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ABSTRACT

The work presented in this thesis is about the Contracts language. It is often the case that

groups of related objects cooperate to perform some tasks or maintain some invariants

within an object-oriented system. Helm's Contracts language is a technique for specifying

this kind of inter-object cooperations in terms of contracts. A contract in Contracts

specifies the cooperations in terms of participating objects, obligations of the participants,

dependencies between the participants, and the instantiation of the participants.

Furthermore, a contract contains invariants which participants cooperate to maintain.

The results of this thesis are a formal specification and a partial implementation of the static

semantics of the Contracts language. The syntax used for contracts comes from Holland's

work and the formalization is done using attribute grammars. Attribute grammars give the

formal definition of all context-free and context-sensitive language properties. They define

each language construct only by its immediate environment and minimize the

interconnection between the different parts of the language, which makes the definition

easier to understand and more concise. The context-free part of the grammar has been

implemented using Lex and Yacc.



Sommaire

Introduction

Le travail presente dans ce memoire concerne Ie langage Contracts, Les systemes orientes

objet consistent en des groupes d'objets relies qui cooperent afin de realiser certaines taches

ou de maintenir certains invariants. Le langage Contracts de Helm est une technique de

specification de cooperations interobjets [Helm 90]. Un contrat, dans Contracts, specific

les cooperations en termes d'objets participants, d'obligations des participants, de

dependances entre participants et de 1'instanciation de ceux-ci. De plus, un contrat contient

des invariants que les participants cooperent a maintenir.

Les resultats de ce memoire sont la formalisation de la semantique statique du langage

Contracts en utilisant la notation de grammaires d'attributs [Wait 85], selon la syntaxe

publiee dans [Holl 92], et 1'implementation de 1'analyse syntaxique et lexicale de Contracts

en utilisant Lex et Yacc.

Techniques orientees objet et contrats

Le but principal des techniques orientees objet est d'ameliorer la fiabilite des systemes

logiciels. La theorie des contrats intervient comme une approche plus systematique pour

1'obtention et la garantie de la fiabilite. Les groupes d'objets cooperant afin d'accomplir des

taches ou de maintenir certains invariants, qui sont appeles compositions

comportementales, sont un element important des systemes orientes objet. Les contrats

visent a formaliser les collaborations et les relations comportementales entre objets, Selon

la definition initiale du terme, un contrat est un ensemble de responsabilites interreliees
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definies par une classe. II decrit les famous dont dispose un client donne pour interagir avec

un serveur. Un contrat est une liste de requetes qu'un client peut formuler a un serveur. Le

client et Ie serveur remplissent Ie contrat en executant uniquement les requetes que Ie

contrat specifie et en repondant adequatement a ces requetes separement. Les travaux

scientifiques recents reconnaissent 1'importance de telles cooperations. Us font reference au

fait que les comportements inter-objets peuvent etre exprimes sous la forme de graphes

de responsabilites [Wirf89] et de collaborations [Wirf 90]. Une responsabilite est quelque

chose qu'un objet realise pour d'autres objets; c'est la base de la determination des contrats

supportes par une classe. Un contrat constitue un ensemble cohesif de responsabilites sur

lequel un client peut compter. Un graphe de collaborations est un outil d'aide a 1'analyse des

voies de communication et a I'identification de sous-systemes potentiels. II montre

graphiquement la collaboration entre classes et sous-systemes. II represente les classes, les

contrats et les collaborations. II montre egalement les relations super-classe et sous-classe.

Dans les graphes de collaborations, une super-classe represente les contrats supportes par

toutes ses sous-classes. Mais 1'inference des dependances comportementales qu'elles

impliquent est difFicile et celles-ci causent des problemes subsequents dans la conception,

la comprehension et la reutilisation des logiciels orientes objet.

II y a plusieurs usages differents du mot contrat dans Ie domaine de 1'oriente objet. Chaque

usage est base sur Ie principe de 1'encapsulation et des consequences de 1'application de ce

principe. Cependant, ces usages du mot contrat different principalement dans 1'etendue de

leur definition en termes de nombre d'objets participants et des methodes que chaque

participant supporte. Par exemple, Ie concept de contrat de Meyer ne fait intervenir que

deux classes (la classe appelante, qui est Ie client, et la classe appelee, qui est Ie fournisseur)

et une methode [Meye 92]. Le client invoque la methode implementee par Ie fournisseur.

Le contrat est exprime enutilisant deux sortes d'assertions. La premiere espece d'assertions

exprime les obligations et les benefices du contrat, qui sont appeles respectivement

preconditions et postconditions. Les preconditions expriment des specifications qui font
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appel a une routine a satisfaire pour etre correctes. Les postconditions expriment les

proprietes qui doivent etre garanties apres Ie retour de 1'execution de la routine. La

deuxieme espece d'assertions est constituee par les invariants de classe, qui sont les

proprietes qui s'appliquent a toutes les instances de la classe, transcendant les routines

particulieres. Meyer a introduit Ie concept de contrat dans Ie langage Eiffel, mais a un

niveau plutot bas d'abstraction et de formalisme.

Le concept de contrat de Helm generalise Ie concept initial de contrat pour deux entites

aux relations multiobjets. II s'attache a 1'interaction entre objets cooperants. II supporte la

decouverte, la comprehension et la representation de 1'interaction entre objets. II fournit

un vocabulaire pour la conception orientee interaction. Par comparaison avec d'autres

notions de contrat, la contribution de Helm est la generalisation des dependances aux

multiobjets, la saisie des dependances comportementales entre objets cooperants et un

formalisme pour 1'abstraction.

Les contrats de Helm specifient les compositions comportementales sous la forme d'objets

participants, d'obligations contractuelles de chaque participant, de preconditions sur les

participants requises pour etablir un contrat et d'invariants que les participants doivent

maintenir. Les obligations contractuelles sont des obligations de type et des obligations

causales. Les obligations de type specifient certaines variables et interfaces externes qui

sont supportees par les participants. Les obligations causales specifient des sequences

ordonnees d'actions que doivent executer les participants, Les obligations causales sont

1'element essentiel des compositions comportementales. Par 1'intermediaire des obligations

causales, les contrats rendent explicites les dependances comportementales entre les

participants d'un contrat. II y a deux operations sur les contrats : 1'inclusion de contrat et

Ie raffmement de contrat, Le comportement des participants d'un contrat peut etre

specialise ou etendu grace a ces deux operations. Le raffinement permet la specialisation

des obligations contractuelles et des invariants des contrats. Les contrats peuvent etre



raffines en specialisant les types de participants ou en derivant un nouvel invariant qui

implique 1'ancien. Les obligations rafTinees se basent sur celles du contrat rafifme. Toutes

les autres obligations du nouveau contrat sont heritees de 1'ancien contrat.

L'inclusion permet aux contrats d'etre formes de sous-contrats plus simples. La

participation a un sous-contrat impose des obligations additionnelles aux participants au-

dela et en plus de celles definies dans Ie contrat. Elles sont impliquees par les sous-contrats

Indus plutot que reecrites. Les mecanismes d'inclusion et de rafFmement peuvent etre

combines si necessaire. Tous deux fournissent Ie moyen d'exprimer des comportements

complexes sous la forme de comportements plus simples et permettent aux contrats de

creer et de reutiliser des abstractions grossieres basees sur les comportements. Les contrats

utilisent des declarations de conformite pour definir comment 1'implementation d'une classe

particuliere, et done de ses instances, rencontre les obligations d'un type de participants.

Les contrats sont definis dans un langage de haut niveau, qui permet une description

sommaire des comportements en termes de sequences ordonnees d'actions a effectuer et

de conditions a rendre vraies.

Plusieurs chercheurs ont introduit et utilise Ie concept de contrat de Helm dans leurs

travaux. Buhr et Casselman ont developpe une vision unifiee des architectures logicielles

entermes de contrats, de roles et de "timethreads" [Buhr 92], Aussi bien les architectures

cablees que les architectures non connectees se concentrent sur 1'expression des relations

de cooperation entre composants et sur les interactions des composants entre eux. Us out

affirme que 1'elaboration d'architectures connectees en roles et en contrats aide a montrer

les aspects distincts, simples et separes de la conception. Voir les architectures non

connectees en termes de contrats fournit un niveau plus eleve d'abstraction dans la

conception. Lajoie et Keller ont developpe un modele multicouche pour la reutilisation d'un

modele [Lajo 94]. Les contrats sont introduits dans leurs travaux comme une technique de

description pour les specifications de haut niveau de comportements d'objets, Les travaux

VI



de Holland sur les contrats portent a la fois sur la semantique statique et sur la semantique

dynamique du langage [Holl 92] [Holl 93]. La semantique statique de chaque construction

grammaticale est decrite sous la forme d'une fonction de validite et exprime des contraintes

additionnelles qui ne peuvent etre exprimees par la grammaire. La semantique dynamique

de chaque construction grammaticale est definie sous la forme d'une fonction :

MT ; T - (Etats - Etats).

Ceci signifie que chaque specimen de la construction T est afifecte a une fonction

(possiblement partielle) de Etats dans Etats. En utilisant ce style de specification, Holland

a construit un modele sequentiel de calcul.

Grammaires d'attributs

Notre formalisation de la semantique statique du langage Contracts est faite en utilisant la

notation de grammaires d'attributs [Wait 85]. Les arbres de structure sont utilises pour

illustrer 1'application des regles de syntaxe des contrats a 1'analyse d'un texte dans ce

langage. Chaque noeud de 1'arbre de structure correspond a 1'utilisation d'une regle et est

dote d'attributs decrivant les proprietes de cette regle. L'attribution de chaque noeud dans

1'arbre structural collecte I'information sur son environnement. Les grammaires d'attributs

sont utilisees pour representer les regles de I'attribution. Elles consistent en la definition

formelle de toutes les proprietes de langage independantes et dependantes d'un contexte.

Une grammaire d'attributs associe un ensemble fini A(x) d'attributs a chaque symbole x

appartenant au vocabulaire de la grammaire. Elle peut etre definie par des fonctions

associees a chaque production dans la grammaire. Chaque attribut represente une propriete

contextuelle d'un symbole et peut etre synthetise ou herite. Les attributs synthetises

representent des proprietes du point de vue du sous-arbre derive du symbole dans 1'arbre

de structure. Les attributs herites resultent de la consideration de 1'environnement. Les
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attributs synthetises sont suffisants pour definir toute fonction d'un arbre de derivation.

L'inclusion d'attributs herites peut resulter en d'importantes simplifications. D'autres

techniques pour la definition semantique formelle de langages de programmation incluent

1'algorithme markovien de croissance de Bakker et Ie A.-calcul de Landin [Land 64]

[Land65] [Land 66]. La difference la plus frappante entre ces methodes et les grammaires

d'attributs est que ces techniques sont des processus qui sont definis par des programmes

comme un tout, et ce, d'une fa9on plutot compliquee. On doit comprendre en entier un

compilateur d'un langage avant de pouvoir comprendre la definition de ce langage. La

grammaire d'attributs definit chaque construction du langage seulement par son

environnement immediat, en minimisant les interconnections entre les differentes parties du

langage. Cette localisation et ce partitionnement des regles semantiques tendent a rendre

la definition plus facile a comprendre et plus concise. Les grammaires d'attributs donnent

la definition formelle de toutes les propnetes du langage, non contextuelles et contextuelles,

et constituent aussi une specification formelle de 1'analyse semantique.

Specification formelle de la semantique statique des contrats avec les grammaires

cTattributs

Dans notre travail, nous adoptons les conventions, fonctions et notations de Waite et Goos

pour formuler la grammaire d'attributs pour Ie langage Contracts [Wait 85]. Chaque

production de Contracts est exprimee en utilisant la notation EBNF et commence avec Ie

mot-cle rule. La partie attributs commence avec Ie mot-cle attribution et une condition

peut suivre Ie mot-cle condition.

Cette partie de notre travail definit les proprietes semantiques statiques du langage

Contracts au moyen d' une grammaire d'attributs. Elle consiste en deux parties principales.

La premiere partie traite de I'introduction des outils, incluant les definitions des structures

Vlll



pour la presentation des identij&cateurs et des types, et de toutes les fonctions dans la suite.

