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SUMMARY 

 

Nowadays, polymers are used in various parts of life, and it can be said that polymers have become an 

integral part of the industry. Epoxy monomers have several three-membered rings consisting of an oxygen 

atom joined by single bonds to two adjacent carbon atoms. Epoxy polymers are one of the most widely 

used polymers in various sectors such as automobiles, coatings, semiconductor encapsulants, paints, 

adhesives, and aerospace. They possess interesting properties such as dimensional stability, chemical 

resistance, dimensional stability, excellent mechanical strength, and toughness. Epoxy monomers usually 

have at least two epoxide functions, while the compounds with one functional epoxide are used as reactive 

diluents.1 

Diglycidyl ether bisphenol A (DGEBA) was introduced in the 1940s as the first commercial epoxy 

monomer. Gradually, epoxy polymers have become a significant category of industrial polymers, and the 

global demand for epoxy polymers has increased over time.  DGEBA results from the reaction between 

bisphenol A (BPA) and epichlorohydrin (ECH). Nowadays, many efforts are being made to replace 

DGEBA by a biobased source because it is petroleum-based and based on BPA which is toxic.  

Many bio-materials have been presented in the literature as a replacement to DGEBA. However, most of 

them are functionalized with ECH which is a toxic molecule, too.1,2 

Among all biomaterials, limonene dioxide (LDO) can be an interesting candidate. First of all, ECH is not 

used to functionalize this molecule. Also, this molecule originates from limonene, which is an extract 

from the orange peel. LDO is constituted by a mixture of four stereoisomers that do not react in the same 

way. This study attempts to synthesize a new epoxy polymer using LDO as epoxy monomer. Several 

epoxy monomers and two different curing agents were used in a new LDO based formulation, and were 

compared with industrial formulations containing DGEBA.3 

When preparing an epoxy polymer, the time it takes to transform the liquid mixture to solid polymer 

(reaction time) is a critical factor to control. Various catalysts have been proposed to reduce this reaction 

time. These catalysts must be soluble in the epoxy monomer or curing agent, must withstand 

environmental conditions and must not be expensive due to the widespread use of the epoxy polymer. 

Even though many catalysts have been reported for ring-opening of epoxides in solution, only a small 

number of catalysts is useful for the curing of epoxy, especially in the presence of amines.4,5 

The first chapter of this thesis consists in a presentation of the essential theoretical notions in the field of 

epoxy polymer. 
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Chapter 2 presents an article on the use of LDO, as an alternative to BADGE. Different samples 

containing various amounts of epoxy monomers were prepared. The resulting samples were characterized 

by different tests such as swelling test, Dynamic Mechanical Analysis (DMA), and tensile test. The results 

are presented in an article form, which has been submitted to the journal Polymer. 

Chapter 3 presents an article showing that lanthanide dodecyl sulfates (LnDSx) effectively catalyze 

reaction of amines with epoxy functions. It was demonstrated that the new catalysts could be synthesized 

from the reaction between lanthanide salts with sodium dodecyl sulfate. Catalysts were characterized by 

different techniques such as Nuclear Magnetic Resonance (NMR), Fourier-Transform Infrared 

Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS).  

The results of these analyses are presented in an article form, which will be submitted to Chemical 

Communications. 

 

Keywords: Limonene dioxide, Biobased epoxy, Diglycidyl ether bisphenol A (DGEBA) 
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SOMMAIRE 

De nos jours, les polymères sont utilisés dans diverses parties de la vie, et on peut dire que les polymères 

sont devenus une partie intégrante de l'industrie. Les monomères époxy ont plusieurs cycles à trois 

chaînons constitués d'un atome d'oxygène lié par des liaisons simples à deux atomes de carbone adjacents. 

Les polymères époxy sont l'un des polymères les plus largement utilisés dans divers secteurs tels que 

l'automobile, les revêtements, les encapsulants semi-conducteurs, les peintures, les adhésifs et 

l'aérospatiale. Ils possèdent des propriétés intéressantes telles que la stabilité dimensionnelle, la résistance 

chimique, une excellente résistance mécanique et la ténacité. Les monomères époxy ont généralement au 

moins deux fonctions époxyde, tandis que les composés à un époxyde fonctionnel sont utilisés comme 

diluants réactifs.1 

Le diglycidyl éther bisphénol A (DGEBA) a été introduit dans les années 1940 en tant que premiers 

monomères époxy commerciaux. Peu à peu, les polymères époxy sont devenus une catégorie importante 

de polymères industriels, et la demande mondiale de polymères époxy a augmenté au fil du temps. Les 

monomères DGEBA résultent de la réaction entre le bisphénol A (BPA) et l'épichlorhydrine (ECH). De 

nos jours, de nombreux efforts sont faits pour remplacer le DGEBA par une source biosourcée car il est 

à base de pétrole et à base de BPA qui est toxique. 

De nombreux biomatériaux ont été présentés dans la littérature en remplacement du DGEBA. Cependant, 

la plupart d'entre eux sont fonctionnalisés avec ECH qui est également une molécule toxique.1,2 

Parmi tous les biomatériaux, le dioxyde de limonène (LDO) peut être un candidat intéressant. Tout 

d'abord, ECH n'est pas utilisée pour fonctionnaliser cette molécule. En outre, cette molécule provient du 

limonène, qui est un extrait de la peau d'orange. Le LDO est constitué d'un mélange de quatre 

stéréoisomères qui ne réagissent pas de la même manière. Cette étude tente de synthétiser un nouveau 

polymère époxy en utilisant le LDO comme monomère époxy. Plusieurs monomères époxy et deux agents 

de durcissement différents ont été utilisés dans une nouvelle formulation à base de LDO, et ont été 

comparés à une formulation industrielle contenant du DGEBA.3 

Lors de la préparation d'un polymère époxy, le temps nécessaire pour passer du mélange liquide au 

polymère solide (temps de réaction) est un facteur critique à contrôler. Divers catalyseurs ont été proposés 

pour réduire le temps de réaction. Ces catalyseurs doivent être solubles dans le monomère époxy ou 

l'agent de durcissement, doivent résister aux conditions environnementales et ne doivent pas être coûteux 

en raison de l'utilisation répandue du polymère époxy. Même si de nombreux catalyseurs ont été rapportés 
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pour l'ouverture du cycle d'époxydes en solution, et un petit nombre de catalyseurs sont utiles pour le 

durcissement de l'époxy, en particulier en présence d'amines.4,5 

Le premier chapitre de cette thèse consiste en une présentation des notions théoriques essentielles dans le 

domaine des polymères époxy. 

Le chapitre 2 présente un article sur l'utilisation de LDO, comme alternative à BADGE. Différents 

échantillons contenant diverses quantités de monomères époxy ont été préparés. Les échantillons 

résultants ont été caractérisés par différents tests tels que le test de gonflement, l'analyse mécanique 

dynamique (DMA) et le test de traction. Les résultats sont présentés sous forme d'article, qui a été soumis 

à la revue Polymer. 

Le chapitre 3 présente un article montrant que les dodécyl sulfates de lanthanide (LnDSx) catalysent 

efficacement la réaction des amines à fonctions époxy. Il a été démontré que les nouveaux catalyseurs 

pouvaient être synthétisés à partir de la réaction entre des sels de lanthanide et du dodécyl sulfate de 

sodium. Les catalyseurs ont été caractérisés par différentes techniques telles que la résonance magnétique 

nucléaire (RMN), la spectroscopie infrarouge à transformée de Fourier (FTIR), la spectroscopie 

photoélectronique à rayons X (XPS), la spectrométrie de masse à plasma à couplage inductif (ICP-MS). 

Les résultats de ces analyses sont présentés sous forme d'article, qui sera soumis à Chemical 

Communications. 

Mots clés : Dioxyde de limonène, époxy biosourcé, éther diglycidylique bisphénol A (DGEBA) 
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INTRODUCTION 

 

Nowadays, polymers have become an essential part of human life that they have penetrated in all aspects 

of it, including clothing, food, packaging, buildings, etc. Polymers have different properties which 

originate from their molecular structure, so they are classified as linear chain, branched, and networked 

polymers.6 Thermosets are a class of synthetic polymer that molecular chains are connected by cross-

links, creating a network of three-dimensional bonds. Epoxy is one of the most popular thermoset 

polymers. It is made by combining two parts; the epoxy monomers that include prepolymer molecules 

containing more than one epoxide group and the curing agents or hardeners.7 Epoxy polymers are used 

in a wide range of applications because of their designable properties such as reasonable prices, high 

strength, impressive electrical insulation, negligible shrinkage, chemical and solvent stability, ease of 

processing, and excellent adhesion to many substrates. They are applied in many fields such as coatings, 

electrical/electronic laminates, adhesives, aerospace, flooring, and paving applications.8 

 

1.1. Motivation and significance 

 

The properties of epoxy polymer are particularly affected by the choice of hardener and epoxy monomer.9  

Most epoxy monomers on the market are based on petroleum. The concern for global warming and the 

inconstancy of oil prices is pushing businesses to move toward a sustainable economy.  

Nowadays, BADGE is the most commonly used monomer in epoxy formulation.1 It is obtained by 

combining BPA with epichlorohydrin, ECH. BPA is derived from petrochemical resources and it is 

harmful for the human body. BPA affects hormonal activity, which can increase cancerous tumors, and 

birth defects.10 

In developed countries such as Canada or France, they are thinking of replacing this compound with less 

hazardous substances. But unfortunately, BADGE is the most used epoxy monomer and it is predicted to 

grow more in the future. Also, ECH, used in BADGE synthesis, is highly toxic and is known to cause 

cancer in the human body.10–12 
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1.2. Objectives 

 

Various research types in academia and industry have been devoted to the search for non-toxic ecosystem-

based alternatives for the synthesis of significant epoxy polymers. For example, researchers have 

investigated vanillin, vegetable oils such as soy, corn, rosemary, and eugenol. Millions of tonnes of citrus 

waste worldwide every year, can be used to produce limonene. Limonene can be epoxidized by various 

methods to produce limonene oxide and LDO. These molecules can be then used to synthesize bio-epoxy 

monomers (Figure 1).3,13,14 

 

 

Figure 1. Limonene oxide and LDO from orange peel. 

 

Limonene appears to be an interesting candidate amongst potential bio-based molecules. First, unlike the 

other biomolecule, it can be epoxidized without using ECH. Second, it is based on an already generated 

food-waste.3 

The goal of my research is to develop an epoxy formulation with higher biobased content and comparable 

properties with its petroleum-based counterparts. In this project, LDO was used as epoxy monomers for 

bio-based epoxy polymer synthesis. Several hardeners have been selected that react with LDO. Also, two 

or three epoxy monomers have been added to improve the formulation. After synthesise, the samples are 

compared, and their properties are investigated.  

One major issue with biobased epoxy monomers, and in particular with LDO, is their slow reaction time. 

Therefore, many catalysts have been proposed to decrease the epoxy reaction time. However, none are 
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efficient with LDO. In this work, I propose a novel family of catalysts that is particularly appropriate to 

cure epoxy polymer based on LDO monomers (Figure 2). 

 

 

Figure 2. Effect of catalyst on epoxy reaction time. 
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CHAPTER 1.  KNOWLEDGE OF EPOXY POLYMERS AND FACTORS AFFECTING THEIR 

PROPERTIES 

 

1.1. Polymers classification 

 

Polymers are made by repeating a small monomer unit to form a chain. By knowing the monomers and 

their order, we can understand the properties of polymers. The properties of polymers depend on many 

factors, including the chemical structure of polymer chains and the way monomers are connected (for 

instance, linear, branched, or networked polymers). In general, polymers are divided into three categories 

in terms of application: thermoplastics, thermosets, and elastomers.6 

 

1.1.1   Thermoplastics 

 

Polymers that can melt and be reused almost indefinitely are known as thermoplastics. In a thermoplastic, 

the molecules are held together by relatively weak intermolecular forces, so due to heat exposure, the 

material softens and returns to its original state after cooling. Thermoplastics can be melted and solidified 

several times without significant damage. Many linear and slightly branched polymers are thermoplastic 

at ambient temperature. Thermoplastics are below the melting point (Tm) or below the glass transition 

point (Tg) at ambient temperature. Vehicle bumpers and credit cards are examples of thermoplastics.15 

 

1.1.2   Elastomers 

 

Elastomers are rubbery polymers that can easily be extended to several times their original dimensions. 

