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ABBREVIATIONS 

3D  three-dimensional  

3DP  three-dimensional printing  

ALIF  anterior lumbar interbody fusion 

CAD  computer aided design 

CT  computer tomography  

DICOM digital imaging and communications in medicine  

DLP  digital light processing 

DSI  Dice similarity index 

FDM  fused deposition modeling  

FE  finite element  

FEA  finite element analysis  

FEM  finite element method 

FVM  final vertebra model 

HD  Hausdorff distance 

HDI  human development index  

I  investigator 

ICC   intraclass correlation coefficient  

IDD  intervertebral disc degeneration 

inf      inferior 

LBP  low back pain 

LLIF  lateral lumbar interbody fusion 

LP  leg pain 

MRI  magnetic resonance imaging 

ODI  Oswestry Disability Index  

OLIF  Oblique Lumbar Interbody Fusion 

PACS  picture archiving and communication system  

PCD  percutaneous cement discoplasty 

PDF  portable document format  
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PMMA polymethyl methacrylate  

Postop postoperative 

Preop preoperative 

QCT Quantitative Computed Tomography 

R&D research and development 

SD standard deviation 

SF:V surface-volume ratio 

SPSS statistical package for the social sciences  

SR surface roughness  

STL stereolithography file format 

sup superior 

T time 

Th thoracic 

U3D universal three-dimensional file format 

VAS visual analogue scale  

XLIF Extreme Lateral Interbody Fusion 

ΔV change in the spinal dimensions after PCD 
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1. INTRODUCTION

1.1. Innovation workflow 

Innovation can be defined as a new idea, creative thoughts, new method, or a new 

device [1]. A norther perspective present innovation as the application of better solutions that 

meet new requirements, unarticulated needs, or existing market needs [2]. In the fields of 

healthcare and medicine innovation plays an important role. In the past Semmelweis by 

changing the gynaecologist’s handwashing habits saved lives of mothers and opened a new 

chapter in the field of surgery [3]. Ilizarov’s idea for the external fixator system has 

influenced the orthopaedic surgical field on both side of the Iron Curtain [4]. The 

technological innovations in the last decades made possible that the state of the art imaging 

solutions provided by Magnetic resonance imaging (MRI) or Computed tomography (CT) 

enables a personalised medical care [5]. Innovation is a key element in the economic 

development, healthcare system and it has major impact on the society as a whole, therefore 

the process of innovation has to be explored, and the knowledge about the innovation process 

has to be implemented in the graduate and postgraduate education [6].  

Stanford Biodesign is one of the oldest life science programs, which focuses on 

training young innovators of biomedical technologies, with focus on medical devices Figure 

1, [7]. A major distinction between the more traditional approaches to innovation and the 

Stanford Biodesign process is the focus on identifying and characterizing the clinical need, 

instead of the application of a new promising technology. The core idea of the Stanford 

Biodesign process is defined as “a well-characterized need is the DNA of a great invention” 

[8]. In my thesis I am using the workflow’s (Figure 1) first two phases - 

IDENTIFY/INVENT with the 2/2 stages NEEDS FINDING-NEEDS SCREENING/ 

CONCEPT GENERATION-CONCEPT SCREENING - to investigate the possible 

implementation of the In Silico Medicine offered methods in spine surgery, based on a need 

defined on a global as well as on an institutional level. 
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Figure 1. The Stanford Biodesign process of Innovating Medical Technologies. The 

process has 3 phases; identify, invent, and implement. Every phase has 2 specific stages. 

The iterative and cyclical process relies on research information, the information’s can 

demand the returning to prior stages and phases. Activities performed at each stage are 

presented below the steps in the process. Figure from Yock, Paul G., et al. Biodesign: the 

process of innovating medical technologies. Cambridge University Press, 2015. 

1.2. In Silico Medicine 

The emergence of patient focused, holistic medicine generated new technological 

challenges for medicine that resulted in a new discipline, “in silico medicine”. This new 

approach places the studying of the human body, thus the biomechanics of the 

musculoskeletal system into a new context. In silico medicine, including finite-element 

analysis (FEA) based simulation technologies and three-dimensional printing (3DP), plays a 

crucial role in the realization of individualized treatments, surgeries [9],[10],[11]. 3DP allows 

the fast, relatively cheap and accessible production of unique, complex geometries. The 

benefit of the patients and clinicians is based on the application of FEA simulations in pre-
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surgical planning, and the preparation of surgeons aided by the 3D printed models in case of 

highly customized procedures [12],[13],[14],[15], [16]. 

The first, biomechanical application of the FEA was published by Brekelmans et al. 

in 1972 [17], who demonstrated that this method is suitable for analysis of stresses and strains 

of complex constructions such as the femur under a variety of load situations. In 2002, Fagan 

et al. [12] reviewed the FEA contribution to our understanding of the spine and its 

components and its behaviour in healthy, diseased or damaged conditions. In Fagans’ 

conclusion the method reduces our dependence on animal and cadaveric experiments and is 

a valuable complement to clinical studies [12]. In 2014, Viceconti discussed the role of 

contemporary biomechanics in the applications and the development of the so-called Virtual 

Physiological Human technologies for physiology-based in silico medicine [9]. In 

Viceconti’s vision computer models can reliably predict certain quantitative changes in 

health status of a given patient, based on the existing biology and physiology knowledge after 

it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms 

[9]. The need for In Silico Medicine offered solutions especially 3D technologies (3D 

printing, virtual models, and modeling technologies such as FEA) in the field of spine surgery 

in a global scale has not been investigated yet.  

1.3. Global perspective on the application of 3D technologies in spine surgery  

New scientific and technological results or methods in the medicine cannot be widespread if 

the knowledge of the “end users”– spine surgeons in this case – is insufficient. So far, no 

study has been published about the global perspective of the need, knowledge, and 

acceptance of 3D technologies (3D printing, virtual models, and modeling technologies such 

as FEA) in spine surgery. To fill this gap, an online survey research has been conducted in 

the AOSpine community assessing the level of knowledge and attitude of spine surgeons 

about the 3D printing and modelling technologies. The global context of the results was 

expressed in context of the Human Development Index (HDI), an indicator of the human 

well-being [18], which is based on life expectancy, education and per capita income. 

Countries of the world are categorized into very high HDI, high HDI, medium HDI, low HDI 

groups, where the higher HDI shows the greater prosperity (Figure 2).  
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Based on our results, we have determined the information gaps and restricting factors 

of the development of 3D technologies, whereas the effective knowledge transfer may hold 

the key to widespread approval. This study serves as the NEED FINDING/NEEDS 

SCREENING stage in the IDENTIFY phase in the Stanford Biodesign process in my attempt 

to implement the in silico biomechanical methods in spine surgery innovations. 

Figure 2.  World map illustrates the categories of Human Development Index by country 

(based on 2015 and 2016 data, published on 21 March 2017 in the Human Development 

Report produced by the United Nations Development Program. 

After the global context is defined regarding the 3D technologies, I have been 

investigating two surgical methods developed in the National Center for Spinal Disorders 

(NCSD), Budapest, Hungary, the Percutaneous cement discoplasty and the Closed Loop 

lumbopelvic reconstruction technic after en-bloc sacrectomy by applying research methods 

from the field of In Silico Medicine. The global perspective given by the survey study raised 

the need for strategies to implement 3D printing and FEA in cost effective way. 
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1.4. Percutaneous cement discoplasty effect on the spinal canal dimensions 

Musculoskeletal disorders are the cause of nearly 166 million years lived with disability [19] 

worldwide, with low back pain and neck pain representing 69.9% of the cases [19],[20]. The 

incidence of such diseases is likely to increase due to population ageing; therefore, their 

attendance is becoming a growing burden on the healthcare system [21],[22].  

The intervertebral disc degeneration (IDD) is an age-related degenerative process 

resulting in biomechanical and structural changes of the intervertebral discs [23].  The degree 

of IDD is defined by the MRI based Pfirrmann grading system [24]. The terminal disc 

degeneration (Pfirrmann V) is characterised by total disorganisation of the intervertebral 

tissue, the complete resorption of the nucleus pulposus, resulting in the vacuum phenomenon 

[25],[26],[27]. Intervertebral discs act as transmitting units and shock absorbers, distributing 

the load of body weight and muscle activity through the spinal column [28]; therefore, 

degeneration related structural changes will lead to biomechanical dysfunctions [29], such as 

segmental instability. The decreasing disc height will result in continuously decreasing spinal 

canal dimensions which in concert with the cyclic repetitive alternation of the foramen due 

to movement, lead to the development of chronic radiculopathy via compression of the nerve 

roots; which in turn will result in local and irradiating pain during axial loading [30]. Curative 

treatment of the pain requires treatment of the segmental instability; however, in elderly 

patients’ surgical possibilities are limited due to severe comorbidities. Therefore, the 

minimally invasive procedures have become the preferred surgical option. Percutaneous 

cement discoplasty (PCD) is such a procedure, where  the vacuum space in the intervertebral 

disc is filled out with percutaneously injected PMMA (Polymethylmethacrylate) Figure 3. 

PCD provides a segmental stabilizing effect and indirect decompression of the neural 

elements due to the increase of the spinal canal dimensions. The technical details, the clinical 

effect and safety issues of the procedure have been previously published and the use of the 

technique has been also supported by a radiological prospective study [31],[32]. However, 

the changes in the spinal canal (central canal and neuroforamen) dimensions have not been 

quantified so far, because of the challenging methodological issues.  

Even though the spinal canal is a complex 3D geometry, the common description of 

its dimensions and the evaluation of the indirect decompression effect have been based on 
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2D parameters (disc height, foramen height/diameter, foramen cross-sectional area, central 

canal diameter, central canal cross-sectional area, or segmental lordosis angle) in recent 

studies [33],[34],[35] which could lead to possible biases. To accurately measure the real, 

three-dimensional (3D) changes of the spinal canal after PCD procedure, I have aimed to 

develop a generalisable procedure based on patient-specific 3D computational, volumetric 

measurements. 

.

Figure 3. Percutaneous cement discoplasty, A Computed Tomography (CT) images 

(sagittal view) of a patients with advance degenerated disc (vacuum sign) LIV-LV level, 

B postoperative CT images (sagittal view) of the treated LIV-LV segment, the disc space 

is field with PMMA (Polymethylmethacrylate), C, D coronal and sagittal view of the LIV-

LV motion segment 3D geometry (LIV vertebra transparent) with the injected PMMA 

geometry, scale bar=1cm 

1.5.  Lumbopelvic reconstruction after en-bloc sacrectomy 

Sacral tumours are rare pathologies, but their management generally creates a 

complex medical problem [36]. Primary benign and malignant tumors of the sacrum are 2% 

to 4% of all primary bone neoplasms and 1% to 7% of all primary spinal tumors [37]. Most 

common primary sacral tumors are chordomas, representing 40% of all primary sacral 

neoplasms [38]. Chordoma is a malignant mesenchymal tumor with notochordal origin [39]. 

Surgical treatment is one of the most challenging fields in spine because of the complicated 

anatomy of the sacral site. In most cases, only radical surgical procedures, such as partial or 

total sacrectomy, can guarantee optimal local control, but several problems such as bowel, 

bladder and sexual dysfunction, infection, massive blood loss and spino–pelvic instability 

can be associated with sacral resections [40],[41]. Beyond the primary goal of the surgery 
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(eg. wide resection of the tumor mass), the optimal spino-pelvic reconstruction focused on 

biomechanical stability and soft-tissue restoration is also indispensable [42]. Several 

different techniques were developed for the lumbopelvic stabilization after sacropelvic tumor 

resection, however, long-term follow-up data and comparative studies of the different 

techniques are rare or still missing [43]. There is no gold standard and relatively high 

complication rates are reported with all reconstruction strategies [43], [44].  The ‘‘en-bloc’’ 

resection of a sacral chordoma by performing a total sacrectomy with soft tissue and bony 

reconstruction and lumbopelvic stabilization can be achieved by the ‘‘closed loop’’ technique 

[36],[43]. The technique uses a ‘‘U’’ shaped rod which is attached to the iliac and 

transpedicular screws to rebuild the spinopelvic connection (Figure 4). During the 

development of the investigated reconstruction technique the non-rigidity was a key concept 

in order to allow shock absorption during cyclical loading. However, the hypothesis was not 

tested if the construct deforms over the time. Here we aimed to develop a generalisable 

method based on patient-specific 3D geometries derived from CT scans in order to 

investigate the implant construct deformation over 6-year follow-up (FU) for a reconstruction 

technique.  

1.6. Implementation of 3D printed physical models in spine surgery 

Three-dimensional printing technologies transformed product manufacturing 

fundamentally [45], foreshadowing a new technological revolution [46]. Its medical 

utilizations, especially surgical application of 3D printed technologies aids the preoperative 

planning, saves time in the operating room and provides patient-specific solutions for 

complex cases through personalized implants [47],[48]. Besides surgical planning 3D printed 

physical models play a crucial role in medical education and patient communication as well, 

by promoting a better understanding of complex morphological changes [49],[48],[50]. 

However, the additional costs and time-consuming production of 3D printed physical models 

with current technologies are hindering its widespread use in hospitals [51]. 
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Figure 4. “Closed Loop” lumbo-sacral reconstruction technic after total en-bloc 
sacrectomy.  A extended tumor mass affecting the whole sacrum. B geometrical change in 
the 3D geometry of the spino pelvic junction after en-bloc total sacrectomy. The iliac bone 
is cut by an oscillating saw bilaterally; the medial cortical surface of the iliac bone is left 
on the specimen. The lumbosacral facet joints with the intervertebral disc are removed. 
The dural sac (together with the cauda equina) is cut through immediately below the LV. 
The distance between the LV vertebra and the iliac bone is reduced (direction of the 
arrows). C in the LIII–V vertebral body and bilaterally into the iliac bones screws are 
inserted and connected with a single 5.5 mm diameter ‘‘U’’ form rod according to the 
patient’s reduced (C) local dimensions and attached to the screws. The red areas mark the 
place for the artificial bone substitute, mixed with autologous bone graft. D the re-
established connection, between the lumbar spine and the pelvis. At the side of the graft 
(D) after two years bony fusion is expected.
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Moreover, there is a continuously increasing strain on healthcare providers due to 

global demographic shifts such as population increase, and societal change such as the rise 

of life expectancy [52],[53]. Therefore, the development of cost effective, sustainable 

strategies related to clinical application of 3DP technologies are not only highly desirable but 

decisive.  

Currently, there is an increasing interest in the healthcare market of commercial 3D 

printing services [54], each providing 3D printers with different technologies and technical 

parameters at a widely differing price-range. The clinician and the hospital management face 

the decision of choosing one of these services and are confronted with the task of 

implementing it with the available resources. However, evidence-based reports which can 

potentially offer guidance on these issues are absent in the literature.  

In my thesis I present a method to compare the geometrical accuracy of two 3D 

printing technologies for printing spine physical models. Advantages and disadvantages were 

weight up in an entry level technology (cost effective, most affordable) with a higher category 

technology (more precise, more expensive). We also reveal an institutional strategy of the 

application of 3D printed physical models by presenting a clinical case, where a model 

printed with the entry level technology was used in the preoperative planning. 

1.7. 3D printed patient-specific surgical guide for spine surgical navigation 

Spinal fixation is a routine procedure for the treatment of unstable spine due to 

trauma, congenital malformations, degenerative diseases, and tumours [55]. The accurate 

placement of screws in the spine is challenging, given the risk of damage to neighbouring 

anatomical structures (spinal cord, nerve roots, arteries, veins) [2], [57]. Computer-assisted 

surgery (CAS) has been adopted as a safe and accurate guiding system for the placement of 

pedicle and lateral mass screws in the spine [58]. CAS navigation systems use optical 

tracking via infrared cameras incorporating 3D geometries from pre-operative CT scans or 

in combination with fluoroscopy-based imaging [59], [60] or intraoperative CT scans [61]. 

Optimal registration of the spine geometry to the navigational instruments is crucial for 

precise screw insertion. During surgery it is often required to perform intraoperative CT scans 

or to use fluoroscopy to re-register the system [59], [60], [61]. Surgical manipulation after 

DOI:10.14753/SE.2020.2439



15 

obtaining the intraoperative CT or fluoroscopy images may cause CAS registration errors, 

which can result in screw malposition. This phenomenon cannot be completely excluded 

even with state of the art intraoperative CT technology [61]. 3D printed patient-specific 

surgical navigation templates are accurate [62], [63], decrease surgical time, reduce 

intraoperative x-ray exposure [64] and can be more accessible compared to traditional CT or 

fluoroscopy-based systems [65], [66]. The decline in the costs of 3D printing technology is 

expected to continue due to its continuous and fast development  [67], [68], [69].  However, 

in less developed areas of the world, where complex spinal deformity is relatively common 

and advanced CAS technology is not  available [64], [70] 3D printed templates are still not 

as widely implemented in the clinical practice, as it would be desirable.  

 Revision surgeries are challenging especially if an implant related failure is 

complicating the clinical situation. The lumbo-sacral area has a special local anatomy. In the 

S1 segment the convergent bicortical screw trajectory provides a superior anchoring 

compared to any other directories, but the proper insertion of the new screws in a revision 

surgery can be impossible without surgical navigation. In my thesis, I am representing a case 

who has raised the clinical need for the development of a computer-aided design (CAD) and 

finite-element analysis (FEA) combined method for affordable spine surgical navigation with 

3D printed customized drill guide.  
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2. OBJECTIVES

The general aim of my PhD work is to investigate the implementation of In Silico 

Biomechanical Methods in Spine Surgery Innovations. 

In the first part of my PhD thesis, I pursue to answer the question of what determines 

the acceptance rate and the factors which stand against the wider spread of the 3D 

technologies in spine surgery (Eltes et al., 2019). For this purpose, I specifically addressed 

the following questions in a survey-based study in five thematic chapter: 

1. What is the demographic of the respondents (country of residence, details of spine

surgical practice, basic knowledge of 3D technologies)?