La seconde partie consiste en toutes les regles de Contracts, Cette partie determine les

proprietes statiques de Contracts et introduit une structure de specification de Contracts:

comment declarer les participants dans un contrat, comment definir les obligations de

chaque participant (mcluant les variables et les methodes supportees), comment definir un

contrat incluant ou raffinant quelques contrats existants et comment exprimer les invariants

d'un contrat et de son instanciation. Dans cette partie, les principaux aspects de la

semantique statique de Contracts sont discutes par 1'intermediaire de la grammaire

d'attributs, comme 1'etendue d'un identificateur et les types et les difFerentes relations entre

eux (par exemple, equivalence de types, compatibilite de types).

Implementation cTun analyseur syntaxique

Notre travail inclut aussi 1'implementation de 1'analyse syntaxique et lexicale de Contracts

en utilisant Lex et Yacc. L'analyse lexicale traite de la division des intrants en unites

significatives qui sont appelees "jetons". La pretraduction traite de la decouverte des

relations existant entre les unites. Lex est un outil de construction d'analyse lexicale

[Levi 92]. II genere une fonction C qui peut identifier des jetons en prenant un ensemble

de descriptions, appele specification Lex. Yacc est un outil pour la generation d'un

analyseur qui reconnait les phases valides de la grammaire [Levi 92]. II prend comme

intrants une serie de regles, qui est appelee une grammaire Yacc.

Notre specification Lex pour Contracts consiste en trois parties : la definition, les regles et

les sections de sous-routines des utilisateurs. La section de definition inclut un fichier

genere par Yacc et contient toutes les definitions dejetons. La section des regles identifie

les differents jetons utilises par Contracts, Us comprennent les mots reserves et quelques

autres jetons de connexion tels que les identificateurs, les nombres et les operateurs. La
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section des sous-routines des utilisateurs inclut les routines de traitement des erreurs et la

routine principale. La routine principale ouvre un fichier nomme sur la Ugne de commande

et appelle la pretraducteur. La valeur retoumee rapporte Ie fait que la pretraduction a reussi

ou echoue.

Notre grammaire Yacc pour Contracts comprend deux parties : la section des definitions

et celle des regles. La section des definitions declare les symboles terminaux que 1'analyse

lexicale passe au pretraducteur. Tous les symboles utilises comme jetons doivent etre

definis explicitement dans la section des definitions. La section des regles comprend toutes

les regles de grammaire, comme les regles de declaration de chaque participant, 1'inclusion,

Ie raffinement des contrats existants de chaque participant, les invariants et 1'instanciation

d'un contrat.

Lorsqu'un scanner Lex et un analyseur Yacc sont utilises ensemble, 1'analyseur est la routine

de haut niveau. L'analyseur appelle Ie scanner lorsqu'il a besoin d'un jeton depuis les

intrants. Le scanner et 1'analyseur doivent se mettre d'accord sur ce que sont les codes des

jetons. Ceci est resolu en laissant Yacc definir les codes des jetons dans un fichier ;

1'analyseur lexical utilise ces definitions numeriques des jetons en incluant Ie fichier,

Nous avons utilise notre analyseur pour verifier trois exemples tires de [Helm90]. Ces trois

exemples sont Contracts DepthFirst, Dft-Connected et Dft-cycle. Nous avons aussi utilise

notre analyseur pour verifier un exemple presente dans ce memoire.
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Chapter 1

Introduction

This work is about the formalization and partial implementation of the static semantics of

the Contracts language. The syntax used for Contracts comes from [Holl 92], which is

more mature and slightly different from the original syntax published in [Helm 90], The

static semantics has been formalized using attribute grammars. The implementation has

been done using Lex and Yacc.

In the sequel, we introduce Contracts and attribute grammars, we state the results, and

outline the contents of this thesis.

1.1 Introduction to Contracts

Improving the reliability of software systems is the mam goal of object-oriented techniques.

Defensive programming is an often emphasized approach when discussing reliability

[Wirf89], This technique suggests that routines should be as general as possible. However,

the blind and often redundant checking in this technique causes much of the complexity and

affects the quality and reliability of systems.

The concept of contract pretends to be a more systematic approach for obtaining and

guaranteeing reliability. Initially, a contract is a class related concept [Wirf89]. A contract

describes how a given client can interact with a server. A contract is a list of requests that

a client can make to a server. Both cooperate to fulfil the contract in the following way.

The client makes only those requests that the contract specifies and the server responds

appropriately to those requests. Helm's notion of contract generalizes the initial concept
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of contract, for two entities, to multiobject relations. It aims at explicitly specifying the

important behavioral dependencies caused by object interactions. It focuses on the

interaction of cooperating objects and supports the discovery, understanding, and

representation of object interactions.

Understanding and representation of object interactions are also important with respect to

reuse. Reuse is the cornerstone of the object-oriented technology. An abstract design can

be expressed as a group of classes. Reusing this abstract design means both reusing the

classes in the group and the relationships between them,

Helm's Contracts defines behavioral dependencies, called object interactions, within a

group of objects which cooperate to accomplish some tasks or maintain some invariants.

Each contract specifies the participating objects in interaction and also the function of each

object that contributes to the interactions. Apart from the explicit representation of object

interactions, Contracts also provides a module-like construct to structure and

organize object-oriented implementations. Contracts breaks up the class behaviors and

packages the pieces in cohesive contracts. This overcomes the problems caused by some

other existing module architectures consisting of either a small number of very large

modules or a spaghetti-like structure ofimport/export module relationships.

Contract refinement and contract inclusion are two important features of the Contracts

language. They provide two distinct means to express complex behaviors by simpler ones.

Through these techniques, components defined as contracts can be customized through

type substitution and method overriding. Large-grained abstractions based on object

interactions can be created and reused.

The creation of object-interactions is performed by an instantiation statement. An

instantiation statement identifies objects as participants in a desired contract and specifies

the methods which are used to establish the contract. This is different from the previous



programming language constructs in which object interactions are created by class

constructors or certain sequences of method calls. Contract instantiation statements bring

the benefits of I) explicitly expressing the behavioral composition and the objects involved

in the interaction, ii) providing better and easier understanding of the application

architecture, and iii) facilitating the replacement of objects by functionally equivalent

objects, when a change is needed.

Finally, a conformance statement establishes the fact that the behavior defined for a class

conforms to the behavior required by a contract. It is used to determine the legal classes

of objects allowed to participate in a particular contract. It can also be considered to be a

validation step, ensuring that an individual has the authority and ability to participate in a

contract. Contract conformance and contract instantiation are two steps to establish a

contract between a group of objects in an object-oriented system.

Comparing Contracts with other techniques for specifying inter-object relationships, the

contributions of Helm's contract are the following: generalizing the dependencies to

multiple objects, capturing the behavioral dependencies between cooperating objects, and

providing a formalism for abstraction. As the author claimed in [Helm 90], an initial shift

away from class-based design to one based on Contracts greatly facilitates the early

identification, abstraction, and subsequent reuse of patterns of interactions between objects.

1.2 Introducing Attribute Grammars

In this thesis, the formalization of the static semantics of the Contracts language is done

using the notation of attribute grammars. Structure trees can be used to illustrate the use

of the syntax rules of a language for analysing a text in that language. Each node of the

structure tree corresponds to the use of a rule of the language and can be decorated with

attributes describing the properties of that rule. The attribution of each node in the structure



tree collects information about the environment. Rules of attribution can be represented by

attribute grammars which consist of the formal definition of all context-free and context-

sensitive language properties.

An attribute grammar is based on a context-free grammar G = (V, N, S, 0). For each

symbol xeV, there is a finite set A(x) of attributes which represents a context-sensitive

property of x. Each attribute can be either a synthesized attribute or an inherited attribute

and is defined by functions associated with each production in the grammar.

The initial use of attribute grammars is to define semantics by associating synthesized

attributes with each nonterminal symbol and semantics rules with each production. Each

nonterminal symbol is given exactly one attribute. Although synthesized attributes alone are

sufficient, the inherited attributes lead to important simplifications. Inherited attributes

facilitate the definition of a block structure, which is a common aspect of programming

languages. Generally, inherited attributes are useful when apart of the meaning of

some construction is determined by the context in which that construction appears.

The semantic rules are said to be well-defined if they are formulated in such a way that all

attributes can always be defined at all nodes in any derivation tree. It is important to decide

whether or not a given grammar has well-defined semantic rules, since there may be

infinitely many derivation trees. The definition and theory of "well-definedness" can be

found in [Wait 85], and an algorithm for testing "well-definedness" can be found in

[Knut68],

Some other techniques for the formal semantic definition of programming languages

include Bakker's growing Markovian algorithm [Bakk 67] andLandin's /^-calculus. Both

have been used [Land 64] [Land 65] [Land 66] for the definition ofALGOL 60. The most

striking difference between these methods and attribute grammars is that the former are

processes defined on programs as a whole in a rather intricate manner. One must



understand an entire compiler for the language before one can understand the definition of

the language. The attribute grammar minimizes the interconnections between the different

parts of the language by defining each language construct only with its immediate

environment. Because of the localization and partitioning of the semantic rules, it makes

the definition easier to understand and more concise. Attribute grammars give the formal

definition of all context-free and context-sensitive language properties and also constitute

a formal specification of the semantics analysis.

1.3 Results and Outline

The main result of this thesis is a formal specification, using attribute grammars, of the

static semantics of Contracts, according to the syntax published in [Holl 92].

This thesis also resulted in an implementation, using Lex and Yacc, of the context-free part

of this attribute grammar.

This thesis is organized as follows. We first review in Chapter 2 the work related to

Contracts, Chapter 3 gives the formal specification of the syntax and static semantics of the

Contracts language and the intuitive description of the dynamic semantics of each

construct. Chapter 4 gives the results of the implementation of the context-free part of the

attribute grammar of Contracts using Lex and Yacc. Chapter 5 gives an example that

illustrates the application of Contracts to the specification of object interactions in a mine

drainage control system problem [Barb 94], Finally, Chapter 6 gives the conclusions,



Chapter 2

Related Work

2.1 Introduction

This chapter is a survey of work related to ours. It includes the notion of Helm's Contracts

which is the basis of our work, Holland's work based on Helm's Contracts with some

differences and additions, Buhr's work about Contracts, and other works related to

Contracts.

As there are many different uses of the word "contract", this section compares and

contrasts the different uses of the term contract in the object-oriented field. Each notion of

contract discussed below is based on the principle of encapsulation and the consequences

of applying this principle. The notions differ mainly in the scope of their definitions in terms

of the number of objects participating in contracts and the methods each participant

supports. This chapter also reviews some other techniques for the specification ofinter-

object behavior, e.g., collaboration graphs and responsibilities. Finally, for the reason that

our intention is to apply Contracts as a language of formal specification, formal

specification of requirements in an object-oriented context is briefly discussed, that is,

Hayes and Coleman's work.

2.2 The Notion of Helm's Contracts

Hehn's Contracts is a technique for specifying the obligations on participating objects within

a behavioral composition. Such a behavioral composition involves groups of related objects



cooperating to perform a task and maintain invariants [Helm 90], A contract specifies a

behavioral composition in terms of; I) the objects participating in the composition, that is,

the participants; ii) the obligations of the participants; iii) the dependencies between the

participants; and iv) the instantiation of the contract. Participant obligations include: I)

support of a certain interface described as typed variables and messages, it is called type

obligations, ii) performance of sequences of actions and satisfaction of conditions in

response to messages, and iii) satisfaction of preconditions at the instantiation of the

contract and maintenance ofinvariants during the contract. The later two aspects are called

causal obligations. Causal obligations capture the behavioral dependencies between objects.

A contract contains invariants that participants cooperate to maintain and it also defines

what actions should be initiated to resatisfy the invariants when they are violated. A

contract includes preconditions on participants to establish the contract and the methods

which instantiate the contract.

Contracts are defined in a high-level language, which allows abstract description of

behavior in terms of ordered sequences of actions to be performed and conditions to be

made true. The language supports the following basic actions in the original syntax in

[Hehn 90]: sending a message, denoted by P-»M and the setting of an instance variable v,

denoted by Av. The ordering of actions can be explicitly given by the operator " ; ", The

language also provides the construct < ov : c : e > for the repetition of an

expression "e" separated by the operator "o" for all variables "v" that satisfy "c".

For example, < ||v: v e Views: v —^ UpdateQ > means;

vl -»UpdateQ || v2^ UpdateQ || v3-. UpdateQ ... ifvl, v2, v3,...eViews.