If force is applied, they return to their original position after being pulled or compressed. Elastomers are 

obtained by vulcanization that causes cross-linking of polymer chains. High molecular weight between 

cross-links leads to elastomeric behavior. In other words, elastomers are cross-linked but have a low 

density of cross-links. At ambient temperature, elastomers are above Tg.6 
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1.1.3   Thermosets 

 

Thermosets are polymers that solidify or "sets" irreversibly when heated. Therefore, reheating does not 

change their shape. Thermosets are typically three-dimensional networked polymers derived from low 

molecular weight liquid monomers. Polymer chains in thermosets have a high density of cross-links. The 

cross-links limit the movement of the chains and contribute to obtaining a rigid material. Thermoset is 

cured and solidified using curing methods such as heat or radiation. Figure 3 illustrates how molecules 

become cross-linked. The curing process is irreversible because covalent chemical bonds are formed 

inside the sample. Epoxy polymers, phenolic polymers, polyurethanes, acrylics, alkyds, furans, 

polyimides, vinyl esters, and unsaturated polyesters are typical examples of thermosets on the market.16  

During the cure, a transition from a liquid to solid (infinite viscosity) occurs at the gel point.  The gel 

point (GP) corresponds to the percolation threshold, that is to say, to the stage at which at least one 

infinitely long chain is formed. Past the GP, the reaction continues to proceed, leading to a network that 

is more and more cross-linked.17,18 

 

Figure 3. Stages of thermoset formation.19  

 

 

Heat or UV 

Cross-linked network Mixer 

Curing agent 

Monomers 
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1.2. History of epoxy polymers  

 

Epoxy polymers are one of the most common and widely used thermosets today. In the early 1900s, it 

was discovered that an epoxide is formed by the reaction between olefins and peroxybenzoic acid. In the 

mid-1930s, a high-molecular-weight polymer was obtained by reacting polyamines with epoxide 

compounds resulting from the reaction of ECH with BPA. Finally, the first industrial epoxy polymer 

entered the market in 1940.9 

Epoxy polymers are known for their outstanding chemical resistance. In the 1970s, the production and 

marketing of epoxy vinyl ester polymers thrived due to improved corrosion resistance properties and 

organic solvents. With the growth of the structural composites market, epoxy vinyl ester polymer 

composites have found environmental usage applications. Growing demands for aerospace and defense 

applications in the composite sectors in the 1980s led to the improvement of high-performance 

multifunctional epoxy polymers based on complex amine and phenolic structures. 

Epoxy monomers naturally contain at least two epoxide groups represented by a three-membered ring 

containing of two carbon atoms and one oxygen atom (Figure 4). The epoxide ring strain causes these epoxy 

monomers to be highly reactive. These rings are opened by reaction with the second compound, which is 

the hardener or curing agent. As a result, a cross-linked polymer with high-molecular-weight is formed.3,20 

 

 

Figure 4. Epoxy monomer structure. 
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1.2.1   Applications of epoxy polymers 

 

For two reasons, the applications of epoxy-based materials are wide such as automotive, paintings, 

coatings and flooring, insulation materials, adhesives, composites, and constructions (Figure 5). First, 

their properties can vary with the choice of epoxy monomers and curing agents. The chemical structure 

of epoxy allows the production of various polymers with very different properties. Second, epoxy are 

generally known for their adhesion, chemical and heat resistance, solvent resistance, excellent mechanical 

properties, and excellent electrical resistance compared to most other polymers.2   

 

 

 

For further clarification, epoxy polymers are often used for coating metal cans and containers to prevent 

corrosion, especially when a metal container is in contact with acidic foods. Also, due to the mechanical 

and corrosion resistance and excellent adhesion to many substrates, epoxy polymers can be applied for 

decorative flooring and paving.21 In general, epoxy polymers have made significant progress in adhesives 

because they have high adhesive properties and reasonable cost. Thus, they are used in the aerospace 

industry, automobiles, boats, skis, snowboards, and other applications.22,23 In brief, epoxy polymers are 

being used more and more, and this upward trend is expected to continues. The growing demand for 

epoxy polymers in the European market is illustrated in Figure 6. 

Figure 5. Global epoxy polymer applications.8  
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Figure 6. Europe epoxy polymers market between 2015-2026 and application.24 

 

 

1.2.2   Epoxy cure process 

 

Epoxy monomers have more than one epoxide group. They can react with themselves or can react with 

curing agents (hardeners). In this work, only the latter is considered.9,25  

Depending on the curing temperature, the desired Tg, or the final mechanical properties, many curing 

agents are used. 

The epoxy curing system is usually carried out by a particular process, such as heat curing, room 

temperature curing, photo-curing. Generally, epoxy polymers are cured by the heat curing method 

because the achieved epoxy polymer exhibits better thermomechanical properties. Heat curing contains 

two steps; pre-curing at a lower temperature and post-curing at a higher temperature.7,26 

The synthesis of thermosetting polymer begins with monomers that react with each other or with the 

appropriate curing agent to create branched structures leads to an increase in viscosity. One of the basic 

features of thermoset preparation is this sol-gel transformation. Viscosity increases to infinity at gelation, 

and an insoluble fraction (the gel fraction) is created in the system after gelation. In the high conversion 

of functional groups, the sol fraction vanishes, and the final thermosetting polymer is formed. Gelation 

in thermosetting polymers is not a reversible process. The system is converted from a gel into a glass 

when vitrification occurs. For this purpose, the study and interpretation of the various curing and kinetic 

evolution states are crucial to achieving the optimum level of efficiency in the final material. Time-
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temperature-transformation (TTT) diagrams are often used to capture the possible curing state. In TTT 

diagram, the time to gelatin and vitrification is plotted as a function of isothermal cure temperature (Figure 

7). 

 

GP and start of vitrification are the two main characteristics of TTT diagram. The beginning of 

vitrification occurs when the glass-transition temperature surpasses the curing temperature. Ideally, a 

suitable thermosetting system for structural applications will cure until all monomers in the network are 

reacted. The S-shaped vitrification curve and the gelation curve divide the time-temperature plot into four 

stages, which are liquid, gelled rubber, ungelled glass, and gelled glass.27,28 

 

1.2.2.1   Gelation (theoretical) 

 

 Gelation can be described in a chemical cross-linking system as the moment when the average molecular 

weight approaches infinity. Two well-known theories related to GP were proposed by Carothers29 and 

Flory.30 

 

Figure 7. Time-temperature-transformation diagram (TTT).27 
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The relationship between the degree of reaction at GP and the average functionality (favg) of the 

polymerization system was defined by Carothers. For different types of monomer molecules, the average 

functionality is defined as the average number of functional groups per monomer molecule:15  

 

𝑓𝑎𝑣𝑔 =
∑ 𝑁𝑖𝑓𝑖

∑ 𝑁𝑖
 [1.1] 

 

Where Ni is the number of molecules of monomer i with functionality fi. The critical extent of reaction 

Pc at GP can be obtained:15  

 

𝑃𝑐 =
2

𝑓𝑎𝑣𝑔
 [1.2] 

 

Equation [1.2] can be used to measure the extent of reaction required by its average functionality to 

achieve the onset of gelling in a mixture of reactive monomers. Experimentally, it is found that Pc is lower 

than the value predicted by equation [1.2]. 

𝛼gel is degree of conversion at gel time, according to Flory's gelation theory. 𝛼gel depends only on the 

functionality and stoichiometric ratio of the epoxy systems and it does not depend on the reaction 

temperature and other experimental conditions. According to this theory, there are two main assumptions. 

First, all functional groups in monomers react the same way and are independent of the monomers’ size, 

and second, there are no intramolecular connections. The theoretical value of GP conversion degree for 

the epoxy amine system is given by:     

 

𝛼𝑔𝑒𝑙 =
1

√𝑟𝑚(𝑓𝐴 − 1)(𝑓𝐸 − 1)
 [1.3] 

 

Where fA and fE are the functionalities of amine and epoxy reactants, respectively, and rm is their molar 

or stoichiometric ratio.31 Experimentally, it is found that the Flory's gelation theory underestimates the 

gel point. 
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The Carothers equation can only be used in stoichiometric mixtures but for non-stoichiometric ratios, the 

Flory equation provides more accurate results. 

 

1.3. Epoxy monomers  

 

Commercial epoxy monomers can be produced in three different methods such as ECH etherification, 

double-bond oxidation, and glycidyl methacrylate etherification which is responsible for the production 

of more than 90% of commercial epoxy. Epoxy Equivalent Weight (EEW) is an essential feature to 

characterize epoxy monomers. Based on EEW, the required amount of the curing agent can be calculated. 

In other words, EEW can be used to determine the stoichiometry between curing agents and epoxy 

monomers.26 EEW is a ratio of the molecule weight of a monomer to the number of epoxide groups, 

which can be calculated as follow:  

 

𝐸𝐸𝑊 =  
𝑀𝑊

𝑓
 [1.4]   

 

Some of the known epoxy monomers are: 

• Bisphenol A epoxy monomer 

• Bisphenol F epoxy monomer 

• Epoxy phenol novolac monomer 

• Cycloaliphatic epoxy monomer 

 

1.3.1   Bisphenol A epoxy monomer (DGEBA) 

 

 The first epoxy monomer to be discovered was DGEBA, obtained by a reaction between BPA and ECH. 

DGEBA still the most widely used monomer nowadays. DGEBA can represent a wide range of properties 

by varying the number of repeating units in its structure (Figure 8). Aromatic and hydroxyl groups in the 

backbone improve thermal resistance and provide good adhesion to the epoxy polymer.1,9 

BPA is derived from petrochemical sources and has a negative impact on human bodies. It is an endocrine 

disruptor and can increase cancerous tumors, birth defects, and other growth disorders in human body.10 
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Figure 8. Chemical structure of DGEBA.7  

 

1.3.2   Bisphenol F epoxy monomer (DGBEF) 

 

The chemical structures of DGBEF and DGEBA are similar, except that in the DGBEF structure, the 

carbon between the two aromatic groups is attached to the hydrogen (H) atoms instead of methyl groups 

in DGEBA.  

Consequently, Bisphenol F has a lower molecular weight and viscosity than BPA. Bisphenol F is used as 

the reactive diluent and has no significant effect on the cured properties.1,9 

 

1.3.3   Epoxy phenol novolac monomer 

 

Epoxy phenol novolac can be classified as a multifunction epoxy monomer produced by reacting between 

a phenolic novolac monomer with ECH. The chemical structure of the novolac epoxy monomer is shown 

in Figure 9. Due to the high number of epoxide functions in this molecule, a highly cross-linked density 

polymer can be achieved. This feature can improve solvent, chemical, and thermal resistances.1,9 

 

 

Figure 9. Chemical structure of novolac epoxy monomer.9  
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1.3.4   Cycloaliphatic epoxy monomer  

 

Figure 10 shows the structure of the most classical cycloaliphatic epoxy monomers mentioned previously. 

Due to the absence of chromophores, these monomers are principally used in UV-curing formulation. 

The obtained polymer shows a variety of properties including, outstanding UV stability, strong thermal 

stability, excellent environmental and electrical properties.1,9 Table 1 shows the classification of epoxy 

monomers and their properties. 

 

Figure 10. Chemical structure of cycloaliphatic epoxy.7 

 

 

Table 1. Classification of epoxy monomers.32 

 

Chemical class Physical form Reactive sites EEW (g/eq) Viscosity (cP) Applications 

Bisphenol A Liquid, solid 2 174–500 5,000–20,000 General 

Bisphenol F Liquid 2 165–190 2,000–7,000 High fillers 

Novolac semisolid, solid  2-5 150–280 20,000-50,000 High thermal resistance  

Cycloaliphatic Liquid 2 131 - 143 250–450 UV curing 

 

1.4. Curring agents 

 

Epoxy monomers can react and form cross-linked networks with a wide range of chemical materials 

called curing agents. The curing agent also can be called hardeners, curatives, co-reactants, co-polymers. 

There are infinite ways to formulate epoxy monomers and hardeners to control properties such as Tg, pot 
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life, cure kinetics, gel time, physical form, system stability, mechanical performance, viscosity, chemical 

resistance, and cost. Some of the curing agents are listed as bellow:9 

• Amines  

• Amine adducts 

•  Cyanoethylated amines  

• Ketimines  

• Polyoxyalkylene amines  

• Cycloaliphatic amines  

• Aromatic amines 

• Polyamides  

• Amido amines  

• Dicyandiamides  

• Polyester co-polymers  

• Phenolic co-polymers  

• Melamine and urea formaldehyde co-polymer monomers  

• Phosphate flame retardants  

• Ultraviolet and electron beam curing of epoxy monomers  

• Mannich bases  

• Mannich-based adducts  

• Anhydrides 

• Carboxylic acid  

 

1.4.1   Amine functional curing agents 

 

Generally, most epoxy curing agents are based on amines. The functionality of the amine is calculated by 

the number of hydrogen atoms in the amine molecule. Thus, the primary amine (-NH2) and the secondary 

amine (-NH-) can react with two epoxide functions and one epoxide function, respectively (Figure 11). 