2. Personal use of 3D printed or virtual 3D models

3. Use and attitude towards 3D technologies in surgical navigation

4. Use and attitude towards the advanced manufactured (3DP) and patient-specific

implants

5. What is the future and limitations of the 3D technologies in spine surgery?

Investigation of these problems defined a global context regarding 3D technologies. 

Therefore, in the second and third part of my PhD work, I have been studied two surgical 

methods developed in the NCSD the PCD and the Closed Loop lumbopelvic reconstruction 

technique. 

In part two, I aimed to develop a generalizable procedure based on patient-specific 

3D computational, volumetric measurements to evaluate the geometrical change of the spinal 

canal after PCD treatment. For this, the following specific questions have been asked: 

1. How can the complex 3D geometry of the spinal canal be defined?

2. How can the geometrical change in the spinal canal due to PCD be measured?

3. How reliable and repeatable is the developed method?

4. What is the relationship between the PCD induced volumetric change in the

spinal canal and the PMMA volume, surface and surface-volume ratio?

5. What is the relationship between the PCD induced volumetric change and the

clinical outcome of the patients?
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In part three, I aimed to develop a generalizable method based on patient-specific 3D 

geometries derived from CT scans in order to investigate the implant construct deformation 

over 6-year follow-up (FU) for a patient who underwent sacrectomy and Closed Loop 

reconstruction. The following specific questions were addressed: 

1. How can we define the complex 3D geometry of the implant construct and the

pelvic bone?

2. How can we measure the deformation of the implant construct over the FU?

3. How can we map the bony fusion process?

4. How reliable and repeatable is the developed method?

5. What is the relationship between the postoperative days and the implant

construct deformation in the three anatomical planes (coronal, sagittal, axial)?

The global perspective on the attitude of the spine surgeons towards the application 

of 3D technologies given by the survey study raises the need for strategies to implement 3D 

printing and FEA in the clinical environment in an affordable way. Part four of my thesis 

addresses the need for the application of affordable 3D printing technology for spine physical 

models (Eltes et al., 2020). Here, I developed an institutional strategy for application of the 

3D printed physical models and I addressed the following specific questions: 

1. How can we create an accurate 3D virtual model of the patient-specific spine?

2. How can we evaluate the geometrical accuracy of a 3D printing technology?

3. Can an affordable printing technology provide accurate 3D spine physical

model compared to a more expensive, more accurate printing technology?

4. Can we implement the patient specific virtual models in the clinical

communication?

5. How can we use a patient-specific physical model in presurgical planning?

Part five of my thesis addresses the clinical need for the development of computer-

aided design (CAD) and finite-element analysis (FEA) combined method for affordable spine 

surgical navigation with a 3D printed customized drill guide to allow safe pedicle screw 

insertion in challenging situations. For this, I asked the following specific questions:  
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1. How can we provide a patient-specific surgical guide in the case of revision

surgery, where a broken SI screw creates a challenging geometrical situation

for a new screw insertion?

2. Can we evaluate and integrate the local bone biomechanical properties for the

screw insertion and for the guide design?

3. Can we reduce the finite element model running time and preserve reliable

results?

4. How can we manufacture the guide in a cost-efficient way?

5. How can we test the accuracy of the guide before surgery without cadaveric

models?

Contributions: 

In my thesis in parts I, II, III, IV, V the research design, acquisition of data, analysis 

and interpretation of data, and writing the manuscripts for publications based on the Parts (I-

V) was done by myself under the guidance of Áron Lazáry. However, in the following 

paragraph I specify the detailed contribution of my co-workers in the different Parts. 

In PART II. of my thesis Lászlo Kiss was the second investigator (I2). Máté Turbucz 

was the second Investigator (I2) in PART III., and Jennifer Fayad the third investigator (I3). 

Jennifer Fayad processed the data of the gait analysis and prepared Figure 34. In PART IV. 

Vivien Leskó was the second investigator (I2). Tibor Csákány integrated the 3DPDF files 

containing the virtual patient-specific models in the internal institutional database. Benjámin 

Hajnal in PART V., created the visualization for the proposed surgical technique summarized 

in  Figure 48. 
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3. MATERIALS AND METHODS

3.1. PART I. Clinical needs finding for 3D technologies, a survey of AOSpine members 

In October 2016, an online survey (Table 1.) was sent out a single time to all AOSpine 

members on the mailing list. 

Table 1. Survey about the attitude of AOSpine members towards 3D technologies in spine 
surgery 
Chapter I. Demographics of survey respondents 

1. Years of experience in spine surgery
0-3y
3-10y
10-20y
more than 20y 

2. Country of residence

3. Your common practice in spine surgery*
degenerative 
deformity 
tumor 
trauma 

4. What percentage of your cases are complex, challenging surgeries?
0-20%
20-40%
40-60%
more than 60% 

5. Practice where you do spine surgeries
public 
private 
both 

6. Are you familiar with the concept and the benefits of 3D printing/modelling
technologies? 

I don’t have any specific knowledge 
I have some general information from news, advertisements 
I have read scientific papers/conference talks in the topic 
I have already used some of these technologies 

Chapter II. 3D simulation and printing options (3D models of the different 
pathologies and treatments) can help education, surgical planning and development 
of new surgical methods. 

1. Have you ever used any 3D technology for education (or demonstration) for
medical students, residents, colleagues? 

never 

DOI:10.14753/SE.2020.2439



20 

occasionally, 3D virtual models 
occasionally, 3D printed models 
frequently, 3D virtual or printed models 

2. Have you ever used 3D virtual models or printed models for surgical planning
or for the development of a surgical technique (e.g. by demonstrating the difficult 
anatomical situation or the challenging surgical steps)? 

never 
occasionally 
frequently 
other (please specify) 

3. What is the main barrier of the frequent use of such techniques in your
clinical/educational practice? * 

no or limited knowledge about the possibilities and requirements 
no or limited access to 3D modelling software 
no or limited access to 3D printing 
costs of 3D modelling/printing 
I am not interested in these technologies 

Chapter III. 3D modelling/printing can be used to produce patient- and condition 
specific surgical navigation guides, particular instruments to improve the safety and 
efficacy of challenging procedures (resections, osteotomies, difficult screw insertion 
etc). 

1. Intraoperative 3D navigation systems can reduce the complications and the
morbidity of spinal surgeries. Do you use any 3D navigation system or tool in your 
clinical practice?* 

not at all 
occasionally (CT or fluoro based system) 
regularly (CT or fluoro based system) 
occasionally (3D printed surgical guide) 
regularly (3D printed surgical guide) 

2. If not what is the reason?*
lack of knowledge 
high purchasing price 
high maintaining costs 
too complicated use (longer surgery, need of a technician, etc) 
lack of confidence 
I do not see its necessity in my practice 
other: 

3. If you use any 3D navigation or if you would have the possibility of use, how
many percentages of your surgeries would you use the technology in? 

<10% 
10-25%
25-50%
>50%
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4. Have you ever experienced or felt that a specific, unique surgical instrument
(e.g. a particular chisel, courette or screwdriver) would have helped the surgery? 

no 
occasionally 
frequently 

5. What do you think about the acceptable cost of a unique, 3D printed surgical
instrument in your country and clinical setting? 

less than 10% of the direct cost of the surgery 
no more than twice of a similar, but traditional product 
comparable to the cost of a pedicle screw 
significant extra cost is acceptable 

Chapter IV. 3D modelling and printing technologies can help to develop the next 
generations of spinal implants. Advanced manufactured general (eg. porous) and 
patient-specific implants can have a significant role in the future personalized 
medicine. 

1. Have you ever used any advanced manufactured (3D printed) implant?
never 
occasionally 
frequently 

2. Where do you see the possible advantage of the use of advanced manufactured
implants? 

all implanted surgeries because a general or patient-specific advanced 
manufactured implant can provide better 

clinical outcome even in case of a standard pathology 
challenging surgeries (e.g. tumor resection) and compromised anatomy or 

biology 
only in complex cases where patient-specific implant would be required 
none of the spinal surgeries 

3. What do you think how many of your cases could benefit from the use of
advanced manufactured (3D printed general or patient-specific) implants? 

<10% 
10-25%
25-50%
>50%
other (please specify) 

4. How do you see what is the main barrier of the spreading of advanced
manufactured (3D printed) implants?* 

limited knowledge about the possibilities among the surgeons 
limited access to 3D modelling and/or printing solutions 
high cost of modelling/printing 
unclear regulations 
lack of confidence, limited evidence 
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5. What do you think about the acceptable cost of an advanced manufactured
implant in your country and clinical setting? 

same as a traditional implant 
no more than twice of traditional implants 
high cost is acceptable because of the personalized approach 
a significant extra cost is acceptable because a 3D printed implant can 

provide better clinical outcome 
an advanced manufactured implant can reduce the total cost of the surgery at 

least in selected cases 
Chapter V. General impression 

1. What do you think about the role of 3D printing/modelling technologies in
spinal surgery? 

no real future – too complicated and expensive 
an option only for very limited applications, individual cases 
a promising, feasible option for the near future 
revolutionary 
other (please specify) 

2. What do you think what are the main barriers of the spreading of 3D
printing/modelling technologies?* 

“distance” between engineers and surgeons 
“distance” between the hospital and the printing/designing facility 
surgeons are not aware of the possibilities provided by 3D printing/modelling 
expensive technology 
market are full with traditional solutions 
surgeons are not motivated to use advanced manufactured implants 
process of a patient-specific surgery is time-consuming 

3. Other specific comments:

*Note: multiple choice
The survey was open for two months and a single answer was permitted per email address. 

The questionnaire included 21 multiple choice or ordinal scale questions, being divided on 

thematic chapters (one page each) as follows:  (I.) question I/1-6 we collected demographic 

data of the respondents (country of residence, details of spine surgical practice, basic 

knowledge of 3D technologies); (II.) questions II/1-3 focused on the personal use of 3D 

printed or virtual 3D models; (III.) questions III/1-5 focused on the use and attitude towards 

3D technologies in surgical navigation; (IV.) questions IV/1-5 investigated the advanced 

manufactured (3DP) and patient-specific implants; in chapter (V.) we raise questions V/1-2 

about the future and limitations of 3D technologies. Answers to ordinal scale questions (I/6, 

II/1, II/2, III/1, III/4, IV/1, IV/2, V/1) have been scored with the summed score (range: 0-28) 
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representing the plausible level of acceptance (acceptance score) of 3D technologies in spine 

surgery. The influence of geographical location (AOSpine region), spine surgical practice, 

experience, etc. on the acceptance score was analyzed statistically. Participants of our survey 

were grouped based on the HDI of their country of residence and survey results were 

analyzed in the context of this parameter too.  

3.1.2 Statistical analysis 

For statistical analyses, Spearman correlation, non-parametric tests, and Chi-square 

tests were applied depending on the distribution of the variables. Statistical tests were 

performed using SPSS and p<0.05 was considered as significant. 

3.2. PART II. A novel method for patient-specific computational analysis of three-

dimensional changes in spinal canal dimensions after percutaneous cement discoplasty 

3.2.1. Clinical cohort and CT scan acquisition 

We performed a retrospective analysis of prospectively collected data. The study was 

approved by the National Ethics Committee of Hungary, the National Institute of Pharmacy 

and Nutrition (reference number: OGYÉI/163-4/2019). Informed consent was obtained from 

all participants.  

The cohort consisted of 10 patients (74 ± 7.7 years old), who underwent primary 

single or multilevel PCD (16 motion segments in total) at a tertiary care spine referral centre 

(Table 2). All presented operative procedures were performed by a single surgeon (GJ). 

Preoperative (preop), and postoperative (postop) 6-month follow-up results were collected 

and analysed using the patient- reported outcome questionnaire Oswestry Disability Index 

(ODI) and with visual analogue scale (VAS) for leg pain (LP) and low back pain (LBP). 

Quantitative Computed Tomography (QCT) scans were performed pre-  and postoperatively, 

with a Hitachi Presto CT machine using an in-line calibration phantom, and a protocol 

previously defined in the MySpine project (ICT-2009.5.3 VPH, Project ID: 269909) with an 

intensity of 225mA and voltage of 120kV [71], [72]. Images were reconstructed with a voxel 

size of 0.6x0.6x0.6 mm3. Based on the QCT images, Hounsfield Units can be converted into 

bone mineral density (BMD) equivalent values, necessary for creating finite element (FE) 
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models. In this study the QCT images were used as conventional CT images without any 

conversion.  

The data were exported from the hospital PACS in DICOM file format. To comply 

with the ethical approval the patient data protection, anonymization of the DICOM data was 

performed using  the freely available Clinical Trial Processor software (Radiological Society 

of North America, https://www.rsna.org/ctp.aspx) [73]. 

Table 2: Clinical cohort 

3.2.2. Definition of pre- and postop motion segments’ 3D geometry 

In order to establish the 3D vertebral geometry of the pre- and postop motion 

segments and the injected polymethyl methacrylate (PMMA) geometry, a segmentation 

process was performed on the 2D CT images [74]. For this, the thresholding algorithm and 

manual segmentation tools (erase, paint, fill etc.) in Mimics® image analysis software 
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(Mimics Research, Mimics Innovation Suite v21.0, Materialise, Leuven, Belgium) were 

used. (Figure 5). 

Figure 5. 3D geometry definition of pre- and postop motion segment geometries and of 

the injected PMMA geometry. A during the segmentation process the bone volume is first 

separated from the surrounding soft tissue by thresholding of the Hounsfield units’ levels 

of the 2D CT images (sagittal view). The resulting colored mask (preop, red; postop, 

yellow) voxels represent the 3D volume of the vertebra, and the blue voxels the PMMA, 

respectively. B from the mask, a triangulated surface mesh is generated, and a smoothing 

is applied (iteration: 6, smooth factor: 0.7, with shrinkage compensation). C uniform 

remeshing process was applied (target triangle edge length 0.6 mm, sharp edge 

preservation, sharp edge angle 60°). Scale bar length 5mm. 
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 During the segmentation process the bone volume was first separated from the 

surrounding soft tissue by thresholding of the Hounsfield units’ levels. The resulting masks 

(group of voxels) where homogenously filled by preserving the outer contour of the 

geometrical border in 2D. From the mask, a triangulated surface mesh was automatically 

generated. On the 3D geometries surface smoothing was applied (iteration: 6, smooth factor: 

0,7, with shrinkage compensation). Furthermore, uniform remeshing process was applied 

(target triangle edge length 0.6 mm, sharp edge preservation, sharp edge angle 60°) for all 

the vertebra and PMMA geometries. To evaluate the accuracy of the segmentation process, 

we calculated the Dice Similarity Index (DSI) [75, 76]. The DSI quantifies the relative 

volume overlap between two segmentation procedures as follows: 

DSI=(2·V(I₁∩I₂))/(V(I₁)+V(I₂)),  V is the volume of the voxels inside the binary mask 

(number of voxels multiplied with the voxel size; in mm3), and I1 and I2 are the binary masks 

from two segmentation processes (performed by two investigators (I), 1 and 2). The DSI 

values range between 0 ± 1, one denoting a perfect match. The vertebral geometry 

segmentation accuracy was evaluated by random selection of 6 preoperative and 6 

postoperative vertebral geometries (Microsoft Office Professional Plus 2016, Excel, 

RANDBETWEEN function). All 12 vertebras were segmented by a second investigator (I2) 

and the second segmentation was compared to I1 after which the DSI was defined. The 

PMMA segmentation evaluation was done by repeating all the 16 measurements by I2 and 

then the DSI was calculated. 

3.2.3. Alignment of the motion segments’ geometry 

To detect the PCD induced changes in the postop motion segment, the pre- and postop 

vertebral geometries were aligned in the same coordinate system. For this, preop 3D data sets 

were transposed into the same coordinate system with the postoperative data. Pre- and postop 

caudal vertebra surface mesh models of the treated motion segments were used as reference 

geometry (Figure 6). 
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Figure 6. Alignment of the preop motion segment vertebral geometry to the postop 

geometry. The alignment of the caudal vertebra was performed using control points (as 

shown in Figure 7) and rigid surface registration algorithms were applied. The process 

created a common coordinate system for the preop and postop motion segments with nearly 

identical boundaries for the caudal vertebras. The Hausdorff Distance was used as a quality 

measure for the alignment process at the caudal vertebra. 

A control points based rigid registration algorithm was used via Mimics® software. 

The 18 control points corresponded to easily identifiable anatomical landmarks at the caudal 

vertebra or sacrum (Figure 7).  

To evaluate the accuracy of the registration and alignment procedure the Hausdorff 

Distance (HD) was measured with the MeshLab1.3.2 software [77] (an open source free 

software: http://www.meshlab.net) Metro tool [78] (Figure 6) at the level of the aligned 

caudal preop and postop vertebras. The HD represents the maximum distance between two 

points (triangle vertex) of two sets, both from corresponding sections of the meshes (i.e.: the 

HD is expected to be equal to zero in case of a perfect alignment of absolute symmetrical 

geometries, whereas values >0 provide the actual distance between the two surfaces). 
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Figure 7. Selection of control points for rigid surface registration. Ten control points were 

selected from the superior (A) and eight from the inferior (B) reference regions of the 

vertebra and from the aligned geometry, respectively. For the sacrum ten control points 

were selected from the superior-dorsal (C) and eight from the superior-ventral (D) regions 

of the reference and from the aligned geometry, respectively. The filled red circles 

represent the selection areas of the registration points, the filled blue circles represent 

common selection areas for two different regions.
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The HD values were calculated at the vertices of the triangulated surface meshes as 

follows: ℎ(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎{𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑎𝑎𝑏𝑏{𝑑𝑑(𝑚𝑚, 𝑏𝑏)}}; where A is the postop mesh; B is the preop 

reference mesh; a and b are points of sets A and B respectively, and d(a, b) is the Euclidean 

metric between these points. The alignment of the pre and postop motion segments was 

performed by two investigators (I1, I2) and two aligned datasets were created with 16-16 

motion segments each. The HD measurements where performed for all the 16 registered 

motion segments for both investigators. 