Conditions which participants are obliged to make tme appear in curly brackets { ... } and

are expressed as logical formulae over the signatures (the names of the sorts and operators,

together with the definition of domains and ranges) of participants.



There are facilities for refinement of contracts and inclusion of subcontracts in a given

contract. Refinement makes possible specialization of a contract by the overriding or

addition of participant obligations. Inclusion allows decomposition of a contract into

simpler subcontracts. Both facilities are orthogonal and promote reuse of contracts.

Contracts make abstraction of actual classes of objects (e.g., C++ classes) describing the

implementation of the participants. Indeed, several actual classes can meet the obligations

of a participant. Conversely, a class can meet the obligations of several participants. The

precise mapping of participants to actual classes is described by means of a conformance

declaration. Syntactical details and an informal definition are presented in [Helm 90].

2.3 Holland's Work about Contracts

Holland's work about Contracts encompasses both static semantics and dynamic semantics

of the language [Holl 92][Holl 93]. Both aspects are discussed hereafter.

Static Semantics

In Holland's work, the static semantics of each grammar construct is described in terms of

a validity function;

VT: T^B

where T is an abstract syntax construct defined by the grammar and B={tme, false}. A

static semantics usually expresses additional constraints which cannot be expressed by the

grammar. For example, the semantics of a procedure call (denoted as procCall in the

abstract syntax) includes a constraint saying that every procedure call must refer to a

procedure defined in the program. It is defined as follows:



Vproccall; ProcCall x ProcEnv -4 B

Vproccall[[iCall, ProcEnv]] = {iCall.procName e domProcEnv}.

In Holland's work, the validity function V^ is not provided for every construct of Contracts.

Our work about static semantics of contract is based on an attribute grammar and we define

an attribute grammar rule for every construct of Contracts,

Dynamic Semantics

In Holland's work, the dynamic semantics for each grammar construct is defined in terms

of a function;

MT : T - (State - State)

It means that each specimen of the construct T is mapped to a (possibly partial) function

taking one element of State to another. By using this denotational semantics style method,

Holland constructs a sequential model of computation,

2.4 Buhr and Casselman's Work About Contract

Buhr and Casselman's work [Buhr 92] aims to develop a unified view of software

architectures in terms of contracts, roles, and timethreads. The main idea of contract in

their paper is not only based on Helm's contract, but also comes from other terms for

describing inter-object relations such as mechanisms and cooperations.

Buhr and Casselman developed the concepts of wired and wireless architectures.

Architectures focus on the collaboration relationships between components and how these

components interact with each other to accomplish system tasks. Two kinds of unifying

models of software architectures are wired architectures and wireless architectures. Wired



architectures are static one. They only permit communication between the components

which are wired together. Wireless architectures are relatively dynamic. They permit

communication between any two components at any time. Wireless architectures are

proposed to be suitable for data-centric design and wired architectures for behavior-centric

design.

Contracts are the rules or protocols which the components must obey in accomplishing

system tasks. They specify how groups of object cooperate with each other. Objects

participate in contracts by playing roles. A role defines a type obligation, including a set of

methods with thdr type signatures (the names of the sorts and operators, together with the

definition of domains and ranges), and a causal obligation. Contracts can be viewed as

entities of the design. Role playing is static in wired architectures and dynamic in wireless

architecture.

In wired architectures, timethreads are proposed to express the major patterns of contracts.

Contracts can be expressed by one or more timethreads. A timethread starts at some point

of stimulus, go through all design elements which are activated by the stimulus sequentially,

and ends at some point of the completion of all activities caused by the stimulus.

Contracts help us to understand a framework. Factoring wired architectures into roles and

contracts help to show the distinct, simple, and separable aspects of a design. Viewing

wireless architectures in terms of contracts provides a high level of abstraction of design.

Representation based on contracts is useful for documenting object-oriented frameworks

and also provide a tool for the design of them.
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2.5 Lajoie and Kellerts work about Contracts

Software reuse is a means of improving the practice of software engineering. Object-

oriented frameworks improve design-level reuse. A framework is a collection of abstract

and concrete classes and the interfaces between them. A framework is the design for a

subsystem.

In a framework, there are collaborations between the objects in classes. The interaction

among objects, however, cannot be expressed very well by frameworks. Micro-

architectures have been introduced to codify design knowledge about object collaborations.

Lajoie and Keller [Lajo 94] developed a multi-layered model for framework documentation

and reuse. Description techniques for both micro-architectures [Gamm 93] and frameworks

adopted and refined in their work include: design patterns [Alex 79], Contracts [Helm 90],

and Motifs [John 92]. Design patterns is a technique for describing micro-architectures at

a very high level. They express how components interrelate and give a high-level

representation for properly capturing and describing design experience. They can be

described in an informal template-based manner. The Contracts technique is adopted as an

intermediate representation between a micro-architecture and its corresponding design

pattern. The contract definition in this work comes directly from Helm et al. and is also

used as a construct for explicitly specifying interactions among groups of objects. The main

adjustment to Contracts in this work is that: micro-architectures are allowed to be

developed directly and from a guiding design pattern. Contracts are used to describe high-

level specifications of object behavior, with emphasis on minimum details required to

express participant interactions. Contrary to Helm's contracts, the object interactions are

first class entities in the design space. This paradigm supports interaction-oriented design.

In this paradigm, design is a two-step process, firstly, defining behavioral compositions by

contracts, secondly, factoring contracts into classes definitions and hierarchies via the

11



contracts conformance declarations. Motifs are used to describe the general, high-level

aspects of the framework rather than the design details of the micro-architectures. All

motifs have the same form which begins with a title followed by a detailed discussion of

how the situation may be adopted and ends with references to other related motifs as well

as to relevant design patterns or contracts. The integrated description techniques proposed

by the authors in their framework is to decrease a class framework's learning curve and

consequently increase their reusability.

In a word, design patterns and contracts are introduced as new techniques for describing

micro-architectures at a very high level and an intermediate level respectively. Motifs are

adapted to the description of the abstraction levels of framework design.

2.6 Other Tools for Understanding Object Interactions

Explicitly specifying inter-object relationships is not entirely new. Many recent publications

recognize the importance ofinter-object behavior, which can be expressed in terms of both

conceptual and graphical tools; e.g., responsibilities [Wirf 89] and collaboration graphs

[Wirf90], mechanisms, and views. The first two terms are reviewed in this section.

A contract is a set of related responsibilities defined by a class. Responsibilities are the basis

for determining the contract supported by a class. A responsibility is something one object

does for other objects by either performing some action or responding with some

information. It is the central idea for responsibility-driven design which focuses on what is

the object responsible for and what information this object shares. A contract constitutes

a cohesive set of responsibilities.

A collaboration graph is used to display graphically the collaborations between classes and

12



subsystems. A subsystem is a set of classes collaborating to fulfil a set of responsibilities.

A collaboration graph simplifies a design by identifying subsystems within a complex large

application and it clearly represents classes, contracts, collaborations, and superclass-

subclass relationships. A superclass represents the contracts supported by all of its

subclasses.

2.7 Meyer's Work

As the complexity of applications increases, it is important to improve the ability of

software to be reused, refined, tested, maintained, and extended. Abstraction is an effective

tool to improve these abilities of software. Many types of abstraction can be used.

Encapsulation is a key form of abstraction by which complexity can be managed. Since

programming in an object-oriented language does not ensure that the complexity of an

application will be well encapsulated, good programming techniques need to be applied to

improve encapsulation.

Meyer proposed the notion of "programming by contract". A notion of contract is used to

specify the relationship between the caller and the called routine of a class with associated

benefits and obligations [Meye 92]. It involves precisely two classes and one method. One

of the classes (the caller class, called the client) invokes a method implemented by the other

(the callee class, called supplier). The contract can be expressed using two kinds of

assertions. The first kind of assertions are pre and postconditions expressed using the

keywords require and ensure. The second kind are class invariants. The obligations and

benefits of the contract are specified by preconditions and postconditions. The

preconditions express requirements that must be satisfied for any call of a routine. The

postconditions express properties that must be held after the return of the execution of the

call. A class invariant is a property that applies to all instances of a class, transcending
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particular routines. It defines constraints among class instances and methods. Meyer

introduced its notion of contract in the Eififel language, but at a rather low level of

abstraction and formalism.

In contrast, Helm's notion of contract is used to specify the behavioral composition of

several cooperating participants (may be more than two) and the invariants are global to

all the participants. The main difference is that Helm's contract generalizes the contract

notion to multiobject dependencies.

Let us consider the example of Fig 1, The left part of Fig. 1 defines the put-child contract

using Meyer's notion of contract. The contract is related to a class binary-tree describing

a routine piit-child for adding a new child to a tree node, denoted as current. The require

part of the contract requires that the child be accessible through a reference, which

must be attached to an existing node object. The ensure part of the contract expresses that,

in return of the execution of the call, the tree is updated. That is, the current node has one

more child than before and current is the parent of the new node.

The invariant of this contract states that node current is the parent of both the left and right

children of node current, if these children exist. This contract shows that the client class

gets the benefits of an updated tree where the current node has one more child than before.

New has current as its parent now, but the obligations are that new is used as an argument

and it references to an existing node. The supplier class of this contract gets the benefits

that: no need to do anything if the argument is attached to a void object and it must

guarantee that insertion of a new node as required.
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/* Meyer contract*/

Class binary-tree[T]

[ - attribute declarations

- routine declarations

/* Helm contract*/

Contract UndirectedGraph

participants

graph: Graph;

vertices; Set(Vertex);

put-child(new:Node)

require new/=void

do

-insertion algorithm

ensure new.parent=current

child-count=old child-count+1

...]

invariant

left/=void =>

(left. parent=current)

right/=void =^

(right. parent=current)

Graph supports [

vertices: Set(Vertex);

insert(v:Vertex):void;

...]

Vertex supports [

neighbours: Set(Vertex);

...]

invariant

graph,vertices=verticesA

<V vevertices:

v.neighbourscvertices>A

<V vevertices:

<V v2ev. neighbours:

vev2. neighbours»

end contract

Figure 1 ; Examples ofMeyer's approach (left side) and Helm's approach (right side)
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The right part of Fig. 1 defines the UndirectedGmph contract by using Helm's notion of

contract. It consists oftwo kinds of participants: a graph object and a set ofvertices. The

contractual obligations of the participants are expressed, with the "support" clauses and the

invariant ensures that the participating objects do indeed represent an undirected graph.

2.8 Wirfs-Brock et al/s Work about Contracts

Wirfs-Brock et al. [Wirf89] proposed a responsibility-driven approach for object-oriented

design. It is based on the client/server model which captures the interaction between two

entities, the client and server. A client asks the server to provide services. A server

provides a set of services corresponding to the request. A contract expresses the ways in

which the two entities interact each other. It is constituted of a list of requests that can be

made on the server by the client. To fulfil the contract, a client can only make the requests

the contract specifies and the seryer only responds to the corresponding requests.

Responsibilities are the individual services provided by the server. The client/server model

focuses on what the server does for the client, not how the server does it. The server

implementation is encapsulated away from the client. There are three kinds of clients in the

model, external clients, subclass clients, and self clients. An external client is an object that

sends messages to an instance of the class or the class itself. A subclass client is any class

that mherits from the class. Subclass clients help to improve encapsulation by ensuring that

all inherited behavior is part of the contract of the subclasses. A self client means any class

should be viewed as client of itself.

To summarize, Wirfs-Brock et al.'s notion of contract involves two classes and one or more

methods.
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2.9 Schrefl and Kappel's Work about Contracts

Cooperation contracts, proposed by Schrefl and Kappel [Schr 91], have a similar syntactic

form but a different model than Helm's contract. Cooperation contracts aim to explicitly

express the interactions between several objects. They are defined in terms of partner types

which participate in a contract and the functionality of the whole contract. Note that in

Helm's, Meyer's and Wirfs-Brock et al.'s contracts, only a single object can receive a

message. In the Cooperation contracts model, multiple objects can receive a given message.

Cooperation contracts involve more than one class and can involve more than one method

implementation.

