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A comprehensive framework for the study of species 
co-occurrences, nestedness and turnover

Werner Ulrich, Wojciech Kryszewski, Piotr Sewerniak, Radosław Puchałka, Giovanni Strona  
and Nicholas J. Gotelli

W. Ulrich (http://orcid.org/0000-0002-8715-6619) (ulrichw@umk.pl) and R. Puchałka, Faculty of Biology and Environmental Protection, 
Nicolaus Copernicus Univ. in Toruń, Lwowska 1, PL-87-100 Toruń, Poland. – W. Kryszewski, Faculty of Mathematics and Informatics, 
Nicolaus Copernicus Univ. in Toruń, Toruń, Poland. – P. Sewerniak, Dept of Soil Science and Landscape Management, Nicolaus Copernicus 
Univ., Toruń, Poland. – G. Strona (http://orcid.org/0000-0003-2294-4013), European Commission Joint Research Centre, Inst. for 
Environment and Sustainability, Ispra, Italy. – N. J. Gotelli, Dept of Biology, Univ. of Vermont, Burlington, VT, USA.

Binary presence–absence matrices (rows  species, columns  sites) are often used to quantify patterns of species co-occur-
rence, and to infer possible biotic interactions from these patterns. Previous classifications of co-occurrence patterns as 
nested, segregated, or modular have led to contradictory results and conclusions. These analyses usually do not incorporate 
the functional traits of the species or the environmental characteristics of the sites, even though the outcomes of species 
interactions often depend on trait expression and site quality. Here we address this shortcoming by developing a method 
that incorporates realized functional and environmental niches, and relates them to species co-occurrence patterns. These 
niches are defined from n-dimensional ellipsoids, and calculated from the n eigenvectors and eigenvalues of the variance–
covariance matrix of measured environmental or trait variables. Average niche overlap among species and the spatial dis-
tribution of niches define a triangle plot with vertices of species segregation (low niche overlap), nestedness (high niche 
overlap), and modular co-occurrence (clusters of overlapping niches). Applying this framework to temperate understorey 
plant communities in southwest Poland, we found a consistent modular structure of species occurrences, a pattern not 
detected by conventional presence–absence analysis. These results suggest that, in our case study, habitat filtering is the 
most important process structuring understorey plant communities. Furthermore, they demonstrate how incorporating 
trait and environmental data into co-occurrence analysis improves pattern detection and provides a stronger theoretical 
framework for understanding community structure.

Since the pioneering work of Diamond (1975), the assembly 
of species communities has remained a central research focus 
(Weiher and Keddy 1999, Stokstad 2009, Götzenberger 
et al. 2012). The core data structure – a species  sites binary 
presence–absence matrix (Connor and Simberloff 1979) 
– has been used to infer species interactions (Fariňa et  al. 
2009), the distribution of species functional traits (Kraft 
et  al. 2008), and stochastic colonisation and extinction 
(Hubbell 2001).

Diamond (1975) and subsequent authors (reviewed 
by Weiher and Keddy 1999, Chesson, 2000, Götzen-
berger et  al. 2012) focused on non-random patterns of 
compositional change across replicate communities. They 
interpreted a pattern of reciprocal species occurrence (species 
segregation) as evidence for competitive exclusion (Gause 
1934). But, unless habitats are identical in the replicate 
patches and there are no limits to dispersal, a pattern of spe-
cies segregation cannot be distinguished from a change in 
species composition driven by a gradient in habitat quality 
or by limited dispersal (species turnover; Ulrich and Gotelli 
2013, Blois et  al. 2014). Subsequent work (reviewed by 

Ulrich and Gotelli 2013) showed that a pattern of recip-
rocal exclusion in a presence–absence matrix is statistically 
indistinguishable from a pattern of regular change in spe-
cies composition (species turnover). Thus, species segre-
gation and turnover appeared to be two sides of the same 
coin. Any highly segregated matrix can be reordered to show 
its intrinsic high degree of species turnover among sites  
(Fig. 1). Recent meta-analyses of animal and plant commu-
nities consistently reported a tendency towards species seg-
regation among modern assemblages sampled at a variety of 
spatial scales (Gotelli and McCabe 2002, Ulrich and Gotelli 
2007, 2013), but not among pre-Holocene assemblages 
(Lyons et al. 2016).

An alternative, biogeographic concept of community 
assembly focuses on nested patterns of species co-occurrences 
(Hultén 1937), in which species-poor communities are per-
fect nested subsets of species-rich communities (Patterson 
and Atmar 1986, reviewed in Ulrich et al. 2009). A nested 
community pattern (Fig. 1) is expected from stochastic 
colonization and extinction in the equilibrium model of 
island biogeography (MacArthur and Wilson 1963) as well 
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as from stochastic speciation, dispersal, and extinction in 
ecological drift models (Hubbell 2001). Furthermore, nested 
patterns might also emerge in the presence of ecological 
gradients promoting the co-existence of habitat generalists 
and habitat specialists. For this reason, Ulrich et al. (2009) 
recommended nestedness analysis as a major tool to identify 
environmental gradients along which local communities are 
assembled in an orderly manner.

Species turnover and nestedness have been interpreted as 
the endpoints of a continuum along which meta-communities 
are organised (Presley et al. 2010, Brown et al. 2017). Here, 
we define a meta-community as a set of local patches that 
are connected by dispersal, and in which all species have the 
potential to occur (Wilson 1992). However, it is still unclear 
whether meta-communities really can be ordered according 
to this assumed one-dimensional continuum from turnover 
to nestedness. For example, Ulrich and Gotelli (2013) illus-
trated how presence–absence matrices identified by standard 
metrics can be simultaneously nested and segregated. Similar 
results were also obtained in analyses of trophic networks: 
Fortuna et  al. (2010) reported both positive and negative 
correlations of metrics quantifying nestedness and segrega-
tion. Moreover, the structure of these correlations changed 
with the fill of the matrix.