3.2.4. Measurement of the neuroforaminal 3D geometry 

After alignment, the change in spinal canal geometry, induced by the injected PMMA 

in the intervertebral space during the PCD procedure, was defined for the two datasets 

(aligned by I1, I2). A measurement cylinder was created using Mimics® software analyse 

module. The cylinder was inserted in the virtual coronal axis of the neuroforamens (coronal 

plane). Its length was defined at 90 mm, while the radius of the cylinder was set by the 

investigators uniquely in each patient and segment (Table 4) in a way to fill the 

neuroforamens’ volumes and the central canal in pre- and postop  3D geometries of the 

motion segments (Figure 8).  

The overlapping volumes between the cylinder and the motion segment 3D geometry 

were subtracted (Boolean operation/Minus). The change in the subtracted cylinder volumes 

represents the spinal canal dimension Vpreop= 3D Cylinder– (3D Cylinder- Preop 3D motion 

segment), and Vpostop= 3D Cylinder– (3D Cylinder- Postop 3D motion segment). The 

change in the subtracted cylinder volumes represents the indirect decompression effect of the 

surgical procedure and it is defined as ∆V (∆V = Vpostop - Vpreop) (Figure 8).  To 

determine the repeatability and accuracy of the measurements, intra an inter-rather reliability 

analysis of the two Investigators (I1, I2) at two different time points (T1, T2) was determined 

(see Statistical analysis).  
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Figure 8. Measurement of the change in the neuroforaminal geometry induced by the PCD. 

After alignment, the pre- and postoperative motion segments shared a common caudal 

vertebra. The cranial vertebra geometrical position has changed due to the lifting effect of 

the PMMA. Two identical cylinders were introduced in the neuroforaminal and central 

canal regions of the pre- and postop. motion segments. Vpreop and Vpostop represent the 

subtraction of the overlapping vertebral geometry from the initial cylinder geometry. The 

indirect decompression effect of the PCD is defined as ∆V (∆V = Vpostop - Vpreop). 

3.2.5. PMMA geometry visualisation and thickness measurement 

The 3D geometry of the intervertebral PMMA for the 16 treated motion segments 

were defined during the segmentation process by a uniformly remeshed triangulated surface 

mesh (Figure 5). The surface mesh defines the geometry and determines the surface and the 

volume of the object. In 3-matic® software (Mimics Innovation Suite v21.0, Materialise, 

Leuven, Belgium) thickness measurement was performed and visualised using contour plots. 
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The thickness was defined at the level of every triangle element of the surface mesh as the 

perpendicular distance from the element midpoint to the other wall (surface) off the 

geometry.  

3.2.6. Statistical analysis 

The data management was performed in Microsoft Office Professional Plus 2016 

(Microsoft, Redmond, Washington, United States). All statistical tests were performed with 

SPSS statistical package version 23 (SPSS Inc, Chicago, IL). Due to small sample size, 

normality test of the data is expected to have little power, thus we opted to apply non-

parametric tests. The HD measurements cumulative probability plots (Supplementary Fig.2) 

were created with SigmaPlot 12 (SSI, San Jose, California, United States). Inter-rater (I1 vs 

I2) reliability was determined by Intraclass Correlation Coefficient (ICC) estimates and their 

95% confident intervals (CI) were calculated based on a mean-rating (k = 2), absolute-

agreement, 2-way mixed-effects model. Intra-rater (I1T1 vs I1T2, I2T1 vs I2T2) reliability was 

determined by ICC estimates and their 95% confident intervals were calculated based on a 

single measurement, absolute-agreement, 2-way mixed-effects model. The statistical 

difference in the change of spinal canal volume, ODI, LP and LBP pre-, and postop was 

assessed by Paired Sample Wilcoxon signed ranked test (p ≤ 0.05, Figure 32). The 

relationships between the PMMA and the mean volumetric change (∆V); PMMA surface and 

∆V; PMMA surface-volume ratio and ∆V were defined using the Spearman's rank correlation 

(Figure 33). The relationships between the ∆ODI (preop – postop) and the ∆V; ∆LP (preop 

– postop) and the ∆V, ∆LBP (preop – postop) and the ∆V were defined using the Spearman's

rank correlation (Figure 33).

3.3. PART III. A novel computational method to assess implant deformation and to map 

bony fusion in a lumbopelvic reconstruction after en-bloc sacrectomy 

3.3.1. Clinical Case 

The patient (Figure 9) case and surgery was presented at the European Spine Journal, Open 

Operating Theatre (OOT) platform [79], [80]. The 42-year-old male patient had mild and 

non-specific low back pain for 4–5 years. He had experienced minor problems with 

DOI:10.14753/SE.2020.2439



32 

defecation and urination for 1 year and a palpable lump had been observed for some months 

in the sacral region. The neurological examination showed normal motor and sphincter 

function but a mild hypaesthesia in the perianal region. Radiological examinations revealed 

an extended tumor mass affecting the whole sacrum with significant soft tissue extension to 

the retroperitoneum and cranially involving the paravertebral muscles as far as the LIII spinal 

level on the right side (Figure 9). Open biopsy procedure based Histological examination 

reweld the diagnosis of chordoma. Total ‘‘en-bloc’’ sacrectomy combined with soft tissue 

and bony reconstruction together with lumbopelvic stabilization (‘‘closed loop’’ technique) 

was performed to remove the tumor. Artificial bone substitute (ACTIFUSE®) was placed 

between the LV body and the iliac crest bilaterally after refreshing and preparing well 

bleeding spongious bony host surfaces (Figure 4C). The large defect of the body wall 

between the LV vertebral body and the coccygeal ligamentous complex was covered by 

Dacron mesh (anchored to the bony landmarks: LV vertebral body, tuber ossis ischii and iliac 

bone). Finally, the wound closure was performed by creating bilaterally m. gluteus maximus 

rotatory flaps. 

3.3.2. Postoperative Computed Tomography scan acquisition 

We performed a retrospective analysis of retrospectively collected postoperative (postop) 

Computed Tomography (CT) data. The study was approved by the National Ethics 

Committee of Hungary, the National Institute of Pharmacy and Nutrition (reference number: 

OGYÉI/163-4/2019). Informed consent was obtained from the participant. The data set 

consisted of 12 CT covering a 6-year follow-up period (FU) (Table 3).  The CT scans were 

performed with the same CT machine (Hitachi Presto, Hitachi Medical Corporation, Tokyo, 

Japan) with an intensity of 225mA and voltage of 120kV. The data were exported from the 

hospital PACS in DICOM file format. To comply with the ethical approval the patient data 

protection, deidentification of the DICOM data was performed using the freely available 

Clinical Trial Processor software (Radiological Society of North America, 

https://www.rsna.org/ctp.aspx) [73]. 
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Figure 9. Pre- and postop imaging of a 42 years old male patient how underwent total en-

block sacrectomy and received a Closed Loop spinopelvic reconstruction.  A, B preop T2, 

MRI images of a large sacral chordoma (A sagittal, B axial plane) The extended tumor 

mass effected the whole sacrum with significant soft tissue extension to the 

retroperitoneum and cranially involving the paravertebral muscles. C, D Standing X-ray 

images of the patient at 6 month FU (C sagittal, B coronal plane). E, F CT scan at 24 

month CT images, signs of bony fusion are visible between the L.IV,V vertebra and the 

iliac bone ( E posterior view of the 3D rendered CT images, F coronal view at the fusion 

site) 
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Table 3. Retrospectively collected CT scans 

CT (Computer Tomography) 

3.3.3. Gait evaluation after total sacrectomy 

During the surgery the lumbosacral intervertebral disc was resected, and the dural sac 

(together with the cauda equina) was cut through immediately below the L.5 origins. 

Bilaterally the cranial and ventral ligaments of the S.I joints and the nerve roots (bilaterally 

below the S.1) were both cut through at the lateral aspect of the tumour [80]. However, the 

patient was able to walk with crutches at 3-month (m) FU, and without any assisting device 

at 12m FU. In order quantify and evaluate the gait of the patient at 6-year FU a gait analysis 

was performed. Gait data was acquired while the patient walked along a straight path at a 

self-selected speed. The subject was fitted with a full body VICON plug-in-gait marker setup. 

Three-dimensional kinematic data was recorded using a 6-camera system (MXT40, VICON, 

UK). Kinetic data was acquired using one force platform (AMTI OR6, USA) mounted 

halfway along the path. Lower limb kinematics and kinetics were calculated using NEXUS 

(VICON, UK) and compared to normative data. 
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Figure 10.  Postop CT scan-based geometry definition and alignment. A Thresholding 

based segmentation was performed on the postop CT scan in order to define the left iliac 

bone and the implant construct. B 8 landmarks corresponding to anatomical landmarks 

where used for the simultaneous registration of the iliac bone and implant construct 

geometry. C every postop iliac bone + implant construct geometry was registered to the 

first postop geometry. D the Hausdorff Distance was used as a metrics for the alignment 

accuracy evaluation. Geometrical reduction of the caudal and posterior part or the 

registered iliac bones was performed. E the trans iliac screws body’s geometry overlapped 

after the iliac bone registration. The axis of the iliac screws were considered to be collinear 

and coincident. 

3.3.4. Image processing, 3D geometry definition 

In order to define the deformation of the Closed Loop implant construct we defined 

the construct 3D geometry and arbitrary the left iliac bone 3D geometry in every CT data set. 

We considered the iliac bone geometry constant, however at the fusion site after the 
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alignment a symmetric geometry reduction was performed by a cube substraction, in order 

to exclude the geometrical difference, the same substraction was performed for all geometries 

at the Ischial ramus, where the last axial CT slice ended for the first postop scan (for the rest 

all the pelvis was covered in the scan) (Figure 10D.) Segmentation process was performed 

on the 2D CT images [74]. For this, the thresholding algorithm and manual segmentation 

tools (erase, paint, fill etc.) in Mimics® image analysis software (Mimics Research, Mimics 

Innovation Suite v21.0, Materialise, Leuven, Belgium) were used. (Figure 10A). During the 

segmentation process the bone volume was first separated from the surrounding soft tissue 

by thresholding of the Hounsfield units’ levels, and the left iliac bone was isolated, then the 

implant geometry was separated. The resulting masks (group of voxels) were homogenously 

filled by preserving the outer contour of the geometrical border in 2D. From the masks, a 

triangulated surface mesh was automatically generated for the iliac bone and for the implant 

construct (Figure 10A). To evaluate the accuracy of the segmentation process, we calculated 

the Dice Similarity Index (DSI) [75, 76] (for the DSI definition see Matherials and methods, 

3.2.2. Definition of pre- and postop motion segments’ 3D geometry). The DSI values range 

between 0 and 1, one denoting a perfect match. The implant geometry and the iliac bone 

geometry were segmented 12 times by (I1) and repeated by (I2), the second segmentation was 

compared to I1 after which the DSI was defined.  

3.3.5. Alignment of the implant construct geometries 

To determine the implant deformation the 12 segmented (I1) implant geometry with the iliac 

bone were aligned in the same coordinate system. The first postop CT scan based left iliac 

bone was used as the reference geometry. A control points based rigid registration algorithm 

was used via Mimics® software. The 8 control points corresponded to easily identifiable 

anatomical landmarks at the left iliac bone (Figure 10B). During the registration the implant 

construct moved together with the iliac bone (Figure 10C). To evaluate the accuracy of the 

registration and alignment procedure the Hausdorff Distance (HD) was measured with the 

MeshLab1.3.2 software [77] (http://www.meshlab.net) Metro tool [78] (Figure 10D) at the 

level of the aligned iliac bones. As described in the Materials and Methods section (3.2.3. 

Alignment of the motion segments’ geometry), the HD represents the maximum distance 
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between two points (triangle vertex) of two sets, both from corresponding sections of the 

meshes (i.e.: the HD is expected to be equal to zero in case of a perfect alignment of absolute 

symmetrical geometries, whereas values >0 provide the actual distance between the two 

surfaces). The alignment of the 12 geometry was performed by I1, and he HD measurements 

were performed from the second postop CT scan to the last 12th scan compared to the first 

postop scan-based geometry. After registration of the iliac bones the trans iliac screws body’s 

geometry overlapped. The axis of the iliac screws where consider to be collinear and 

coincident (Figure 10E, F). To test this hypothesis HD values were calculated for the screw 

body’s by comparing the geometries to the first postop CT scan geometry after the alignment. 

3.3.6. Implant deformity measurements 

The implant construct geometry was considered a tubular structure and the centreline of the 

geometry was defined with the Mimics Software (Figure 11A). A „mobile” point 

corresponding to the L2 right pedicle screw tip and a fix point was selected in the centreline 

corresponding to the tip of the caudal iliac screw. The distances between the point were 

measured in three anatomical planes (Figure 11B, C, D) using 3-matic® software (Mimics 

Innovation Suite v21.0, Materialise, Leuven, Belgium). The segmentation of the implant 

construct, the centreline definition and the distance measurement in the three planes were 

performed by three investigators (I1, I2, I3) a two different time points (T1, T2). For the 

repeatability and reliability test of the measurements from the Xd (coronal plane), Yd (axial 

plane), Zd (sagittal plane) the three dimensional distance 3Dd was calculated using the 

formula 3Dd=�𝑋𝑋𝑑𝑑2 + 𝑌𝑌𝑑𝑑2 + 𝑍𝑍𝑑𝑑2 
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Figure  11. Implant construct geometry simplification and deformation measurement. A 

the segmented geometry of the implant construct was considered a tubular structure, the 

centerline of the geometry was defined. B, C, D a fix point (red dot) was selected in the 

centerline corresponding to the tip of the caudal trans iliac screw, and a mobile point (blue 

dot) corresponding to the L2 right pedicle screw tip. The distance between the point were 

determined B in the coronal plane ( Xd), C sagittal plane (Zd), D axial plane (Yd) 

3.3.7. Mapping of the bony fusion  

In every CT scan, from the same region of interest (midplane between the right LIV and LV 

pedicle screw) a single axial slice was selected (Figure 12A). The bone tissue was segmented 

based on thresholding algorithm, to determine the outer boundary of the bony element (left 

and right iliac bone, and L.IV vertebra) (Figure 12B). The mask internal part was filled and 

a homogenous mask was created, from this mask a voxel based FE mesh was created with 

the Mimics Software (Figure 12C, D). Form the institutional PACS database QCT scans 
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where selected with the same acquisition protocol and machine (Table 3). The date of the 

scans where selected to be in the same month as the postop CT scans.  The male subjects also 

had to have similar body mass index (BMI=28±2) as the presented patient (BMI=28). The 

Hounsfield Units values of the QCT images were converted into BMD equivalent values by 

using a densitometric calibration obtained with an inline phantom (HitachiPresto,Hitachi 

Medical Corporation,Tokyo, Japan) with five cylindrical insertion with known mean 

equivalent BMD values (0, 0.5, 0.1, 0.15, and 0.2g/cm3). Based on the 12 QCT a mean 

conversion curve was defined and assumed to be linear (BMD=ρQCT=a+b*HU, where 

ρQCT [g/cm3] is bone density) according to studies [9,10]. Figure 12E. In  the voxel-based 

FE mesh every element was coded with 10 different colour code corresponding to the BMD 

values as shown in Figure 12F.  The distribution of the FE nesh voxel element over the FU 

was analysed. The volume of the BMD categories were calculated (voxel dimension*number 

of elements) and visualised using a 3D surface plot (Figure 38) created with SigmaPlot 12 

(SSI, San Jose, California, United States). 

3.3.8. Statistical analysis 

 All statistical tests were performed with SPSS statistical package version 23 (SPSS Inc, 

Chicago, IL). Due to the small sample size we used non-parametric tests. Inter-rater (I1 vs I2 

vs I3) reliability was determined by Intraclass Correlation Coefficient (ICC) estimates and 

their 95% confident intervals (CI) were calculated based on a mean-rating (k = 2), absolute-

agreement, 2-way mixed-effects model.  Intra-rater (I1T1 vs I1T2, I2T1 vs I2T2, I2T1 vs I2T2) 

reliability was determined by ICC estimates and their 95% confident intervals were 

calculated based on a single measurement, absolute-agreement, 2-way mixed-effects model. 

The relationships between the implant deformation in the anatomical planes and the number 

of  postop days were analysed by the Spearman's rank correlation (Figure 36).  

DOI:10.14753/SE.2020.2439



40 

Figure 12. Evaluation of the bony fusion process between the LV vertebra and the two 

iliac bone. A from all the 12 CT scans, form the same region of interest (midplane between 

the right LIV and LV pedicle screw) an axial slice were selected. B the bone elements were 

segmented in the slice. C a homogeneous mask was crated corresponding to the bony 

element. D a voxel-based FE mesh was created based on the segmented mask. E a linear 

relationship was used to assign the bone mineral density values for the corresponding 

Hounsfield values. F in the voxel-based FE mesh every voxel was coded with a color code 

corresponding to the BMD. 

DOI:10.14753/SE.2020.2439



41 

3.4. PART IV. Application of 3D printing in spine care 

3.4.1 Definition of the 3D geometry 

A CT scan of a lumbar fourth (LIV) vertebra of a 25-year-old patient was selected 

from a study of 270 patients who underwent different treatments due to low back pain in our 

clinic (MySPINE, Project ID: 269909, Funded under: FP7-ICT). The vertebra of our interest 

and the neighboring segments were not affected by any musculoskeletal pathology. In order 

to define the 3D geometry, we performed thresholding and manual segmentation in 3D Slicer 

4.1.1 [81], an open-source, free software: http://www.slicer.org (Figure 13).  