Comparing Cooperation contracts with Helm's contracts, the similarity is that both

contracts are defined over multiple types, called partner types and participant types

separately. But there exist much differences between them; I) participant types are local to

the contract, partner types are external to the contract; ii) the behavior specified in Helm's

contract is distributed among the participants, whereas in Cooperation contracts, the

behavior is globally attached to the whole; iii) Helm's contract specifies the cooperation

relationships of all the participants in the contract, Cooperation contracts reflect the

relationships between the partner types and the external clients; and iv) the refinement

mechanism in Cooperation contracts only allows a method to be overridden and new

methods to be added but does not allow adding new partner types, whereas Helm's

contracts supports both of them.

There are also some other researchers that used the same term contract, e.g., Budd's

interface contracts and subclass contracts [Budd 91]. Helm's Contracts is a generalization

of all these contract concepts.
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2.10 Hayes and Coleman's Work

For the reason that our final purpose is to formalize Helm's contract to be a specification

language of the problem, we discuss hereafter Hayes and Coleman's work [Haye 91] about

the formal specification of requirement in an object-oriented context. Their work also

referred to the verification of consistency between the dynamic model and functional model

of the same problem.

They introduce a set of formal models for object-oriented analysis. The models have

mathematical basis so they have a precise semantics and constitute a consistent description

of domains. In developing these models, the authors where mainly concerned about the

issues ofunambiguity, abstraction, and consistency. In other words, models should have

a single precise meaning, should not be cluttered with unnecessary details that can

influence the design and implementation phases, and it should be possible to verify their

consistency with other models of the same system.

These models are improvement of the OMT model by Rumbaugh [Rumb 91] and are

illustrated by applying them to the analysis of a simple drawing application which allows

the user to draw lines and boxes and move them with some constraints.

OMT uses three diflferent models, namely, the object, dynamic, and functional models. The

object model captures structure of the objects. The dynamic model captures the behavior

of individual objects. Finally, the functional model represents the behavior of the whole

system.

In OMT, the object model uses entity-relationship diagrams to model the object classes,

attributes, and relations. The dynamic model is concerned with temporal behavior and uses

extended finite state machines. The overall system behavior is shown by the functional
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model using data flow diagrams. Entity-relationship diagrams have a formal semantics.

State machines and diagrams rely on natural languages and are prone to ambiguity.

Moreover, there is no way to check the consistency of the objects or dynamic models with

the functional models.

The authors of the current method state that the key to improve the precision of analysis

is the introduction of mathematical basis for the above three models. They introduce a new

model, the object structure model, that forms a link between the object model and both the

functional and dynamic models. The mathematical formalism used is many sorted predicate

logic with built in types (like char, natural, and type constructors such as set and sequence).

Every class is represented in the object structure model as an abstract structure which

precisely states the types of the attributes and relationships in which an object of that class

may participate. More precisely, given a class C a record type is associated containing:

o a field "self of type "C_id", that is the object identifier,

o afield "att" of type "Attjype" for each attribute "att" of type "Attjype" defined in the

class, and

o a field "R" of type "set ofD_id" for every binary relation from a class C to a class D.

The paper does not show how general relations and inheritance are represented. In the

functional model, operations on objects are specified in a declarative style by means of pre

and postconditions, local to an object and/or global to the system (via parameters of type

"System").

The dynamic model is based on the Objectcharts notation [Cole 92], an extension of

Harel's Statecharts with pre and postconditions associated to events. The effect of events

on local attributes is defined using pre and postconditions. Objects communicate together
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using synchronous events.

The issue of verification of consistency between models is addressed. Models have formal

basis. However, proof of consistency relies on the ingenuity of the analyst. The following

approach is suggested. Using the dynamic model, generate event traces of the system

behavior. Then, determine if traces implement the declarative specification of the functional

model by checking implications of pre and postconditions.

These models are related to the analysis phase of the software development process. The

following analysis procedure is suggested by the authors;

1) Develop a natural language description of the problem.

2) Build an object model (entity-relationship model) together with a data dictionary of

classes, relations, and attributes.

3) Derive an object structure model from the object model.

4) Use the object structure model to define the declarative functional model.

5) Use the object structure model to define a dynamic model together with diagrams

showing examples of how events flow through the system in response to system

operations.

6) State test event traces and reasoned arguments to show that the dynamic and functional

models are consistent.

7) Iterate through the steps lookmg for missing classes, relationships, attributes, events, etc,
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Chapter 3

The Static Semantics of the Contracts Language

3.1 Attribute Grammars

An attribute grammar is developed by analyzing the meaning of each symbol in a grammar,

assigning a meaning to each symbol using the concept of attribute, and giving rules of

defining the attribute values of the symbols. Each attribute represents a specific (context-

sensitive) property of a symbol. The attributes of each symbol can be either synthesized

attributes which are passed bottom-up in the derivation tree, or inherited attributes which

are passed top-down in the denvation tree (the grammar should be an L-attributed grammar

in this case). The idea of defining semantics by associating synthesized attributes with each

nonterminal symbol comes from Irons [Iron 61, Iron 63]. Although, synthesized attributes

of a symbol (which come from the attributes of the descendants of the symbol) are

sufficient to define any function of a derivation tree. The inclusion of inherited attributes

of a symbol (which come from the attributes of the ancestors of this symbol) may result in

important simplifications.

Let us consider the following context-free grammar which defines a binary number:

B-0

B - 1

(Gl) L- B

L- LB

N- L

N- L-L
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where 0, 1, and "•" are terminal symbols; and B, L, and N are nonterminal symbols

representing bits, list of bits, and number respectively. That means any binary number is

a sequence of one or more O's and 1's followed optionally by a radix point and another

sequence of one or more O's and 1's. For example, the string 101.01 is a binary number

and it receives the structure pictured in Fig. 2.

Figure 2; Tree structure of string 101.01

We can give a meaning to the above binary notation by assigning attributes to the

nonterminal symbols as follows: each B has a value v(B) which is an integer, each L has

two attributes: length 1(L) and value v(L), both are integers, and each number N has a value

v(N) which is a rational number. Any desired number of attributes can be given to each

nonterminal symbol. And now, we need to give the rules for calculating the value of each

attribute according to the semantics of each production. Each rule of grammar Gl can be

augmented as follows:
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(G2)

B-

B-

L-

LI-

N-

0

1

B

L2B

L

v(B) = 0

v(B)=l

v(L) = v(B),

v(Li) = 2v(L

v(N) = v(L)

1(L) = 1

2)+v(B),l(LO=l(L2)+l

N - Li- 4 v(N) = v(LJ + v(4)/21(L2)

Fig. 2 can be expressed by showing the attributes at each level as in Fig. 3.

N(v=5.25)

L(v=5,l=3)

L(v=2,1=2) B(v-l)

L(v=l,l=l) B(v=0) i

B(v=1) 0

L(v=lJ=l)

L(v=0,M) B(V=I)

B(v=0)

Figure 3; Evaluated tree structure of string 101.01 (according to grammar G2)

Up to now, we finished to form the attribute grammar for Gl. But let us continue to

consider the following thing: how we can define the semantics if we want that the positional

characteristics plays a role. For doing this, the following attributes can be defined: each B

has two attributes, value v(B) which is a rational number and scale s(B) which is an integer.

Each L has three attributes, value v(L) which is a rational number, length 1(L), and scale

s(L), both are integers. Each N has a value v(N) which is a rational number, Then, the

attributes can be defined as follows:
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(G3)

B-

B-

L-

LI-

N-

N-

0

1

B

L^B

L

Li-L

v(B) = 0

v(B) = 2S(B)

v(L)=v(B),s(B)=s(L),l(L)=l

v(L,) = v(L,) + v(B), s(L,) = s(Li)+l,

s(B) = s(Li), 1(L,) = 1(L,) +1

v(N)=v(L),s(L)=0

L, v(N) = v(LO + v(L^), s(LQ = 0, s(L,) = -\(L,)

The great differences between the grammar G3 and grammar G2 is that in grammar G2 all

attributes were defined when the nonterminal symbol appeared on the left side of the

corresponding production, that means there are only synthesized attributes here. All

attributes are evaluated in one direction (bottom-up) in the deriving tree. In grammar G3,

the attributes can be defined for nonterminal symbols which appear on both sides of the

corresponding production. That means that inherited attributes are also included here, so

the attributes are evaluated in both direction in the deriving tree. For example, in G3, V(B),

V(L), L(L), and V(N) are synthesized attributes and S(B) and S(L) are inherited attributes.

The evaluated structure corresponding to the string 101.01 is shown as Fig. 4.

N(v=5.25)

L(v=5,1=3, s=0) ; L(v=0.25,1=2, s=-2)

L(v=4,1=2, s=l) B(v=l, s=0) I<v=o:1=1- s=-l> B<v=a25. s=-2)

]^v=4,l=l,s=2)E(v=0,s=l) 1

B(v=4, s=2) 0

B(v=0, s=-l) 1

Figure 4: Evaluated tree structure of string 101.01 (according to grammar (G3))
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3.2. Formal Definitions of Attribute Grammars

This section gives the formal description of synthesized and inherited attributes using a

precise and general setting. Suppose we have a context-free grammar G=(V,N,S,P), where

V is a finite vocabulary of terminal and nonterminal symbols, N c V is a set ofnonterminal

symbols, ScN is a start symbol, which appears on the right-hand side of no production rule,

and P is a set of production rules. Semantics can be added to G in the following manner:

for each terminal or nonterminal symbol x e V, there is an associating finite set A(x) of

attributes. Each attribute represents a specific property of symbol x and has a finite range.

The attributes of each symbol x can be classified in two parts, the inherited attributes and

the synthesized attributes. The evaluation rules of inherited attributes AI(x) are: 1) the start

symbol S has no inherited attributes, i.e., AI(S) = 0, 2) for a given production, the inherited

attributes of the symbol on the right can be evaluated by other symbols in this production,

i.e., for the production p: Xg ^ Xi...X^, the inherited attributes ofX^( i <> 0) are AI( X^)

= { X,.a - f(Xj.b, ...A.c)} ({j, .., k} c {0, 1, .., n}-{i}). Here, we use "X.a" to indicate

that attribute "a" is an element ofAI(X), and 3) for each inherited attribute of the symbol

on the left hand, if it exists, it inherits the attributes which have already been evaluated in

the previous productions.

The evaluating rules of synthesized attributes AS(x) are: 1) the attributes of a terminal

symbol is empty, i.e., AS(x) = 0, if x is a terminal symbol, 2) for a given production, the

synthesized attributes on the left hand can be evaluated by the attributes of symbols on the

right hand or left hand, i.e,, for the production p; Xg ^ Xi...X^,

AS(X,) - {Xo.a - f(^.b, ..,X,.c)} ({j, .., k) c {1, „„ n}).

For any given production p, there may be a condition B(X,.a,...,Xj.b), in addition to the

attribution rules. A condition B(Xi.a,...,Xj.b) specifies a contextual property according to

the static semantics. It must be fulfiled by a sentence.
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Definition 3.1. An attribute grammar is a 4-tuple, AG = (G,A,R,B), where G = (V,N,S,P)

is a context-free grammar, A = u A(X) (Xe T uN) is a finite set of attributes, R

= u R(p) (p eP) is a finite set of attribution rules and B= uB(p) (p eP) is a finite set of

conditions,

Definition 3.2. For each p: Xo^Xi.. .X^ e P, the set of defining occurrences of attributes

is AF(p) = { Xi.a | ie {0, 1,..., n} and X,.a - f(,..) e R(p) }. An attribute X^.a (i=0, l,..,n)

is called derived or synthesized if there exists a production p: X^ ^ ^ and X^.a is in AF(p);

it is called inherited if there exists a production q: Y^ ^iX,u and X^.a is in AF(q).

Synthesized attributes of a symbol are evaluated by considering the subtree derived from

this symbol in the structure tree. Inherited attributes are evaluated by considering the

environment of this symbol,

3.3. An Attribute Grammar for Contracts

In the following, we adopt the conventions, functions, and notations from Waite and Goos

[Wait 85] to give the attribute grammar for the Contracts language. The basis document

for the syntax of this grammar is Holland's paper [Holl 92]. Each production peP is

expressed using EBNF notation and marked by the keyword rule. The attributes of each

production p are marked by the keyword attribution and conditions may follow the

keyword condition.
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3.3.1. Utilities

For simplification purposes, the following conventions are used. A synthesized attribute

of the left-hand side of a production may be omitted if there is only one symbol on the

right-hand side and this attribute is same-named with that of right hand, e.g., for the rule

statements : := statement, we omit the attribution rules. Simple assignments of inherited

attributes of the left-hand side to same-named inherited attributes of any number ofright-

hand symbols may be omitted.

