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INNOVATIVE VIEWPOINTS
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Abstract. Network ecology provides a systems basis for approaching ecological questions, such as fac-
tors that influence biological diversity, the role of particular species or particular traits in structuring
ecosystems, and long-term ecological dynamics (e.g., stability). Whereas the introduction of network
theory has enabled ecologists to quantify not only the degree, but also the architecture of ecological com-
plexity, these advances have come at the cost of introducing new challenges, including new theoretical con-
cepts and metrics, and increased data complexity and computational intensity. Synthesizing recent
developments in the network ecology literature, we point to several potential solutions to these issues: inte-
grating network metrics and their terminology across sub-disciplines; benchmarking new network algo-
rithms and models to increase mechanistic understanding; and improving tools for sharing ecological
network research, in particular “model” data provenance, to increase the reproducibility of network mod-
els and analyses. We propose that applying these solutions will aid in synthesizing ecological sub-disci-
plines and allied fields by improving the accessibility of network methods and models.
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INTRODUCTION

Interactions are at the heart of ecology and
drive many of its key questions. What are the
roles of species interactions in ecological systems?
When and why is biological diversity important?
What factors influence the long-term dynamics of
ecosystems? These are all questions with a long
history in ecology (Cherrett 1989, Lubchenco
et al. 1991, Council 2003, Sutherland et al. 2013)
that are not addressed in isolation. Points of inter-
section include the relationship between diversity
and stability (May 2001, 2006); the identity and

role of species that are the main drivers of com-
munity structure (e.g., keystone species, Paine
1966), ecosystem engineers (Jones et al. 1994), or
foundation species (Dayton 1972, Ellison et al.
2005); and the causes and consequences of intro-
ducing new species into existing assemblages
(Simberloff and Holle 1999, Baiser et al. 2008).
Furthermore, “systems thinking” has been a per-
sistent thread throughout the history of ecology
(Odum and Pinkerton 1955, Margalef 1963, Pat-
ten 1978, Patten and Auble 1981, Ulanowicz
1986), dating back at least to Darwin’s Origin of
Species in his famous pondering of an entangled
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bank (Golley 1993, Bascompte and Jordano 2014).
The application of network theory has provided a
formal, mathematical framework to approach
systems (Proulx et al. 2005, Bascompte and
Jordano 2014) and led to the development of
network ecology (Patten and Witkamp 1967,
Borrett et al. 2014, Poisot et al. 2016b).

Network ecology can be defined as the use of
network models and analyses to investigate the
structure, function, and evolution of ecological
systems at many scales and levels of organization
(Borrett et al. 2012, Ekl€of et al. 2012). The influx
of network thinking throughout ecology, and
ecology’s contribution to the development of
network science highlight the assertion that
“networks are everywhere” (Lima 2011). And, as
one would expect, the field has grown rapidly,
from 1% of the primary ecological literature in
1991 to over 6% in 2017 (Fig. 1A). Some examples
include the following: applying network theory
to population dynamics and spread of infectious
diseases (May 2006); description and analysis of
networks of proteins in adult organisms (Stumpf
et al. 2007) or during development (Hollenberg
2007); expanding classical food-web to include
parasites and non-trophic interactions (Ings et al.
2009, K�efi et al. 2012); investigating animal move-
ment patterns (L�ed�ee et al. 2016) and the spatial
structure of metapopulations (Holstein et al.
2014, Dubois et al. 2016); connecting biodiversity
to ecosystem functioning (Creamer et al. 2016);
identifying keystone species (Borrett 2013, Zhao
et al. 2016); and using social network theory in
studies of animal behavior (Krause et al. 2003,
Croft et al. 2004, Sih et al. 2009, Fletcher et al.
2013). Further, ideas and concepts from network
ecology are being applied to investigate the sus-
tainability of urban and industrial systems (Fang
et al. 2014, Layton et al. 2016, Xia et al. 2016) and
elements of the food–energy–water nexus (Wang
and Chen 2016, Yang and Chen 2016).

Over the past 15 yr, re-occurring themes for
moving network ecology forward have emerged
from reviews, perspectives, and syntheses (e.g.,
Proulx et al. 2005, Bascompte 2010, Borrett et al.
2014, Poisot et al. 2015). In this paper, we examine
areas where the network approach is being applied
to address important ecological questions and
identify both challenges and opportunities for
advancing the field. Among these are the need for
shifting the focus toward mechanisms rather than

observations, and increasing the resolution (e.g.,
individuals or traits as nodes and weighted edges
of different interaction types) and replication of
network models across different ecosystems and
time (Ings et al. 2009, Woodward et al. 2010, Poisot
et al. 2016b). After a brief primer of key concepts
from network ecology, we discuss the following
topics as they relate to these issues: the prolifera-
tion of terminology for ecological metrics with the
increasing application of network methods; fully
exploring the underlying assumptions of models
of mechanistic processes for generating network
structure; and the need for improved sharing and
reproducibility of ecological network research and
models. Although these topics are not new, the
combination of the influx of metrics and theory
and rapid increases in the computational intensity
of ecology is creating novel challenges. With
respect to these issues, we discuss recent advances
that should be explored as tools to aid in a more
effective integration of network methods for syn-
thesis across ecological sub-disciplines.