Tertiary amine has no active hydrogen, so it cannot react directly with the epoxy monomers, but it can 

act as a catalyst. Besides, tertiary amine accelerates the cure of primary and secondary amine with epoxy 

monomers.33 



15 

 

Figure 11. The reaction of amines with an epoxy monomer.7 

 

 

1.4.2   Anhydrides 

 

Anhydrides are another type of epoxy curing agent, that are produced in various forms. The presence of 

a tertiary amines as a catalyst is essential for epoxy-anhydride systems. The reaction process between an 

anhydride as a curing agent and an epoxide group is complex. Initially, the anhydride reacts with the 

secondary alcohols from the epoxy backbone or other alcohols (aliphatic) to form a half-ester containing 

carboxylic acid. Then, the carboxylic acid group can react to open an epoxide ring that forms another 

hydroxyl. The reaction continues as shown in Figure 12.7,9 
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Figure 12. The mechanism of reaction between anhydrides and epoxy monomers in the presence of a 

tertiary amine.7 

 

1.4.3   Carboxylic acid cure agents 

 

Carboxylic acids are another class of curing agent that are used in epoxy technology. Epoxy reaction with 

carboxylic acids requires a catalyst and high temperatures to have an acceptable reaction rate. Because 

carboxylic acids have lower nucleophilicity than amines, both base and acid catalysis have been applied 

in these reactions. Still, base-catalyzed is usually preferred because the initiation of the competing 

homopolymerization of epoxy polymerrs is more limited in that case.34 Figure 13 illustrates the base-

catalyzed curing mechanism with a carboxylic acid.26 
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Figure 13. The mechanisms for the curing of an epoxy monomer with carboxylic acids under base-

catalyzed conditions.35 

 

Triphenylphosphine and ethyltriphosphonium iodide (ETPI) are widely used to catalyze the carboxylic 

acid/epoxy monomer reactions.35  

 

Table 2. Curing agents for epoxy monomers.9 

 

Type Advantage Disadvantage Application 

Aliphatic amines and 

adducts 

cure in room temperature toxic; moisture sensitive 

 

flooring; adhesives 

Polyamides low toxicity expensive adhesives 

Anhydrides good mechanical and 

thermal properties 

cure at high temperature composites 

Phenol-

formaldehyde, 

novolacs 

good chemical resistance weak ultraviolet stability electrical laminates 

Phenol-formaldehyde 

resols 

excellent chemical 

resistance 

fragile coating for can 

Urea-formaldehyde reasonable price Curing in high 

temperature 

coating 

Melamine-

formaldehyde 

good hardness curing in high 

temperature 

oven paints 
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Cycloaliphatic 

amines 

 low toxicity  slower reactivity; high 

costs 

industrial coatings 

Aromatic amines  good resistance in 

moisture  

 long time to cure  composites 

Dicyandiamide electrical properties low compatibility with 

epoxy monomers 

coatings 

Carboxylic-

terminated polyesters 

high mechanical 

properties 

low chemical resistance powder covering 

 

1.5. Bio-based epoxy monomers 

 

Most of the epoxy monomers on the market are petroleum-based, and their stockpiles have been 

significantly reduced. Furthermore, a better understanding of the climate and growing environmental and 

health concerns have pushed forward the use of renewable resources. Therefore, in recent years, research 

has been conducted on the partial or complete replacement of epoxy monomers such as DGEBA by 

renewable monomers.3,36 Bio-based epoxy monomers are currently derived from several bio-based 

feedstock37, including vegetable oils, lignin, tannins, cardanol, terpene, and carbohydrates, are 

summarized below. 

 

1.5.1   Vegetable oil-based monomers 

 

Vegetable oils, such as linseed oil, soybean oil, and castor oil, appears to be excellent raw materials for 

thermosetting polymers. Epoxidation of various vegetable oils, which are fatty acid esters of glycerol, is 

one of the most popular ways for producing bio-based epoxy monomers in the chemical industry.38–40 The 

preparation of this oil is a solvent-free process, which occurs with high conversion and selection, as 

reported by Kim and Sharma.41 

Many applications of oil-based epoxy monomers are used in the non-engineering field because the 

mechanical performance of oil-based epoxy monomers is low. Oil-based epoxy monomers are used in 

coatings and adhesives or as reactive diluents to minimize the viscosity of petroleum-based epoxy 

monomers.42 

Epoxidized vegetable oil (EVO) in epoxy systems was investigated by Miyagawa and et al.43 It was 

observed that EVO could increase the toughness and decrease the Tg of epoxy polymers compared to 
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those epoxy polymers synthesized with DGEBF and DGEBA.43–46 Epoxidized structures of soybean oil 

and castor oil are shown in Figure 14.7 

 

(a)                                                                (b) 

Figure 14. (a) Epoxidized soybean oil, (b) Epoxidized castor oil.7 

 

1.5.2   Lignin-based monomers 

 

Wood is composed of three primary components: 1) cellulose, skeleton; 2) hemicellulose, matrix; 3) 

lignin which is a substance that holds cells together and ties them together and imparts stiffness to cell 

walls. Lignin is the second most abundant macromolecule in nature after cellulose. This substance is 

usually considered waste. Aliphatic and phenolic hydroxyl groups are two parts of lignin, which can be 

used to synthesize bio-based polymers.47  

Epoxy monomers based on industrial lignin have been described in the literature47, and most of them 

involve pre-treatment before epoxidation reaction because lignin has a highly branched and irregular 

structure (Figure 15). Treatments are such as chemical, biochemical and physical processes. The chemical 

structure and lignin properties depend on the type of treatment.48 
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Figure 15. A fraction of lignin model structure. 

 

 

Lignin has an irregular structure, so some attempts have been made to break down lignin into beneficial 

chemical compounds such as vanillin. As shown in Figure 16, there are three ways to synthesis vanillin-

based epoxy monomers, which all present good thermal resistance.49–51 

 

 

Figure 16. Three ways of synthesizing vanillin-based epoxy monomers.52 
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Feng and Chen53 mixed lignin-based epoxy monomers and DGEBA in different percentages, and samples 

were cured using triethylenetetramine (TETA) as a hardener. It was found that samples made with lignin-

based epoxy monomers have more adhesive shear strength than the samples devoid of such monomers. 

 

1.5.3   Tannin- and cardanol-based monomers 

 

Gallic acid, catechin, curcumin, resveratrol, green tea tannins, and cardanol can be categorized as 

polyphenol compounds. Gallic acid can be epoxidized with ECH. Other methods for the epoxidation of 

gallic acids, such as the use of a two-step synthesis involving the allylation of OH groups, were reported.54
 

Curcumin and resveratrol have been studied in the hopes of developing new biobased epoxy monomers.55 

Tannins are water-soluble phenolic compounds, that are stored by plants as a product. Epoxy monomers 

were synthesized by ECH reaction with green tea extracts.56,57  

Green tea tannins have five different chemical structures, namely, epicatechin (EC), catechin (CT), 

epigallocatechin (EGC), epicatechin gallate, and epigallocatechin gallate (EGCG). Green tea-based 

epoxy polymers have an interesting Tg. However, their mechanical properties have not been reported.58 

Cardanol is obtained in large amounts by vacuum distillation of cashew nut shell liquid. In the presence 

of NaOH, cardanol monoglycidyl ether reacted with ECH in the phenolic OH group leads to a 

monoepoxide that can be used as a reactive plasticizer. Cardanol and BPA in different molar compositions 

were mixed and then cross-linked with a polyamine. The obtained polymer showed less rigidity due to 

epoxied cardanol act as a reactive plasticizer.58,59 

 

1.5.4   Carbohydrate-based monomers 

 

Due to the presence of highly reactive hydroxyl group(s) in carbohydrates, a wide range of monomers 

can be synthesized, making them suitable for developing various polymer groups.60–63 

Compared to those coming from the petrochemical feedstock, carbohydrate-based products usually 

exhibit lower toxicity and greater vulnerability to biodegradation. Carbohydrate-based materials include 

cellulose and starch. Various epoxidizing reagents such as hydrogen peroxide and ECH have been used 

to epoxidize starch and cellulose.64–66 

One of the most well-known and available sources of starch is corn that can be converted to sugars, fuels, 

or new chemicals such as isosorbide (Figure 17). The epoxy polymer was synthesized with isosorbide-
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based epoxy monomers, improved some properties such as impact strength and tensile compare with a 

commercial epoxy polymer. Hence, isosorbide-based epoxy monomers can be substituted for DGEBA. 

Still, expanded research is needed to promote their hydrolytic stability.67 

 

 

Figure 17. Producing bio-epoxy monomer from corn. 

 

1.5.5   Terpene-based monomers 

 

One of the most important groups of bio-sourced materials is constituted of rosin acids, terpenoids, and 

terpenes. Rosin acids contain approximately 90% of abietic acid and its isomers. They are obtained from 

a pine tree. Due to the presence of aromatic structure in rosin acids, it is a rigid molecule. It is also a 

strong candidate for the preparation of rigid and highly cross-linked epoxy polymers.68 

Liu et al.69 prepared trifunctional abietic acid epoxy monomers and obtained a completely bio-based 

epoxy polymer with comparable mechanical properties to the benchmark DGEBA using anhydrides as a 

curing agent. 

Mantzaridis et al.70 have synthesized numerous functional epoxy monomers from rosin acids. The 

properties of the obtained epoxy polymer when it was synthesized with DGEBA were studied in terms of 

Tg. It was concluded that the lowest values of Tg were attributed to the polymer containing 40% of rosin-

based monomer (Figure 18). 
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Figure 18. Synthesis bio epoxy monomer from rosin acids. 

 

1.5.6   Limonene-based epoxy 

 

Among all terpenes, one of the most well-established ones is limonene, which is a cyclic diterpene 

containing carbon-carbon double bonds. Limonene oxide and can be obtained by epoxidation of the 

double bond. These products are commercially available (Figure 19).3 

Globally, 88 million tonnes of citrus are produced each year, including oranges and lemons. 

Approximately 50 percent of oranges and lemons are refined into marmalade or juice, creating an 

approximated 40 million tonnes of citrus waste which is a significant global waste.13,71,72 

 

Figure 19. Structure of limonene, limonene oxide, and LDO. 

 

1.6. Formulation of epoxy systems  

 

Developing the right epoxy formulation is the most critical step to achieve a three-dimensional cross-

linked network. Several steps must be considered to attain a successful epoxy formulation with the desired 
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properties for the specific application. First of all, each epoxy monomer should react with the right and 

proper curing agent. Secondly, the stoichiometric ratio of the epoxide functionality/curing agent should 

be calculated. Also, if the reaction needs to have a catalyst/accelerator, it should be considered. Afterward, 

curing and post-curing processes and their conditions should be determined.1,73,74 

 

1.6.1   Relationship between the structure and properties of the cured epoxy polymer 

  

Properties of cured epoxy vary with cross-link density, monomer structure, and curing method.1,75,76 For 

example, the epoxy polymers which are cross-linked with  dicarboxylic anhydrides produce polyesters 

that have a little resistance to moisture but a high resistance to oxidation.77 It is the opposite with cross-

linked amine epoxy that is very weak against oxidation, but resistant to saponification. Many factors such 

as cross-link density, type of curing agents, and epoxy monomers can be controlled by curing temperature 

and process.77,78 

 

1.6.2   Epoxy cure chemistry 

 

Curing of the epoxy monomers occurs in three steps. First, monomers grow linearly and molecular weight 

increases. At the second step, the chains start branching. Finally, an insoluble continuous three-

dimensional network is formed if the adequate amount of these branches interconnect and GP is reached. 

There is a certain amount of extractable monomers in the insoluble gel network that has not bonded with 

the network, which is referred to as the sol fraction. At the end of the reaction, most of the residual sol 

part is connected to the network. The rate of the chemical reaction can be controlled kinetically when the 

glass transition is lower than the cure temperature. When the network forms, GP temperature of the 

system rises, and finally, Tg reaches the cure temperature. The curing reaction continues slowly under 

these conditions since the reaction rate is restricted by the rate of diffusion of the un-reacted monomers, 

an experience known as vitrification. Chemical reaction rates can be insignificant when an epoxy curing 

reaction has achieved vitrification, which leads to having a high soluble fraction. The unreacted 

monomers can have a negative impact on the final properties of the cured polymer, so a second cure 

known as a post-cure is typically used to minimize sol fraction and have a complete cure. The cure of 

epoxy polymers can proceed with three main chemical mechanisms, which are as follow:26,79,80 

1. Nucleophilic addition. 

2. Cationic polymerization.  
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3. Anionic polymerization. 

These processes are shown in Figure 20. 

 

(a) 

 

(b) 

 

(c) 

 

 

 

 

Figure 20. Reaction mechanism of epoxy monomers via (a) nucleophilic addition of an active 

hydrogen nucleophile. (b) cationic polymerisation. (c) anionic polymerization.80 
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 1.6.3   Epoxy monomer/curing agent stoichiometric ratios 

 

The stoichiometric ratio of epoxy monomer/curing agent has an influential factor in network 

configuration and efficiency.1,81 Theoretically, one equimolar of epoxide functionality and hardener 

should react together to obtain a cross-linked thermoset.81,82 

Excess amine in the epoxy system can act as chain-stoppers, leading to a decrease in cross-linking. 

Therefore, the obtained polymer can be slightly tougher but more vulnerable to moisture and chemicals. 