We also use the assumption that for every record type R used to describe attributes, there

exists a function N_R which has the parameters corresponding to the fields of record R.

This function creates a new record of type R and assigns the parameter values to the fields

of R.

For representing every definition of an identifier, the following variant record is used;

type

definition_class = (

obj ect_defimtion,

type_definition,

unknown_definition);

definition = record

uid:integer;

ident: symbol;

case k; definition class of

object_definition: (obj ect_type: mode);

type_definition: (defmed_type: mode);

unknown_defmition: ()

end;
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The variant object_definition is used to refer to object identifiers. Objects are the concrete

instances of values that operations are operated upon. The variant type_definition is used

to refer to type identifiers. The definition class unknown _definition is used to deliver a

value if no definition is available for an identifier,

Records of type definition are collected into linear lists, referenced as the environment and

definition attributes, by every construct that uses an identifier. The type of the environment

attribute is:

definition table = T dt element;

dt element = record

first: definition;

rest: definition table

end;

Types classify values according to the operations which can be performed on them and the

applicable coercions. The following record is used to build attributes describing types:

type

type_class = (

bad_type, void_type, bool_type, int_type, real_type,

ref_type, set_type, proc_type, obligation_type,

unidentified_type, identified_type, contract_type);

mode = record

case k:type_class of

badjype, void_type, bool_type, int_type, real_type:();

ref_type; (target: T mode);

set_type: (element: T mode );

proc_type; (parameters :definition_table; result: T mode);
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contract_type: (parameters: definition_table) ;

obligation_type;(

variables: definition table,

methods: definition_table);

unidentified_type: (identifier; symbol);

identified_type:(definition:integer)

end;

Type bad_type is used to indicate that errors have made it impossible to determine the

proper type. Type void_type is used in the case that a result of a procedure is to be

discarded. The type unidentified Jype is used when a type identifier occuring in a

declaration is not yet identified. The type identified Jype is used when a type identifier

occurmg in definition has already been identified,

In the following, we introduce functions used in this thesis. They come from [Wait 85].

If we want to look for the definition of a symbol in a definition table, the function

current ^definition can be used. It searches the environment sequentially from left to right

and selects the first definition for the desired identifier.

function current_definition(s; symbol; dt : definition_table): definition;

begin

ifdt=nil

then current definition:=nil

else if dtt. first. ident=s

then current definition :=dtT. fir st

else current_definition:=current_definition(s, dtt. rest)

end;
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If we want to find the type defined by an identifier in a definition table, the function

identify Jype can be used. It searches the environment sequentially from left to right and

selects the first type defined by the identifier.

function identify_type(s: symbol; dt:definition_table):mode;

(* Find the type defined by an identifier *)

begin

if dt=nil then identify_type:=N_mode(badJype)

else with dtt .first do

if soident then

identify_type:=identify_type(dt t .rest)

else (* s=ident *)

if k<>type_definition then

identify Jype: =N_mode(bad_type)

else identify_type:=N_mode(identified_type, uid)

end;

The function lookup finds a definition from its unique integer identifier.

function lookup(def: integer; dt: definition_table): definition;

begin

ifdt=nil

then "attribute grammar error"

else

ifdtt.first.uid=def

then lookup := dtt .first

else lookup := loohip(def, dtt .rest)

end;
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In order to check the consistency of expressions and statements (e.g., expression: :=name)

and identify the operator used in expressions (e.g., expression; :=expression+expression),

the types of the operands must be taken into account. Two attributes primode and

postmode are defined for this purpose. The attribute primode describes the type determined

directly from a node and its descendants. It is a synthesized attribute. The attribute

postmode describes the type expected when a result is used as an operand by other nodes.

It is a type required m a context and this attribute is inherited. The function deproc is used

to obtain the primode of a name.

Function deprocft) recursively tests the type_class of t. If t belongs to a non-proc_type or

procjype with parameters, the function returns t itself, otherwise, if t belongs to a

proc_type without parameters, the function keeps testing the type_class oft.resultt .

function deproc(t: mode): mode;

begin

ift.k <> proc_type then deproc := t

else ift.parameters <> nil then deproc := t

else deproc := deproc(t.resultt)

end;

Function compare _parameters(fl, f2) tests whether or not the two lists/-/,/2 include the

same numbers of elements. If not the function returns false, otherwise, it further tests

whether or not each pair of the elements which have the same sequence number in/7,/2

seperately are type equivalent. If yes, the function returns tme, otherwise it returns false.
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function compare _parameters(fl, £2: definition_table):boolean;

(* Compare parameter lists for equivalent types *)

begin

iffl=nil then compare_parameters:=£Z=nil

else if£2=nil then compare j3arameters:=false

else

compare_parameters: =

type_equivalent(

fl t. first. object_type,

£21. first. object_type) and

compare_parameters(fl t .rest, £2 T .rest)

end;

Function type_equivalent tests whether or not tl and t2 are semantically equivalent. If tl

and t2 do not belong to the same type class, the function returns false, otherwise the

function returns tme except in the following three cases which need further test: 1) if they

are both ref_type, the function returns tme if their target types are type_equivalent,

otherwise, the function returns false, 2) if they are boihproc_type, the function returns tme

if their parameters and their result are type_equivalent, and 3) if they are both

identified Jype, the function returns tme if the definitions of these two types are equal.

function type_equivalent(tl, t2:mode);boolean;

(* Compare two types for equivalence *)

begin

iftl.k<>t2.k then type_equivalent:=false

else/*tl.k=t2.k*/

casetl.kof

ref_type; type_equivalent:=
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type_equivalent(t 1 .target t, t2 .target T)

proc_type: type_equivalent:=

compare j3arameters(tl. parameters, t2. parameters) and

type_equivalent(tl .result t, t2.result T);

identified_type:

type_equivalent: =t 1. definition=t2. definition

otherwise type_equivalent:=true

end

end;

Coercible is one kind of relation expressed by recursive functions over types: a type tl is

coercible to a type t2 if it is either compatible with t2 or can be converted to t2 by a

sequence of coercions. Function coercibleftl, t2) means tl is coercible to t2 in the

followmg cases: 1) tl and t2 are semantically equivalent or 2) if they are not semantically

equivalent then i) tl can be any type if the type class of t2 is voidjype or badjype, ii) tl

belongs to bad_type, iii) t2 can be realjype if ^7 is intJypQ, iv) tl.target\ must be

coercible to t2 if tl is refjype or v) tl.result} must be coercible to ^2 if tl \sprocjype

with no parameters.

function coercible(tl, t2 : mode):boolean;

begin

iftype_equivalent(tl, t2) or

t2.k=void_type or t2.k=bad_type

then coercible: =tme

else

casetl.kof

bad_type; coercible: =true
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int_type; coercible: =t2 . k=real_type

ref_type:coercible:=coercible(tl .target T, t2)

proc_type:coercible ; =

tl.parameters=nil and coercible(tl.result!, t2)

otherwise coerdble:=false

end;

end;

Function derefft) removes all levels of reference from type t. It recursively checks the type

class of t. If t belongs to a non-refjype, the function returns t itself. Otherwise, if t belongs

to a refjype, the function keeps testing the type class ott.target].

function deref(t: mode): mode;

(* Remove all levels of reference to a type*)

begin (*derefl<)

ift.k <> ref_type then deref := t

else deref := deref(t,targetT);

end; ( * deref * )

Function basejypeft) tests the type of t. It returns t if t does not belong to ref_type or

procjype without parameters. Otherwise, it recursively tests the type of the target or the

result oft,
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function base_type (t: mode): mode;

( * Remove all levels of reference and procedure call from a type *)

begin ( * basetype * )

ift.k = ref_type then base_type := base_type (t.targett)

else ift.k = proc_type then

if t. parameters <> nil then basejype := t

else base_type :=base_type (t.resultT)

else base_type := t

end; ( * base_type * )

Function balanceftl, t2) gets the balance type of tl and t2. It works as follows: i) it returns

12 if tl is coercible to t2, ii) it returns tl ift2 is coercible to tl, iii) if ^7 is coercible to the

base type of t2, the result type is a dereferencing (remove all references) and/or

deproceduring (remove all levels of procedure) of t2, and if t2 is coercible to the base type

of tl, the same operation will be done with tl.

function balance (tl, t2 : mode ):mode;

( * Obtain the representative a priori type oftl, t2 * )

begin ( * balance * )

if coercible (tl, t2 ) then balance := t2

else if coercible (t2, tl) then balance :== tl

else if coercible (tl, base_type (t2)) then

case t2.k of

ref_type : balance := balance (tl, t2.targett);

proc_type := balance (tl, t2. result!)

end

else if coercible (t2, base_type (tl)) then
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casetl.kof

refjype : balance := balance (tl.targetT, t2);

proc_type ;= balance (tl. result!, t2)

end

else N_mode ( void_type);

end; ( * balance * )

3.3.2. Productions

3.3.2.1. Basic Symbols

rule letter ::= lal|lbl|lcTdTel|lf|lgl|thl|li'|ljl|lkl|T|lml|

lnl|lol|'pl|lql|lrl|lsl|ltTu'|V|lwl|lxl|y|lzl|

'A'I'B'I'C'I'D'I'E'I'F'I'G'I'H'ITI'J'I'K'I'L'I'M'I

'N'|10'|IPTQTRI|'STTI|IUTVI|fW'|IXf|'YI|tZf.

A letter is one of the twenty-six letters, lower or upper case.

rule digit ::= IOf|'l'|121|131|'41|151|'61|17T81|<91.

A digit is one of the ten numbers of zero to nine,

rule identifier :: = letter (letter | digit | '-')*.

An identifier is a string of letters, digits or '-' beginning with a letter.

rule integer ; := digit.

rule integer : := digit integer.

An integer is defined by a digit or recursively by a digit followed by another integer.
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rule real ::= integer '.' integer.

A real number is defined by two integers with a dot separating them.

3.3.2.2. Contracts Structure

rule contracts : := contracts ';' contract.

attribution

contracts[ I], definitions ^- contracts[2]. definitions & contract, definitions.

Several contracts can be defined in a single file.

rule contract ::=.

rule contract ::=

'contract' identifier

'participants' participant_declarations

inclusion_part

refinement_part

contract_body

invanants

instantiation

'end' 'contract'

attribution

contract, definitions ^

N_definition (

gennum,

identifier, symbol,
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obj ectdefinition,

N_mode (

contract_type,

participant_declarations.definition));

contract_body. environment ^

complete_env (participant_declarations. definitions, contract_body. definitions)&

contract_body. definitions & inclusion_part. definitions &

refinement_part. definitions;

condition

unambiguous(participant_declarations. definitions & inclusion j^art. definitions &

refmement_part. definitions & contract_body. definitions);

A contract is defined in terms of a unique name (contract_name), declarations of named and

typed participants (participant_declarations), a list of obligations for every participant type

(contract_body), global invariants (invariants), and a section describing how the contract

is instantiated (instantiation). A contract can also be defined by including (inclusion_part)

or refining (refinement j^art) some already existing contracts. Gennum is a function which

used to generate a unique integer. Each invocation ofgennum yields a new integer.

The function compkte_env is recursive and traverses the definitions in

participant declarations.definitions seeking participant declarations with unidentified

types. Whenever one is found, the current definition of the type identifier is obtained from

contract J)ody.definitions by using the function identify _type.

The function unambiguous is used to verify that every identifier is defined once in

participant _declarations. definitions, inclusion _part. definitions,

refinement _part. definitions, and contract jbocty. definitions. ^ & l^ to expresses the

concatenation of two lists li and \^.
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rule inclusion j3art ;:= .

attribution

inclusion_part. definitions +- nil.

A contract can be defined without including other contracts.

rule inclusion_part ::= inclusions ';'.

rule inclusions : := inclusion.

rule inclusions ::== inclusions ';' inclusion.

attribution

inclusions [1]. definitions <— inclusions [2]. definitions & inclusion, definitions.

A contract can be defined by including one or more contracts,

rule inclusion: :=

'includes' identifier.

attribution

inclusion, corres def

current_definition(

identifier, symbol,

inclusion, environment);

condition

inclusion. corres_def. obj ect_type.k=contract_type;

rule inclusion: :=

'includes' identifier'(' correspondances ')'•

attribution

inclusion, corres def+-

current_definition(
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identifier, symbol,

inclusion, environment);

condition

inclusion. corres_def. object_type.k=contract_type;

compare_parameters(

correspondances. definitions,

inclusion. corres_def. obj ect_type. parameters);

An inclusion clause gives the name of an included contract in a new contract and (if there

is) the correspondance between the participants of the new contract and those of the

included one,

rule correspondances ::= expressions.