A PRIMER OF ECOLOGICAL NETWORKS:
MODELS AND METRICS

Prior to the introduction of network methods
in ecology, the primary way of studying interac-
tions was limited to detailed studies of behaviors
and traits of individual species important to
interactions, or of relationships between tightly
interacting pairs of species (Carmel et al. 2013).
Some ecologists were advancing whole-system
methods (Lindeman 1942, Odum 1957); however,
quantifying interactions is costly, as compared to
surveys of species abundances. This has created
a significant barrier to studying interactions at
the scale of entire communities, either at the scale
of individuals or species pairs, because the
number of interactions becomes intractable. For
instance, even if one assumes that only pairwise
interactions occur among S species, the number
of possible pairs is S(S � 1)/2. Local assemblages
of macrobes often have 101–102 species, and
microbial diversity can easily exceed 103 opera-
tional taxonomic units (OTUs).
This complexity of ecological systems is one

reason there is a long tradition in community
ecology of studying interactions within small
subsets of closely related species (e.g., trophic
guilds) and using dimensionality reducing
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Fig. 1. Although systems thinking has been a part of ecology since at least the work of Darwin, network
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methods based on multivariate, correlative
approaches (Legendre et al. 2012). While some
approaches to studying subsets of species incor-
porate the underlying pattern of direct and indi-
rect links (e.g., modules [sensu Holt 1997, Holt
and Hoopes 2005]), the majority do not. Such
limitations repeatedly have led to calls for the
application of “network thinking” to ecological
questions (e.g., Patten and Witkamp 1967, Urban
and Keitt 2001, Proulx et al. 2005, Ings et al.
2009, Golubski et al. 2016, Jacoby and Freeman
2016, QUINTESSENCE Consortium et al. 2016).
There are now many resources for learning about
network ecology and network theory in general,
and we point the reader in the direction of excel-
lent reviews in this area (Proulx et al. 2005,
Bascompte and Jordano 2007, Ings et al. 2009,
Borrett et al. 2012, Brandes et al. 2013) and more
comprehensive introductions (Brandes and
Erlebach 2005, Newman 2010, Estrada 2015).

Network ecology employs network theory to
quantify the structure of ecological interactions.
All networks consist of sets of interacting nodes
(e.g. species, non-living nutrient pools, habitat
patches) whose relationships are represented by
edges (e.g., nutrient or energy transfers, pollina-
tion, movement of individuals). Conceptually, a
network is a set of things or objects with connec-
tions among them. Stated mathematically, a
network is a generic relational model comprised
of a set of objects represented by nodes or
vertices (N) and a set of edges (E) that map one
or more relationships among the nodes, G = (N,
E). A canonical ecological example of a network
is a food-web diagram, in which the nodes repre-
sent species, groups of species, or non-living
resources, and the edges map the relationship
who-eats-whom.

The analysis of networks is inherently hierar-
chical, ranging from the entire network down to
individual nodes and edges. Depending on the
characteristics and level of detail of the informa-
tion provided for a given model, there is a large

number of network analyses and metrics that can
be used to characterize the system at multiple
levels (similar to Hines and Borrett 2014, Wasser-
man and Faust 1994), including: (1) the whole-
network level (i.e., the entire network), (2) the
sub-network level (i.e., groups of two or more
nodes and their edges), and (3) the individual
node or edge level (Fig. 2).
Network-level metrics integrate information

over the entire set of nodes and edges. For
example, the number of nodes (e.g., the species
richness of a food-web) and the density of con-
nections or connectance are both network-level
statistics used to describe the overall complexity
of a network and have been investigated by
ecologists for over 40 yr (May 1972, Allesina and
Tang 2012).
Sub-network-level analyses focus on identify-

ing specific subsets of nodes and edges. There
are a variety of groups that have different names
(e.g., module, motif, cluster, clique, environ) and
different methods for measurement. Sub-
networks often represent more tractable and
meaningful units of study than individual nodes
and edges on the one hand or entire networks on
the other. For example, in landscape and popula-
tion ecology, the preferential movement of indi-
viduals and genes (edges) between habitat
patches (nodes) has implications for conservation
of populations and the design of preserves
(Calabrese and Fagan 2004, Holt and Hoopes
2005, Fletcher et al. 2013). Also, both nodes and
edges can be divided into classes. An example of
this is the bipartite graph, in which interactions
occur primarily between, rather than within,
each class or “part” of the community. A bipar-
tite network has only two classes of nodes, such
as in a pollination network in which the commu-
nity is divided into plants being pollinated and
insects that do the pollination (Petanidou et al.
2008). In this network, edges representing polli-
nation visits can only map between two nodes in
the different classes.