Figure 13. Definition of virtual 3D geometry from 2D medical images. During the 

segmentation process the bone volume is first separated from the surrounding soft tissue 

by thresholding of the greyscale levels of the CT images. The resulting mask (yellow) 

voxels represent the 3D volume of the vertebra. Then, from the mask, a triangulated surface 

mesh is automatically generated and exported into in STL (STereoLithography) format. 

Before 3D printing the quality of the 3D surface mesh is adjusted (remesh), while 

preserving the geometrical accuracy. The final vertebra model (FVM) is built from 8024 

vertices and 16048 triangulated faces. 
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To evaluate the accuracy of the segmentation process, we calculated the Dice 

Similarity Index (DSI) with 3D Slicer Dice-Computation tool [76], for the DSI definition see 

methods: 3.2.2. Definition of pre- and postop motion segments’ 3D geometry. The DSI 

values range between 0 ± 1, one denoting a perfect match. DSI value of the segmentation 

process was 0.96 indicating a high accuracy.   

3.4.2 3D printing 

The segmented geometry was converted to STereoLithography (STL) format using 

the “ModelMaker” module of 3D Slicer. Inspection and correction of the 3D geometry was 

performed with MeshLab1.3.2 [77] (an open-source free software: http://www.meshlab.net), 

and the following adjustments were made on the triangulated surface mesh: (1) isolated 

pieces were considered artefacts and therefore, were removed; (2) duplicate edges and faces, 

that resulted from unification were deleted; (3) universal remeshing with contour 

preservation. A final vertebra model (FVM) was built from 8024 vertices and 16048 

triangulated faces (Figure 13.).  

The FVM was printed with the following two 3D printing technologies: (1) Fused 

Deposition Modelling (FDM) device (Dimension 1200es 3D Printer; Stratasys, Israel) 

Figure 14A, in which a thin filament of plastic (ABSplus in ivory) is melted in an extruding 

head, which is then deposited to build the desired shape, slice by slice, on a moving platform. 

During the printing all the significantly protruding parts are supported by a concurrently 

printed scaffold (printed from a water-soluble plastic; Soluble Support Technology, SST). 

The internal grid structure of the model (Figure 14C) is automatically generated. The 

building size of the machine is 254 x 254 x 305 mm and operates with a layer thickness of 

0.330-0.254 mm. (2) The Digital Light Processing (DLP) device (VOXEL L 3D Printer; 

Do3D, Hungary) polymerizes selectively illuminated planes of the model, slice by slice 

(Figure 14 B). The DLP uses a model material Voxeltek White Resin (photo-polymer, 

acrylic based), and a light emitting diode (LED; with ultraviolet spectrum) as a light source. 

Upon selective illumination, the model material becomes polymerized and solid.  The 

internal structure of the printed vertebra is empty (Figure 14D). The building size of the 
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machine is 125 x 65 x 65 mm, the wall thickness for the FVM was set to 1.2 mm, the printer 

operates with a layer thickness of 0.1-0.025 mm. 

Figure 14. Schematic representations of the Fused Deposition Modelling (FDM) and 

Digital Light Processing (DLP) 3D printing technologies. A FDM: a thin filament of 

plastic (1) is melted in a extruding head (2) and deposited to build the vertebra (3), slice 

by slice on a moving platform (5). The complex geometry of the vertebra requires vertical 

column scaffolding (4) during the layer deposition. B DLP: UV light (6) is projected on a 

deformable mirror device (7) and directed, through a lens (8) to the surface of the bottom 

most layer of the liquid photopolymer resin (10). The light selectively polymerizes the 

resin, which then becomes solid (9). This process also requires vertical column scaffolding 

(11). Finally, a moving platform (12) raises the already solidified resin. C-D illustration of 

the internal perpendicular grid structure of the vertebra printed with (C) FDM (axial plane 

cross section) and the empty internal structure of the vertebra printed with (D) DLP (axial 

plane cross section). 

3.4.4. Comparison of the 3D physical models printed with FDM or DLP  

 The FDM and the DLP printed models were scanned (ScanBox 3D scanner; Smart 

Optics Sensortechnik GmbH, Bochum, Germany) in two measurement sessions and in two 

orientations. The measurement field was 80x60x85 mm with a resolution of 0.006 mm (ISO 
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12836). First, the vertebra was attached to the scanner support system from the inferior 

endplate, with the optical system focusing on the superior part of the vertebra. Based on these 

measurements we created FDM-sup and DLP-sup two-point clouds. Next, we attached the 

model from the superior endplate and the optical unit focused on the inferior part of the 

vertebra and we created FDM-inf and DLP-inf point clouds. Based on these point clouds the 

scanner driving software created triangulated surface mesh models. The models where then 

exported in STL format.  

In order to align their overlapping components with the segmented vertebra surface 

mesh model (FVM) used as reference geometry, the FDM-sup, DLP-sup, FDM-inf and DLP-

inf, 3D data sets were transposed into the same coordinate system by surface registration. We 

used MeshLab1.3.2 software Align Tool for the point based rigid registration process. Eight 

symmetrical (left-right sides, 4-4) and two asymmetrical control points were selected from 

the superior and inferior region of the reference FVM and from the aligned geometry, 

respectively (Figure 15).  

Figure 15. Control points selection for the rigid surface registration. Ten control points 

were selected from the superior (A) and inferior (B) region of the reference FVM and from 

the aligned geometry, respectively. Red circles represent the registration points selection 

areas. 
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The points where in the following regions: anterior part of the endplate (1-1), in the pedicles 

(1-1), in the articular processes (1-1), in the transvers processes (1-1) and one point for the 

apex of the vertebral arch, and another for the spinous process. The registration was 

performed by the two investigators (I1, I2) and at two different time points (T1, T2). 

To evaluate the accuracy of the registration and alignment procedure the Hausdorff 

Distance (HD) was measured with the MeshLab1.3.2 software Metro Tool [78]. The HD 

represents the maximum distance between two points of two sets, both from corresponding 

sections of the meshes (i.e.: the HD is expected to be equal to zero in case of a perfect 

alignment of absolute symmetrical geometries). Theoretically, its values range from 0 to ∞, 

with 0 indicating that the compared volumes have identical boundaries, whereas values 

greater than zero provide the actual distance between the two surfaces. Because the values 

not only indicate the precision of the printing technology, but also the precision of the surface 

registration, this process was conducted by two independent investigators (I1, I2) and at two 

different time points (T1, T2). The HD values were calculated at the vertices of the 

triangulated surface meshes as follows:  ℎ(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎{𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑎𝑎𝑏𝑏{𝑑𝑑(𝑚𝑚, 𝑏𝑏)}}; where A is 

the FDM-sup, DLP-sup, FDM-inf, DLP-inf mesh; B is the FVM reference mesh; a and b are 

points from sets A and B, respectively, and d(a, b) is the Euclidean distance between these 

points. 

In order to measure Surface Roughness (SR), two symmetrical rectangular surface 

areas from the superior endplates and from the right superior part of the pedicles of the 

aligned (I₁T₂) FDM-sup and DLP-sup meshes were determined and separated as regions of 

interest (ROI) with Autodesk ReMake (free for academics, https://www.autodesk.com/) and 

Autodesk Meshmixer 3.1 (free software, http://www.meshmixer.com/). The selected and 

isolated ROIs were exported in STL format, and the surface roughness was then quantified 

with CloudCompare v2.6.0 open-source software (R&D Institute EDF, Paris, France, 

https://www.danielgm.net/cc/). For each point (vertices of the triangulated surface mesh), the 

roughness value represents the distance between the point of interest and the best fitting 

plane, which is computed from its nearest neighbours within a defined kernel. The kernel 

size equals with the radius (mm) of a sphere centered on each point. In case of the endplates 

it was set to: 0.5, 1,1.5, 2, 2.5 and 3 mms respectively (6 individual measurements); and to 
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0.5, 0.6, 0.7,0.8, 0.9, 1 mms, respectively (6 individual measurements) in the case of the 

pedicles. 

3.4.5 Application of 3D printed physical models in surgical planning 

An FDM model was used for planning the trajectory of transpedicular screw insertion 

in case of a 12-year-old patient suffering from congenital scoliosis (Figure 16) caused by an 

LI hemivertebra. A preoperative CT scan, with 1.25 mm slice thickness, was performed from 

the lower part of ThXI vertebra to the upper part of LIII vertebra. The data was exported 

from the hospital PACS in DICOM file format. To fulfil patient data protection, de-

identification of the DICOM data was performed using the freely available Clinical Trial 

Processor software (Radiological Society of North America, https://www.rsna.org/ctp.aspx). 

The vertebras from the anatomical region of interest were segmented with 3D Slicer 4.1.1 as 

described in case of the FVM, and a model including ThXI-LIII vertebras was created. 

Figure 16. Standing X-ray images of the 

thoracic and lumbar spine, and the pelvis 

of the patient. A- B, The 12 year old 

female patient suffers from congenital 

scoliosis, caused by LI hemivertebrae. 

The (A) kyphotic deformity is 37º Cobb 

angle in the sagittal plane (lateral view) 

and the (B) scoliotic deformity is 35° 

Cobb angle (antero-posterior view). 

The segmented volumes were converted to STL using the module ModelMaker 

option. Inspection and correction of the 3D geometry was done with MeshLab. The model 

was then printed with FDM technology and was used for planning the trajectory of the screw 

insertion at the ThXII and LII levels. Ten cm long 1.3mm diameter titanium rods were 
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inserted in the pedicles in the ideal axis, the orientation of these guided the surgeon visually, 

during the operation, to find the optimal angle and axis of the screw insertion. 

3.4.6 3D data integration in the clinical communication 

The virtual model used in the clinical case was imported in STL format to 

MeshLab1.3.2 and subsequently saved as a Universal 3D File (U3D). A 3D Portable 

Document Format (3DPDF) file, containing the U3D mesh, was created using Adobe 

Acrobat (version 10 Pro Extended) 3D tools with default Activation Settings and assignment 

of a Poster Image from default view. The 3D visualization parameters were set as follows: 

CAD optimized lights, white background, solid rendering style and default 3D conversion 

settings. The 3DPDF file was incorporated in our institutional web browser-based SQL 

database (Oracle Database 12c) which is accessible by clinicians from any institutional 

desktop PC or mobile device. 

3.4.7 Statistical analysis 

All statistical tests were performed with SPSS version 23 (IBM, Armonk, New York, 

United States). HD and SR measurement related dataset normality distribution was testedby 

the Kolmogorov-Smirnov test with Lilliefors Significance Correction (sample size >2000, 

p≤ 0.05). The between group statistical difference was assessed by Independent Samples 

Kruskal-Wallis test (p≤ 0.05) for Figure 39 and Two-sample Kolmogorov–Smirnov test (p 

≤ 0.05) for  Figure 40 and Figure 41. 

The cumulative probability plots were created with SigmaPlot 12 (SSI, San Jose, 

California, United States). The data management was performed in Microsoft Excel 2016 

(Microsoft, Redmond, Washington, United States) 
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3.5. PART V. Affordable patient-specific surgical navigation 

3.5.1. Clinical Case 

Figure 17.  Clinical case of a 38-year-old male patient suffering from low back pain. The 

patient previously underwent multiple surgeries at the LV-S1 level. A broken left sacral 

screw can be identified on the standing X-ray images of the patient (A coronal, B sagittal 

plane). Signs of non-union are identifiable in the intervertebral space on the CT scan 

images of the LV vertebra and the sacrum (C coronal, D sagittal plane). 

The study was approved by the National Ethics Committee of Hungary and the 

National Institute of Pharmacy and Nutrition (reference number: OGYÉI/163-4/2019). 

Informed consent was obtained from the patient. A 38-year-old patient underwent multiple 

spine surgeries at the LV-SI level over a 5-year period with transforaminal interbody fusion 

(TLIF). During the latest surgery, implant removal and S.I left side nerve root decompression 

were performed and 6 months later the patient was referred to our institution due to 

manifestation of mechanical low back pain, with no sign of sensorimotor deficit. Medical 

imaging at admission (Figure 17) showed a broken SI left side pedicle screw, and a non-

union in the LV-SI intervertebral space. Refusion surgery was decided, however the broken 

screw caused a geometrical and technical difficulty for new screw insertion. The case raised 

the need for a safe screw insertion without compromising the local bone tissue. 
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4.5.2 Patient-specific 3D geometry definition 

Figure 18. Patient-specific geometry and FE model definition. QCT based segmentation 

was used to define the sacrum geometry. Hounsfield Unit (HU) values of the QCT images 

were converted into bone mineral density (BMD) equivalent values. Elastic properties of 

the sacral bone were estimated using a set of density to elasticity relationships from the 

literature to convert the BMD equivalent value at each element of the FE mesh to Apparent 

Density (ρapp) (Rho et al., 1995; Kopperdahl et al., 2002) and then to the Elastic Modulus 

(E). 

For the study Quantitative Computed Tomography (QCT) scans were used, 

performed with a Hitachi Presto CT machine (Hitachi Presto, Hitachi Medical Corporation, 

Tokyo, Japan) using an in-line calibration phantom with five cylindrical insertions of known 

mean equivalent bone mineral density (BMD) values (0, 0.5, 0.1, 0.15, and 0.2 g/cm3) with 

an intensity of 225mA and voltage of 120kV. The imaging protocol was previously defined 

in the MySPINE project (ICT-2009.5.3 VPH, Project ID: 269909) [71], [72], and the images 

were reconstructed with a voxel size of 0.6x0.6x0.6 mm3. The data was extracted from the 

hospital PACS in DICOM file format. To comply with the ethical approval of the patient data 

protection, deidentification of the DICOM data was performed using the freely available 

Clinical Trial Processor software (Radiological Society of North America, 

https://www.rsna.org/ctp.aspx) [73]. The thresholding algorithm and manual segmentation 

tools (erase, paint, fill etc.) in Mimics image analysis software (Mimics Research, Mimics 

DOI:10.14753/SE.2020.2439

https://www.rsna.org/ctp.aspx


50 

Innovation Suite v21.0, Materialise, Leuven, Belgium) were used (Figure 18.) to define the 

geometry of the sacrum and the broken screw. The resulting masks (group of voxels) were 

homogenously filled by preserving the outer contour of the geometrical border in 2D. From 

the mask, a triangulated surface mesh was automatically generated. On the 3D geometries 

surface smoothing (iteration: 6, smooth factor: 0.7, with shrinkage compensation) and 

uniform remeshing was applied (target triangle edge length 0.6 mm, sharp edge preservation, 

sharp edge angle 60°). 

3.5.3. Surgical planning and FE model generation 

A CD Horizon Legacy (Medtronic) polyaxial pedicle screw, 45 mm long and 6.5 mm in 

diameter, was scanned with ScanBox 3D scanner (Smart Optics Sensortechnik GmbH, 

Bochum, Germany). The model of the screw was reconstructed and modified (from polyaxial 

to monoaxial head) in 3-matic (Mimics Research, Mimics Innovation Suite v21.0, 

Materialise, Leuven, Belgium) software. The triangulated surface mesh of the screw model 

was uniformly re-meshed (target triangle edge length: 0.6 mm, sharp edge preservation, sharp 

edge angle: 60°) Figure 19A. The screw model was virtually inserted in the 3D model of the 

patient sacrum in two position (convergent S.I, divergent ALA) using the Mimics software 

STL import toll (Figure 19B) by taking in account and overcoming the broken screw 

geometry caused difficulty. Two non-manifold assemblies were created in the Mimics 

software containing the broken screw, implanted screw and sacrum for the convergent (S1) 

and divergent (ALA) positions. The assembly was exported to the 3-matic software where 9 

FE meshes were generated for each of the implantation scenarios (S1, ALA). The broken 

screw, inserted implant, and sacrum-implant interface had a triangle set with an edge length 

of 0.6 mm. The outer surface of the sacrum mesh was changed in the 9 models by defining 

the uniform triangle mesh edge length as 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 mm. Adaptive 

meshing protocol was used for the volume mesh creation with 10-node tetrahedral elements. 

The maximum edge length of the meshing process corresponded with the initial edge length 

of the sacrum surface mesh (Figure 20), for the screw and the broken screw the same FE 

mesh parameters was used in all models. The material property assignment for the volumetric 

elements representing the sacral bone tissue was performed in two steps (Figure 18). In the 
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first step  conversion of the HU (Hounsfield Unit) values to BMD values based on the in-line 

phantom was performed, the conversion curve was assumed to be linear according to studies 

[20],[21]. The obtained relationship between the HU and the apparent bone density for each 

element was ρapp = −0.0829 + 0.0026⋅HU, (ρapp [g/cm³]). Then, the bone tissue was assumed 

to be isotropic and linearly elastic with a Poisson’s ratio of 0.3 [84]. Conversion curves 

between the density and the elastic modulus of the bone were based on the correlation 

established by Kopperdahl et al. [85], E = −34.7 + 3230⋅ρapp, (bone elastic modulus = E 

[MPa]). The FE models were exported to Abaqus/CAEv11 (Dassault Systemes, Simulia 

Corp, Providence, RI, USA). For the broken and the inserted pedicle screws the material 

properties were defined as follows: Poisson’s ratio of 0.3 [86], elastic modulus of 114000 

MPa [86]. Between the screws and the sacrum tie connections were used. The finite element 

model was subjected to a static 500 N tensile load applied to the screw head and it was fixed 

at the S.I endplate and lower third of the sacrum (Figure 19C)  
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Figure 19.  Virtual pedicle screw insertion into the patient-specific sacrum model. A 

modified (monoaxial) virtual model of the pedicle screw. B pedicle screw insertion in the 

convergent position (S1) and divergent position (ALA), the geometrical difficulty caused 

by the broken screw was overcome in both insertions. C boundary condition of the FEA, 

the sacrum was fixed on the S.I endplate and the caudal 1/3 of the sacrum, 500 N tensile 

load was applied on the screw head. 
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Figure 20. Finite element models of the sacrum with convergent (S1) and divergent (ALA) 

screw insertions. A section plane in the convergent screw insertion model (posterior and 

anterior view). B-J the screw is inserted into the convergent position in close proximity to 

the broken screw (red). K section plane in the divergent screw insertion model (posterior 

and anterior view). L-T the screw is inserted into the convergent position in close 

proximity to the broken screw (red). The FE models’ mesh element numbers (*) vary 

according to mesh density. 
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3.5.4. Navigation template design, manufacturing and accuracy evaluation 

The template design was based on the axis of the virtually inserted screw, individual 

geometry and surface of the cranial/dorsal part of the sacrum. In the 3-matic software the two 

axes and surface for the template/sacrum contact were defined based on the STL assembly 

(broken screw, inserted implant, sacrum). The contact surface and the axes were exported to 

the Autodesk Fusion 360  (Autodesk Inc., California, U.S.A.) CAD software which was used 

for the finalization of the design (Figure 21.A). 