Correspondances describe the correspondance relation between the participants that belong

to the new contract and those of the included contract.

rule refinement_part ::= .

A contract can be defined without refining other contracts.

rule refinement_part ::= refinements ';'.

rule refinements ::= refinement.

rule refinements ::= refinements ';' refinement.

attribution

refinements[ I], definitions ^- refinements [2]. definitions & refinement, definitions.

A contract can be defined by refining one or more contracts,

rule refinement ::= 'refines' identifier.

attribution

refinement, corres def
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current_definition(

identifier, symbol,

refinement. environment);

condition

refinement. corres_def. object_type.k=contract_type;

rule refinement ::= 'refines' identifier '(' correspondances')'.

attribution

refinement, corres def

current_definition(

identifier, symbol,

refinement, environment);

condition

refinement. corres_def. object_type.k=contract_type;

compare_parameters(

correspondances. definitions,

refinement. corres_def. object_type.parameters);

A refinement gives the name of a refined contract in a new contract and (if there is) the

correspondance between the participants of new contract and those of the refined one.

rule instantiation ::= 'instantiation' statements.

3.3.2.2.1. Participant Declarations

rule participant_declarations ::= participant_declaration,
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rule participant_declarations ::=

participant_declarations';' participant_declaration.

attribution

/* collect all the participant declarations */

participant_declarations[ 1 ]. definitions

participant_declarations[2]. definitions &

participant_declaration.definitions;

Participant_declarations declare a list of participating objects in the contract. Each

participant declaration is separated by the symbol";". Participant_declaration is used to

create participants in the contract.

A participant declaration creates participating object(s) of the specified participant type.

rule participant_declaration::=

identifier':' participant_type_specification.

attribution

participant_declaration, definitions

N_definition(

gennum,

identifier, symbol,

object_defmition,

participant_type_specification.representation);

A participant declaration explicitly names a participant (the symbol identifier is a variable

used to be the name of this participant) and the obligations (participant_type_specification)

of this participant.

The symbol identifieris is a variable that refers to a participant of type

participant Jype specification.
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Type identifiers occuring in participant type declarations are given the unidentified Jype

variant.

rule participant_type_specification ;:^ identifier.

attribution

participant_type_specification.representation

N_mode(unidentified_type, identifier, symbol);

rule participant_type_specification :;='set''(' identifier ')'.

attribution

participant_type_specification.representation

N_mode(

set_type,

N_mode(unidentified_type, identifier, symbol));

A participant type specification can be an anonymous set of participants (of type identifier)

using the keyword 'set'.

3.3.2.2.2. Contract Body

rule contract_body : := obligation_specifications.

attribution

contract_body, definitions

obligation_specifications.defmitions;

Contract_body includes the obligation definitions of all participant objects in a contract

(obligation_specifications).

rule obligation_specifications ;:= obligation_specification.
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rule obligation_specifications ;:= obligation_specifications ';' obligation_specification.

attribution

obligation_specifications[ 1 ]. definitions

obligation_specifications[2]. definitions &

obligation_specification. definitions;

Obligation_specifications can be used to give the obligation definition of one participant

(obligation_specification) or a list of participants (obligation_specifications ';'

obligation_specification).

rule obligation_specification ;:== identifier 'supports' '[' obligations ']'•

attribution

obligation_specification. definitions

N_definition(

gennum,

identifier, symbol,

type_defmition,

obligations. representation);

Obligation_specification contains the definition of obligations for each participant

(identifier) declared in participant_declarations.

rule obligations :•= variable_declarations ';' methods.

attribution

obligations. representation

N_mode(

obligation_type,

variable declarations, definitions,

methods, definitions);
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methods, environment

complete_env(

variable declarations, definitions,

variable declarations, definitions &

methods, definitions & obligations, environment) &

methods, definitions &

obligations. environment;

condition

unambiguous(variable_declarations. definitions);

unambiguous(methods.definitions);

Obligations describes how each participant contributes to the contract. It includes type

obligations in which a list of instance variables of certain types are defined

(variable_declarations) and causal obligations (methods) which make explicit behavioral

dependencies between the objects in a contract.

rule obligations ::= methods.

Participants in a contract can provide methods without supporting instance variables.

rule variable declarations ::= variable declaration.

rule variable declarations ::= variable declarations ';' variable declaration.

attribution

variable_declarations[ 1 ]. definitions

variable declarations[2]. definitions &

variable declaration, definitions;

Variable declarations declare one instance variable (variable_declaration) or several

instance variables (variable_declarations ';' variable_declaration). Each variable is separated

by the symbol';'.
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A variable declaration creates a reference to a given type (i.e., a variable referring to an

undefined value.

rule variable_declaration ::= identifier ':' type_specification.

attribution

variable declaration, definitions

N_definition(

gennum,

identifier, symbol,

object_definition,

N_mode(

refjype,

type_specification.representation));

Variable_declaration declares a variable by defining its name (identifier) and its type

(type_specification).

rule type_specification : := participant_type_specification.

Type_specification can be of the type participant_type_specification, refered before,

rule type_specification ::= 'integer'.

attribution

type_specification. representation ^— N_mode(int_type);

rule type_specification ;:= 'real',

attribution

type_specification.representation ^- N_mode(real_type);
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rule type_specification :;= 'bool',

attribution

type_specification.representation ^- N_mode(bool_type);

Type_specification can be one of the standard type such as integer, real, or boolean.

rule methods ;;= method.

rule methods ::= methods ';' method.

attribution

methods[ 1 ]. definitions

methods[2]. definitions & method, definitions;

Methods can include one (defined by method) or several methods (recursively defined by

methods';' method) definitions.

rule method : :=

identifier

'(' parameter_type_list')'

result_type

statement list.

attribution

method, definitions

N_definition(

gennum,

identifier, symbol,

object_definition,

N_mode(

procjype,

parameterjypejist. definitions,

result_type. representation));
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statement list. environment

method, environment;

statementjist.postmode ^- result_type.representation;

A method definition includes four parts: a unique name (identifier), a list of parameters

(parameter_type_list), a type of the method (resultjype), and a list of statements

(statementjist).

rule parameter_type_list ::= .

attribution

parameter_type_list. definitions ^- nil;

rule parameter_type_list ::= parameter_declarations.

There may be no parameter in the method, so a parameter_type_list can be nil, or there can

be one or several parameters in the method. These parameters are declared in the

parameter_type_list (parameter_declarations).

rule parameter_declarations ; := parameter_declaration,

rule parameter_declarations : := parameter_declarations ';' parameter_declaration.

Parameter_declarations declare one (parameter_declaration) or more than one parameter

(recursively defined by parameter_declarations ';' parameter_declaration).

rule parameter_declaration ;:= identifier ':' type_specification.

attribution

parameterjieclaration. definitions

N_definition(

gennum,

identifier, symbol,
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object_definition,

N_mode(

ref_type,

type_specification.representation));

Parameter_declaration declares a parameter variable by giving its name (identifier) and its

type (type_specification).

rule result_type ::= .

attribution

result_type.representation +- nil;

rule result_type :;=';' 'void'.

attribution

result_type. representation ^- N_mode(void_type);

rule result_type ::=';' type_specification.

attribution

resultjype.representation ^- type_specification,representation;

The result returned after executing the method can be a type of void or of a type given by

type_speciflcation.

rule statement list:: = .

rule statementjist ::= '[' statements']'.

condition

coercible(

statements. primode,

statementjist.postmode);
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Statement_list can include no statement (.) or some (one or more) statements (statements).

rule statements ::= statement.

rule statements ::= statements ';' statement.

attribution

statements[l].primode ^- statement.primode;

Statements can include only one statement (statement) or several statements (statements).

rule statement ::= .

rule statement •.'.= name ':=' expression.

attribution

name.postmode ^— name.primode;

expression.postmode

if name.postmode.k<>ref_type

then N_mode(bad_type)

else name.postmode.targett;

condition

name.postmode,k=ref_type;

A statement can be an assignment. After the execution of an assignment statement, the

value associated to the name on its left-hand side is replaced by the result of the evaluation

of the expression on the right-hand side.

rule statement ::= condition.

rule condition ::='{' expression'}',

attribution

expression, postmode ^- N_mode (bool_type);
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condition, primode ^- N_mode(void_type);

A statement can be an expression corresponding to a condition to make tme.

rule statement ::= name '^' method call.

attribution

method call. environment

lookup(name.primode.target T .definition,

statement, environment). defined_type. methods

& statement. environment;

method_call.postmode ^- N_mode(void_type);

rule statement ::= method call,

attribution

method_call,postmode ^- N_mode(void_type);

rule statement ::= 'if expression 'then' '{' statements'}',

attribution

statement, primode ^- N_mode(void_type);

expression.postmode ^- N_mode(bool_type);

A statement can be an if statement using the keywords "if and "then". The execution of

this statement is: the test condition (expression) is evaluated first. If it is true, the

statements are executed; otherwise, these statements are skipped and the statements

following are executed.

rule statement ::= 'for all' identifier 'in' type_specification'{' statements '}'.

attribution

statements. environment

complete_env(
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N_defmition(

gennum,

identifier, symbol,

obj ect_definition,

N_mode(ref_type,

type_specification.representation)) & statement, environment,

statement. environment).

A statement can be a for statement using the keywords "for" and "in". The execution of this

statement is: for each variable refered by an identifier which belongs to the set refered by

type_specification, execute all statements in the rule.

rule statement ;:= 'while* expression 'do''[' statements ']';

attribution

statement.primode ^— N_mode (void_type);

expression.postmode ^— N_mode (bool_type);

A statement can be an iteration statement using the keyword "while", The execution of this

statement is: the expression is evaluated and if the result is tme the statements are

performed. When the expression becomes false, the program proceeds directly to the

following statements.

rule statement: :== 'return' expression.

attribution

statement.primode ^— expression, primode;

A statement can be a return statement using the keyword "return". The execution of this

statement is; evaluate the value of the expression and return this value and it can be used

in a certain scope,
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3.3.2.2.3. Expressions

rule name : := identifier.

attribution

name.primode

if current_definition(

identifier, symbol,

name. environment). k<>obj ect_definition

then

N_mode(bad_type)

else current_defmition(

identifier, symbol,

name. environment). obj ectjype;

condition

current_definition(

identifier, symbol,

name. environment). k=obj ect_defmition

The name of any object is given by an identifier.

rule expression ::= name.

attribution

expression, primode +- name.primode;

condition

coercible(expression.primode, expression, postmode);

An expression can just be a name.
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rule expression :;= expression op expression.

attribution

expression[2]. environment ^- expression[l]. environment;

expression^], environment ^- expression[l]. environment;

expression[ 1 ] .primode

ifcoercible(expression[2].primode, int_type) and

coercible(expression[3 ]. primode, int_type)

then N_mode(int_type)

else N_mode(real_type);

expression[2].postmode ^- expression[l].primode;

expression[3].postmode ^— expression[l].primode;

condition

coercible(expression[l].primode, expression[l].postmode);

ruleop::='+l|t-T*T/1.