ecology has grown rapidly since the turn of the last century but has been developing in isolated sub-fields. (A)
Plot showing the increase in “network ecology” keywords in the literature from 1991 to current (updated using
search developed by Borrett et al. [2014]). (B) Contour plot of common topics in network ecology with peaks
indicating clusters of related topics. The regions are labeled with the most common terms found in the clusters.
From Borrett et al. (2014), reproduced with permission.

(Fig. 1. Continued)
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Metrics at the individual node or edge level
quantify differences in relative importance.
Whether we are interested in an individual or
species that transmits disease, species whose
removal will result in secondary extinctions, or
key habitat patches that connect fragmented land-
scapes, identifying important nodes is a critical
component of network analysis. Another type of
node or edge-level metric classifies nodes or edges
according to their roles within a network. This
classification can use information from differing
levels. Additionally, nodes and edges can have
variable characteristics. Edges can be weighted
and they can map a directed relationship (as
opposed to a symmetric or undirected relation-
ship). For example, in ecosystem networks, the
edges show the directed movement of energy or
nutrients from one node to another by some
process like feeding, and the edge weight can
indicate the amount of energy or mass in the
transaction (Dame and Patten 1981, Baird and
Ulanowicz 1989). Nodes also can be weighted
(e.g., size of individual, population size, biomass
of a given species). Lastly, network models are

flexible enough to accommodate variation in edge
types and relationships among edges (e.g., hyper-
graphs), but analysis of these more complicated
models is challenging and has only begun to be
applied in ecology (e.g., Golubski et al. 2016).

RESOLVING NETWORK METRICS

The application of network theory defines an
explicit mathematical formalism that provides a
potentially unifying set of terms for ecology and
its inter-disciplinary applications (QUINTES-
SENCE Consortium et al. 2016). Ironically, the
development of ecological network metrics has
had an opposing affect. One reason for this is
that introductions have occurred in multiple sub-
disciplinary branches (Fig. 1B; Bl€uthgen 2010,
Carmel et al. 2013, Borrett et al. 2014). Having
separate research trajectories can facilitate rapid
development of ideas, and the process of integra-
tion can lead to novel insights (Hodges 2008). At
the same time, these innovations in network ecol-
ogy have come at the cost of the “rediscovery” of
the same network metrics and subsequent
description of them with new terms. This has led
to different metrics with similar purposes exist-
ing in separate areas of ecology (Table 1).
Ecological studies using network approaches

draw from a deep well of general network theory
(Strogatz 2001, Newman 2003, 2006). Ecologists
broadly use network concepts, techniques, and
tools to: (1) characterize the system organization
(Ulanowicz 1986, Croft et al. 2004, Borrett 2013);
(2) investigate the consequences of the network
organization (Dunne et al. 2002, Borrett et al.
2006, Grilli et al. 2016); and (3) identify the pro-
cesses or mechanisms that might generate the
observed patterns (Williams and Martinez 2000,
Fath et al. 2007, Guimar~aes et al. 2007, Allesina
and Pascual 2008, Ulanowicz et al. 2014, Poisot
et al. 2016b). The unnecessary proliferation of net-
work metrics is exemplified by “connectance” (C),
which is used by food-web ecologists to mean the
ratio of the number of edges in the network
divided by the total number of possible edges.
Elsewhere in the network science literature, this
measurement is referred to as network density
(Newman et al. 2001). As another example, what
ecosystem ecologists have described as “average
path length” (total system throughflow divided
by the total system input) (Finn 1976) also has

Fig. 2. Hypothetical unweighted, directed network
showing examples of the four classes of network met-
rics. Node Level: The purple node exhibits low central-
ity while the orange node exhibits high centrality.
Group or Sub-network Level: The blue nodes connected
with dashed edges show a module. Global or Whole-net-
work Level: Using the edges of all nodes, we can mea-
sure the connectance of the entire network (c = edges/
nodes2 = 0.12).
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Table 1. Ecological network metric summary and classification.