Figure 21. Design, manufacturing and accuracy evaluation of the navigation 

template. A template’s virtual model created via CAD software. B 3D printed (MSLA 

technology) template (red) fits exactly on the 3D printed (FDM technology) patient-

specific physical model. C.I-II final navigation template created via investment casting 

from cobalt-chrome (C.I ventral surface polished, C.II dorsal surface). Evaluation of the 

drilling accuracy was performed on the physical model in the (D) convergent position (S1) 

and (E) divergent position (ALA). 
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The virtual model of the template was printed with a masked stereolithography 

(MSLA) technology based 3D printing machine (VOXEL L 3D Printer; Parameters: building 

size: 125 x 65 x 65 mm, layer thickness: 0.05 mm; Material: Voxeltek Cast Resin; Do3D, 

Hungary)(Figure 21A,B). The used photopolymer resin can be applied as a pattern for 

investment casting. Finally, the model was produced in a dental laboratory via investment 

casting (Hexacast induction centrifugal casting machine; Parameters: start torque: 0-21 Nm, 

maximum melting mass: 100 g, max heating: 1750 °C, dimensions (width x height x depth): 

660 x 390 x 645 mm; Material: CoCr; PiDental, Hungary) from cobalt-chrome (Figure 

21C.I-II). The accuracy of the casted part was tested via 3D scanning ScanBox 3D scanner 

(Smart Optics Sensortechnik GmbH, Bochum, Germany) and compared to the 3D printed 

model. The point clouds resulting from the scanning were aligned and compared in the 3-

matic software with the part comparison module. 

The accuracy of the template was tested on a patient-specific sacrum physical model, 

3D printed with a Fused Deposition Modelling (FDM) printer (Dimension 1200es 3D Printer; 

Parameters: building size: 254 x 254 x 305 mm, layer thickness: 0.330-0.254 mm; Material: 

ABSplus/ivory; Stratasys, Israel). The drill template was placed on the FDM sacrum model; 

then, a cylinder inlet was connected to the template to support the drill bit, and the drilling of 

the model was performed according to the S1 and ALA positions (Figure 21D,E).  

The template was removed, and two CT scans were performed of the sacrum model 

with drill bits inserted in the S1 and ALA positions. The CT scan images were imported into 

the Mimics software where the segmentation (thresholding) and 3D reconstruction of the 

patient-specific FDM sacrum model geometry and drill bits were performed. The models 

were registered to the initial sacrum geometry derived from the QCT via point based rigid 

registration by selecting anatomical landmarks in the caudal part of the sacrum (Figure 22). 

This step was followed by an automatic global registration inside the 3-matic software. The 

registration accuracy was measured with the part comparison module of the 3-matic software. 

The centreline for the drill bit 3D geometry was defined and an analytical primitive (cylinder 

with 2.5mm diameter was fitted) was fitted to the centreline to visualise the drilling axis. 
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Figure 22.  Control points selection for rigid surface registration. Eight control points from 

the superior-ventral (A) region and ten control points from the superior-dorsal (B) region 

were selected from the reference (patient QCT) and aligned geometry (physical model CT 

scan) respectively. The red circles represent the registration points selection areas. 

DOI:10.14753/SE.2020.2439



57 

4.RESULTS

4.1. PART I. Attitude of spine surgeons towards the application of 3D technologies 

283 AOSpine members from the six AO regions completed the online survey. 

Table 4. Demographics of survey respondents 

.
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Only one person completed the questionnaire from AOSpine Africa region, thus this 

region and participant were excluded from further analysis (Figure 23. ). The study 

population was grouped into three subgroups based on the HDI of the country of the 

participants. More than half of the subjects (56.0%) have been from a very high HDI country 

while 30.5% of the responders have come from a country with high HDI and 13.5% from a 

country with medium HDI. None of the responders were in the low HDI group. Most of the 

surgeons perform surgeries in the public system (44.1%) while 36.3% of them operate in a 

mixed practice and 19.6% work only in private healthcare. Regarding the specialties, 83.7% 

of the surgeons treat degenerative cases, 50.4% of them have trauma and 39.4% have 

deformity practice. Out of the responders 27.7% operate on spinal tumors. The majority of 

the study population has had an experience of 3 to 10 years in spine surgery (33.5%). 

Regarding the experience 26.7% of the responders had 10 to 20 years, while 23.5% have 

been more experienced surgeons (more than 20 years in spine surgery). Young surgeons (0 

to 3 years’ experience) represented the 16.4% of the study population.  

Figure 23. World map indicating the AOSpine regions and the survey respondents (n=283) 
distribution (%) according to the regions. 
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Table 5 summarizes the questions and the distribution of the answers related to the 

acceptance of 3D technologies. 17% of the participants have not had any specific knowledge 

about the 3D technologies while a similar rate of the subjects (18%) had already used these 

techniques. Most of the participants (41.5%) have had some information only from the media 

and a further 23% of the responders had learned about the 3D technologies on scientific 

forums. Only 7.1% of the clinicians use regularly 3D virtual or printed models for education 

or demonstration, while 46.1% of the surgeons have never used them. 3D models can play a 

significant role in the surgical planning [87], [88] or in the development process of new 

surgical methods, but 61% of the respondents have never used such a model for that purpose. 

Only 7.1% from the responders are regular users. Intraoperative 3D navigation can reduce 

intraoperative complications and morbidity rates [89]. More than half of the study 

participants (55%) use some type of navigation in their surgical practice and the rate of 

regular or occasional users of 3D printed navigation guides is 1.8% and 4.6% respectively. 

One of the advantages of 3D technologies, especially 3DP is that unique device andtools can 

be manufactured in a cost-effective way [90]. The claim for a specific, unique surgical 

instrument has been quite high in the survey population (28% of the surgeons would 

frequently need such a tool while 56.4% of them would occasionally need a unique, 

individually manufactured instrument). Implants manufactured by an advanced technique 

(e.g. 3DP) are regularly used by a minority of the surgeons (3.2%) and most of them (81.1%) 

have never used such a spinal implant. About forty percent (40.5%) of the responders have 

thought that these implants have got a possible advantage in challenging surgeries (e.g. tumor 

resections, special anatomical variations) and in individual, complex cases where patient 

specific implants would be required. On the other hand, 16.1% of the surgeons would use 

advanced manufactured implants in all instrumented spine surgeries providing a plausible 

better clinical outcome. Only 2.9% think that there is no need for such implants. 

DOI:10.14753/SE.2020.2439



60 

Table 5.  Questions related to the acceptance of 3D technology 

Characteristic Score N (%) 
I/6:  Are you familiar with the concept and the benefits of 3D printing/modelling 
technologies? 282 
I don’t have any specific knowledge 0 48 (17.0) 
I have some general information from news, advertisements 1 117 (41.5) 
I have read scientific papers/conference talks in the topic 2 65 (23.0) 
I have already used some of these technologies 3 52 (18.4) 
II/1: Have you ever used any 3D technology for education (or demonstration) for 
medical students, residents, colleagues? 282 
never 0 130 (46.1) 
occasionally, 3D virtual models 1 89 (31.6) 
occasionally, 3D printed models 2 43 (15.2) 
frequently, 3D virtual or printed models 3 20 (7.1) 
II/2: Have you ever used 3D virtual models or printed models for surgical planning 
or for the development of a surgical technique (e.g. by demonstrating the difficult 
anatomical situation or the challenging surgical steps)? 282 
never 0 172 (61.0) 
occasionally 2 90 (31.9) 
frequently 3 20 (7.1) 
III/1:   Intraoperative 3D navigation systems can reduce the complications and the 
morbidity of spinal surgeries.  Do you use any 3D navigation system or tool in your 
clinical practice? * 282 
not at al 0 127 (45.0) 
occasionally (CT or fluoro based system) 1 84 (29.8) 
regularly (CT or fluoro based system) 2 60 (21.3) 
occasionally (3D printed surgical guide) 3 13 (4.6) 
regularly (3D printed surgical guide) 4 5 (1.8) 
III/4: Have you ever experienced or felt that a specific, unique surgical instrument 
(e.g. a particular chisel, curette or screwdriver) would have helped the surgery? 282 
no 0 44 (15.6) 
occasionally 1 159 (56.4) 
frequently 2 79 (28.0) 
IV/1: Have you ever used any advanced manufactured (3D printed) implant? 280 
never 0 227 (81.1) 
occasionally 2 44 (15.7) 
frequently 3 9 (3.2) 
IV/2: Where do you see the possible advantage of the use of advanced manufactured 
implants? 279 
all implanted surgeries because a general or patient-specific advanced manufactured 
implant can provide better clinical outcome even in case of a standard pathology 4 45 (16,1) 
challenging surgeries (e.g. tumor resection) and compromised anatomy or biology 3 113 (40,5) 
only in complex cases where patient-specific implant would be required 2 113 (40,5) 
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Over half of the spine surgical community believed that 3D technologies are a 

promising choice (42%) or will play a revolutionary (12.1%) role, based on the responses 

related to question V/1. However, 43.8% of the respondents consider it as an option with 

limited applications in individual cases. It is important to underline that only 2.1% of the 

spine surgeons have answered that 3D technology has no real future because it is too 

complicated and expensive. To understand the differing attitudes towards 3D technologies 

we investigated the acceptance score according to the AOSpine region affiliation, the field 

of spine surgery, experience in spine surgery (years of practice) and practice type (public, 

private, both).  

Figure 24. 3D technology acceptance scores according to the AOSpine regions. 

Significant differences were found between regions (*= p ≤ 0.05, **= p ≤ 0.01). 

none of the spinal surgeries 0 8 (2.9) 
V/1: What do you think about the role of 3D printing/modelling technologies in 
spinal surgery? 281 
no real future – too complicated and expensive 0 6 (2.1) 
an option only for very limited applications, individual cases 2 123 (43.8) 
a promising, feasible option for the near future 3 118 (42.0) 
revolutionary 4 34 (12.1) 
*Note: multiple choice
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Figure 25. The field of spine surgery does not significantly influence the acceptance score 

(p= 0.77). 

Figure 26. The surgical experience does not significantly influence the 3D technology 

acceptance score (p= 0.19). 
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Figure 27. The 3D technology acceptance score is significantly higher among surgeons 

who perform their clinical activity exclusively in the public sector (*= p ≤ 0.05). In the 

public group, the mean is 11.4±4.1 compared to the group of surgeons working only in the 

private sector (10.2±4.1, p=0.026) and to those having mixed praxis (10.5±3.8, p=0.036). 

Figure 24 represents the comparison between the AOSpine regions. The highest acceptance 

was observed in the Asia-Pacific region (Mean±SD: 11.8±4.2), which has not differed 

significantly from Europe (11.4+4.5) or North America (11.2±3.8) regions, but it was 

significantly higher compared to Latin America (10.0±3.1, p=0.028) and to Middle East 

(8.8±2.8, p=0.002). We found no significant difference (p= 0.77) of the acceptance scores 

between the fields of spine surgery (Figure 25); nor (p= 0.19) when the subjects were 

grouped according to surgical experience in years (Figure 26). However, we revealed  

significantly higher acceptance scores among surgeons who perform their clinical activity 

exclusively in the public sector (Figure 27).  
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Figure 28. The influence of the HDI index on the 3D technology acceptance score is 

represented on the cumulative probability plot. The scores were the lowest for the medium 

development group, the leftward shift in the cumulative probability plot showing an 

increasing interest in the 3D technologies in higher developed countries. The difference 

reached the significance level for the medium vs very high, and high vs very high HDI 

groups (posthoc test between medium vs very high HDI: p=0.0005, and high vs very high 

HDI: p=0.019). 

In this group, the mean score was 11.4±4.1 compared to the group of surgeons 

working only in the private sector (10.2±4.1, p=0.026) and to those having shared praxis 

(10.5±3.8, p=0.036). The influence of the HDI index on the acceptance score is represented 

on Figure 28 by a cumulative probability plot. The scores were the lowest for the medium 

development group, the leftward shift in the cumulative probability plot showing an 

increasing interest in the 3D technologies in the higher developed countries. However, the 

difference reached the significance level for the medium vs very high and high vs very high 

HDI groups (posthoc test between medium vs very high HDI: p=0.0005, and high vs very 

high HDI: p=0.019). In order to directly test this association, a correlation analysis was 
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performed between acceptance score and the HDI values as shown in Figure 29 (Spearman 

test, ρ=0.37, p=0.007).  

Figure 29. Positive correlation 

was found between the 3D 

technology acceptance score 

and the survey respondents 

residence country’s HDI 

values (Spearman test, ρ=0.37, 

p=0.007) 

Table 6. represents the questions related to the limitations, main obstacles in the wider 

spreading of these technologies. Answers to multiple choice questions revealed that most of 

the subjects, regardless of the AO region believe costs, lack of access and insufficient 

knowledge/expertise are limiting the frequent use of 3D technology in clinical/educational 

practice. When spine surgeons were asked about the reason for not using 3D navigation 

technologies the answers were similar: high purchasing and maintenance price, prolonged 

surgery time and recruitment of extra personnel. However, in this case we found a significant 

difference (p=0.03) between the AO regions. In Latin America, Middle-East and Asia-

Pacific the high purchasing and maintenance cost, whereas in Europe the high purchasing 

price and complicated usage, were considered as the main limiting factors. The answers of 

North Americans point to the redundancy of these 3D navigational technologies in their 

praxis among the high costs.  
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Table 6. Limitations towards regular use of 3D technologies 

.
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Majority of the spine surgeons identify the high cost of modeling/printing and limited 

access to 3D modeling and/or printing solutions as main obstacles in the extensive use of 

advanced manufactured (eg. 3D printed) implants. The insufficient knowledge and lack of 

confidence, little evidence about the possibilities of the 3D printing technologies/solutions 

were also selected as limiting factor. We found no significant difference in the proportion of 

answers according to the AO region affiliation of the respondents. Concerning the 3D 

technologies generally, most of the surgeons (62.8%) consider the technology too expensive 

and they are not well informed about its full potentials.  

4.2. PART II.  Investigation of the PCD surgical technique using 3D 

methods 

4.2.1 Evaluation of the segmentation procedure 

To evaluate the accuracy of our segmentation process we used the DSI for 6 randomly 

selected and postoperative geometries (Table 7). The obtained DSI values for both pre- and 

postoperative geometries were very high (preop: 0.96 ±0.02; postop 0.90 ±0.07, n = 6) and 

showed negligible variance, indicating a high accuracy of our segmentation method for all 

segmented geometries [91].   

Table 7. Accuracy of the vertebra segmentation 

DSI (Dice Similarity Index) 

preop postop 

Patient ID Vertebra DSI Patient ID Vertebra DSI 

P01 L4 0.97 P01 L5 0.96 

P02 L3 0.98 P02 L4 0.83 

P04 L4 0.96 P05 L5 0.96 

P06 L2 0.99 P07 L4 0.91 

P08 L3 0.96 P08 L5 0.81 

P09 L1 0.93 P09 T12 0.96 

mean DSI 0.96 ±0.02 mean DSI 0.90 ±0.07 
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Next, for assessing the injected PMMA cement geometries we first evaluated the 

PMMA geometry distribution over the caudal vertebra endplate of the motion segments 

visually in 3D in the same view (Figure 30). Because the degenerative processes are not only 

age dependent but also depend on the musculoskeletal status of each patient, the features of 

intervertebral disc degeneration will be widely different. Accordingly, we found that the 

injected volumes are arranged patient-specifically to widely differing 3D shapes (Figure 30). 

Because of this large variance, the selection of representative volumes randomly is less 

likely; therefore, we chose to validate the segmentation process on all injected PMMA 

volumes instead. We calculated the DSI as above for the 16 segmented geometries (Table 8). 

Table 8. Accuracy of the PMMA segmentation 
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 Again, the DSI values were very high for all segmented geometries (mean: 

0.93±0.035, n =16) demonstrating the precision of our segmentation method also in case of 

the injected PMMA geometries.  

4.2.2. Motion segments alignment evaluation 

Having confirmed the precision of our segmentation process, we next evaluated the 

accuracy of the alignment of the pre-and postop motion segments by measuring HD values. 

The same processes were performed by two investigators. The HD values represent the 

maximal distance between two corresponding points (vertex) of the respective registered 

surface meshes. We obtained a mean HD value of 0.43±0.19 mm for the first investigator 

(I1), and 0.54±0.16 mm for the second investigator (I2). These values are considered by the 

field to be indicative of adequate fitting [92],Table 9.  To obtain a detailed view on the 

precision of our alignment we created cumulative probability plots for the measured HD 

values for both investigators. We found that the maximal distance between the registered pre- 

and postop 3D geometries was almost always (90%) smaller than  2 mm, and ~70% of the 

values were smaller than 1 mm (Figure 31). These measurements confirm the accuracy of 

registration/alignment methods. Consequently, the calculation of volumetric changes of the 

spinal canal, are expected to be similarly precise.  
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Figure 30. Visualization and thickness measurement of the PMMA geometry injected during PCD. 