In formulas containing anhydrides, owing to substantial epoxy homopolymerization, less curing agents 

are usually used.1,83–85 

 

1.7. Catalytic cure 

 

A group of compounds that can enhance the rate of a reaction without interfering with the process is 

known as catalysts or accelerators. The choice of catalyst and catalyst amount are two important factors 

in the epoxy curing reaction. Several factors such as cost, toxicity, solubility, processing effects, final 

characteristics, regulatory issues, and ease of use must be taken into account to select a catalyst.86 Lewis 

bases have a pair of nonbonding electrons that attacks electrophilic, whereas a Lewis base is an electron-

pair donor. Typically, nucleophilic catalysts can be used with acidic curing agents to reduce the gel time.87 

For example, tertiary amines are used to catalyze the anionic homopolymerization of epoxy via the 

formation of a zwitterionic alkoxide group (Figure 21). This alkoxide attacks another epoxide leading to 

the formation of another alkoxide with glycidyl ether monomer. This reaction happens at the ends of the 

monomers, leading to a cross-linked polymer. Anionic initiators cannot be used to cure cycloaliphatic 

epoxy.88 
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Figure 21. The curing mechanism reaction of epoxy monomers with tertiary amines.88 

 

 

1.7.1   Lewis acids 

 

There is an empty outer orbital in Lewis acid catalysts can gel epoxy monomers within minutes. Also, 

the curing process is slowed by the complexation of the Lewis acids with amines.86,89 The first Lewis-

acid catalyst was reported by Kobayashi in 1991.90 

Metal ions have one or two empty orbitals and may behave like Lewis acids. Lewis acids such as boron 

trifluoride (BF3) are a substance that accepts a pair of electrons. They are electron attracting and attack 

places with high electron densities, such as epoxide ring-opening reaction. BF3 and epoxy monomers can 

react together very fast and form a cross-linked network. Boron trihalide (BX3) is a Lewis acid and it has 

been found that it can improve amine reactions.91 It is possible to achieve an acceptable pot life using 

these complexes because the temperature needs to be increased to cleave the complex between BF3 and 

the amin. The choice of halide and amine can control the reaction. Besides, the choice of amine affects 

other properties such as moisture sensitivity and solubility in the polymer. Mono ethylamine-

borontrifluoride (BF3·NH2C2H5) is the most common complex. It is a crystalline substance that cures 

epoxy monomers at 80–100 ºC.92 The mechanism reaction is shown in Figure 22.88 
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Figure 22. The mechanism of epoxy monomers curing with BF3 amine complexes.88 

 

Lanthanides are strong Lewis acids, so they have a significant effect on carbonyl oxygen. Lanthanide 

salts in combination with an electron‐withdrawing group such as triflates have strong Lewis‐acid 

reactivity. Lanthanide triflates such as samarium(III) triflate (Sm(OTf)3), ytterbium(III) triflate 

(Yb(OTf)3), or lanthanum(III) triflate (La(OTf)3) was proposed as cationic epoxy catalysts in the 

literature.93 Lanthanide triflates are cheap, easy to handle, stable in water and air, low toxicity, and heat 

stable.90 Yb3+ has higher hardness and Lewis acidity than other lanthanide cations. So, Yb(OTf)3 as a 

catalyst can allow the curing reaction to being performed at a low temperature.94 Besides, materials 

obtained using La(OTf)3 have a lower Tg than those obtained with Yb(OTf)3.
35 Benzyl ammonium, benzyl 

sulfonium, and benzyl phosphonium salts are other thermal cationic catalyst.88,95 

 

1.7.2   Lewis bases 

 

In Lewis bases, there is an unshared electron pair or outer orbital that can react with low electron density 

regions. This type of catalyst can be used as nucleophilic catalytic curing agents for primary amines, 

polyamides, and amidoamine, or as a catalyst for anhydrides. The most commonly used nucleophilic 

catalysts are tertiary amines and imidazoles.96,97  
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1.8. Characterization of epoxy curing and cured networks 

 

Since thermoset polymers form a cross-linked network after curing, they are insoluble in solvents. 

Therefore, because of that insolubility, they are more challenging to analyze. Various techniques are used 

to characterize epoxy and obtain information about functional groups, conversion, thermal, physical, and 

mechanical properties. 

Thermal analysis of polymers such as Thermal Gravimetric Analysis (TGA), DSC, DMA can be used to 

investigate the thermal properties and to examine the curing process, degree of cure, and Tg.
98 

Epoxy polymers are widely used in the adhesive industry, so surface characteristics such as dynamic 

contact angle and surface tension play an important role. They also need to be analyzed using microscopic 

techniques such as Scanning Electron Microscopy (SEM),99 Transmission Electron Microscopy (TEM), 

and Atomic Force Microscopy (AFM).100 

Due to their high density of cross-linking, epoxy polymers have high mechanical properties, but they are 

fragile and have low impact tolerance. The tensile test is a standard measure used to examine elongation 

at break, resistance in failure, tensile stress, young modulus.101,102 To better identify epoxy and its 

functions, methods such as swelling,103 functional groups titration, FTIR,104 or NMR spectroscopy have 

been used.  

 

1.8.1   Cure kinetics  

 

Understanding the curing process and the relationship between the structure and property of the cross-

linked epoxy polymers can help have economic products and optimize physical properties. Various 

experimental techniques, including ultrasound, X-ray analysis, NMR, DSC, dielectric and infrared 

spectroscopy, etc., are required to understand the reaction kinetics and the characteristics of the 

microscopic engineering structure.105,106 

1.8.1.1    Kinetic characterization using DSC  

 

Usually, the kinetics of the cured reaction of thermosets are investigated by applying DSC. Generally, 

the aim of kinetic analysis of a curing thermostat is to estimate the reaction rate or Tg for a temperature-



30 

time contour by creating a kinetic model. In this regard, DSC has been used as a useful tool for evaluating 

rate of conversion and estimating related kinetic parameters.  

DSC measurements of thermoset reactions are divided into two tests, isothermal tests, and non-isothermal 

tests. The rate of released energy at a constant temperature is calculated in the isothermal test, and the 

degree of the reaction is estimated by equation [1,5].106–108 The key assumption of this method of study 

is that the total heat of the reaction can be precisely evaluated and that all reactions have the same total 

enthalpy. 

 

𝛼 =
∆𝐻𝑡

∆𝐻𝑡𝑜𝑡𝑎𝑙
 [1,5] 

 

Where ΔHt is the total heat evolved up to time t, ΔHtotal is the total heat released during a complete 

reaction, and 𝛼 is the degree of conversion. 

The reaction heat is monitored through a linearly rising temperature scan in non-isothermal scanning 

experiments. These analyses include the derivation of kinetic data from phase integrals of the rate curve 

and the derivation of a relationship from exotherm maxima at different heating speeds for kinetic 

parameters.109,110 

1.8.1.2    Cure kinetic models  

 

The monomers can be converted into a highly cross-linked three-dimensional macromolecule, resulting 

from the curing process in thermostats. In general, the curing degree, 𝛼, indicates the rate of chemical 

reaction of the curing polymer, usually defined as equation [1,5].111 For an uncured polymer, α = 0, while 

for a fully cured polymer, α=1. 

The curing rate is proportional to the heat generation rate, and can be given as follows: 

 

𝑑𝛼

𝑑𝑡
=

1

∆𝐻𝑡𝑜𝑡𝑎𝑙
(

𝑑𝐻

𝑑𝑡
) [1,6] 

 

A number of models for cure kinetics have been proposed to describe the curing mechanism of various 

systems. The simplest one is the equation of the nth order rate: 
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𝑑𝛼

𝑑𝑡
= 𝐾(1 − 𝛼)𝑛 [1,7] 

𝐾 = 𝐴𝑒𝑥𝑝(
−∆𝐸𝑎

𝑅𝑇
) [1,8] 

 

Where K, which is an Arrhenius temperature function, is the reaction rate constant, A is the pre-

exponential constant or Arrhenius frequency factor and n is the reaction order. ΔEa is the activation 

energy, R is the universal gas constant, and T is the absolute temperature. 

Table 3 summarizes the models presented in the literature to explain the chemical kinetics of thermoset 

cures.110–113 

 

Table 3. Kinetic models for the thermoset cure chemical kinetic.114 

 

  Model                 Equation     Equation no. 

Nth order reaction 𝑑𝛼

𝑑𝑡
= 𝐾(1 − 𝛼)𝑛 

[1,7] 

Autocatalytic reaction 𝑑𝛼

𝑑𝑡
= 𝐾𝛼𝑚(1 − 𝛼)𝑛 

[1,9] 

Nth order + autocatalytic reaction 𝑑𝛼

𝑑𝑡
= (𝐾1 + 𝐾2𝛼𝑚)(1 − 𝛼)𝑛 

[1,10] 

Arrhenius dependence of rate constant 
𝐾 = 𝐴𝑒𝑥𝑝(

−∆𝐸𝑎

𝑅𝑇
) 

[1,8] 

 

Where: 

𝛼 = calorimetric conversion, 
𝑑𝛼

𝑑𝑡
 = reaction rate, 

m, n = reaction orders, 

T = absolute temperature, 

R = universal gas constant, 

E = activation energy. 
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1.8.2   Gel-timer test 

 

When epoxy monomers start to cure with hardener, they change from a liquid to a solid. It can be 

considered that gelation is the first emergence of a cross-linked network. During the reaction, the viscosity 

of the liquid increases until it reaches GP. Before GP, the liquid polymer is known as sol because it 

dissolves in a good solvent. After GP, a rigid polymer is considered a gel because it swells only in a good 

solvent. However, the unconnected molecules (sol fraction) are still in the gel part. Figure 23 shows a 

schematic of the epoxy reaction as follows (a) monomers and hardener, (b) Linear/branched oligomers, 

(c) Sol/gel transition, (d) 3D network.115  

 

 

One of GP measurement methods is the gel timer test, which determines the formation time of the gel 

part. Other tests can be offered to find GP, such as rheology and DMA. The viscosity in GP is infinite, 

while the modulus is still zero because the stress in a deformed critical gel can still be completely relaxed 

(Figure 24).116 

 

 

Figure 23. Schematic of epoxy reaction.115  
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1.9. Characterizing cross-linked networks  

 

Structural parameters such as the cross-link density, chain distribution, the completeness of the network, 

and the number of polymer chains not joined to the network can affect cross-linked structures. Figure 25 

presents the different forms of the cross-linked network configurations in thermoset polymers that can be 

considered by numbers of functions, intramolecular loops, etc. Research approaches for network 

architectures include: 

1) Alteration in Tg. 

2) Chemical methods. 

3) Elastic moduli in rubber state. 

4) Swelling solvents.  

5) Creep above Tg. 

6) Chemical methods. 

7) Mechanical damping. 

Figure 24. Modulus and viscosity changes during of a thermoset during cross-

linking.115 
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By knowing the concentration of the curing agent and assuming the reaction to be complete, the average 

molecular weight of Mc can be obtained which estimates the molecular weight between the cross-links in 

the polymer.117  

 

1.9.1   Swelling test 

 

In a good solvent, the polymer coils expand, but in a poor solvent, the polymer coils shrink. A linear 

polymer dissolves in a good solvent, but when the polymer becomes cross-linked, it swells in the 

solvent.
118,119  

Figure 25. Different shapes of the cross-linked network configurations.117 
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As shown in Figure 26, the solubility parameter (δ) for the polymer and the solvent must be close to each 

other to reach maximum swelling in the cross-linked polymer. The networked polymer (1) has more 

swelling than the networked polymer (2), it shows a lower cross-link density. So a highly cross-linked 

polymer shows low amount of swelling and has a low Mc value.120  

 

Figure 26. Swelling in equilibrium as a function of the solvent solubility parameter for a linear and 

cross-linked polymer. The density of the cross-link of 2 is greater than that of 1.120 

 

Swelling measurement provides three types of data: 

• Sol fraction is the amount of polymer that is not attached to the network. 

• Degree of swelling of the gel fraction. 

• Comparison of average molecular weight between cross-links by amount of swelling. 

 

The swelling percentage and soluble fraction can be calculated as follows: 
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Swelling (%) =
𝑊𝑠−𝑊𝑑

𝑊𝑑
∙ 100 [1.11] 

Xsolubility (%) =
𝑊𝑑0

𝑊𝑑
∙ 100 [1.12] 

Where; 

Wd: the weight of the polymer (before swelling). 

Ws: the weight of the polymer (after swelling). 

Wd0: the weight of solved polymer. 

 

1.9.2   Impact of cross-linking on mechanical properties  

 

A cured polymer mechanical properties can be used to evaluate the degree of curing.121 DMA is a thermal 

analysis technique that analyzes the material properties when they deform under periodic stress and is 

used to measure the following parameters: 

▪ Storage modulus (E', G'). 

▪ Loss modulus (E", G"). 

▪ Tan δ  

▪  Glass transition  

▪ Mc  

▪  Creep and stress relaxation 

▪ Gelation and vitrification 

Storage modulus is a measure of elastic response of a material which relates to the stress stored in the 

material as mechanical energy. Loss modulus is a measure of viscous response of a material signifies the 

stress dissipated as heat. Tan δ shows damping or energy dissipation in the sample. Polymers have three 

regions that include the glassy, transition, and rubbery regain. The density of cross-links does not 

significantly affect stage modulus below Tg. However, above Tg, more cross-linked density cross-linked 

samples exhibit higher stage modulus (Figure 27).
122   
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Thus, the average molar mass between cross-links can be calculated using DMA data as follows: 

 

Mc=
𝜌𝑞𝑅𝑇

E’
 [1.13] 

Where Mc is the number average molar mass between cross-links, q is the forward factor (usually equal 

to 1), ρ is the density at temperature T (K), E’ is the storage modulus in the rubber region at temperature 

T, and R is the universal gas constant.123 

 

 

 

 

 

 

 

 

 

Figure 27. The effect of increasing the cross-linked on the modulus and Tg.
122 
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CHAPITRE 2. CAN LIMONENE DIOXIDE, A BIOBASED EPOXY MONOMER, BE USED AS 

REPLACEMENT OF BISPHENOL A DIGLYCIDYL ETHER?  
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2.1. About the Project 

 

This chapter presents an article on the use of limonene dioxide (LDO) as a partial replacement to 

diglycidyl ether bisphenol A (BADGE). Different samples were prepared that included various amounts 

of different epoxy monomers. Also, two hardeners were examined, polyethylene amine and Epikure. 

Then samples were characterized by different tests such as swelling test, Dynamic Mechanical Analysis 

(DMA), and tensile test. These analyses were used to investigate molecular weight between cross-linked, 

chemical resistance, and mechanical properties. The results are presented in the article form which has 

been submitted to the journal Polymer. 