Sub.discipline Level Metric Concept References

General W Density The proportion of possible edges that
are actually associated with nodes;
called Connectance in Food-web
ecology

General N Centrality Multiple ways to characterize the
relative importance of nodes

Wasserman and Faust
(1994)

General N Degree Number of edges connected to a
given node, which is a type of local
centrality

General N Eigenvector
centrality

Global centrality metric based on
number of walks that travel through
a node

Bonacich (1987)

General W Centrality
distribution

Shape of the frequency distribution of
edges among nodes

Barab�asi and Albert
(1999); Dunne et al.
(2002)

General W Centralization The concentration (vs. evenness) of
centrality among the nodes

Freeman (1979)

General W Graph
diameter

The longest path between any two
nodes in a graph

Barab�asi et al. (2000);
Urban and Keitt (2001)

General W Modularity Degree to which edges are
distributed within rather than
between distinct sets of nodes

Newman (2010)

General G Motifs Small sets of nudes with similar
distributions of edges

Milo et al. (2002)

General W Link density Average number of edges per node Martinez (1992)
Community N Temperature Measures the nestedness of a

bipartite network
Ulrich and Gotelli
(2007)

Community W Co-occurrence Degree of overlapping spatial or
temporal distributions of species
relative to a null model

Gotelli (2000)

Community N Indicator
species

The degree to which the abundance
of a taxonomic group responds to an
environmental gradient

Community W Nestedness The degree to which interactions can
be arranged into subsets of the
larger community

Community W Evenness Deviation of the distribution of
observed abundances relative to an
even distribution among taxonomic
groups in a community

Community W Diversity Distribution of abundances among
taxonomic groups in an observed
community

Community W Richness The number of taxonomic groups in a
community

Community W Stability The change in the abundances of
taxonomic groups across a set of
observations

Food-web N Removal
importance

The degree to which removal of a
compartment or species produces
subsequent removals in the
ecosystem

Borrvall et al. (2000);
Dunne et al. (2002);
Ekl€of and Ebenman
(2006); Sol�e and
Montoya (2001)

General N Connectance Proportion of realized out of possible
edges

Pimm (1982); Vermaat
et al. (2009)

Food-web G Food-chain
length

The number of feeding relationships
among a set of compartments in a
food-web

Post et al. (2000);
Ulanowicz et al.
(2014)

Ecosystem W Finn cycling
index

Degree to which matter or energy
passes through the same set of
compartments

Finn (1980)
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been called network aggradation (Jørgensen et al.
2000). In economics, average path length is
known as the multiplier effect (Samuelson 1948).

Another kind of redundancy is the creation
and use of multiple statistics that measure the
same or very similar network aspects. A clear
example of this is inherent in the proliferation of
centrality measures to indicate node or edge
importance. Network scientists have shown that
many centrality metrics are correlated (Newman
2006, Jord�an et al. 2007, Valente et al. 2008).
Likewise, Borrett and Osidele (2007) found that
nine commonly reported ecosystem network
analysis metrics covaried in 90 plausible parame-
terizations of a model of phosphorus biogeo-
chemical cycling for Lake Lanier, Georgia, but
that all these metrics were associated strongly
with only two underlying factors. However, even
a perfect correlation does not mean that two met-
rics have identical properties, and they still may
diverge in different models. Therefore, it is
important to have mathematically based compar-
isons of metrics (Borgatti and Everett 2006,
Borrett 2013, Kazanci and Ma 2015, Ludovisi and

Scharler 2017). It is incumbent on network ecolo-
gists to establish clearly the independence and
uniqueness of the descriptive metrics used.
From the perspective of the broader field of

ecology, the proliferation of concepts, terms, and
metrics is not a new issue (e.g., Tansley 1935, Elli-
son et al. 2005). Ecologists have a long history of
using network concepts and related models in
multiple subdomains (e.g., metapopulations,
matrix population models, community co-
occurrence models, ecosystems) without fully
recognizing or capitalizing on the similarities of
the underlying models. Each subdomain has
constructed its own concepts and methods (occa-
sionally borrowing from other areas) and estab-
lished its own jargon that impedes scientific
development. Previous suggestions for solving
this issue have focused on maintaining an histor-
ical perspective of ecology (Graham and Dayton
2002); Bl€uthgen et al. (2008) is an excellent
example of how this can be done through peer-
reviewed literature.
One possible approach that would go beyond

such a diffuse, literature-centered approach

(Table 1. Continued)

Sub.discipline Level Metric Concept References

Ecosystem G Environ The sub-network of the probability of
movement of energy or matter
among compartments generated by
a single unit of input (output) into a
selected node

Patten (1978); Patten
and Auble (1981)

Ecosystem N Throughflow Amount of energy or matter passing
into or out of a node

Finn (1976)

Ecosystem N Throughflow
centrality

The proportion of energy or matter
that passes through a given
compartment in an ecosystem

Borrett (2013)

General G Chain length Number of edges between two nodes
in a group

Food-web G Average path
length

The average number of times a unit
of matter or energy travels from one
compartment to another before
exiting the ecosystem

