .flexsurVC'LlTe(Surv(tirne, Status) rv age_bracket, clata=LoanDefalt_Sanuny, 

link=" logistic", dist=" weibullP H", rnixture=T) 
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print ( cttre_model3) 

cure_model4j-flexsurvcure(Surv(time, Status)"' gendeT, data=LoanDefalt_Sanuny, 

link=" logistid', dist="weibullP H", 7nixtuTe=T) 

pTint( cuTe_rnodel4) 

#############cuTemixturemodel ( uncuTedindividuals) ########## 

cure_model< - fitext exsurvcure(Surv(time,Status) age, data=LoanDefa.lt_Sammy, 

link=" logistic", dist="weibullPH" ,mixture=T, anc=list(scale= "' age)) 

print( cuTe_model) 

#########non - cuTemixturemodel########## 

cure_modeLnmix <- flexsurvcure(Surv(time, Status)"' age, data=LoanDefalt_Sammy; 

link=" logistic", dist=" weibullP E", mixtuTe=F) 

print ( cure_rrwdel3) 

cure_model_nmixlj- flexsuTvcuTe(Surv(time, Status)"' age_bTacket , data=LoanDefalt_Samn"Ly , 

link=" logistic", dist=" weibullP H" , mixtuTe=T) 

print( cure_model3) 
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