This research study was conducted at the University of Sherbrooke under the supervision of Professor 

Claverie in collaboration with SOPREMA CANADA. Professors Claverie, Louis Schutz, and I studied 

the concept and design. I synthesized the different formulations and investigated the swilling test for two 

solvents. I prepared appropriate samples for DMA test, and tensile test. I analyzed the results of these 

tests. Louise Schutz worked on the DSC characterization. Mégane Clerget carried out DMA test and 

tensile test. I wrote the first draft. Professor Claverie reviewed and edited the drafts. All members 

reviewed the final version of the article. 
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2.2. Abstract 

 

Epoxy resins are widely employed for applications such as adhesives, composite materials and protective 

coatings. Recently, there has been a surge of interest for the development bio-based epoxy monomers as 

potential replacement to bisphenol A diglycidyl ether (BADGE). An interesting candidate is limonene 

dioxide (LDO), a bis-epoxide derived from the terpene limonene. However, its use has been curtailed by 

its low reactivity which often prevents the formation of robust crosslinked networks. In this work, we 

unravel epoxy formulations based on LDO which offer thermomechanical properties that are equivalent 

to those of BADGE. Thus, five groups of hardeners and epoxy monomers were used to generate several 

formulations that were characterized by swelling tests, dynamic mechanical analysis (DMA), and tensile 

tests.  

 

 

Keywords : Biobased epoxy resin; Limonene dioxide (LDO); Bisphenol A (BSA); Thermomechanical 

properties,  

 

2.3. Introduction 

Thermosetting polymers are materials that undergo an irreversible transition from a liquid state to a highly 

crosslinked solid state during a curing step.
1 Epoxy resins occupy a prominent position among 

thermosetting materials because of their low costs, their tunable properties and the vast choice of 

monomers and crosslinkers that can be employed.2 Furthermore, these resins exhibit desirable properties 

such as adhesion to various substrates, high strength, low shrinkage, effective electrical insulation, as 

well as chemical and solvent resistance. Taking advantage of such properties, they are often used as 

barrier coatings, electrical/electronic laminates, adhesives, flooring and paving applications, or in the 

fabrication of composites.1,2 All epoxy resins are obtained by curing an epoxy monomer (that is to say a 

difunctional epoxide) with a hardener or curing agent chosen among a variety of compounds, including 

amines, anhydrides, alcohol or carboxylic acids.3 

Bisphenol A diglycidyl ether (BADGE) is the most popular epoxy monomer used for the preparation of 

epoxy polymers.  It is a liquid or paste, thus simplifying the formulation of epoxy resins. It has an Epoxy 

Equivalent Weight (EEW) as low as 170 g/eq which results in the formation of a highly crosslinked 

network.  Importantly, it is an inexpensive epoxy monomer. However, this petrochemical is based on 
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bisphenol A, which is widely recognized as an endocrine disruptor.4-6 Concerns for the potential toxicity 

of BADGE as well as for the use of fossil fuels have prompted many researchers to look for non-toxic 

replacements issued from renewable resources.7,8 For example, bio-based epoxy resins derived from 

vanillin,9 eugenol,10-12 rosin acid,9,13 vegetable oil,14-18 isosorbide,19-21 and furan22 have recently been 

reported.   

Limonene is a terpene containing two Alkene functionalities that can be easily epoxidized to yield 

limonene dioxide (LDO, Figure 1). Every year, between 50 million and 75 million Kg of citrus peels are 

produced,1 containing in average 1.3%wt of limonene.23 Thus, limonene is readily accessible from waste 

food, in quantities that are sufficient to be used for several main-stream applications of epoxy resins.  

Recently, green epoxidation methods, including catalytic oxidation with O2 have been developed.24,25 

Thus, the preparation of LDO does not require toxic epichlorohydrin and occurs with an atom economy 

of 100%, making LDO a biobased epoxy monomer with a potential zero-carbon footprint that originates 

from the valorization of waste food. Furthermore, LDO, an epoxide monomer with a calculated EEW 

value of 84 g/eq, is expected to yield highly crosslinked resins that should be thermally and chemically 

stable due to the aliphatic nature of the LDO structure. However, to our knowledge, the use of LDO as 

epoxy monomer has not been reported.  Several reasons have been advanced to explain the fact that LDO 

is not suitable as epoxy monomer. Sotto et al.26 highlights that LDO is in fact a mixture of four 

stereoisomers, with only the so called trans 1,2 epoxides which can be ring-opened by an amine or other 

nucleophile. Indeed, in order to be ring-opened, the two cis isomers need to pass through a high-energy 

twist-boat transition state whereas the two trans isomers adopt a low-energy half-chair conformation. In 

another report, Crivello et al.27 have shown that LDO readily rearrange into ketones  in the presence of 

Lewis-acids, making it an unsuitable  monomer for a cationic ring-opening mechanism. Thus, LDO is 

unable to react as a difunctional epoxy monomer, in either anionic or cationic mechanisms. Here, we 

demonstrate in this study that under suitable conditions, LDO can be used as a biobased alternative to 

BADGE, leading to cured epoxy with comparable thermomechanical properties. For this purpose, LDO 

was used in conjunction with trimethylolpropane triglycidyl ether (TMPTE) and a small amount of 

multivalent epoxy monomer that we recently described, polynorbornene epoxy (PNBE-epoxy).28 In this 

case, we were able to form highly crosslinked epoxy resins with mechanical properties and Tg that are 

equivalent to those of BADGE resins.  Thus, this works demonstrates that, when suitably formulated, 

LDO could be used to form epoxy resins with properties that are equivalent to those of common industrial 

epoxy resins.  
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Figure 1. Preparation of epoxy resins using biobased limonene dioxide (LDO, top) and BADGE 

(bottom) 

 

2.4. Experimental  

2.4.1   Materials 

 

Diglycidyl ether of bisphenol A (BADGE) with an epoxy equivalent weight 170 g. eq-1, polyethylenimine 

branched (PEI), average molecular weight 800 g.mol-1, trimethylolpropane triglycidyl ether (TMPTE) 

were supplied from Sigma Aldrich as a commercial epoxy monomer. Limonene dioxide (LDO), mixture 

of cis and trans isomers and Epikure 3251 as an oligomeric modified Mannich base hardener with an 

amine value of 76 g. eq-1 were respectively acquired from Symrise and Hexion company. Polynorbornene 

epoxy, PNBE-epoxy, was prepared based on reference.28 

 

2.4.2   Sample preparation 

 

The epoxy samples were prepared by mixing hardener and epoxy monomers in amounts that are 

consigned in Table 1. Conversions from mol% to wt% was performed by multiplying by the respective 

EEW and amines values. Hardeners and epoxy monomers were mixed completely with a glass rod until 

a homogeneous mixture was obtained. Then the mixtures were poured aluminum molds with a radius of 

2 cm and the molds were degassed under vacuum for approximately 5 min at a pressure of 6.6 kPa. 

Afterward, they were cured in an oven for 3 hours at 120 ºC. In order to ensure that curing was complete, 

these objects were post-cured at 150ºC for 4 hours. After each curing step, the samples were allowed to 
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cool slowly to room temperature leading to samples which were rigid and self-standing except for the 

Epikure3251 / LDO samples.  

 

Table 1. Composition of the various samples evaluated in this study. 

  

 

 

 

 

 

 

 

 

2.5. Characterization and measurements 

2.5.1   Swelling ratio and insoluble fraction determination 

 

The cured epoxy resins were cut into coupons with size approximately 1 cm x 1 cm squares with 2mm 

thickness, were weighed (mass wd), and were immersed in methanol or water for 48h. The swollen 

samples were removed from the solvent, patted-dry to absorb the solvent in surface, and weighed (mass 

ws). The solvent part then left in a vacuum oven at a pressure of 6.6 kPa for 24 hours and weighed again 

(mass wdo). The swelling percentage and soluble fraction were calculated as follows: 

 

Swelling (%) =
𝑊𝑠−𝑊𝑑

𝑊𝑑
∙ 100 (1) 

Xsolubility (%) =
𝑊𝑑0

𝑊𝑑
∙ 100 (2) 

 

2.5.2   Dynamic mechanical analysis 

 

The temperature dependencies of the viscoelastic properties (loss modulus, E’’, storage modulus, E’ and 

mechanical loss tangent, tan (δ) of the cured resins were evaluated by dynamic mechanical analysis 

(DMA) in shear strain mode using a frequency of 1 Hz on a Physica MCR 301 Anton Paar instrument. 

After sample sheets were cured, they were cut in plates of size 50 mm × 10 mm × 1 mm. The samples 

NO Samples Amine / Epoxy function mol.% 

1 PEI / LDO 40 / 60 

2 PEI / BADGE 40 / 60 

3 PEI / TMPTE / LDO 40 / 30 / 30 

4 PEI / PNBE-epoxy / TMPTE / LDO 40 / 2 / 29 / 29 

5 Epikure3251 / LDO 50 / 50 

6 Epikure3251 / BADGE 50 / 50 

7 Epikure3251 / TMPTE / LDO 50 / 35 / 15 

8 Epikure3251 / PNBE-epoxy / TMPTE / 

LDO 

50 / 2 / 35 / 13 
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were tested in triplicata over a temperature range from ambient temperature 30 to 200ºC with a heating 

rate of 2ºC/min. The glass-transition temperature (Tg) was assigned as a temperature where the loss factor 

was maximum. The average molar mass between crosslinks was calculated using DMA data as follows:29 

 

Mc=
𝜌𝑞𝑅𝑇

E’
 (3) 

 

Where Mc is the number average molar mass between crosslinks (g/mole), q is the front factor (usually 

equal to 1), ρ is the density at temperature T (K), E’ is the storage modulus in the rubbery region at 

temperature T, and R is the universal gas constant. 

 

2.5.3   Tensile tests 

 

Tensile tests of epoxy resins were performed on a Universal Testing Machine Model 5966 Instron with a 

load cell of 5 kN at a crosshead speed of 5 mm/min and the gauge length of 59 mm in accordance to 

ASTM D412. Samples sheets were cured at 120 ºC for 3h. While they were still hot, a dumbbell-shaped 

puncher was used to cut them into the form of dumbbells. After they reached room temperature, the 

resulting dumbbell-shaped samples were cured again at 150 ºC for 4h. 

 

2.6. Results and discussion 

2.6.1   Swelling Test 

 

LDO is constituted of four isomers, two trans isomers (where the exocyclic isomer is trans to the methyl 

group) and two cis ones. Since the endocyclic epoxide of the cis stereoisomers are less reactive toward 

ring opening to amines,26 the cis isomers are considered in this study as monofunctional epoxy monomers 

(the exocyclic epoxide is reactive but not the endocyclic one). As the LDO mixture contains equimolar 

amounts of the four isomers,26 an average functionality of 1.5 was determined for LDO (two bifunctional 

isomers, two monofunctional ones), leading to an average EEW of 112 g. eq-1.  Resulting from this 

average EEW of 1.5, curing of LDO with Epikure3251as hardener (sample 5) led to brittle samples that 

are fully soluble in methanol, and therefore that are not crosslinked. By contrast, curing of BADGE with 

Epikure3251 (sample 6) leads to a crosslinked (insoluble) resin which will be used as benchmark for our 

study. This experiment confirms that LDO is indeed not a difunctional monomer, as insufficient 
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crosslinking occurred. Furthermore, it indicates that methanol is a good solvent for the polymer formed 

upon reacting LDO with Epikure3251. In fact, samples prepared by curing LDO with a variety of 

difunctional amines (such as Epikure3251, isophorone diamine or ethylene diamine) were always found 

to be fully soluble in methanol. Thus, methanol was selected in subsequent swelling tests as it is able to 

fully dissolve uncrosslinked polymer chains in partially crosslinked samples. Water was also used to 

perform swelling tests, due to the importance of water uptake from an applicative point of view. When 

LDO is used in conjunction with TMPTE, a trifunctional epoxy monomer, a crosslinked network is 

obtained (no soluble fraction), but significant swelling indicates that the crosslink density is low (Table 

2). By adding PNBE-epoxy, a multifunctional epoxy monomer, swelling decreases, resulting from a 

higher crosslink density. It should be mentioned that the swelling values in methanol of the BADGE 

containing samples cannot be compared because methanol is not a good solvent of resins containing 

BADGE. Using PEI as crosslinker yields similar results: the resin is insoluble once TMPTE and PNBE-

epoxy are used in conjunction with LDO. In the presence of PEI and TMPTE, the resin becomes more 

hydrophilic, as shown by a higher swelling in water. It also indicates that the crosslink density of the PEI 

/ TMPTE / LDO samples is most likely lower than for PEI / BADGE samples. 

 

Table 2. Swelling in methanol and water and percentage of the soluble fraction. 

 

Samples 

(Amine / Epoxy function) mol.% 

Methanol Water 

Swelling 

(%) 

Xsolubility 

(%) 

Swelling 

(%) 

Xsolubility (%) 

Epikure3251 / BADGE 4 0.3 1 0.3 

Epikure3251/ TMPTE / LDO 67 0 3 0.2 

Epikure3251 / PNBE-epoxy / TMPTE / LDO 56 4 2 0.4 

PEI / BADGE 0 0.2 1 0.3 

PEI / TMPTE / LDO 39 2 22 0.8 

PEI / PNBE-epoxy / TMPTE / LDO 7 0.6 10 1.6 

 

 2.6.2   Dynamic mechanical analysis 

 

Table 3 exhibits the storage modulus (E’), loss modulus (E’’), tan and molecular weight between 

crosslinks, Mc, as obtained from dynamic mechanical tests for samples hardened with Epikure3251 and 

PEI.  

The glass transition temperature (Tg) was measured when tan reached a maximum and Mc was estimated 

by using Eq 3.30 The Epikure3251 / BADGE sample exhibits the typical behaviour of an epoxy resin, 
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with a storage modulus greater than 1 GPa at room temperature, and a Tg around 85oC. The molecular 

weight between crosslinks, Mc, calculated from the value of the loss modulus in the rubbery plateau, 

should be taken as an indication of the crosslink density. Switching BADGE by LDO / TMPTE results 

in lower Tg and lower storage modulus which can be explained by the flexibility of the TMPTE unit 

which is usually used as reactive diluent rather than constitutive monomer.31 The high value of Mc can 

be explained by the fact that due to the LDO functionality of 1.5, in average two LDO units are found in 

between crosslinks. By adding PNBE-epoxy, a highly rigid multifunctional polymer containing epoxide 

groups, the storage modulus and Tg increase and concomitantly, Mc decreases.   