Finn (1976)

Ecosystem W Pathway
proliferation

Rate of increase in the number of
edges between nodes with
increasing path length

Borrett et al. (2007)

Ecosystem W Ascendency Measures the average similarity in
matter or energy flows among
compartments in an ecosystem

Ulanowicz (1986)

Food-web N Trophic level Ordinal classification of a
compartment or taxonomic group
based on the relative position in the
ecosystem

Allesina and Pascual
(2009); Fath (2004);
Williams et al. (2002)

Notes: Level indicates the hierarchy of the metric (W, Whole network; G, Group or sub-network; N, Node). The Sub-
disciplines include “General” network theory, “Community” ecology, “Food-web” and “Ecosystem” ecology. Also available at
https://figshare.com/s/1bf1a7e0a6ee3ac97a4b.
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would be to develop a formal ontology of con-
cepts and metrics. An ontology is a set of related
terms that are formally defined and supported by
assertions (Bard and Rhee 2004). An ontology
therefore provides a framework for developing
concepts within a discipline and presents the
opportunity for more efficient synthesis across
disciplinary boundaries. The concept of an ontol-
ogy is not new, but more rapid sharing of ontolo-
gies and their collaborative development have
been enabled by the Internet. For example, the
Open Biological Ontologies (OBO, http://www.
obofoundry.org) supports the creation and shar-
ing of ontologies over the web. Currently, there is
no OBO for a “network ecology metric” ontology,
and as far as we are aware, ontologies have yet to
be explored or developed for network metrics.

The OBO could provide a platform for harmo-
nizing ecological network metrics, terms, and
concepts. Key obstacles to such harmonization
include a requirement that network ecologists
work within a common framework, and the need
for an individual or leadership team to periodi-
cally curate the ontology based on new develop-
ments in the field. In determining the best course
of action, network ecologists could follow the
example of how similar OBO projects have been
managed in the past. The FOODON food role
ontology project (http://www.obofoundry.org/on
tology/foodon.html) contains information about
“materials in natural ecosystems and food-webs
as well as human-centric categorization and
handling of food.” It could serve as an example
or even the basis of a ecological network metric
ontology.

BENCHMARKING: TRUSTING OUR MODELS OF
MECHANISMS

Inferences about processes in ecological systems
have relied in part on the application of simulation
models that generate matrices with predictable
properties. As discussed in the previous section,
the proliferation of network metrics points to the
need for the investigation and comparison of how
these metrics will behave in the context of different
modeling algorithms. Once a metric or algorithm
has been chosen, it is tempting to apply them
widely to empirical systems to detect patterns, but
before research proceeds, a process of “benchmark-
ing” with artificial matrices that have predefined

amounts of structure and randomness should be
used to examine the behavior of the algorithms
and the metrics that are applied to them.
Benchmarking of ecological models developed

from null model analysis in community ecology
(Connor and Simberloff 1979, Atmar and Patter-
son 1993, Gotelli and Ulrich 2012). Null models
are specific examples of randomization or Monte
Carlo tests (Manly 2007) that estimate a frequen-
tist P value, the tail probability of obtaining the
value of some metric if the null hypothesis were
true (Gotelli and Graves 1996). The aim of a null
model is to determine if the structure of an
observed ecological pattern in space or time is
incongruous with what would be expected given
the absence of a causal mechanism. A metric of
structure calculated for a single empirical data set
is compared to the distribution of the same metric
calculated for a collection of a large number of
randomizations of the empirical data set. The data
are typically randomized by reshuffling some ele-
ments while holding other elements constant to
incorporate realistic constraints. Comparison with
a suite of null models in which different con-
straints are systematically imposed or relaxed
may provide a better understanding of the factors
that contribute most to patterns in the network
(see Box 1). However, the devil remains in the
details and there are also a variety of ways to ran-
domize data and impose constraints to construct
a useful null model. If the null model is too sim-
plistic, such as a model in which edges and nodes
are sampled with uniform probability, it will
always be rejected and provide little insight into
important ecological patterns, regardless of what
metric is used. At the other extreme, if the null
model incorporates too many constraints from the
data, it will be difficult or impossible to reject the
null hypothesis, even though the network may
contain interesting structure.
In network theory, the Erdos-Renyi (ER, Erd€os

and R�enyi 1959) model is a now-classic example
of a model used to generate networks via a ran-
dom process for creating matrix structure. The
ER model is a random graph that starts with an
N 9 N adjacency matrix of nodes and assigns to
it K edges between randomly chosen pairs of
nodes. The ER model has been applied in ecol-
ogy to address questions about the relationship
between stability and complexity (May 1972) and
the structure of genetic networks (Kauffman
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et al. 2003). For example, randomized networks
have been used to link motifs (Milo et al. 2002) to
network assembly (Baiser et al. 2016), stability
(Allesina and Pascual 2008, Borrelli et al. 2015),