A-P the PMMA geometry distribution over the caudal vertebral endplate of the investigated motion

segment (the xyz coordinate system defines the view). The average volume is 7941.59±2749.82

mm³, and surface is 4256.02±1094.20 mm2. Thickness is represented by the colorbar 0-10 mm

(Blue/Green/Red), scale bar 10 mm (A-P).
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Table 9.  HD values of the registration process 

HD (Hausdorff Distance, mm), I (Investigator), min (minimum), max (maximum), RMS (Root 
Mean Square)   

4.2.3. PCD induced indirect decompression volumetric measurement 

We measured the induced modification by defining the spinal canal geometry pre-

and postop and calculating the volumetric change. For this, we created measurement 

cylinders -patient specifically- overlapping each preop and postop 3D geometries with 

impressions of the respective vertebral body, pedicules, facets and vertebral arches (see 

Materials and methods Section, Figure 8). We then quantified the indirect decompression 

effect as the subtracted volumes ∆V (∆V = Vpostop - Vpreop). To test the accuracy and 

reproducibility of these measurements we involved two investigators (I1 vs I2) who 

performed the same procedures at two time points (T1 vs T2). We found that intra-rater 

reliability for I1T1 vs I1T2 was ICC=0.999 (IC 95%, Lower Bound=0.998, Upper Bound=1); 

for I2T1 vs I2T2 ICC=0.994 (IC 95%, Lower Bound=0.984, Upper Bound=0.998). The inter-
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rater reliability for I1(mean T1, T2) vs I2 (mean T1, T2) was found: ICC=0.987 (IC 95%, Lower 

Bound=0.939, Upper Bound=0.996). These data indicate high accuracy and reproducibility 

of the volumetric change measurements. Data is summarised in the Table 10, Table 11.   

Figure 31. Distribution of HD values between the surface meshes of the registered 
vertebras. A-B Cumulative probability plots of HD values for preoperative and 
postoperative caudal vertebra models of the treated motion segments. Approximately 90% 
of HD values are <2 mm and ~80% < 1 mm for all I1 registrations, and ~70% < 1 mm for 
all I2 registrations (I, investigator). 
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Table 10. Volumetric measurements performed by the first investigator 

I (investigator), T (time point) 

Table 11. Volumetric measurements performed by the first investigator 

I (investigator), T (time point) 
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We then, determined the actual volumetric change (ΔV) of the spinal canal in the 

PCD-treated motion segments as (I1T1+I1T2+I2T1+I2T2)/4. The distribution of the actual 

volumetric change is presented in Figure 32. The volumetric changes widely differ, similarly 

to the shape of the injected volumes (Figure 30). The observed geometrical change 

(mean=2266.50, SD=1172.19, n=16) between the preop and postop measurement cylinder 

volumes demonstrates significant difference (Vpostop vs Vpreop., p<0.0004, Paired 

Wilcoxon signed rank test, Figure 32), meaning that PCD caused a significant increase of 

the volume of the spinal canal. 

4.2.4. PMMA geometry effect on the volumetric change (∆V) of the spinal canal 

We next tested how the geometry of the injected PMMA relates to the observed 

volumetric change. We found significant, strong, positive correlation between the volume 

 of the injected PMMA and the ∆V of the spinal canal (correlation coefficient (ρ)=0.762, 

p=0.001) (Figure 33). The surface area of the discoplasty showed a significant and strong, 

positive correlation (ρ=0.668, p=0.005) the volumetric change of the spinal canal.   

A significant and moderate [93], negative correlation (ρ= -0.535, p=0.033) was found 

between the PMMA surface-volume ratio (SF:V) and the volumetric change of the spinal 

.

Figure 32. Distribution of PCD induced mean volumetric change (ΔV) of the spinal canal. 
An average of 2266.50± 1172.19 mm³ volumetric increase was measured (16 PCD treated 
segments, n = 10 patients.). We found a significant geometrical change between the mean 
preop and postop spinal canal volume (Vpostop vs Vpreop, p=0.0004). 

DOI:10.14753/SE.2020.2439



75 

canal. These data indicate that the volume and surface area of the injected PMMA are the 

most predictive regarding the extent of the expected indirect spinal decompression. 

4.2.5. Clinical outcome 

To test the clinical effect of the indirect decompression we used the patient- reported 

outcome questionnaire Oswestry Disability Index (ODI) and visual analogue scale (VAS) for 

leg pain (LP) and low back pain (LBP). The ODI and LP, LBP significantly decreased 6 

months after the PCD procedure (p=0.013; p=0.036; p=0.015; respectively, Table 12), and 

as such reflecting significant amelioration of our patients’ pain intensity after PCD procedure 

. In order to find a predictive measure of clinical improvement we analysed the association 

of the volumetric change of the spinal canal and ODI, LP and LBP. We found only weak, 

negative, but non-significant correlation between the change of the ODI and ∆V (ρ=-0.321, 

p=0.365), indicating clinical improvement regardless of the indirect decompression volume. 

However, the correlation between the change of the LP, LBP and ∆V (ρ=0.772, p=0.009; 

ρ=0.693, p=0.026, respectively) (Figure 33) was significant, strong and positive. This 

indicates a volume dependent amelioration of patient symptoms, with a higher injected 

volume resulting in better patient outcome. 
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Figure 33.  Association of the mean volumetric change (ΔV) of the spinal canal induced 

by the PCD with the PMMA volume, surface, surface-volume ratio (SF: V) and with the 

clinical outcome (ODI, LP, LBP). A, B we found significant positive correlation between 

the PMMA volume, PMMA surface and ΔV (ρ=0.762, p=0.001 and ρ=0.668, p=0.005,). 

C the correlation between SF: V and ΔV although moderate, was found to be 

significantly negative (ρ=-0.535, p=0.033). D The negative, weak correlation was found 

not to be significant between the change of the ODI and ΔV (ρ=-0.321, p=0.365). E, F 

positive, significant and strong correlation was found between the ΔLP, ΔLBP and ΔV 

(ρ=0.772, p=0.009, and ρ=0.693, p=0.026 respectively). For D, E, F a patient averaged 

ΔV was used for patients who underwent multiple segment PCD. 
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4.3. PART III. Investigation of the “Closed Loop” lumbo-sacral 

reconstruction technique using 3D methods 

4.3.1. Locomotor biomechanics 

The patient was able to walk independently with minor gait alterations to compensate 

lost neural functions Figure 34. During the FU no radiological sign of implant failure was 

registered. The gait was slow and asymmetric with more support on the left side. Joint 

mobility was close to the normative data in all joints, distally in particular. A forward leaning 

of 20° was seen at the level of the pelvis and trunk throughout the gait cycle. Adduction 

moments increased at the hip on both sides while joint moments decreased at the knee. Joint 

power analysis showed a decrease in propulsion power at the hip and ankle.  

Table 12. Preop, and postop 6-month follow-up results of patient reported outcome 
questionnaires  

FU (follow-up), ODI (Oswestry Disability Index), VAS (visual analogue scale), LP (leg pain), LBP  
(low back pain), SD (standard deviation) 
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Figure 34.  Gait evaluation at 5 years after total sacrectomy. Time-series Kinematics (A, B) and 
Kinetics (C, D) of the pelvis, hip, knee and ankle compared to healthy subjects. The data was 
normalized to 100% of the gait cycle, kinetic data was normalized to body weight. Vertical lines 
along the curves indicate the standard deviation. Positive values correspond to pelvic hike (A.1), 
pelvis posterior rotation (A.2), hip abduction (B.1), knee flexion (B.2), ankle dorsiflexion (B.3), 
hip and knee abductor moments (C.1,2) and ankle plantar flexor moment (C.3). Plots in (D) 
indicate the joint power in the hip, knee and ankle during flexion/extension.  
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4.3.2. Evaluation of the segmentation procedure 

To evaluate the accuracy of our segmentation process we used the DSI for the 12 CT scan -

based implant construct and left iliac bone geometry (Table 13). The obtained DSI values 

for the implant construct geometries were very high 0.97 ±0.02 (n=12) as well as for the iliac 

bone 0.96 ±0.05 (n = 12) and showed negligible variance, indicating a high accuracy of our 

segmentation method for all segmented geometries [91].   

4.3.3. Alignment evaluation 

Having confirmed the precision of our segmentation process, we next evaluated the accuracy 

of the alignment of the iliac bones to the first postop iliac bone geometry by measuring HD 

values. We obtained a mean HD value of 0.63±0.14 mm (Table 14). The HD was determined 

for the iliac screw bodies  by comparing to the first postop geometry (Table 15) and it resulted 

in a mean value of 0.95±0.10 mm. These values are considered by the field to be indicative 

of adequate fitting [92].  After the iliac bone alignment in order to demonstrate the colinear 

and coincident position of the iliac screw axis, we visualised the geometric overlap of the 

iliac screws body’s in Figure 35.  The figure demonstrates that the screw body does not 

deform or change its position in the new common coordinate system. Theoretically any point 

in this two screw body geometries can be used as a reference point in a measurement process. 
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Table 13.  Evaluation of the accuracy of the segmentation process 

CT (Computed Tomography), DSI (Dice Similarity Index), I (Investigator), T (time point) 

Table  14. Iliac bone alignment accuracy evaluation 

 RMS (Root Mean Square), min (minimum), max (maximum), SD (standard deviation) 
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Table 15. Iliac screws body’s alignment accuracy evaluation 

RMS (Root Mean Square), min (minimum), max (maximum), SD (standard deviation) 

Figure 35. Geometric overlap of the iIliac screws body’s after the alignment process. The 
12 postop CT scan-based surface mesh representing the iliac screw bodies are color coded 
corresponding to the scale bar (color= CT scan session +number of days after surgery). 
The surfaces mesh is visualized with 75% transparency. 
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4.3.4. Implant deformation 

We defined the implant deformation by measuring the distance in the three planes between 

the right LII pedicle screw tip and the left caudal iliac screw tip. The measurements were 

performed by three investigators at two different time points  (I1,I2,I3,T1,T2) Table 16, 17, 18. 

The mean change in the dimensions compared to the first post op CT was ∆Xd=7.27±2.80 

mm for the frontal plane, ∆Yd=8.24±2.51 mm for the coronal plane, ∆Zd= 10.15±2.97 mm 

for the sagittal plane. To test the accuracy and reproducibility of these measurements we 

performed inter- and intrarater reliability test by calculating the intraclass correlation 

coefficient (ICC) based on the 3Dd values, presented in Table 19.  With exception for the 

I1T1 vs I1T2  intra-rater reliability the ICC was 0.768, however this value indicates good 

reliability, in other cases excellent reliability was achieved [94]. The association between the 

average Xd/Yd/Zd measurement and the number of days after surgery is shown in Figure 36. 

The implant construct deformation can be registered in the anatomical planes over the postop 

follow up period, however only in the sagittal plane was significant negative, strong 

correlation between the Zd and the number of days after surgery (ρ=-0.664, p=0.018). This 

result demonstrates the forward bending tendency of the construct. 

DOI:10.14753/SE.2020.2439



83 

Table 16. Deformation measurements performed by the first investigator 

CT (Computer Tomography), I (Investigator), T (time point), Xd (distance in the coronal plane), Yd (distance 
in the axial plane), Zd (distance in the sagittal plane), 3Dd (three-dimensional distance), SD (standard 
deviation) 

Table 17. Deformation measurements performed by the second investigator 

CT (Computer Tomography), I (Investigator), T (time point), Xd (distance in the coronal plane), Yd (distance 
in the axial plane), Zd (distance in the sagittal plane), 3Dd (three-dimensional distance), SD (standard 
deviation) 
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Table 18. Deformation measurements performed by the third investigator 

CT (Computer Tomography), I (Investigator), T (time point), Xd (distance in the coronal plane), 
Yd (distance in the axial plane), Zd (distance in the sagittal plane), 3Dd (three-dimensional 
distance), SD (standard deviation) 

4.3.5. BMD mapping at the fusion site 

The bone material density distribution in the region of interest for the fusion process was 

measured over the follow up period, Figure 37. The colour map captures the bone 

remodelling process in the ROI. After the second year FU a solid fusion was detected 

between the lumbar spine LV vertebra and the two iliac bones, however due to the cyclical 

loading the bone remodelling represented by the change in the element distribution in the 

colour coded BMD categories still continues. The change in the volume of the BMD 

categories over the days after surgery is presented in Figure 38. The 3D contour plot 

demonstrates an increase in the high BMD category volume after the second year FU.  
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Table 19. Results for the two-way mixed absolute agreement calculation for ICC 

ICC (intraclass correlation), I (Investigator), T (time point) 

Figure 36. Association between the distance of the mobile (LII right pedicle screw tip) 

point from the fixed point (left, caudal trans iliac screw tip) in the anatomical planes, and 

and the number of days after surgery (DAS). A nonsignificant positive, moderate 

correlation was found between the Xd (frontal plane) and DAS (ρ=0.336, p=0.286). B 

nonsignificant, negative, weak correlation was found between the Yd (axial plane) and 

DAS (ρ=-0.182, p=0.572). C significant negative, strong correlation was found between 

the Zd (sagittal plane) and the number of days after surgery (ρ=-0.664, p=0.018). 
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Figure 37. Mapping of the fusion and remodeling process. A-L. The figures represent the 

region of interest for the 12 postop CT scans (from 7 to 2112 days). The BMD values are 

represented in ten color codes from 0 to 1.12 g/cm3 in a RGB scale. Red color represents 

the strongest bone tissue. 
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Figure 38. Distribution of the bone volume in the 10 BMD category over the follow up 

period. The bone volume is defined using the FE mesh voxel dimensions. The BMD 

categories from 1 to 10 correspond to the color code from Figure 37 (1st category =0 

g/cm3, 10th category 1.12 g/cm3). 

4.4. PART IV.  Integration of the 3DP physical models in spine care 
4.4.1 Comparison of the FDM and DLP 3D printing technologies 

Geometrical differences between the surface meshes printed by the two 3D printing 

methods are represented by the calculated the Hausdorff Distance (HD) values between the 

aligned surfaces (FDMsup, FDMinf, DLPsup, DLPinf) and the FVM (Table 20).  
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Table 20.  The HD measurement represents the difference between the aligned/registered 
surfaces and the input geometry for 3D printing (FVM) 

I1 I2 
T1 T2 T1 T2 

HD (mm) HD (mm) HD (mm) HD (mm) 
min max mean RMS min max mean RMS min max mean RMS min max mean RMS 

FDMsup 0.00 0.82 0.11 0.14 0.00 0.81 0.17 0.23 0.00 0.68 0.13 0.16 0.00 1.05 0.27 0.35 

FDMinf 0.00 0.85 0.23 0.28 0.00 0.56 0.13 0.15 0.00 0.64 0.16 0.19 0.00 0.73 0.22 0.26 

DLPsup 0.00 1.29 0.20 0.26 0.00 1.33 0.18 0.23 0.00 1.25 0.20 0.24 0.00 1.28 0.18 0.22 

DLPinf 0.00 1.58 0.21 0.29 0.00 1.43 0.19 0.23 0.00 1.67 0.17 0.24 0.00 1.68 0.16 0.22 

 The mean HD between two surfaces is defined as the surface integral of the distance divided by the area 
of the compared surface (FDMsup, FDMinf, DLPsup, DLPinf). I₁= firs investigator, I₂= second investigator, 
T₁= firs measurement, T₂=second measurement, HD= Hausdorff Distance, RMS= root mean square 

 The distribution of the HD values along the vertebral surface meshes provides 

evidence for high accuracy (Figure 39, Figure 40). However, ‘critical points’ with higher 

HD values are revealed (red in Figure 39): the vertebral endplate in case of the FDM 

technique (superior surface: I1T2, I2T2; inferior: I1T1); the spinous process and the inferior 

articular processes in case of the DLP technology. The fact that, these higher HD values are 

not present in all segmentation processes (investigators and time points), indicates that it is 

probably a registration error and not a flaw of the printing technologies. The distribution of 

the HD values were indeed dependent on the investigators and the measurement time point 

(I1vsI2:  FDMsup, FDMinf, DLPsup, DLPinf, Two-sample Kolmogorov–Smirnov test, for the 

measurement time point T1vsT2:  FDMsup, FDMinf, DLPsup, DLPinf, Two-sample 

Kolmogorov–Smirnov test, p < 0.01). Nevertheless, ~99% of HD values were <1mm and 

~80% <0.4 mm for all measurements (Figure 40), which according to the literature [95],[96] 

is an admissible difference and indicates that the geometry of the FVM model was printed 

correctly with both techniques. To compare the quality of the surfaces that provide the tactile 

experience during surgical planning we measured the surface roughness (SR) of the FDM 

and DLP printed physical models’ surfaces. We chose two ROIs from both, FDMsup and 

DLPsup, surface meshes: one plain like and one highly curved structure, the superior vertebral 

endplate and the superior part of the pedicle, respectively. 
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Figure 39. Comparison of the surface meshes of the 3D printed models to the input geometry. A-

D distribution of Hausdorff Distance (HD) values between the aligned (I1T2, I1T2, I2T1, I2T2) surface 

meshes, derived from 3D scanning of the 3D printed models and the input geometry for the 3D 

printing process. (A, C) superior and (B, D) inferior surface mesh of the FDM and DLP printed 

models, respectively. The distribution of the measurements (I1, I2, T1, T2) across the FDMsup, 

FDMinf, DLPsup, DLPinf groups was significantly different (Independent Samples Kruskal-Wallis 

test, p <0.01). I, number of the investigator; T, timepoint of the measurement. 
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Figure 40. Distribution of HD values between the surface meshes of the 3D printed models 

and the input geometry. A-D cumulative probability plots of HD values for (A, C) superior 

and (B, D) inferior surface mesh of the FDM and DLP printed models, respectively. 