An expression can be two expressions connected by one of the operators '+','-', '*', or '/'

rule expression ::= 'tme' | 'false'.

attribution

expression, primode ^- N_mode(bool_type);

condition

coercible(expression,primode, expression.postmode);

rule expression: :== integer.

attribution

expression, primode ^- N_mode(int_type);

condition

coercible(expression.primode, expression, postmode);

54



rule expression: := real.

attribution

expression, primode ^- N_mode(real_type);

condition

coercible(expression.primode, expression.postmode);

An expression can be simply a boolean, an integer or a real value.

rule expression : := expression [ 'and' |'or' ] expression.

attribution

expression[ 1 ] .primode

ifcoercible(expression[2].primode, bool_type) and

coercible(expression[3 ]. primode, bool_type)

then N_mode(bool_type)

else N_mode(bad_type);

condition

coercible(expression[ 1 ] .primode, expression[ 1] .postmode);

An expression (expression^]) can be a logic expression in which two logic expressions

(expression[2] and expression[3]) are connected by the keywords and or or. The operator

and yields a ^w value for the expression on its left hand if both expressions on its right-

hand yield true. If either or both expressions on the right evaluate to false, the value of the

expression on the left is false. The or operator evaluates to true for the expression on the

left if either or both expressions on the right are true; the value of the expression on the left

is false only if both expressions on the right evaluate to false.

rule expression ::= 'not''(' expression')',

attribution

expression[ 1 ]. primode

if coercible(expression[2],primode, bool_type)
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then N_mode(bool_type)

else N_mode(bad_type);

condition

coercible(expression[ 1 ]. primode, expression[ 1 ] .postmode);

An expression (expression^ ]) can be a logic expression using the keyword not in front of

an expression (expression[2]). The value of the expression on the left is true when the value

of the expression on the right is false, otherwise, it has the value false.

rule expression ;:= expression [ '=' | '<>' ] expression,

attribution

expression[2] .postmode

expression^] .postmode

deref(

balance(

expression^]. primode,

expression^] .primode));

expression^ ].primode ^- N_mode(bool_type);

condition

coercible(expression[ 1 ] .primode, expression[ 1] .postmode);

An expression can be a relational expression in which two expressions are connected by the

relational operator equality ('=') or not equality ('<>'). The '=' yields the value true if and

only if the values of two expressions on the right are equal, The '<>' yields the value true

if and only if the values of two expressions on the right are not equal.

rule expression ::= expression [ '=>'| '<=>' ] expression.

attribution

expression[l] .primode

ifcoercible(expression[2].primode, bool_type) and
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coercible(expression[3 ]. primode, bool_type)

then N_mode(bool_type)

else N_mode(bad_type);

condition

coercible(expression[l].primode, expression^ ].postmode);

An expression can be two expressions connected by the symbol "=>" or " <=> ", where

"=>" means implication and " <=> " means equivalence.

rule expression :;= expression 'c ' expression.

attribution

expression[l].primode ^- N_mode(bool_type);

expression[2].postmode +- expression[3].primode;

expression[3].postmode +- N_mode(void_type);

condition

coercible(expression[l].primode, expression[l].postmode);

An expression can be two expressions connected by the symbol " c " to express that a set

which has the properties described by the former expression (expression[2]) is a subset of

the set which has the properties described by the later one (expression^]).

rule expression ;:=

V identifier 'G ' type_specification ':''[' statements']'.

attribution

statements. environment

N_definition(

gennum,

identifier, symbol,

obj ect_defmition,

N_mode(
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ref_type,

type_specification. representation)) &

expression, environment;

condition

coercible(expression.primode, expression.postmode);

This expression declares an object that belongs to a set of a certain type

(type_specification). This object, named by the identifier, has the properties described by

the expression following the symbol ":".

rule expression ::=

'3' identifier '€ ' type_specification ':' '[' statements. ']'

attribution

statements, environment ^-

N_definition(

gennum,

identifier, symbol,

object_definition,

N_mode(

refjype,

type_specification. representation)) &

expression, environment;

condition

coercible(expression.primode, expression.postmode);

This expression declares there exists at least one object that belongs to the set of a certain

type (type_specification). This object, named by the identifier, has the properties described

by the expression following the symbol":".
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rule expression :;= name 'e ' name.

attribution

expression, primode +- N_mode(bool_type);

name[2].primode.k =set_type;

name[l].primode = name[2].primode. element!;

condition

coercible(expression.primode, expression, postmode);

This expression means that the object named by the former identifier belongs to the set

named by the later identifier.

rule expression :;= name '-»' method_call.

attribution

method call. environment

lookup(name.primode,targetT. definition, expression, environment).defined_type.methods

& expression, environment;

method_call.postmode ^- expression.postmode;

condition

name.primode.k=ref_type;

name.primode.target T =identified_type;

loohip(name.primode.target T .definition, expression, environment). k=type_definition;

lookup(name.primode,targetT .definition, expression. enviromnent).defined_type.k =

obligation_type;

An expression can be a method call. This expression results in a participant (refered by

name) to invoke a method which has the name given in method_call. In the above, the

symbol name synthesizes an attribute primode representing the type of the identifier

denoted by name (see the rule for name at the beginning of this section). The fact that the

class of the returned definition is type_definition is insured by the third condition

(•••.k=type_definition). The fact that the class of the returned type is obligation _type is
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insured by the fourth condition (—.k=obligation_type). Note that a type specification of the

class obligation _type has an attribute method which concatenating with the attribute

expression, environment constitutes the attribute environment inherited by the symbol

method call in the above.

rule expression : := method_call.

attribution

method_call. environment +- expression, environment;

method_call.postmode ^- expression, postmode;

An expression can be a method_call. This expression results in the invocation of the

corresponding method which has the name given in method_call.

rule method_call :;= name '(' argument_list ')'•

condition

name. primode. k=proc_type;

comparejparameters(argument_list.definitions, name.primode.parameters);

coercible(name.primode.result t, method_call.postmode);

A method call must indicate the name (name) of the called method, the correspondance

between the arguments (argumentjist, there can be no) and the parameters

(parameter_type_list) listed in the definition of the method, the correspondance between

the arguments and the parameters is made according to their appearance sequence. The

caller method and the callee method should agree on the number and types of the

parameters. The names may be the same or different,

rule argument_list ::= .

attribution

argument_list. definitions +- nil;
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rule argument_list :•= arguments.

rule arguments :;= argument.

rule arguments ::= arguments ';' argument.

attribution

argument[ 1 ]. definitions

arguments[2]. definitions & argument, definitions;

Corresponding to the parameter_declarations in the definition of the method, argument_list

can include no argument (.), one argument (argument) or several arguments (recursively

defined by arguments ';' argument.

rule argument ;:= expression.

attribution

expression.postmode +- N_mode(void_type);

An argument is an expression.

3.3.2.2.4 Invariants

rule invariants ;:=.

rule invariants ;:= 'invariant' invariant list.

rule invariant list; := inv statement.

rule invariant list ::= invariant list ';' inv statement.

rule inv_statement ::= expression.

attribution

expression.postmode ^- N_mode(bool_type);
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Chapter 4

Using Lex and Yacc to Contracts

For analysing programs with structured input, there are two tasks that need to be done: 1)

divide the input into meaningful units which are often called tokens, this task is known as

lexical analysis, and 2) discover the relationships among the units, namely, finding the

expressions, statements, declarations, and blocks. This task is known as parsing. The

relationships are defined by a list of grammar rules. Lex and Yacc [Levi 92] are two tools

to accomplish these two tasks.

Lex is a tool for building lexical analyzer or lexers. It generates a C routine which can

identify different tokens by taking a set of descriptions. The C routine is the lexer and the

set of descriptions is called a Lex specification. A Lex specification is a set of regular

expressions which the lexer matches with the input. Each time one of the regular

expressions is matched, the lex program invokes C code which does something for the

matched text. This C code is written by the user of Lex. In this way, a lexer divides the

input into tokens. These output tokens can either be the "end product" or be processed

further, often by Yacc.

Yacc takes as input a series of rules which is called a grammar and generates a parser that

recognizes valid "sentences" in the grammar. Two main actions ofYacc are shift and

reduction. Shift action occurs when Yacc reads a token that doesn't complete a rule.

Reduction action occurs when Yacc finds all the symbols that constitute the right-hand side

of a rule. Yacc can not deal with ambiguous grammars and grammars that need more than

one token oflookahead to tell whether it has matched a rule. When there are conflicts in

a Yacc grammar, Yacc reports shift/reduce and reduce/reduce errors by pointing them in

an output file.
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Both Yacc grammar and Lex specification has the same three-part structure which includes:

the description, rules, and user subroutines sections.

Our work includes the implementation of the lexical and syntax analysis of Contracts using

Lex and Yacc. The following sections describe the Lex regular expressions and Yacc

grammar for Contracts language.

4.1 Lex Specification of Contracts

Our Lex specification of Contracts consists of three parts: the definition, rules and user

subroutines sections. It has the form of;

... definition section. .,

%%
...rules section...

%%
...user subroutines...

The definition section for Contracts is bracketed by "%{" and "%}", which means that the

bracketed contents is copied into the lexer directly. The contents bracketed here is ^include

"y.tab.h". The file y.tab.h is generated by Yacc and contains all of the token definitions. It

must be included here because Lex and Yacc must agree with what the token codes are.

The rules section of the Contracts language identifies the different tokens that Contracts

uses. This includes a fixed set of reserved words and some other connectional tokens such

as identifiers, numbers, and operators.

The last section includes error and main routines. The function yyerrorQ reports where the

error is, including the current line number, current token, and an error message. The main
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routine opens a file named on the command line and calls the parser. The returned value

reports whether the parse succeeded or failed.

Our Lex specification of Contracts is included in Appendix A.

4.2 Yacc Grammar of Contracts

Our Yacc grammar of Contracts uses the same structure as the Lex specification. The first

two sections are required, but can be empty. The third section may be omitted and it is

omitted here.

The definition section of the Contracts language contains declarations %token and %left.

%token declares terminal symbols that the lexer passes to the parser. All symbols used as

tokens must be defined explicitly in the definition section. Tokens can also be declared by

%left declarations. The %left is used to declare an operator which is left associative.

The rule section contains all grammar rules of the Contracts language such as the rules of

declaration of each participant, inclusion, refinement of the existed contracts, obligations

of each participant, invariants and instantiation of a contract,

The Yacc grammar is included in Appendix B.

4.3 Parser-Lexer Communication

When a Lex scanner and a Yacc parser are used together, the parser is the high-level

routine. The parser calls the lexer whenever it needs a token from the input. The lexer and

parser must agree on what the token codes are. This is solved by letting Yacc define the
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token codes in file y.tab. h and the lexer use these token number definitions by including

the file y.tab.h.

4.4 Running Lex and Yacc

The Lex specification file is called contracts.l and the yacc grammar file is called

contracts.y. For building the output, one need to do following in UNIX;

% yacc -d contracts.y # makes y.tab.c and "y.tab.h"

% lex contracts.l # makes lex.yy.c

% ec -o qw y.tab.c lex.yy.c # compile and link C files

After doing this, "qw" can be used to check an input file in the form of:

% qw filename

where the filename is the name of the specification of a contract. If there is a mistake in the

Contracts specification, "qw" returns an error message, the current line number and the

current token. We used "qw" to check three examples from Helm's paper [Helm 90]. These

three examples are contracts DepthFirst, Dft-Connected, and Dft-Cycle, we also used "qw"

to check the example in the next chapter.
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Chapter 5

Example

This chapter introduces how Contracts can be used to express the behavioral composition

of the participants in a mine drainage control system problem [Barb 94]. The mine drainage

control system is illustrated in Fig. 5. The system involves four components, namely, the

pump, pump controller, level detector, and environment monitor. They cooperate to work

as follows. The pump is used to pump water at the surface mine from the sump when the

water reaches a certain level. It is activated or stopped by the pump controller. The level

detector is responsible for monitoring the level of water in the sump. It sends the "High"

signal to the pump controller when the water accumulates to a certain level. It transmits the

"Low" signal when the sump is almost empty. In the meantime, the environment monitor

tests the concentration of the methane. It sends the "Alarm" signal to pump controller when

the concentration of the methane reaches a certain critical level. The "Safe" signal is sent

to pump controller when the concentration of methane returns to an acceptable level. The

pump controller is responsible for starting and stopping the pump with the "Start" and

"Stop" signals. The signals transmitted between the components is illustrated in Fig. 6. The

behaviour composition of the system is described by the following MineDrainage contract.
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contract MineDrainage

participants

pump_controller: PumpController

pump: Pump;

environment monitor: EnvironmentMonitor;

level detector: LevelDetector;

PumpController supports

[
LDstate: high, low; /* state of the level detector */

EMstate: safe, alarm; /* state of the environment monitor */

Pumpstate: work, idle; /* state of the pump*/

ReadPumpstate(): [ Pumpstate = pump -» GetPumpstate() ];

ReadEMstate( ): [ EMstate = environment_monitor ^GetEMstate( ) ];

ReadLDstate( ): [ LDstate = leveldetector - GetLDstate( ) ];

PumpControllerAct( ):

[ ReadPumpstate( );

ReadEMstate( );

ReadLDstate();

if Pumpstate = work then

{ if (EMstate = alarm or LDstate = low) then { pump ^ Stop();}

};
if Pump state = idle then

{ if ( LDstate = high and EMstate = safe ) then { pump ^ Start( ); }

};
PumpControllerAct(); ]

]
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Pump supports

[ state : work, idle;

GetPumpstate( ) : state [ return state];

Start(): [state = work];

Stop() : [state = idle];

]

EnviromentMonitor supports

[ state : alarm, safe;

GetEMstate() : state [return state],

UpdateEMstate( st: state) : [state = st];

]

Level Detector supports

[ state : high, low;

GetLDstateQ : state [return state];

UpdateLDtstate( st: state ): state [state = st];

]

invariant

Pumpstate==work <=> EMstate = safe and LDstate = high;

instantiation

PumpController -»PumpControllerAct();

endcontract
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The above contract has four participants: pump_controller, pump, environment_monitor,

and level_detector. The signals Start and Stop are modelled as methods on the pump

participant. The signals Safe and Alarm are modelled as state changes of the environment

monitor. Similarly, the signals High and Low are modelled as state changes of the level

detector.