Similar conclusions can be drawn for the system PEI / BADGE. The hardener PEI having a low molecular 

weight between primary and secondary amines, the value of Mc is comparatively lower than with 

Epikure3251.   

Remarkably, the values of the PEI / PNBE-epoxy/ TMPTE / LDO sample are comparable to those of 

Epikure3251 / BADGE. 

 

Table 3. Storage modulus, loss modulus, Tg and Mc for samples with PEI and Epikure3251 as a 

hardener. 

Samples Storage modulus 

(MPa)1  

Loss modulus 

(MPa)1 

Tg  

(ᵒC) 

Mc  

(g.mol-1) 

Epikure3251 / BADGE 1330±30 19±1 95 460 

Epikure3251/ TMPTE / LDO 840±20 47±2 62 2240 

Epikure3251 / PNBE-epoxy / TMPTE / 

LDO 

1010±20 47±3 65 1580 

PEI / BADGE 510±20 13±3 151 290 

PEI / LDO 930±30 24±3 81 810 

PEI / TMPTE / LDO 1040±40 25±4 101 470 

PEI / PNBE-epoxy / TMPTE / LDO 1220±40 35±4 107 370 
1. At 30 oC. 

 

Figure 2 a and b respectively show the storage modulus (E’) and tan(δ) vs temperature for the various 

samples. Although PEI / BADGE has the highest Tg, it also has the lowest storage modulus, which can 

be explained by the flexibility of the PEI chain. By comparison, the presence of LDO with PEI results in 

higher storage modulus. The samples containing Epikure3251 have two tan() peaks. We surmise that 

this behavior can be explained by a microphase separation phenomenon between the epoxy phase and the 
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oligomeric Mannich base hardener (Epikure3251).32 By contrast, samples with PEI as a hardener for 

which all curves have a single tan peak, form homogeneous networks.   

 

(a)  

(b)  

Figure 2. DMA results for samples (a) storage modulus as a function of temperature (b) tan(δ) as a 

function of temperature. 



48 

2.6.3    Tensile Tests 

 

Table 4 shows the tensile properties of samples prepared with two different hardeners; The Young moduli 

of the samples prepared with BADGE or LDO/TMPTE using either Epikure3251 as hardeners are 

comparable (2.3 +/- 0.1 GPa). Remarkably, for samples hardened by PEI, the Young moduli of samples 

containing LDO are higher than those prepared with BADGE.  In fact, the sample PEI / PNBE-epoxy / 

TMPTE has tensile properties (Table 4) which are similar to those of Epikure3251 / BADGE. 

Interestingly, the inclusion of TMPTE and of PNBE-epoxy within the formulations result in an 

improvement of elongation at break as well as tensile strength, rendering the corresponding materials 

both more ductile and tougher. 

 

Table 4. Young Moduli, Ultimate tensile strength, Elongation at break for samples with Epikure3251 

and PEI as hardeners (triplicate experiments). 

Samples 
Young Modulus 

(GPa) 

Ultimate strength 

(MPa) 

Elongation at 

break (%) 

PEI / LDO 1.7±0.4 16.8±3 1±0.07 

PEI / TMPTE / LDO 1.9±0.2 34.5±3.2 2±0.3 

PEI / PNBE-epoxy / TMPTE / 

LDO 
2.2±0.1 37.5±3 3.6±0.9 

Epikure3251 / TMPTE / LDO 2.3±0.1 24.7±5.4 1.1±0.3 

Epikure3251 / PNBE-epoxy / 

TMPT-E /LDO 
2.2±0.25 29.9±5 1.4±0.4 

Epikure3251 / BADGE 2.3±0.1 66.5±7 3.7±1 

 

2.7. Conclusion 

 

In this paper, we assessed the possibility of using limonene dioxide (LDO) as bio-based replacement for 

BADGE in epoxy resin formulations. Samples were investigated and compared with a commercial 

benchmark sample formed with Epikure3251 and BADGE. Interestingly, the results indicate that it is 

possible to formulate epoxy resins based on LDO with thermomechanical properties that are equivalent 

to those of the benchmark system, either in terms of water uptake, or in terms of thermomechanical 

properties (DMA) and finally in terms of mechanical testing.  Although literature hinted that LDO should 
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not be a suitable epoxy monomer, these results demonstrate that when properly formulated, biobased 

LDO can be considered as a valid replacement for the petroleum-based BADGE.  Considering that the 

catalytic epoxidation of limonene using oxygen as oxidant has recently been reported,25 the elaboration 

of carbon-neutral epoxy resins should become feasible in the future.  
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3.1  About the Project 

 

This chapter presents an article showing that lanthanide dodecyl sulfates (LnDSx) effectively catalyze the 

reaction of amines with epoxides. This catalytic effect can be observed, especially in the cross-linking 

reactions of LDO with amines. It was demonstrated that new catalysts can be synthesized from the 

reaction between lanthanide salts with sodium dodecyl sulfate. Catalysts were characterized by different 

techniques such as nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), 

X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS). The 

activity of this family of catalysts was assessed by measuring the gel-time and drying-time of several 

epoxy formulations. 

The results of these analyses are presented in an article form which has been submitted to Chemical 

Communications. It is shown in the article that the lanthanum-based catalyst, LaDSx, is the most active 

of all lanthanides. 

This research study was conducted at the University of Sherbrooke under the supervision of Professor 

Claverie in collaboration with SOPREMA CANADA. Professors Claverie, Louis Schutz, and I studied 

the concept and design. I synthesized the catalysts and tested the gel timer, IR, and drying time. Louise 

Schutz and I worked on the DSC results to test the activation energy of each catalyst. Louise Schutz 

characterized the catalyst. Louise Schutz and I wrote the first draft. Professor Claverie reviewed and 

edited the drafts. All members reviewed the final version of the article. 
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3.2 Scientific article  

 

Lanthanide dodecyl sulfates, LnDSx, are remarkably effective to catalyze the reaction of diepoxides with 

diamines in the liquid and solid states, a key reaction in the formation of epoxy thermosets. Among all 

lanthanides, the lanthanum complex LaNa(DS)4(H2O)2 is the most active, allowing a decrease of 60 

kJ/mol of the activation energy between polyethylene imine and limonene dioxide, a biobased epoxy 

monomer. 

Thermosetting materials are a broad class of materials that find countless applications in all technological 

domains. Among them, epoxy thermosets are the most popular and widely used.1 Fundamentally, an 

epoxy thermoset stems from the solvent-free ring-opening of epoxide moieties belonging to an epoxy 

monomer by a variety of nucleophiles (amines, alcohols, carboxylates or thiols) which are borne by the 

cross-linker. The rate at which this ring-opening reaction occurs is a key parameter which controls the 

time it takes for the liquid to phase-transition to the solid state (so-called gel time) and the time for the 

solid to be hard and fully crosslinked (so-called dry time). To accelerate this reaction, epoxy thermosets 

are formulated with various catalysts or accelerators which must be soluble in either the epoxy monomer 

and/or the crosslinker (no solvent), be tolerant to all sorts of environmental conditions and be widely 

available and inexpensive considering the massive scale at which epoxy are produced. Despite the 

plethora of catalysts that have been reported in literature for the ring-opening of epoxides in solution,2 

only a handful satisfy the requirements cited above.3 Alcohols such has nonylphenol derivatives, tertiary 

amines such as 1,4-diazabicyclo[2.2.2]octane, substituted ureas and imidazoles are often used to catalyze 

the nucleophilic addition of amines in an epoxy thermoset.4 In many instances, the slow rate of reaction, 

resulting in long gel-times and drying-time curtail the application of epoxy formulations.  This limitation 

is particularly stringent with bio-based epoxy monomers, which are often less reactive than their 

petroleum-based counterparts,5,6 either because of a greater steric hindrance, or because of the absence of 

an oxygen in beta position. resulting in long gel-times and drying-time curtail the application of epoxy 

formulations.  This limitation is particularly stringent with bio-based epoxy monomers, which are often 

less reactive than their petroleum-based counterparts,5,6 either because of a greater steric hindrance, or 

because of the absence of an oxygen in beta position. 
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Scheme 1 A. Ln(DS)x catalysts composed of Ln(DS)3 and Ln(DS)4
- (counter ion Na+ or H+, DS- = 

dodecyl sulfate). B.  Formation of the epoxy thermoset catalyzed by Ln(DS)x, with an industrial 

formulation (BADGE + Epikure 3251) or a biobased one (LDO + polyethylene imine, PEI) and 

representative pictures of the hardened samples. 

 

Such oxygen atom is known to act as a directing group for the formation of a H-bond between the alcohol 

(catalyst)7 and the epoxide group, leading to a stabilization of the transition state. For example, the 

biobased monomer limonene dioxide (LDO) (scheme 1), which contains a 2,2-disubstituted epoxide and 

trisubstituted epoxide is a known example of epoxide monomer which reacts excessively slowly with any 

classical catalyst.8,9 In the past 30 years, Lewis-acids surfactant catalysts (LACS), a class of compounds 

introduced by Kobayashi10–13 were explored for a variety of organic reactions whereby the LACS acts 

both as a water-tolerant Lewis acid and a surfactant. Among the catalysts explored, only few example 

used lanthanides as metal cation such as La,12 Ce,14 Sm,15 Dy,15 Yb13,15 for reactions such as allylation of 

benzaldehyde, aldol reaction and preparation of quinoleine. The organo-soluble and amphiphilic nature 

of LACS motivated us to assess their reactivity for the cross-linking of epoxy monomers with amines in 

the solid-state.   

In this communication, we demonstrate that lanthanide dodecyl sulfates (LnDSx) efficiently catalyse the 

reaction of amines with epoxides in the solid state, leading to gel-times and drying-times that are shorter 

than those obtained with all conventional aforementioned catalysts (Scheme 1). Using two test 

formulations, one industrial one, based on diglycidyl ether of bisphenol A (DGEBA), the other one based 
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on biobased LDO, we demonstrate that the lanthanum based catalyst, LaDSx, is the most active of all 

lanthanides, resulting in a large decrease of the activation energy for the reaction between the epoxide 

and the amine in the solid state.  Due to their high oxophilicity, LnDSx catalysts are highly potent Lewis 

acids catalysts that are uniquely able to activate an epoxide group in the presence of amines making them 

highly potent catalysts for the preparation of epoxy thermosets.   

The Ln(DS)x complexes result from the precipitation of water soluble lanthanide nitrate in the presence 

of NaDS (Scheme 1).  This simple procedure was tested for all lanthanides, excepted radioactive Tc and 

expensive Dy, and found to be quantitative in all cases, leading to a powder which was isolated by 

filtration (see ESI for experimental procedure).  Although litterature systematically reports that these 

complexes with three sulfates per metal, there are, to our knowledge, no spectroscopic evidence in support 

of such stoechiometry.  Careful elemental analysis  performed by Inductively Coupled Plasma Optical 

Emission Spectroscopy (ICP-OES) (Table S4) or  Inductively Coupled Plasma Mass Spetrometry (ICP-

MS) (table S5) indicate that the stoechiometry is actually comprised between 2.5 and 4. Analysis by X-

ray Photoelectric Spectroscopy (XPS) indicates that the complexes contain Ln, C, O, N and H (the latter 

one not be detected by XPS). No major amount of Na is incorporated in the complex, ecepted in the case 

of Lu. The value of the Ln:DS- ratio depends on the concentrations of Ln(NO3)3 and NaDS, indicating 

that there exists an equilibrium between Ln(DS)3 and Ln(DS)4
- (Scheme 1). As a result, Ln(DS)x is an 

amorphous solid with stoechiometry x close to 4 for La and Ce (the lanthanides with the largest ionic 

radius), and x varying between 3 and 4 for the other ones. The precise stoechiometry of the diamagnetic 

La complex was also confirmed by 1H NMR (Figure S12). 

In order to further examine the structure of these Ln(DS)x complexes, single-crystals of 

NaLa(DS)4.(H2O)2 were grown from a reaction performed in the presence of an excess of NaDS (Figure 

1). In this structure, all La atoms are in a dodecahedral eight-coordination environment, with six sulfates 

and two water molecules coordinating (Figure S13).16,17 All the sulfate groups are bridging between two 

La atoms or between La and Na, but none of them are chelating. The absence of η3-SO2
- coordination 

mode can be explained by the large ionic radius of the La atom (130 pm). The eight La-O distances are 

comprised between 2.42 and 2.50 Å (Figure S13), which is commensurate, yet slightly smaller, than the 

average La-O bond of 2.50-2.55 Å found in eight-coordinated La(III) complexes.18,19 
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Figure 1. Crystal structure of LaNa(DS)4(H2O)2. A.  Polyhedral representation of the La, N and S 

environments. B. View of the crystal lattice from the (100) direction 

 

Each unit cell contains in its 001 plane two La atoms which are decorated by the long alkyl chains at a 

60o angle with the 001 plane. Thus, the complex adopts a lamellar structure of thickness 3.16 nm, where 

all sulfates and metallic atoms are located in the center of the lamella and are shielded from the external 

environment by the lipophilic C12H25 chains. 