Approximately 99% percent of HD values are <1 mm and ~80% <0.4 mm for all 

comparisons. The distribution of the HD values are dependent from the investigator (I1vs 

I2: FDMsup, FDMinf, DLPsup, DLPinf, Two-sample Kolmogorov–Smirnov test, p < 0.01) and 

from the measurement time point (T1vsT2: FDMsup, FDMinf, DLPsup, DLPinf, Two-sample 

Kolmogorov–Smirnov test, p < 0.01). I, number of the investigator; T, time point of the 

measurement. 
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We found that the SR values of the surface meshes of the FDM printed model were 

significantly larger compared to the DLP printed model for the endplate ROI (Two-sample 

Kolmogorov–Smirnov test, p ≤ 0.01), and in the case of the pedicle ROI (Two-sample 

Kolmogorov–Smirnov test, p ≤ 0.01) (Figure 41).  

However, the roughness values are relatively small on the entire ROI surfaces (Figure 

42), with ~99% of the SR values being < 0.05 mm for the DLP printed model, and ~99% < 

0.1 mm for FDM model in the case of the endplate. In the case of the pedicle ROI ~99% of 

SR values are < 0.09 mm for the DLP and for FDM model. 

1

Figure 41. The surface roughness of the two 3D printed models is different. A-F roughness 

of FDMsup (D, E, F) is greater compared to DLPsup (A, B, C Two-sample Kolmogorov–

Smirnov test, p ≤ 0.01) for the endplate (A, D kernel set to 1.5 mm) and pedicle (B, E, C, 

F different views, respectively; kernel set to 0.6 mm) surface geometries (vertebra, view 

orientation; red, ROI). Scale bar A, C, D, F 10 mm; B, E 7 mm. 
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Figure 42. Distribution of Surface Roughness (SR) values for the FDM and DLP printing 

technology. A-B cumulative probability plots of SR values for the two region of interest ROI, A 

endplate and B right pedicle surface of the FDM and DLP printed models, respectively. In A ~99% 

percent of SR values are < 0,05 mm for the DLP printed model, and ~99% < 0.1 mm for FDM 

model. In B ~99% percent of SR values are < 0,09 mm for the DLP and for FDM model. 

4.4.2. Clinical implementation of a physical model printed with FDM technology 

We present a case of a 12-year-old patient suffering from congenital scoliosis due to 

an LI hemivertebra. During examination, the patient complained about back pain and fatigue; 

the physical examination did not reveal any sensorimotor deficits. In spite of conservative 

treatment (physical therapy, brace for two years), the clinical and radiological signs 

suggested progression Figure 16 (COB angle 67° in coronal plane, and 90° kyphotic 

deformity in the sagittal plane); therefore, surgical treatment was indicated. A corpectomy 

and stabilization surgery from Th.IX to L.IV was planned. 
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Figure 43. Application of the FDM 3D printed model in the surgical planning process in 

congenital scoliosis. A The segmented 3D geometry (triangulated surface mesh) of the 

thoraco-lumbar junction (L.I hemivertebra) in anterior and posterior view. B 3D printed 

physical model of the same thoraco-lumbar section as in A. C titanium rods were 

introduced in the pedicle, in the optimal axis of the screw insertion, as planned for the 

surgery. D internal grid structure of the FDM model with the inserted titanium rod (axial 

CT scan). E-F postoperative standing X-rays shows the screws (correction and 

stabilization from Th.IX to L.IV with Mesh cage) inserted in the correct position, helped 

by the visual guidance provided by the rods inserted in the physical model. 

The virtual model of the Th.XI-L.III vertebrae (Figure 43A) was integrated in the 

clinical communication via a 3DPDF document (see Materials and methods), which provided 

access to its 3D content through the institutional database. Beingassisted by the patient 

specific 3D virtual model, the surgical team opted for a corpectomy and stabilization from 

Th.IX to L.IV. Our studies on FDM and DLP technologies revealed that the geometrical 

accuracy and surface qualities of the FDM printed models are adequate (HD, SR <1mm) and 

because its affordability, we chose to print our model with the FDM 3D printing technology. 

We used the physical model (1:1 scale) for surgical planning, namely to precisely define the 

trajectory and angle of the transpedicular screw insertion at the Th.XII and L.II levels (Figure 
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43B, C). During drilling, the internal grid structure of the FDM model supported the drill bit 

and allowed the precise insertion of guidance titanium rods (Figure 43D). The rods, due to 

their length, were protruding and indicating clearly the ideal axis of the screw insertion 

(Figure 43C). As a result of the visual guidance during the operation, we were able to find 

the optimal axis of the screw insertion and perform the planned surgery successfully (Figure 

43E).  

4.5. PART V. Affordable surgical navigation using 3D printing and FEA 

4.5.1 Navigation template geometrical accuracy and performance 

In this part of my thesis a clinical case was used to present a technology development process 

in order to create a patient- specific drill template in a complex clinical case, in which a 

broken screw causes geometrical difficulty for new screw insertion. In order to safely insert 

the new screw, without compromising the local bone structure we developed a virtual 

surgical plan based on the QCT of the patient. This allowed us to test two different screw 

positions in the model and to design a drill template for safe screw insertion at the level of 

the first sacral vertebra with a geometrical difficulty caused by a broken screw from a 

previous surgery. The investment casted cobalt-chrome drill template retains the geometrical 

properties of the pattern (3D printed drill template model created with MSLA technology) 

based on the 3D scanning evaluation (Figure 44).  
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Figure 44. 3D scanning based geometrical accuracy measurement. Cobalt-chrome 

investment casted navigation template’s geometrical accuracy compared to the 3D printed 

navigation template model created with MSLA technology. The colour map (Scale; min=-

1 mm, max=1 mm) shows the geometrical difference, projected on the 3D printed 

navigation template triangle based mesh model vertices (A ventral view, B dorsal view). 
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Figure 45. Alignment accuracy evaluation of the drilled patient specific physical and 

virtual sacrum model. (A, B, C, D) Surface mesh of the patient specific physical model 

and the drill bit (2.4 mm diameter) in S1 position (A, B) and ALA position (C, D)  

registered (rigid registration, point based + global registration) to the segmented patient 

sacrum derived from the QCT (Figure 18).  
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To evaluate the drill guide performance a 3D printed patient specific physical model 

was used. The physical model with the two drilling orientation was scanned with CT, then  

segmented and aligned to the virtual surgical plan (Figure 22, Figure 45). The drill guide 

provides a highly accurate screw insertion in both investigated positions (Figure 46). The 

cylinders representing the drilling axes were not perfectly colinear and coincident with the 

screws in the virtual surgical plan, but it can provide grade A (Gertzbein-Robbins scale) 

screw insertion.  

Figure 46. Visualization of the navigation template compared to the virtual plan. The red 

cylinders represent the drill bits’ axes in the (A) convergent position (S1) and (B) divergent 

position (ALA), based on the evaluation performed on the patient-specific physical model. 

The broken and the implanted screw geometries are part of the virtual surgical plan based 

on the patient’s QCT. 

4.5.2. FEA results 

In the presented workflow two possible screw insertion scenarios were investigated in a 

patient-specific FE model by integrating the individual geometry and bone material 

properties based on QCT. Nine models were created for each screw insertion scenario (N=9, 

S1 and N=9, ALA) with increasing element numbers based on the virtual surgical plan. The 
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FE simulation results converged above 2*105 elements for both screw insertion scenarios at 

~ 5 min solve times on 2 cores. The solve time at 2 cores for the S1 orientation was higher 

compared to the ALA (Figure 47A). The convergent bicortical screw insertion (S1) provided 

a stiffer position compared to the monocortical divergent screw position (Figure 47B). 

Figure 47.  FE simulation results. (A) Convergence analysis for the average U, 

displacement magnitude (nodes of the middle 1/3 of the screw head) in convergent (US1) 

and divergent (UALA) screw positions at different mesh element numbers. Solve time 

distribution (right) at different mesh element numbers (convergent (TS1) and divergent 

(TALA) screw positions). (B) The convergent screw insertion (S1) is stiffer 

(6617.23±1106.24 N/mm) compared to the divergent (ALA) insertion (2989.07±N/mm). 

4.5.3. Proposed surgical technique 

Based on our FEA results, the S1 screw insertion’s surgical plan and drill template 

position is recommended for surgical implementation. We introduced a surgical technique 

for the screw insertion with the developed drill template (Figure 48). The technique uses a 

cannulated screw and tap, where the developed drill template supports a stainless-steel 

cylinder inlet to guide the drill bit and the Kirschner-wire. 
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Figure 48. Proposed surgical technique for the safe and accurate screw insertion in 

convergent position. (A) transparent surface mesh of the patient sacrum with the broken 

screw. (B) section plane dimension and orientation, and drill guide position on the sacrum. 

(C) stainless steel cylinder inlet connected to the guide for the drill bit. (D) stainless steel

cylinder inlet connected to the guide for the Kirschner wire. (E) the inlet cylinder and the

guide are removed, the Kirschner wire position is unchanged. (F) a cannulated tap is

introduced along the Kirschner wire. (G) a cannulated pedicle screw is introduced in the

sacrum along the Kirschner wire. (H) final position of the screw. (I) transparent surface

mesh of the sacrum with the broken and convergently inserted pedicle screw geometry.
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5. DISCUSSION

5.1. PART I. Need for 3D technologies among spine surgeons 

Our survey research reveals a genuine interest in 3D technologies among spine 

surgeons on a global scale, which is emphasized by answers to questions related to the role 

of these technologies. Only 2.1% of the responders chose the answer: „no real future – too 

complicated and expensive”; and related to limitations to frequent use only a small minority 

of 1.4% chose the option „I am not interested in these technologies”. Although the high 

financial demand topped among the barriers in front of frequent use of 3D modeling/printing, 

navigation, and advanced manufactured implants, it is important to note that these services 

and the technology itself has recently become less and less expensive. The decline in costs is 

expected to continue due to the continuous and fast development  [67], [68], [69]. The 

appearance of several open-source software also reduces the required investments. Therefore, 

it is important to draw attention of the global spine surgeon community to the application of 

3D technologies in everyday clinical practice and education, which  does not necessary 

require significant financial investment. In case of the intraoperative navigation, the 3D 

printed patient-specific surgical guides are accurate [62], [63], and can be more accessible as 

traditional CT or fluoro-based systems [65], [66]. The lack of knowledge is an indisputable 

problem with several sources; little use of these technologies in education, incomplete 

information from media reports, growing but “hidden” body of scientific evidence. In 

addition, selection of the option „no or limited access to 3D modeling software” in high ratio 

demonstrates the disinformation of the paricipants since there are several user-friendly open-

source or commercially available softwares. The use of these softwares requires some 

training, therefore establishing educational forums for surgeons is a necessity. These, 

educational events can also serve as an access platform to knowledge related to 3D 

technology and as an interaction platform with engineers for sharing the experience and 

starting collaborations. 

The positive correlation between the attitude towards these technologies and the HDI 

of the country of origin highlights the role of education, economic environment and the 

developmental state of the healthcare system. The fact that the years of experience and 
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specialty of spine surgeons does not influence the level of acceptance raises the possibility 

of applying the technology within the whole professional community. 

5.2. The importance of the 3D technologies in the investigation of surgical techniques 

5.2.1. PART II. 3D geometrical change of the spinal canal after PCD 

PCD is an MIS option to reduce low back pain caused by severe disc degeneration 

especially in elderly. The actual volumetric change and decompressive effect of the 

procedure was not quantified previously because of the lack of an appropriate 3D method. 

PCD is not the only a surgical procedure where the clinical effect is – at least partly – related 

to the indirect decompression of the spinal canal. A recent study by Navarro-Ramirez et al 

2018 [97] reveals the usefulness of advanced computational methods by demonstrating that 

volumetric analysis of the anatomical change can predict better the clinical outcome of 

Extreme Lateral Interbody Fusion (XLIF) compared to conventional 2D methods [98] [99]. 

The highly accurate method described in the present study provides an exact and feasible 

option for the quantitative analysis of the 3D changes of the spinal canal after the different 

fusion techniques. The new approach for the assessment of the effect of the different 

techniques can provide the possibility for the evidence-based comparison 

method/methodology. 

We found that PCD resulted in a significant increase of the spinal canal 3D 

dimensions and as such provided a clinically important indirect decompression effect. The 

injected PMMA distribution in the intervertebral space influences the decompression 

volume, with higher volume, larger surface and lower surface-volume ratio a greater 

decompression can be achieved. PCD procedure improves the disability and pain intensity of 

the patients. At 6-month follow-up we measured a 24 points improvement in ODI, 16 points 

in LBP, and 14 points in LP respectively which is a more than the minimal clinically 

important changes in ODI and VAS [100]. The pain relieving effect of the procedure 

significantly correlated with the measured volumetric change of the spinal canal (ie. the 

indirect decompression). This also indicates a volume dependent improvement of patient 

symptoms, with a higher injected PMMA volume resulting in better patient outcome. 

Disability was not associated with this parameter, indicating that the functional capacity of 
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the patient is a multidimensional feature also influenced by patient’s lifestyle, general health 

status, other comorbidities, etc. 

The present study provided scientific evidence on the indirect decompression effect 

of the PCD procedure due to the application of a novel computational method, however, there 

are some possible limitations of the study and the explanation of our results. Despite the fact, 

that the measurement and simulation method showed high accuracy and repeatability, we 

cannot exclude that more complex local anatomical variations can influence the application 

of the method. The external validation of the published measurement method even in another 

patient group would be also desirable. The change of clinical symptoms (ie. pain) and 

especially the disability are multifactorial features, so we could not precisely determine the 

direct effect of the indirect decompression. PCD is expected to also increase the 

biomechanical stability of the motion segment, which in itself can also provide pain relief 

and improved function. Further biomechanical, computational researches as well as large, 

multicenter cohort studies are required to clarify these open issues.  

5.2.2. PART III. Nonrigid reconstruction of the lumbo-sacral junction using the 

“Closed Loop” technique 

The Closed Loop reconstruction technique can provide excellent locomotor outcomes 

after total sacrectomy, similar result was demonstrated by Smith et al. [101], however, gait 

evaluation of this patient group is under published in the literature. The fact that the patient 

was able to walk resulted a periodic cyclical loading of the construct. Clark and his colleagues 

[102] compared 3 spinopelvic reconstruction techniques under gait-simulating fatigue

loading and sagittal alignment failure on cadaveric specimens. Despite the complex gait like

loading, the experiment’s limitation (cadaveric specimen) does not take in consideration the

bony fusion process only focus on the primer stability of the construct. In the scientific

literature the cadaveric experiments or the FEA investigations proceed in the same way by

investigating the primer stability of the constructs

In the present study, we developed a method for implant deformation investigation 

using postop CT scans collected over 6 years follow-up period of a patient who underwent 

sacrectomy and Closed Loop reconstruction. We were able, not only to demonstrate the non-
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rigidity of the construct by measuring the geometry deformation over the FU, but we mapped 

bone remodeling at the fusion site (lumbar spine - two iliac bone) as well. Significant 

associations were found between the sagittal plane deformation and the postop days, resulting 

in a forward bending tendency of the construct.  

According to Frost's mechanostat theory [103],[104] bone growth and bone loss is 

stimulated by the local mechanical elastic deformation of bone. Effects of implant construct 

stiffness on healing of fractures in case of long bones stabilized with internal fixation has 

been widely investigated [105],[106] , and it is known that too stiff constructs leads to non-

union [107],[108],[109],[110]. In case of a posterior spinal fixation the stiffness of the 

implant rods (titanium alloys, stainless steel, cobalt-chromium–based alloys) can differ 

[111]. Load sharing that occurs with spinal implants results in decreased load through the 

stabilized vertebral body, thus strain is reduced in the bone of the vertebral body, which leads 

to bone mineral loss [111],[112]. The advantage of dynamic or non-rigid rods  (exp. PEEK 

roods) is that it is able to reduce stress at the implant-bone interface and therefore does not 

produce stress shielding of the bone graft [113].  

Our results demonstrated the non-rigid character (lower stiffness of the construct by 

using less implant) of the construct by quantifying the deformation over the follow-up period. 

The rod deformations are described in long constructs in the case of idiopathic scoliosis 

([114],[115]) however it has not been investigated in lumbopelvic reconstructions. The 

developed method showed a high accuracy and repeatability, the provided information can 

play an important role in computational investigation of the lumbopelvic reconstructions 

techniques such as Finite Element models by enbending the simulation result in clinical 

context (demonstrating the deformation site of the contsruct to the FEA model). 

The quantification of the bone formation uses the voxel dimensions and the 

Humsfield values of the voxel FE element mesh in the region of interests. The application of 

the mapping method on a large patient group would be desirable, for other reconstruction 

techniques as well.  The optimal, expert opinion based, consensual reconstruction technique 

is not currently defined. The retrospective investigation of different methods based on CT 

scans over long FU (≥2 years) would be important for the better understanding of these 

complex surgical problems and to develop new solutions. The data obtained via this method 
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could be used for FEA models' validation and implant development, especially for 3D printed 

patient specific solutions [116]. 

Patient specific computational methods can provide accurate information about the 

implant construct deformation after sacrectomy, reconstructed with the „Closed Loop” 

technique. Due to its relative simplicity we suggest the application of our measurement 

method for the scientific and clinical analysis of other surgical procedures for the 

reconstruction of the lumbopelvic junction after sacrectomy, and for other clinical scenarios 

where large construct is needed such as idiopathic or degenerative deformity corrections, 

grooving rods systems, etc.  

In the future the digitalisation of the medical field will provide large databases with 

imaging data , this will lead not only to In Silico Clinical Trails [117] but In Silico methods 

for follow up or retrospective analyses would be desirable.  

Hopefully, the surgical treatment for chordomas in the future will be less aggressive 

and will have a tertiary role in the treatment, giving more space for molecular target-based 

drugs, combined with radiotherapy [118],[119]. The natural evolution of the chordoma 

treatment may result to the disappearance of the complex en-bloc resection by performing 

sacrectomy. The data collected about this rare patient population who underwent sacrectomy 

are highly valuable in the understanding of the pathology and physiology of the 

musculoskeletal system.  