The participant pump_controller is responsible for starting or stopping the pump according

to the present states of the pump, environment, and water level. So the pump controller

supports the obligations of getting the present states of the pump, environment, and level

detector. The method PumpControllerAct activates or stops the pump according to the

three states that it gets,

The participant pump is required to support the variable state to express the state of the

pump. The methods GefPumpstate( ) is used to get the state of the pump, Start() to start

the pump, and Stop() to stop the pump.

The participant environment_monitor needs to support the variable state which reflects the

state of the environment monitor and the methods GetEMstate( ) and UpdateEMstate()

to get and update the state of the environment monitor.

The participant level_detector needs to support the variable state and the methods

GetLDstate() and UpdateLDstate( ), to get and update the state of the Level Detector,

This contract implies the invariant that "If the pump is working, the present state of the

environment monitor must be safe and the present state of the level detector must be high".
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Chapter 6

Conclusions

Contracts generalizes the initial concept of contract for two entities to multi-object

relations. This thesis has introduced the formalization of the static semantics of Contracts

using attribute grammars. The syntax of Contracts used was introduced in [Holl 93].

The initial motivations for the contract approach grew out of the problems experienced

when understanding and reusing large complex class libraries. Contracts focuses on the

problem of understanding the important behavioral dependencies which result from object

interactions. Object interactions expressed by Contracts provide a means to describe and

specify the relationships and factor some of the complexity.

Contracts was used by many researchers in their work. It was used as an intermediate

description technique for micro-architectures and frameworks. Micro-architectures

comprise both the design and code of the classes involved and also the interactions and

control flow among those classes. A framework is the design of a set of classes that

collaborate to carry out a set of responsibilities.

Contracts provides the properties of flexibility, and easier reading and understanding of

specifications, because it supports both the imperative and declarative styles of description.

The earliest uses of Contracts were its application m the domains of business/MIS and GUI

frameworks, and the representation of variations of the classic depth first traversal

algorithm as large-grained reusable object-oriented abstractions.
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Recent work of Makungu and Barbeau adapted Contracts to the specification of

telecommunications protocols [Maku 94]. Since the original dynamic semantics for each

construct of Contracts is designed by using a denotational style method, the computation

model behind contracts is sequential. Because specifying distributed routing protocols

requires a parallel model of computation, their work also includes the formalization of

Contracts by a parallel model of computation based on colored Petri nets [Jens 92]. They

discuss modeling of objects by means of colored tokens, explain how control states of

objects in Contracts are mapped to CP-nets places and express the semantics of

specifications in Contracts by means of tokens, places, and transitions of CP-nets. This

leads to the application of Contracts to distributed domain applications.

Based on the extensions of the Contracts approach to a parallel model of computation,

work on verification can be done as future research. Verification of specifications consists

of verification of general properties and verification of specific properties. Approaches to

verification of specifications have followed two main paths; program proving and

reachability analysis. Reachability analysis is based on constructing a reachability graph

[Boch 78]. It is useful for both automatic verifications of self-consistency and comparison

of two specifications at different abstraction levels. In the latter case, reachability analysis

is performed on both specifications and the derived graphs are compared to determine

whether or not they are equivalent in some precisely defined relation. Different relations

between two specifications capture different aspects of the specifications [Pehr 89]. An

often used relation is the observation equivalence [Park 81]. Observation equivalence

between two processes is proven by the existence of a bisimulation relation between the

state sets of the processes. There are methods and algorithms for the verification of

bisimulation [Pehr 89].

Contracts can be used as a high-level specification language for the requirements

specification of problems. Since reachability analysis methods for CP-nets already exist,
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verification of general properties of Contracts specifications can be done. Also, comparison

of specifications from two different levels of abstraction is possible. Conformance can be

determined using a bisimulation relation between the reachability graphs of two CP-nets,

that is, the one derived from a Contracts specification and the one derived from another

lower level specification language, which also needs to be formalized by CP-nets. Thus, the

requirements specification and the design specification of the same problem described by

two languages at different abstraction levels can be compared.

The last things that need to be mentioned about the Contracts language are the techniques

of contract inclusion and contract refinement. These provide complete and flexible

mechanisms to allow contracts to be defined incrementally. These two mechanisms are

analogous to the inheritance and composition mechanisms of object-oriented languages.

Refinement is the analogue of inheritance and inclusion is the analogue of composition.

These enable the contract designer to create new contract definitions from existing ones.

Refinement supports the representation of an object interaction as a specialization of a

known interaction. The designer can add new participants or enhance the obligations of an

existing participant. Inclusion allows the designer to include a known interaction as part of

a new more complicated interaction. With these features, the Contracts language becomes

a powerful tool for design. The emphasis of design is interactions between objects, which

is called Interaction-Oriented design. Contrary to class-based design, with interaction-

oriented design the specification of a class becomes spread over a number of contracts and

conformance declarations. It is not localized to one class definition.

Our formalization is done using attribute grammars. Compared with other definition

techniques, an attribute grammar defines each language construct only by its immediate

environment, minimizing the interconnection between the different parts of the language.

This localization and partitioning of the semantic rules tend to make the definition easier

to understand and more concise.
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The contribution of this thesis is providing a formalization of the static semantics of

Contracts language. This formal specification can be used in the case that Contracts is used

to solve problems such as understanding the important behavioural dependencies which

result from object interactions. Since the work in this thesis concerns only the static

semantics of the Contracts, future work could be done about the dynamic semantics of the

language.
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Appendix A

Lex Specification of Contracts

%{
^include <stdio.h>
include "y.tab.h"
intlineno=l;
%}
%%
[0-9]+ {return (INTNUM);}
[0-9]*\.[0-9]+ {return (REALMJM);}
any {return(ANY);}
all {return (ALL);}
and {return (AND);}
belong {return (BELONG);}
boolean {return (BOOLEAN);}
contract {return (CONTRACT);}
do {return (DO);}
end {return (END);}
exist {return (EXIST);}
false {return (FALSE);}
for {return (FOR);}
forany {return (FORANY);}
if {return (IF);}
in {return (IN);}
includes {return (INCLUDES);}
instantiation {return (INSTANTIATION);}
integer {return (INTEGER);}
invariants {return (FNVARIANTS);}
not {return (NOT);}
of {return (OF);}
or {return (OR);}
participants {return (PARTICIPANTS);}
real {return (REAL);}
refines {return (REFINES);}
return {return (RETURN);}
set {return (SET);}
supports {return (SUPPORTS);}
then {return (THEN);}
true {return (TRUE);}
void {return (VOID);}
while {return (WfflLE);}
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[a-z][a-zA-ZO-9]*_?[a-zA-ZO-9]* {return (UDENTIFIER);}
[A-Z][a-zA-ZO-9]*_?[a-zA-ZO_9]* {return (UIDENTIFffiR);}
[ \t]+;
"<"

It-^tl

n—ti

11^_It

"<="

"<>" {return (COMPARISON);}
tl_l_ll

II* It

7" {return (ARITHMETIC);}
11—11

If/H

")" {return yytext[0];}
11_^11

"<=>" {return (LOGIC);}
"->" {return (CALL);}
"|->" {return (LEADTO);}
\n lineno++;
. {return yytext[0];}
%%
void yyerror(s)
char *s;
{ fprintf(stderr, " %s\n", s);
printf("lme%d: %s at %s\n", lineno, s, yytext);}

main(argc, argv)
int argc;
char **argv;
{

if(argOl) {
FILE *file;
file=fopen(argv[l],"r");
if(lfile) {

fprmtf(stderr, "could not open %s\n", argv[l]);
exit(l);

}
yyin=file; }
if(!yyparse())

printf("parse workedW);
else

printf("parse failedW);
}
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yywrapQ
{
return(l);
}
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Appendix B

Yacc Grammar of Contracts

%start contracts
%token ALL ANY BELONG BOOLEAN CALL CONTRACT DO END EXIST FALSE
%token FOR FORANY IF IN mCLUDES THEN LIDENTIFffiR INTEGER ESfTNUM
%tokenINSTANTIATION INVARIANTS PARTICIPANTS OF REAL REALNUM
%token REFINES RETURN SET SUPPORTS TRUE UIDENTIFffiR VOID WHILE
%left '.'1=1 COMPARISON ARITHMETIC AND LEADTO LOGIC OR NOT
%%
contracts:

contract

contracts';' contract

1

contract:
CONTRACT IDENTIFIER
PARTICIPANTS participant_declarations
inclusion_part
refinement_part
obligation_specifications
mstantiation
mvanants
END CONTRACT

IDENTIFIER:
UDENTIFffiR

UIDENTEFIER
1

participant_declarations:
participant_declarations ';' participant_declaration

participant_declaration

5

participant_declaration;
LIDENTIFIER':' participant_type_specification

;

participant_type_specification:
UTOENTIFffiR

SET'(' UIDENTIFIER')'
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inclusion_part:

inclusions';'

1

inclusions:
inclusions';' inclusion

inclusion

1

inclusion:
DSfCLUDES IDENTIFIER

INCLUDES IDENTIFffiR'(' expressions f)'
5

refinement jpart:

refinements';'

3

refinements:
refinements ^'refinement

refinement

1

refinement:
REFINES IDENTIFIER

REFINES IDENTIFIER'(' expressions ')'
1

obligation_specifications:
obligation_specifications obligation_specification

obligation_specification

5

obligation_specification:
UIDENTIFffiR SUPPORTS ' ['obligations']'

5

obligations:
variable declarations';' methods

methods

5

variable declarations:
variable declarations ';' variable declaration

variable declaration
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variable declaration:
IDENTIFIER':' type_specification

3

methods:
methods';'method

method

1

method:
roENTIFffiR'(' parameterjypejist')' l:'rtype_specification

roENTIFffiR'(' parameterjypejist')' ';'rtype_specification '['statements']'

IDENTIFIER'('parameterjypejist')'':' '['statements']'

5

parameter_type_list:

parameter_declarations
3

parameter_declarations:
parameter_declarations',' parameter_declaration

parameter_declaration
1

parameter_declaration:
LIDENTIFffiR':' type_specification

rtype_specification:
type_specification

VOID
5

type_specification:
BOOLEAN

INTEGER

REAL

participant_type_specification

LIDENTDFIER
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instantiation:

INSTANTIATION statements
;

mvanants;

INVARIANTS expressions';'

;

statements:
statements';' statement

I
statement

5

statement:

assignment

IF expression THEN'{' statements '}'

FOR ALL UDENTIFffiR IN type_specification '{' statements'}'

condition

WHILE expression DO '{' statements '}'

RETURN expression

name CALL method call

method call
3

condition:
'{' expression'}'

1

expression:
expression COMPARISON expression

name

number

TRUE

FALSE

'(' expression')'
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NOT '('expression')'

expression ARITHMETIC expression

expression AND expression

expression OR expression

expression LOGIC expression

name CALL method call

method call

expression'.' expression

expression LEADTO '['statements']'

FORANYUDENTIFffiR ENTUIDENTIFIER1:1'[' statements']'

EXIST UDENTIFIER IN UIDENTIFIER1:1 '['statements']'
1

expressions:

expressions '/expression

expression
1

assignment:
name'='expression

5

name:
LIDENTIFEER

UIDENTIFffiR
1

number:
ESfTNUM

REALNUM
5

method call:
IDENTIFIER'(' expressions')'

%%
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