and persistence in food-webs (Stouffer and
Bascompte 2010).
In addition to the random matrix approaches

of null and ER models, there are other, more

Box 1

Benchmarking Ecological Models

The most basic test is to feed the algorithm a set of “random” matrices to make sure that the
frequency of statistically significant results is no greater than 5%. Otherwise, the algorithm is
vulnerable to a Type I statistical error (incorrectly rejecting a true null hypothesis). However,
specifying a matrix produced by random sampling errors is not so easy. By definition, if a null
model algorithm is used to generate the random matrices, then no more than 5% of them should
be statistically significant (unless there were programming errors). For binary matrices, two log-
normal distributions can be used to generate realistic heterogeneity in row and column totals,
while still maintaining additive effects for cell occurrence probabilities (Ulrich and Gotelli 2010).
“Structured” matrices are needed to test for Type II errors (incorrectly accepting a false null
hypothesis), and these require a careful consideration of exactly what sort of pattern or mecha-
nism the test is designed to reveal. One approach is to begin with a perfectly structured matrix,
such as one derived from a mechanistic model for generating network structure, contaminate it
with increasing amounts of stochastic noise, and test for the statistical pattern at each step
(Gotelli 2000). A plot of the P value vs. the added noise should reveal an increasing curve and
will indicate the signal-to-noise ratio below which the test cannot distinguish the pattern from
randomness. Alternatively, one can begin with a purely random matrix but embed in it a non-
random substructure, such as a matrix clique or a node with extreme centrality. The size, density,
and other attributes of this matrix can be manipulated to see whether the test can still detect the
presence of the embedded structure (Gotelli et al. 2010). Because all null model tests (and all fre-
quentist statistics) are affected by sample size and data structure, these benchmark tests can be
tailored to the attributes of the empirical data structures for better focus and improved inference.

Even simple randomization algorithms may require further filters to ensure that random
matrices retain a number of desirable network properties. For example, Dunne et al. (2002) cre-
ated random food-web matrices with constant species richness and connectance, but they dis-
carded webs with unconnected nodes and subwebs because these topologies were not observed
in the empirical webs. A “stub reconstruction” algorithm builds a topology that is constrained to
the observed number of edges per node (Newman et al. 2001). Each node is assigned the correct
number of edges, and then nodes are successively and randomly paired to create a growing net-
work. However, this algorithm also generates multiple edges between the same two nodes,
which must be discarded or otherwise accounted for. Maslov and Sneppen (2002) use a “local re-
wiring algorithm” that preserves the number of connections for every node by swapping edges
randomly between different pairs of nodes. This algorithm is closely analogous to the swap algo-
rithm used in species co-occurrence analyses that preserves the row and column totals of the
original matrix (Connor and Simberloff 1979). The more constraints that are added to the algo-
rithm, the less likely it is that simple sampling processes can account for patterns in the data.
However, some constraints, such as connectivity or matrix density, may inadvertently “smuggle
in” the very processes they are designed to detect. This can lead to the so-called Narcissus effect
(Colwell and Winkler 1984). Finding the correct balance between realistic constraints and statisti-
cal power is not easy (Gotelli et al. 2012), and there are many potential algorithms that reason-
ably could be used, even for simple binary matrices (Gotelli 2000).
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complex algorithms that are used to generate
structured matrices. Perhaps one of the best
known in network theory is the Barabasi-Albert
(BA, Barab�asi and Albert 1999) model, which
adds nodes and edges to a growing network
with a greater probability of adding edges to
nodes with a higher degree. The BA algorithm is
similar to ecological network algorithms that
generate non-random structure, because of either
direct influence or similar processes operating in
systems of interest. Some of these models include
processes of “preferential attachment” in which
organisms tend to interact with the same, com-
mon species. Food-web modeling algorithms
also have been developed that use a trait-based
approach (e.g., Allesina and Pascual 2009), con-
sumer–resource models (Yodzis and Innes 1992),
niches (Williams and Martinez 2000), cyber-
ecosystem algorithms (Fath 2004), and cascade
models (Cohen and Łuczak 1992, Allesina and
Pascual 2009, Allesina and Tang 2012).