All Ln(DS)x complexes were found to be soluble in a variety of diamines used as cross-linkers for the 

preparation of epoxy polymers. In this study, the results are shown for polyethylene imine (PEI) and for 

Epikure 3251, an oligomeric modified aliphatic amine of proprietary structure. Notably, Epikure 3251 

(labelled Epikure), which is already formulated with a series of additives, was selected in order to assess 

the compatibility of the Ln(DS)x with the variety of additives that are used industrially. Figure 2 illustrates 

the effect of the Ln(DS)x catalysts on the so called gel-time, which is the time it takes for the thermosetting 

formulation to transition from liquid to solid. All Ln(DS)x significantly decrease the gel-time, with 

La(DS)x being the most effective catalyst. In our hands, the La(DS)x catalyst was found to be more 

effective than all assessed commercial catalysts (Table S6) when using identical amounts. Remarkably, 

the gel-time, which is a characteristic reaction time, was found to be inversely proportional to the 

concentration of Ln(DS)x  (Table S7, Figure S14), which is indicative of a first-order dependency of the 

reaction rate with catalyst concentration, an advantage in terms of formulation as the gel-time can be 

simply dialled in by adjusting the amount of catalyst. At gel-time, the sample reaches the solid-state, 
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which means that the gel-time is characteristic of a kinetics occurring in the liquid state.  Another 

characteristic time is the drying time which is the time required for the sample to be fully hardened, a 

time which is representative of the kinetics in the solid state. Remarkably, the La(DS)x catalyst is also 

able to significantly decrease the drying time (Table S8), with drying of the BADGE-Epikure formulation 

being dried in 1 hour with 2 wt% of La(DS)x instead of 2 hours.  Thus, the catalysts are also efficient in 

the solid state. In the time-temperature-transformation (TTT) isothermal cure diagram developed by 

Gillham et al,20 the La(DS)x operates in the lower section of the S curve: the reaction is chemically 

controlled and vitrification occurs only at high conversion.   

 

Figure 2.  Effect of the Ln(DS)x catalyst (2 wt%) on the gel-time (transition liquid to solid) for two 

formulations. The gel-time is normalized by the corresponding gel-time measured in the absence of 

catalyst (84 minutes for Epikure-BADGE, 48 hours for PEI-LDO). 

 

In order to further clarify the catalytic effect of La(DS)x on the hardening of the biobased LDO with PEI, 

the reaction kinetics was monitored by differential scanning calorimetry (DSC, Figure 3).  As shown in 

Figure 3a for a DSC experiment performed at 2oC/min, the reaction proceeds between 100 and 200oC 

with a maximum heat released at 151 and 139oC respectively in the absence and presence of catalyst, 

indicating that the reaction occurs at lower temperature when catalyzed. A more precise kinetics analysis 

was performed by measuring the instantaneous heat flow as measured by DSC, q(t), under isothermal 

conditions. The heat flow is related to the conversion, x, via: 



60 

( )
dx

q t H
dt

=              (1) 

 

where ∆H is the reaction enthalpy obtained by integration of the heat flow.  Thus, using equation (1), it 

is possible to assess dx/dt, and by integration, x.  The reaction kinetics was modeled using a modified so-

called Kamal model,21,22 which includes a non auto-catalytic pathway (kinetic rate constant k1, order n1) 

and an auto-catalytic pathway (kinetic rate constant k2, orders n2 and m2): 

 

( ) ( )1 22

1 21 1
n nmdx

k x k x x
dt

= − + −
                                 (2) 

When an epoxide is ring-opened by an amine, the reaction is expected to proceed in a bimolecular fashion 

(n1 = 2). The product of this reaction is an alcohol which can activate the epoxide group via the formation 

of a H-bond, thus explaining the presence of an autocatalytic pathway. Non-linear fitting of the dx/dt 

curves over t was used to extract the values of all kinetic parameters (Table S6 and Figures S15-S19). For 

the LDO/PEI system, the rate constants for the non auto-catalytic pathway were more than one order of 

magnitude smaller than those of the auto-catalytic pathway. For this latter one, the apparent activation 

energy (Figure 3b) of the reaction performed with 2% La(DS)x is 53 kJ/mol whereas it is 112 kJ/mol in 

the absence of catalyst. Other lanthanides were found to have activation energy slightly higher than 

La(DS)x (54-60 kJ/mol), which in good agreement with the gel-time results which show that La(DS)x is 

the most active catalyst (Figure 2) in the lanthanide series.  Several other catalysts were also prepared, 

using sodium dodecyl benzene sulfonate (NaDBS), sodium phenolate (NaOPh) as starting material 

instead of NaDS.  The resulting La complexes were found to catalyze the reaction, albeit less efficiently 

than La(DS)x (Table S10-S11). 
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Figure 3. A. DSC thermogram at 2 oC/min of equimolar biobased LDO + PEI. B. Arrhenius plot for the 

reaction performed with and without catalyst. 

 

These experiments indicate that Ln(DS)x, and particularly La(DS)x, is remarkably efficient to catalyze 

the formation of epoxy polymers with amines.  Although the nucleophilic attack of epoxides is known to 

be activated by Lewis acids, such strategy usually fails in the presence of amines due to the formation of 

a Lewis adduct between the amine and the Lewis acidic catalyst. Lanthanides are the most oxophilic 

elements known, and they will preferably bind to hard oxygen-containing moieties.23 Of all lanthanides, 

the most active one is La, followed by the early ones (Ce, Pr, Nd and Sm). Several factors could explain 

this trend.  The La(DS)x complex was found to be eight-coordinated (Figure 1), but heavier elements 

which are smaller due to lanthanide contraction, tend to favor lower coordination numbers, and therefore, 

less coordination sites to activate the epoxide. Furthermore, for heavier elements, the Ln-O distances are 

smaller, and the resulting complexes are therefore more stable and less labile.  Using Fourier Transform 

InfraRed (FTIR) spectroscopy, the vibrations characteristic of S-O was monitored (Table S12). In NaDS, 

two vibrations are observed at 1218 cm-1 and 1081 cm-1. These bands are respectively assigned to 

asymetric and symetric stretching SO2
- vibrations (see Figure S20).  In Ln(DS)x complexes, each of these 

vibrations is doubled, one of which remains unchanged whereas the other one varies with the nature of 

the lanthanide ion (Table S12).  Thus, the vibrations which remain unchanged correspond to the sulfate 

groups that are coordinated to Na+ whereas the other ones correspond to sulfate groups coordinated to 

Ln3+. The progression from the lowest to highest wavenumber of the symetric stretching is La < Ce < Pr 

< Nd < Er <  Eu < Tm < Yb < Ho < Lu < Gd which corresponds well to the catalytic activity for LDO 
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polymerization:  La > Ce > Pr > Nd > Sm > Tb > Lu > Ho > Yb > Eu > Er > Tm > Gd (Table S13).  

Rankings performed with asymetric stretching vibrations or with catalytic activity for DGEBA 

polymerization are also similar. The SO2 stretching wavenumbers increase with the mass of the lanthanide 

(with the exception of Gd, the central lanthanide which is ranked last), therefore mass effects cannot 

explain the wavenumber ranking. Rather, the ranking reflects the fact that SO2-Ln bond strength increases 

from La to Lu. The lower catalytic activity of the Gd complex and higher wavenumber is an illustration 

of the so-called gadolinium break,24 which is a discontinuity in many properties for this central lanthanide 

atom.  The fact that the highest catalytic activity is observed with La3+ therefore correlates with its larger 

size, which results in a longer and weaker SO2-La bond, as shown by a lower SO2 wavenumber. For 

subsequent lanthanides, as their size decreases (due to lanthanide contraction), the SO2-Ln bond becomes 

shorter and stronger, resulting in metal atoms which are less oxophilic and more tightly bonded to the 

sulfate ligands, thus making them less prone to activate the epoxide toward nucleophilic attack.    

In this communication, we have demonstrated that Ln(DS)x, and among them La(DS)4
- (counter-ion H+ 

or Na+) is a highly-efficient catalyst for the formation of epoxy thermosets, largely surpassing the activity 

of conventional commercial catalysts. Due to their activity, these catalysts allow the formation of epoxy 

polymers based on LDO, a biobased monomer which has remarkably low activity due to its high steric 

hindrance and the absence of β-oxygen group.9 Since biobased epoxy monomers often suffer from a lower 

reactivity than conventional monomers such as BADGE, we envision that La(DS)x will be highly valuable 

for the development of biobased epoxy formulations. 
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3.4 Electronic Supplementary Information 

 

 

 Materials and methods 

 

Limonene dioxide (LDO) was purchased from the company Symrise Chemical. Epikure 3251 was 

purchased from the Hexion company. All lanthanide nitrates were purchased from the Strem company. 

All other chemicals were purchased from Sigma Aldrich. Fourier Transformed Infrared spectroscopy 

(FTIR) were acquired on a Bomem MB104 spectrometer, using a Golden Gate attenuated total reflectance 

(ATR) module from Specac. Spectra were recorded between 4000 and 600 cm–1 with a resolution of 2 

cm–1 using an average of 64 measurements in the final spectrum. Nuclear Magnetic Resonance (NMR) 

spectra were acquired on an Avance Neo 400 MHz spectrometer at ambient temperature using anhydrous 

benzene as internal standard.  

 

 Synthesis of the catalysts 

 

Amounts used for each synthesis are consigned in Table S1.  A representative procedure is described for 

cerium.  In a 125 mL Erlenmeyer loaded with a magnetic stirred bar, 0.996 g of sodium dodecyl sulfate 

were dissolved in 37.5 mL of deionized water at room temperature. Another aqueous solution was 

prepared by dissolving 0.500 g of Cerium (III) nitrate hexahydrate in 12.5 mL of deionized water, and 

then added into the Erlenmeyer while stirring. After 3 min of stirring, the solid formed was recovered by 

Büchner filtration over a paper filter and washed 3 times with 25 mL of deionized water. The solid was 

then dried in a vacuum oven (50 Torr, 60°C) for 24 hours, giving 1.036 g of a white powder (Yield > 

95%). 
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Table S1. Amounts used for each syntheses. 

 

Lanthanide used SDS (g) Ln(NO3)3 (g) Ln(DS)x (g) Aspect of the 

solid 

La 0.999 0.500 1.055 White 

Pr 0.994 0.500 1.037 Greenish 

Nd 0.987 0.500 1.036 Pale magenta 

Sm 0.973 0.500 1.008 Ivory 

Eu 0.970 0.500 1.025 White 

Gd 0.961 0.500 1.019 White 

Tb 0.955 0.500 0.962 White 

Ho 0.981 0.500 0.996 Pale Orange 

Er 0.976 0.500 1.017 Pink 

Tm 0.934 0.500 0.974 White 

Yb 0.963 0.500 1.019 White 

Lu 0.922 0.500 1.005 White 

 

Measurement of gel-time 

 

First, the catalyst and cross-linker were mixed inside a 20 mL vial using an ultrasonic bath with slight 

heating. Then the epoxy monomer was added to the mixture. Immediately after, the vial was thermostated 

in a water or sand bath in order to absorb the reaction heat and the mixture was continuously stirred by a 

wire stirrer (Figure S1) and the gel-time corresponds to the time it takes for the wire to stop stirring.  The 

various formulations used for gel-time measurements are detailed in Table S2 and S3.  
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Figure S1.28 A. gel-time measurement setup.  B.  Various solid LDO-PEI formulations.  C. Various 

solid DGEBA-Epikure formulations. 

 

 

Table S2. Gel-time for formulations based on BADGE (the reference gel-time for the uncatalyzed 

reaction was 84 min). 

 

Dodecyl sulfates 

catalysts 
La Ce Pr Nd Sm Eu Gd Tb Ho Er Tm Yb Lu 

Mass of BADGE (g) 3.40 

Mass of Epikure 3251 

(g)  
1.52 

Mass of catalyst (g) 0.10  

Gel-time (min)a 24 50 44 47 43 57 56 62 62 63 53 51 64 
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Table S3.  Gel-time for formulations based on LDO (the reference gel-time for the uncatalyzed reaction 

was 48 hours). 

 

Dodecyl sulfates catalysts La Ce Pr Nd Sm Eu Gd Tb Ho Er Tm Yb Lu 

Mass of LDO (g) 3.00 

Mass of Polyethylenimine 

(g)  
2.00 

Mass of catalyst (g) 0.92  

Gel-stime (h)a 6 10 11 12 12 16 25 12 15 16 18 15 13 

 

 Measurement of the drying time 

 

This procedure was adapted from ASTM D5895. In a 20 mL vial, the catalyst La(DS)x (0.1 g) was 

dissolved in Epikure 3251 (3.04g). Then, BADGE (6.81 g) was then added into the vial and quickly mixed 

with a glass rod for 1 min. The resulting viscous mixture was poured over a glass plate and spread with a 

universal blade applicator (GARDCO company) set at a nominal 10 mils thickness (250 micrometers). 

Every 15 min, the film was gently scratch with a needle, and the film was declared dry when the needle 

did not leave any mark on the film.  

 

 X-ray PhotoElectron Spectroscopy (XPS)  

 

Analyses were performed on a Physical Electronics XPS PHI 5600-ci instrument equipped with an Al 

anode (1486.6 eV) at 300 W in survey mode, using the charge compensation mode. High resolution 

analyses were performed at an incident angle of 45 o on a surface of 0.5 mm2. High resolution spectra 

were performed on C1s, O1s and S2p using 30, 30 et 60 scans respectively. 