5.3. Application of 3D printing in spine care 

5.3.1. PART IV. 3D printed physical models 

Patient specific tangible, 3D printed physical models can improve surgical 

performance and outcome, compared to the sole on-screen inspection of the virtual models 

[120]. The first step in the medical image processing for the 3D printing is the segmentation 

method. The accuracy of this procedure is influenced by the resolution and the slice thickness 

of the 2D CT image series used for the segmentation [95]. In our institution the minimum 

criteria for the printing process is 512x512 pixel matrix resolution, and a maximum slice 

thickness of 1.3 mm. Manual editing is another potential source of error in the segmentation 

processes. For complex cases with severe deformations resulting in unique geometries, the 
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automatic or semi-automatic processes are not always adequate and therefore manual editing 

is inevitable. A solution to this issue is offered by the possibility of quantifying the 

segmentation accuracy using the inter-investigator DSI. According to the literature a DSI 

value of >0.85 is preferable [121],[91]. In this study the DSI value was 0.96, indicating that 

the segmented geometry of the LIV geometry represents accurately the anatomy of the 

vertebrae. Before printing, additional steps of the image processing are necessary to obtain 

high quality models. The surface mesh quality of the segmented geometry must be inspected 

for e.g. irregularities, holes, overlapping edges. In order to minimize the geometrical 

distortions, the following remeshing and optimization must take the preservation of the 

contour into consideration . 

Once an accurate model of the vertebral geometry is achieved in STL format we 

propose a strategy of choosing any of the available 3D printing services, that the resources 

of a hospital permit. Our reasoning is that without an optimal, continuous utilization (not 

feasible in a hospital) of an in-house printing facility, its maintenance cost is a financial 

burden for the healthcare providers. Moreover, the technical parameters of a chosen in-house 

machine might not be adequate for all purposes, and therefore could potentially limit or 

define the projects or patients who can benefit from these technologies. In contrast, our 

strategy of choosing an available service, based on the predefined expectation on the 

geometrical accuracy, permits the most cost-effective choice for each case individually. Our 

comparison of an entry level, low cost (FDM) and a high category, expensive and highly 

precise (DLP) technologies provides evidence that a cost-effective technology can be more 

than suitable for patient specific 3D printed spine physical models. Final vertebral model 

(FVM) printing parameters with FDM technology: printing time: 343 min, total cost 198 € 

(euro), printing material cost 1 €/cm3. Spine TXI-LIII model printing parameters with FDM 

technology: printing time: 660 min, total cost 336 €, printing material cost 1 €/cm3. FVM 

printing parameters with DLP technology: printing time: 294 min, total cost 355 € (euro), 

printing material cost 3.2 €/cm3. Spine TXI-LIII model printing parameters with DLP 

technology: printing time: 353 min, total cost 605 €, printing material cost 3.2 €/cm3. 3D 

printing machines. The size of surface irregularities, even though somewhat larger for the 

FDM model, are tactually adequate for providing the surgeon with a tangible physical model 
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during surgical planning, therefore the advantage of superior printing precision of the more 

expensive DLP models is lost.   

5.3.2.  PART V. Affordable 3D printed patient-specific surgical navigation template 

The concept of a patient-specific navigation template was first introduced by 

Radermacher et al. [122], who proposed a new navigation solution for the lumbar spine, hip 

and knee joint surgical procedures [122],[123]. The method used milling machine to 

manufacture the templates from polycarbonate. Due to the advances in 3D printing and 3D 

modelling technologies, the use of the individualised templates became more widespread 

[64], [124],[125],  and it made an accurate and precise choice for navigational challenges 

[126]. 

The present study demonstrates the accuracy and applicability of the developed 

workflow which allows the creation of an affordable, metal individualized navigational 

template by integration FEA in the design and surgical planning process. The integration of 

FEA in the pedicle screw intraoperative navigation was investigated by Abbeele M. et al. 

[127],  however the application of FEA in the design process of a navigational template in 

spine surgery by integrating the patient bone mineral density related material properties is 

new. The results of the simulations showed that the convergent S1 insertion is significantly 

stiffer than the divergent ALA insertion. This finding is supported by cadaveric experimental 

studies [128], [129] and clinical experience as well [130]. The biomechanical difference of 

the convergent and divergent insertions relies on the differences in the local bone mineral 

densities [131]. 

The combination of the 3D printing technology and cobalt-chrome casting makes the 

manufacturing process more affordable. Investment casting of cobalt-chrome is a widely 

used technology in dental laboratories [132]. 3D printed patterns for casting is an accepted 

method in dentistry [132], [133]; however, its application in spine surgery navigational 

templates is novel. The production of individualized metal navigational templates for screw 

insertion can be achieved via selective laser sintering 3D printing technology of titanium-
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based alloys [134] , but at a higher cost and lower accessibility compared to dental casting. 

Metal templates are robust, resistant to damage and can also be easily autoclaved [134]. 

It is widely accepted in the literature to use cadavers for testing, evaluating the fitting 

accuracy of a navigational template [135]. FDM technology can produce geometrically 

accurate spine physical models [136] and the different designs can be tested as well as the 

drilling accuracy can be evaluated. The use of FDM models for design process evaluation 

and development is advantageous due to the possibility to include retrospective patient 

imaging data with complex anatomical/geometrical variation (deformities, tumours, etc.) 

which is extremely difficult to control and integrate in the case of cadaveric specimen studies. 

According to the Gertzbein-Robbins scale [137]  the template theoretically allows an accurate 

(grade A) screw insertion (Figure 46). The suggested screw insertion surgical technique uses 

the philosophy of the minimally invasive pedicle screw insertion techniques (MIS) by using 

a Kirschner wire, cannulated tap and a pedicle screw. This technique can easily be performed 

by any spine surgeon familiar with MIS pedicle screw insertion. 

Limitations of this study include the fact that the developed template is presented 

using a single case, however the workflow can be applied for different parts of the spine with 

different geometrical difficulties/pathologies. The presented FEA models’ loading conditions 

are simplified as well as the material property assignments; more complex FEA 

investigations would be desirable. In the future, a randomized study of specific subtypes of 

spinal pathologies (tumours, deformities, etc.) with a larger sample size would be preferred 

to demonstrate the clinical efficacy and cost-effectiveness of the developed methodology. 
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5.4. Future plans for the application of the In Silico Biomechanical methods 

The presented parts (I, II, III, IV, V) in my thesis demonstrate our institutional effort 

to integrate novel tools, techniques, and methods from the field of In Silico Medicine in the 

process of spine surgery related innovations. During my PhD years I had the opportunity to 

participate in a scientific collaboration between National Center for Spinal Disorders and the 

INSIGNEO Institute for in Silico Medicine, Department of Mechanical Engineering, The 

University of Sheffield, United Kingdom.  

The need for this collaboration was based on the experience that the clinical 

assessment of risk of vertebral fracture in patients with lytic metastases is based on the Spinal 

Instability Neoplastic Score (SINS) [138],[139], which however in many cases does not 

provide clear guidelines. The joint effort made possible to perform a study [140], with the 

aim to develop a computational approach to provide a comparative biomechanical 

assessment of vertebrae with lytic lesions with respect to the adjacent controls and highlight 

the critical vertebrae.  

The study used CT images of the thoracolumbar spine of eight patients suffering of 

vertebral lytic metastases with SINS between 7 and 12 (indeterminate unstable) were 

analysed. For each patient one or two vertebrae with lytic lesions were modelled and the 

closest vertebrae without lesions were considered as control. Metastatic and control vertebrae 

(N = 12, N = 18 respectively) were converted to subject-specific, isotropic, heterogeneous, 

nonlinear finite element models for simulating uniaxial compression. Densitometric and 

mechanical properties were computed for each vertebra. In average, similar mechanical 

properties were found for vertebrae with lytic lesions and controls (e.g. ultimate force equal 

to 6.2 ± 2.7 kN for vertebrae with lytic lesions and to 6.2 ± 3.0 kN for control vertebrae). Only 

in three patients the vertebrae with lytic lesions were found to be mechanically weaker (−19% 

to −75% difference for ultimate stress) than the controls [140]. Significant correlation 

between BMC (bone mineral content, g) and BMD (bone mineral density, g/cm3) and the 

computed structural and normalised structural mechanical parameters were found, however, 

no significant correlation was found between SINS values and mechanical properties (Figure 

49).  
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Figure 49. Results from the computational models (A, B) and the SINS (C). Linear 

regressions between BMC (A) and BMD (B) and structural and normalised structural 

mechanical parameters. Regression equations are reported for vertebrae with lesions (red), 

control vertebrae (black) or pooled data (grey). No significant correlation was found 

between SINS values and mechanical properties (C).  Figure from Costa, M. C., Eltes, P., 

Lazary, A., Varga, P. P., Viceconti, M., & Dall’Ara, E. (2019). Biomechanical assessment 

of vertebrae with lytic metastases with subject-specific finite element models. Journal of 

the mechanical behavior of biomedical materials, 98, 268-290. 

The developed method underlines the need for tools that can be combined or 

integrated in the clinical scoring or classifications systems for a more accurate, patient-

specific prediction of the current risk of fracture for vertebrae with lytic metastases. This 

study has the potential to offer for the clinicians a more accurate follow up data by capturing 

the mechanical properties of the lithic vertebra compared to normal or previous 

measurements. The future of in Silico Medicine not only offers In Silico clinical trials [117], 

but In Silico follow-up tools, methods as well, to evaluate the efficacy of treatments, or 

devices. 
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6. CONCLUSION

Based on the result of the survey research we can delineate tasks that are crucial for 

the further development and for the large-scale spinal application of 3D technologies. The 

clarification of the clinical cost-effectiveness of the technology is fundamentally requiring 

further clinical research projects with the active participation of spine surgeons. Spine 

surgeons should take part in the whole process not only as end-users but they have to be 

involved in the R&D steps as well. An optimal interdisciplinary work between researchers, 

engineers, and clinicians in order to develop and deliver new treatment possibilities through 

innovation can be supported by research funds but also facilitated by the active involvement 

of the med-tech industry. Another important task is the education and know-how delivery 

which has to be successfully implemented through educational events. Since the mission of 

the AOSpine is to advance science and spine care through research, education, and 

community development we invite members to initiate projects focusing on the sharing of 

the know-how of 3D technologies, taking into account the regional needs and differences. 

Patient-specific computational methods provide accurate information about the 

unique and complex geometrical/anatomical relations due to intervertebral disc degeneration. 

In my thesis in Part II the 3D geometrical change of the spinal canal and the indirect 

decompression effect of a minimally invasive surgical procedure (PCD) was investigated 

with a new, computational 3D volumetric measurement method. Significant associations 

with the indirect decompression and the clinical improvement have been explored. Due to its 

relative simplicity we suggest the application of our measurement method for the scientific 

and clinical analysis of other surgical procedures based on indirect decompression effect such 

as anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), oblique 

lumbar interbody fusion (OLIF), extreme lateral interbody fusion (XLIF).  

Computational methods can provide accurate information about the implant construct 

deformation after sacrectomy, reconstructed with the „Closed Loop” technique. In Part III of 

my thesis, I developed a method for implant deformation investigation using the postop CT 

scans collected over 6 years’ follow-up period of a patient who underwent sacrectomy and 

Closed Loop reconstruction. The method was able, not only to demonstrate the non-rigidity 

of the construct by measuring the geometry deformation over the FU, but mapped the bone 
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remodelling at the fusion site (lumbar spine-two iliac bones) as well. Significant associations 

with the sagittal plane deformation and the postop day were found, resulting in a forward 

bending tendency of the construct. Due to its relative simplicity, we suggest the application 

of the developed measurement method for the scientific and clinical analysis of other surgical 

procedures for the reconstruction of the lumbo-pelvic junction after sacrectomy, and for other 

clinical scenarios where large construct is needed such as idiopathic or degenerative 

deformity corrections, grooving roods systems, etc. Data obtained via this method could be 

used for FEA models' validation and implant development. 

In Part IV and V of my thesis, I was investigating the clinical application of 3D 

printing technology with the use of image processing, 3D scanning, computer aided design 

finite element method.  

Testing the accuracy of entry level (lower cost) 3D printing technologies, that are 

locally available on the healthcare market, is important for every clinician using such 

methods in surgical planning or education using 3D printed physical models. In Part IV of 

my thesis, it has been proven that a more cost-effective technology is sufficiently precise in 

the case of 3D printed physical models of the spine. If other less expensive technologies can 

similarly be proven to be adequate for several purposes, than the cost of 3D printing 

technologies can be reduced to a level that is not only acceptable for healthcare systems but 

will promote their widespread use. 

The developed patient-specific template presented in Part V of my thesis for pedicle 

screw insertion allows surgeons to insert the screw into its optimal position. Its advantages 

compared to the conventional surgical navigation techniques are the relatively low cost, and 

the potential to reduce the intraoperative X-ray exposure and the possibility for the 

consideration of the patient-specific bone geometry and biomechanics. This new patient- and 

condition-specific approach can be widely used in revision spine surgeries or in challenging 

primary cases after its further clinical validations. 
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7. SUMMARY

The general aim of my Ph.D. work was to investigate the implementation of In Silico 

Biomechanical Methods in Spine Surgery Innovations.  

The first part of my thesis in a survey based study (Eltes et al., 2019) in which I 

answered the question of what determines the acceptance rate and the factors which stand 

against the widespread usage of the 3D technologies in spine surgery. Investigation of these 

problems defined a global context regarding 3D technologies in spine surgery.  

 In the second and third parts of my Ph.D. work, I investigated two surgical methods 

the Percutaneous Cement Discoplasty (PCD) and the Closed Loop lumbopelvic 

reconstruction technique via the application of 3D technologies. In part two a generalizable 

procedure based on patient-specific 3D computational, volumetric measurements to evaluate 

the geometrical change of the spinal canal after PCD treatment was successfully developed. 

In part three a generalizable method based on patient-specific 3D geometries derived from 

CT scans was developed to investigate the implant construct deformation over a 6-year 

follow-up period for a patient who underwent sacrectomy and the Closed Loop technique for 

lumbopelvic reconstruction.  The two methods not only provide unique information about 

the surgical methods which currently are not available via conventional 2D radiological 

methods, but it can be applied to investigate other surgical techniques as well. 

The global perspective on the attitude of the spine surgeons towards the application 

of 3D technologies given by the survey study raises the need for strategies to implement 3D 

printing and finite-element analysis in the clinical environment in an affordable way. Part 

four of my thesis addresses the need for the application of affordable 3D printed physical 

models by developing a method for geometrical accuracy evaluation for different types of 

3D printing technologies (Eltes et al., 2020). Part five of my thesis addresses the clinical need 

for the development of computer aided design and finite-element analysis combined method 

for affordable spine surgical navigation with a 3D printed customized drill guide to allow 

safe pedicle screw insertion in challenging situations. 

 In my thesis, I deliver in five thematic parts a detailed, comprehensive way for the 

aimed implementation of the In Silico Biomechanical Methods in Spine Surgery Innovations 

in the spirit of the Stanford Biodesign Process.  
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8. ÖSSZEFOLGALÓ

Ph.D. munkám általános célja az In Silico Biomechanikai módszerek integrálása a 

gerincsebészettel kapcsolatos innovációk folyamatába.  

Dolgozatom első részét egy kérdőív alapú felmérésre épülő tanulmány képezi 

(Eltes et al., 2019) melyben egy globális kontextusban értelmezhető és azonosítható a 3D 

technológiák gerincsebészetben történő alkalmazásának igénye, illetve limitációja.  

A dolgozat második és harmadik részében két műtéti technikát, a Perkután Cement 

Diszkoplasztikát (PCD) és a Closed Loop lumbopelvicus rekonstrukciós technikát 

vizsgáltam a 3D technológiák alkalmazásával. A második részben egy beteg-specifikus 3D-

s számítógépes, volumetriai méréseken alapuló, eljárást dolgoztam ki a PCD kezelés hatására 

létrejövő, a gerinccsatorna geometriai változásának a meghatározására. A harmadik részben 

egy sacrectomián átesett beteg 6 éves után követése során készült CT-vizsgálatok felvételeit 

felhasználva, 3D geometriákon alapuló, módszert fejlesztettem ki a Closed Loop 

implantátum konstrukció deformációjának meghatározására.  A két módszer nemcsak a 

vizsgált műtéti módszerekről ad egyedi információt, hanem alkalmazhatók más műtéti 

technikák vizsgálatára is. 

 A gerincsebészek 3D-technológiák alkalmazásával kapcsolatos hozzáállásának 

globális perspektívája, felhívja a figyelmet a 3D nyomtatás és a véges elem analízis klinikai 

környezetben történő megfizethető módon történő alkalmazásának szükségességére. 

Dolgozatom negyedik része a megfizethető 3D nyomtatott fizikai modellek alkalmazásának 

stratégiájával foglalkozik, egy geometriai pontosságot meghatározó módszer kidolgozásával, 

melynek segítségével különböző árkategóriajú nyomtatási technológiák hasonlíthatok össze 

(Eltes et al., 2020). Dolgozatom ötödik részében a számítógépes tervezés és a véges elem 

analízis módszerének együttes alkalmazásával létrehozott fejlesztési folyamat 

eredményeként megvalósuló, megfizethető, egyénre szabott gerinc műtéti navigációs 3D-s 

nyomtatott eszköz kerül bemutatásra, amely lehetővé teszi a transpedikuláris csavar 

biztonságos behelyezését kihívásokkal teli helyzetekben. 

 Dolgozatomban részletes, átfogó módszereket mutatok be öt tematikus részben az 

In Silico Biomechanikai módszerek célzott, gerincsebészeti innovációk során történő 

alkalmazására, a Stanford Biodesign folyamat szellemében. 
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