The statistical behavior of some models and
metrics can be understood analytically. For
example, the networks generated by the BA
algorithm display degree distributions that
approximate a power-law distribution, like many
real-world “scale-free” networks (Albert et al.
2002). If the network is sparse (i.e., [K � N2]),
the degree distribution of the network should fol-
low a Poisson distribution. However, as new
models and metrics are introduced, new bench-
marking should be done and compared to previ-
ous results. Newman et al. (2016) is one example
of how benchmarking can be used for investigat-
ing processes operating on ecological networks.
Ludovisi and Scharler (2017) advocate the same
approach for the analysis of network models in
general. The benchmark (Eugster and Leisch
2008) package in R (R Core Team 2017) is a gen-
eral algorithm-testing software package that pro-
vides a useful starting point.

REPRODUCIBILITY: OPEN-DATA, OPEN-SOURCE,
AND PROVENANCE

As analyses of network models increase in com-
putational intensity, there is a concomitant
increase in the need for new tools to track and
share key computational details. This need is
compounded when models incorporate data from
multiple sources or analyses involve random

processes. The combination of the volume of data
and computational intensity of studies of ecologi-
cal networks further increases the burden on
ecologists to provide information needed to ade-
quately reproduce data sets, analyses, and results.
As the sharing and reproducibility of scientific
studies are both essential for advances to have
lasting impact, finding easier, faster, and generally
more convenient ways to record and report rele-
vant information for ecological network studies is
imperative for advancing the field.
Sharing data and open-source code have

become established in ecology, and network ecolo-
gists are now producing more network models
and data (e.g., Fig. 1A). These include not only
ecological interaction networks, but also an influx
of other relevant networks, including ecological
genomic networks generated by next-generation,
high-throughput sequencing technologies (Lang-
felder and Horvath 2008, Zinkgraf et al. 2017).
There are now multiple web-accessible scientific
databases (e.g., National Center for Biotechnology
Information [NCBI], Data Dryad, Dataverse) and
at least four databases have been constructed
specifically to curate ecological network data:
including “Kelpforest” (Beas-Luna et al. 2014),
“The Web of Life” (Fortuna et al. 2014), “Mangal”
ecological network database (Poisot et al. 2015),
and the “Interaction Web Database” (https://www.
nceas.ucsb.edu/interactionweb/resources.html).
The increase in ecological network data is

linked to an increasing rate of shared analytical
code and other open-source software. It is now
commonplace for ecologists to have a working
knowledge of one or more programming lan-
guages, such as R (R Foundation, Vienna, Aus-
tria), Python (Python Software Foundation,
Beaverton, Oregon, USA), SAS (SAS Institute,
Cary, North Carolina, USA), MatLab (Math-
Works, Natick, Massachusetts, USA), Mathema-
tica (Wolfram Research, Champaign, Illinois,
USA), or SPSS (IBM Corporation, Armonk, New
York, USA). Multiple software packages exist for
doing ecological analyses, including ecological
network analyses. In addition to the general net-
work analysis packages available in R, there are at
least two packages aimed specifically at ecological
network analysis: bipartite and enaR. The former
provides functions drawn largely from commu-
nity ecology (Dormann et al. 2009), whereas the
latter provides a suite of algorithms developed in
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the ecosystem network analysis literature (Borrett
and Lau 2014, Lau et al. 2015).

Although ecology has long had a culture of
keeping records of important research details,
such as field and laboratory notebooks, these
practices put all of the burden of recording
“metadata” on the researcher. Manual record-
keeping methods, even when conforming to
metadata standards (e.g., Ecological Markup Lan-
guage [EML], see Boose et al. 2007), do not take
advantage of the power of the computational
environment. Data-provenance methods aim to
provide a means to collect formalized informa-
tion about computational processes, ideally in a
way that aids the reproducibility of studies with
minimal impact on the day-to-day activities of
researchers (Boose et al. 2007). These techniques
have been applied in other areas of research and
could provide an effective means for document-
ing the source and processing of data from the
raw state into a model (Boose and Lerner 2017).

The reproducibility of scientific studies is
imperative for advances to have lasting impact
through the independent verification of results.
Although this has been an ongoing topic of dis-
cussion in ecology (Ellison 2010, Parker et al.
2016), the need was highlighted by a recent
survey finding issues with reproduction of stud-
ies across many scientific disciplines (Baker
2016). There is significant motivation from within
the ecological community to move toward pro-
viding detailed information about computational
workflows for both repeatability and repro-
ducibility, which includes repetition by the origi-
nal investigator (Lowndes et al. 2017). It is also
important in network ecology for data sources
and methods for model construction be stan-
dardized and transparent, and that models be
curated and shared (McNutt et al. 2016).