 

Inductive Coupled Plasma (ICP)   

 

ICP-MS measurements were performed on a X series II instrument from ThermoFisher Instrument 

equipped with a Elemental Scientific PC3 Peltier spray chamber.  The nebulizer gaz flow was set at 0.98 

L/min, the forward power at 1400 W, the cooling gas at 13 L/min, the auxiliary gas at 0.8 L/min. For 

each run, 100 sweeps with dwell times of 10 ms were performed.  The monitored isotopes were 45Sc, 89Y, 

139La, 140Ce, 141Pr, 143Nd, 146Nd, 147Sm, 153Eu, 155Gd, 157Gd, 159Tb, 161Dy, 163Dy, 165Ho, 166Er, 167Er, 169Tm, 
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172Yb and 175Lu using 103Rh as internal standard. ICP-OES measurements were performed an Agilent 

Technology 5100 ICP-OES instrument.  The instrument was calibrated for S, Ce, Pr, Nd, La, Y, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, using ICP-OES standards purchased at Sigma-Aldrich.  Samples 

(analysed both by ICP-MS and ICP-OES) were prepared by dissolving a known amount of catalyst 

(approx. 10 mg) in 2 mL of of HNO3 (Tracecert® grade) for 4 h at 65°C. Then, 2 mL of HNO3 were 

added to this solution for a second heating step of 2h at 85°C in order to ensure complete dissolution. All 

sample were analysed as a triplicate 

 

Single Crystal X-ray Diffraction 

 

A needle-like specimen of C48H96LaNaO18S4 of approximate dimensions 0.22 mm x 0.100 mm x 2.12 

mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a 

Bruker Kappa APEX II DUO CCD system equipped with a TRIUMPH curved-crystal monochromator 

and a Mo fine-focus tube (l= 0.71073 Å). Data collections have been carried out at nine different 

temperatures – 100 oC. The lattice parameters were obtained by least-squares fit to the optimized setting 

angles of the entire set of collected reflections.  

 

Differential Scanning Calorimetry  

 

Differential Scanning Calorimetry (DSC) measurements were performed on a DSC 7 from Mettler-

Toledo under nitrogen flux of 20mL/min equipped with an autosampler and a cooler. For each 

formulation, a sample containing the appropriate mixture of LDO and hardener was vigorously mixed 

using a vortex for 2 min. The resulting homogeneous and viscous liquid was then immediately placed in 

a DSC pan, which was hermetically sealed. The sample was then placed on the autosampler and was 

introduced in the oven which was pre-heated at the requested temperature.  
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Figure S29. XPS – Survey mode for La(DS)x catalyst. 

 

Figure S30. XPS – Survey mode for Ce(DS)x catalyst. 
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Figure S4. XPS – Survey mode for Pr(DS)x catalyst. 

 

 

 

Figure S5. XPS – Survey mode for Sm(DS)x catalyst. 
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Figure S6. XPS – Survey mode for Eu(DS)x catalyst. 

 

 

 

 

Figure S7. XPS – Survey mode for Gd(DS)x catalyst. 
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Figure S8. XPS – Survey mode for Tb(DS)x catalyst. 

 

 

Figure S9. XPS – Survey mode for Tm(DS)x catalyst. 
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Figure S10. XPS – Survey mode for Yb(DS)x catalyst. 

 

Figure S11.  XPS – Survey mode for Lu(DS)x catalyst. 
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Figure S12. 1H NMR (400MHz, DMSO-d6) of La(DS)x and benzene as internal standard. 

 

In a clean NMR tube, 48.36 mg of La(DS)x catalyst and 12.58 mg of benzene (0.161 mmol) were added 

to 0.5 mL of DMSO-D6.  From the benzene integral, it was found that an integral of 1 corresponds to 

0.161 mmol of protons.  The CH3 signal of La(DS)x has an integral of 2.818.  Thus, there are 0.151 mmol 

of CH3 groups.    

The molecular weight of La(DS)x  is  138 + 265 x + (2-x) 18 (considering that the La(DS)x is hydrated 

and is octa-coordinated).  Thus,  

 

0.151

138 265 18 (2 ) 48.36

x

x x
=

+ +  −
 

This leads to x = 3.85 (Not taking hydration water in the hydration sphere leads to x = 2.5)  
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Table S4. Summary of the ICP-MS results. 

 

Compounds % Lanthanide exp Value of x in 

La(DS)xNax-3(H2O)x-2 

Ce(DS)x 10.78 ± 0,50 4.1 

Pr(DS)x 10.26 ± 0,12 4.3 

Nd(DS)x 11.41 ± 1,04 40 

Sm(DS)x 13.63 ± 0,21 4.4 

Eu(DS)x 12.02 ± 0,68 3.4 

Gd(DS)x 13.60 ± 1,12 4.0 

Tb(DS)x 13.13 ± 1,10 3.8 

Ho(DS)x 12.80  ± 0,86 4.0 

Er(DS)x 13.24 ± 0,43 3.9 

Tm(DS)x 14.84 ± 1,49 3.5 

Yb(DS)x 15.63  ± 0,48 3.3 

Lu(DS)x 11.21  ± 0,63 4.5 

 

Table S5.  Summary of the ICP-OES results. 

 

Compounds  S/Ln  Standard Deviation 

La(DS)x 3.8 0.3 

Ce(DS)3 3.7 0.2 

Pr(DS)3 3.2 0.1 

Nd(DS)3 3.2 0.1 

Sm(DS)3 3.1 0.3 

Eu(DS)3 2.8 0.3 

Gd(DS)3 3.0 0.1 

Tb(DS)3 3.8 0.7 

Ho(DS)3 3.7 0.7 

Er(DS)3 3.6 0.1 

Tm(DS)3 2.9 0.2 

Yb(DS)3 2.3 0.6 

Lu(DS)3 3.4 0.8 
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Figure S13. Environment of the La atom in the crystal cell and corresponding bond distances. Atoms 

O14 and O15 belong to water molecules whereas all other oxygen atoms belong to sulfates. 
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Table S6.  Gel-time of an equimolar formulation of Epikure 3251 and BADGE containing 2 wt% of a 

catalyst. 

 

Catalyst (2%wt) Gel-time (min) 

Without catalyst 84 

Benzyl alcohol 67 

Nonylphenol 61 

Triethanolamine 60 

DMP-30 52 

La (DS)3 24 

 

 

 

 

Table S7.  Effect of the concentration of La(DS)x (equimolar formulation of Epikure 3251 and 

BADGE). 

 

Catalyst La (DS)3 

 (%wt) 

Gel-time 

 (min) 

0 86 

0.5 63 

 1 42 

2 25 

3 19 
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Figure S14. Inverse of the gel time vs La(DS)x catalyst concentration (equimolar formulation of 

Epikure 3251 and BADGE). 

 

 

Table S8. The effect of percent La (DS)3 in Epicure/BADGE (50/50 mol.%) formulation on Drying 

time and dissolution mode. 

 

Catalyst La (DS)3 

 (%wt) 

Dry time  

(min) 

0 120 

1 90 

2 60 

 

T = 173 oC T = 188 oC T = 203 oC 

   

 

Figure S15. Experimental and fitted curve dx/dt vs conversion (x) at 173oC, 188 oC and 203 oC 

(LDO:PEI = 60:40 wt%, no catalyst). 
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T = 109 oC T = 139 oC T = 169 oC 

   

 

Figure S16. Experimental and fitted curve dx/dt vs conversion (x) at 109oC, 139 oC and 169 oC 

(LDO:PEI = 60:40 wt%, 2 wt% of La(DS)x). 

 

T = 109 oC T = 139 oC T = 169 oC 

   

 

Figure S17. Experimental and fitted curve dx/dt vs conversion (x) at 109oC, 139 oC and 169 oC 

(LDO:PEI = 60:40 wt%, 2 wt% of Pr(DS)x). 

 

T = 109 oC T = 139 oC T = 169 oC 

 
 

 

Figure S18. Experimental and fitted curve dx/dt vs conversion (x) at 109oC, 139 oC and 169 oC 

(LDO:PEI = 60:40 wt%, 2 wt% of Gd(DS)x). 
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T = 109 oC T = 139 oC T = 169 oC 

   

 

Figure S31 Experimental and fitted curve dx/dt vs conversion (x) at 109oC, 139 oC and 169 oC 

(LDO:PEI = 60:40 wt%, 2 wt% of Eu(DS)x). 

 

 

Table S9.  Fit parameters corresponding to kinetic curves S13-S17 

 

No catalyst 

Parameter T = 173 oC T = 188 oC T = 203 oC 

k1 0.00045 0.0016 0.0037 

m1 1.12 0.84 3.42 

k2 0.0037 0.010 0.025 

m2 0.43 0.630 0.89 

n2 1.12 1.60 2.36 

2% La(DS)x 

Parameter T = 109 oC T = 139 oC T = 169 oC 

k1 0 0.0078 0.087 

m1 1.83 0.51 3.27 

k2 0.099 0.33 0.91 

m2 0.33 0.35 0.39 

n2 1.69 1.82 1.92 

2% Pr(DS)x 

Parameter T = 109 oC T = 139 oC T = 169 oC 

k1 0.00023 0.0032 0.091 

m1 0.90 0.35 3.26 

k2 0.076 0.33 0.87 

m2 0.23 0.35 0.41 

n2 1.43 1.78 1.78 
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2% Gd(DS)x 

Parameter T = 109 oC T = 139 oC T = 169 oC 

k1 0.0015 0.037 0.090 

m1 0.086 1.07 3.27 

k2 0.076 0.34 0.87 

m2 0.23 0.44 0.39 

n2 1.36 2.23 1.70 

2% Eu(DS)x 

Parameter T = 109 oC T = 139 oC T = 169 oC 

k1 0.00060 0.0014 0.0066 

m1 0.68 0.0028 0.0029 

k2 0.067 0.36 0.89 

m2 0.15 0.38 0.30 

n2 1.30 1.98 1.71 

 

 

Table S10. Comparison of the gel-time for various catalysts, La(DS)x, La(OPh)x and La(DBS)x. 

 

Formulations Gel-time of 

La (DBS)x 

Gel-time of 

La (phenolate)x 

Gel-time of 

La (DS)x 

Without 

catalyst 

LDO-PEI (60/40 wt%) 39h 42h 33h >48h 

BADGE-Epikure (50/50 mol.%) 43min 55min 24min 84min 

 

 

Table S11. Influence of the alkali-metal. 

 

Reactants Gel-time (min) 

Lithium dodecyl sulfate + La (NO3)3 · 6H2O 27 

Sodium dodecyl sulfate + La (NO3)3 · 6H2O 28 

Potassium dodecyl sulfate + La (NO3)3 · 6H2O 30 
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Table S12. Wavenumbers of the S-O vibrations in Ln(DS)x complexes. 
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Figure S20. Calculated vibrations for NaSO4CH3 at 1076 cm-1 and 1225 cm-1 (the vectors indicate the 

direction of displacement). 

 

  

 

The molecule was optimized using the def2tzvpp basis set and the MO6 DFT method.  
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Table S13. Comparison of catalytic activity and SO2 stretching wavenumber. 

 

 

 

 

 

 

 

 

 

 

 



87 

GENERAL CONCLUSION 

 

The first objective of this study was to replace a DGEBA monomer with LDO and to produce a new bio-

epoxy. Limonene has four isomers that react differently together, so it shows less reactivity in 

thermosetting epoxy. Until now, LDO has never been applied as an only epoxy monomer in the epoxy 

thermoset. However, it has already been available in the industry as a solvent and has many advantages. 

For instance, its epoxidation occurs without using ECH that is a toxic molecule, and it is also extracted 

from citrus waste. All of these reasons introduce the LDO as an attractive candidate for the synthesis of 

a biobased epoxy polymer.  

For biobased epoxy polymer synthesis, LDO was studied as an epoxy monomer with PEI as a selected 

hardener and Epikure as an industrial hardener. Then swelling tests were performed to examine the 

crosslinked density. The results showed that LDO cannot be cross-linked with Epikure because it 

dissolved in the solvent. However, LDO and PEI became cross-linked but not as much as expected for an 

epoxy thermoset polymer. It means that the LDO-PEI sample had a high amount of swelling, so other 

epoxy monomers that have more functions applied to improve cross-linked density while cured with PEI 

and Epikure. A new epoxy formulation with LDO in absence of DGEBA was obtained, which indicated 

an acceptable swelling amount compare to the sample with DGEBA (industrial sample).  

Other tests such as DMA and tensile tests were performed to examine samples in terms of thermal and 

mechanical properties. The results for the samples with Epikure as a hardener in DMA confirmed two 

phases, highly cross-linked and less cross-linked, that belongs to regain without and with LDO, 

respectively. Otherwise, DMA results show homogenous cross-linked networks, and higher Tg for 

samples containing PEI.  

Tensile tests showed that LDO made samples to be more brittle than the industrial sample. Finally, a 

biobased epoxy formulation was achieved that partially contained LDO and had comparable properties 

with the industrial sample.  

The second objective of this study was to find a new and effective catalyst that is based on the reaction 

between lanthanides with sodium dodecyl sulfate. It is demonstrated that lanthanide dodecyl sulfates 

(LnDSx) efficiently catalyze the reaction of amines with epoxides. Two formulations were tested, one 

with LDO and another one with DGEBA, which are corresponded to biobased and industrial epoxy 

monomer, respectively. Among all lanthanide dodecyl sulfates, LaDSx exhibited the most activity by 

presenting a considerable reduction of the activation energy for the reaction between the epoxide and the 
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amine. Also, LaDSx had a significant effect on the reaction time of LDO even though LDO showed low 

reactivity compared to DGEBA. 
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