Collecting details, such as those enabled by
data-provenance capture software, is one innova-
tive way forward. These tools have been develop-
ing in the computer science domain for decades;
however, only recently have they gained a foot-
hold in ecology (Boose et al. 2007, Ellison 2010)
or the broader scientific community. Although
there are many challenges in the development
and application of data-provenance principles,
multiple software packages do exist for collecting
data provenance in the context of scientific inves-
tigations. Two provenance capture packages exist

in R, the recordr package associated with the
DataOne repository (Cao et al. 2016) and RData-
Tracker (Lerner and Boose 2014). In addition,
although they do not collect formal data prove-
nance, there are methods developed for “literate
computing” that help to collect code along with
details about the code and the intention of the
analyses (e.g., the Jupyter notebook project: Shen
and Barabasi 2014).
For ecological networks, there is software that

captures the “data pedigree” of food-web mod-
els, but it does not capture data provenance.
Data pedigree was initially implemented in the
EcoPath food-web modeling package (Guesnet
et al. 2015, Heymans et al. 2016) to define confi-
dence intervals and precision estimates for
network edges. It has been developed further to
allow for the use of informative priors in Baye-
sian modeling of ecological networks. This is
done by linking models to the literature sources
from which estimates were derived, an approach
that is similar to incorporating metadata infor-
mation within databases of ecological networks.
Although this approach focuses only on a sub-
component of provenance, this still is a promis-
ing way to address the issue that networks,
network metrics, and simulation models used to
analyze them commonly assume a lack of uncer-
tainty (e.g., Kauffman et al. 2003, Borrett and
Osidele 2007, Kones et al. 2009), and typically
ignore inaccuracy in the empirical data (Ascough
et al. 2008, Gregr and Chan 2014).

MOVING FORWARD

Development and application of new technolo-
gies (e.g., sequencing methods and computa-
tional, data-driven approaches) have the
potential to increase both the abundance and
quality of ecological networks. For the future
development of network ecology, there is a press-
ing need not only to share data and code, but
also to integrate and use the large amounts of
information enabled by technological advances.
For example, synthetic networks (i.e., merging
network models from different studies Poisot
et al. 2016a) are a promising new direction; how-
ever, the structural properties of synthetic net-
works and the behavior of network metrics
applied to them will require careful investiga-
tion, including the application of systematic
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benchmarking. Multi-trophic networks provide a
precedence for these studies to move forward,
but synthesizing models from across many dif-
ferent sources produces new challenges for
developing and benchmarking metrics, as well as
an opportunity for new technologies, like data
provenance, to help establish better connections
among studies and researchers.

The burgeoning of “open” culture in the
sciences (Hampton et al. 2015) also has the poten-
tial to serve as a resource for models and a clear-
ing-house for resolving the validity of metrics,
models, and algorithms. First, because code is
openly shared, functions used to calculate metrics
are open for inspection and, if coded and docu-
mented clearly using software “best-practices”
(e.g., Noble 2009, Visser et al. 2015), the code
provides a transparent documentation of how a
metric is implemented and its computational
similarity to other metrics. Second, enabled by
the ability to write their own functions and code,
researchers can do numerical investigations of
the similarities among metrics. Through com-
parison of metrics calculated on the same or sim-
ilar network models, a researcher could at least
argue, for a given set of models, that two or
more metrics produce similar results. Third,
data provenance provides a useful tool to aide
in the dissemination and synthesis of network
models and increases the reproducibility of eco-
logical network studies, including those docu-
menting new metrics and benchmarking those
metrics and associated algorithms for generating
or analyzing empirical models. Last, as with
data provenance, formalizing ecological net-
work metrics and concepts requires a mathemat-
ically rigorous foundation that is developed by
the community of researchers working along
parallel lines of inquiry. Whether this is done
through an ontological approach or some other
formalized “clearing-house,” an open process of
exchange that integrates multiple perspectives is
essential to prevent the rapid dilution of con-
cepts in ecological network research as these
concepts continue to proliferate, develop, and
evolve.

Over half a century ago, Robert MacArthur
published his first paper on the relationship
between diversity and stability, initiating multiple
research trajectories that have now become the
mainstay of many ecological research programs

(MacArthur 1955). The theory that MacArthur
applied was based on flows of energy through
networks of interacting species. Thus, network
theory is at the roots of one of the most widely
studied topics in ecology and is now a part of the
broader context of integration across many scien-
tific disciplines that is aimed at consilience of the-
ory (Wilson 1999). The synthesis of ecological
concepts through the mathematically rigorous
“lingua franca” of network terminology has the
potential to unify theories across disciplines. As
with previous concepts (e.g., keystone species,
foundation species, ecosystem engineer), greater
clarity and less redundancy will come about as
network methods are used more commonly and
researchers compare the mathematical and com-
putational underpinnings of the metrics that they
are using. With the increased use of these
approaches, the network concept has and will con-
tinue to serve as a common model that transcends
disciplines and has the potential to serve as an
inroad for new approaches. With thoughtful dia-
logue across sub-disciplines and among research
groups, further infusion of network theory and
methods will continue to advance ecology.
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