The natural counterpart of segregation is modularity, a 
pattern in which groups of species frequently occur in the 
same sites (Fig. 1). In the extreme scenario of a Clementsian 
‘super-organism’, strong positive associations among the spe-
cies in a community mean that all species occur together 
in one environment, and are replaced at a sharp ecotone by 

a different set of species in a different environment. There-
fore, this modular pattern of meta-community structure is 
not equivalent to a nested pattern (Fortuna et  al. 2010). 
Following Leibold and Mikkelson (2002), we argue that 
it represents instead a third independent pattern of meta-
community organisation. In this respect we note that the 
corresponding counterpart of nestedness – anti-nestedness – 
(Almeida-Neto et al. 2007), still awaits a formal definition.

We also observe, that, for a meta-community containing 
only two species, a strong positive aggregation will gener-
ate a modular pattern if both species have the same num-
ber of occurrences, but a nested pattern if one of the species 
has more occurrences than the other. Thus, the patterns of 
nestedness, segregation, and modularity depend not only 
on the degree of co-occurrence, but also on the occurrence 
frequencies of individual species. For a multi-species assem-
blage, each individual species may be associated with other 
pairs that can be nested, aggregated, or segregated, making 
it difficult to generate a composite index that applies to the 
entire matrix.

Consequently, we argue that the simple nestedness – 
segregation gradient is insufficient to describe the complex-
ity of meta-community organisation. Instead, we propose a 
triangular framework, with nested, modular and turnover 
patterns as vertices (Fig. 1). Modular patterns have long 
been identified as important in both mutualistic networks 
and food webs (Bascompte 2009), in which groups of spe-
cies at one trophic or functional level interact with a second 
group of a different level. A modular community organisa-
tion is therefore a pattern of within-module aggregation and 
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Figure 1. The distribution of eigenvector ellipsoids within the coordinate system of environmental variables allows for the calculation of 
average ellipsoid overlap and the coefficient of variation of ellipsoid centroid distances. This enables the identification of basic patterns in 
species niche overlap and co-occurrence (nested, modular, segregated). Using three environmental variables increasing or decreasing along 
the ordered sites (Supplementary material Appendix 3) the black dots show the observed positions of the example inset matrices  
(cf. also Supplementary material Appendix 3 Fig. 3.2). Multi-species segregated matrices are increasingly characterized by a Poisson random 
distribution of ellipsoid centroid distances as identified by the coefficient of variation CVenv ≈ 1. Modular matrices have an aggregated 
ellipsoid distribution in space (CVenv  1), nested ellipsoids have CVenv  1. The inset graphs show the position of ellipsoids in the two-
dimensional case in which x and y denote the respective environmental/trait variables. A modular pattern might occur at high or low 
ellipsoid overlap depending on matrix fill. Depending of the structure of the environmental or trait data, a nested pattern might be realised 
with high variation in ellipsoid centre distances.
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between-module turnover. In contrast, a nested pattern is a 
single module in which species occurrence frequencies vary, 
and composition is nested. 

Environmentally defined patterns of co-occurrence

The classical approach of analysing species co-occurrence 
with only a binary presence–absence matrix has three 
important drawbacks. First, it does not consider environ-
mental constraints (Leibold and Mikkelson 2002, Presley 
et  al. 2010, Ulrich and Gotelli 2013), and identifies pat-
terns on the sole basis of occurrences/absences. Ordination 
techniques such as correspondence analysis and multidimen-
sional scaling naturally include species abundances and envi-
ronmental data (Legendre and Legendre 1998). However, 
these techniques are not designed to infer the precise pattern 
of species associations (Dallas et al. 2016), and the basic defi-
nitions of turnover, modularity, and nestedness do not refer 
to environmental covariates. Consequently, nearly all studies 
on co-occurrence analysis focused on the presence–absence 
matrix only.

Co-occurrence is frequently linked either to species 
interactions in the case of modular and segregated patterns 
(Bascompte 2009, Götzenberger et  al. 2012), or to envi-
ronmental gradients (Ulrich et  al. 2009) and colonisation 
trajectories (Gassert et al. 2013, Louy et al. 2014) in the case 
of nested patterns. We feel that this conceptual mismatch 
hinders progress in meta-community analysis, and we argue 
that there is need for an extension of the basic analysis of 
co-occurrences to incorporate environmental variables and 
possibly species functional traits. In this paper we develop 
such an extension to redefine species turnover, modularity 
and nestedness.

The second major shortcoming of binary matrix analysis 
lies in the plethora of metrics used to quantify co-occurrence 
patterns (Ulrich and Gotelli 2013). The most common 
metric of nestedness, NODF (Almeida-Neto et  al. 2008), 
depends on specific ways of ordering the rows and columns 
of the matrix, whereas metrics of turnover, segregation, 
b-diversity (Stone and Roberts 1990, Tuomisto 2010), and 
modularity (Newman and Girvan 2004) are independent of 
matrix order. Because these metrics are based on different 
algorithms and use different information from the matrix 
structure, results are not directly comparable. For instance, 
a recent meta-analysis (Ulrich and Gotelli 2013) confirmed 
that the degrees of turnover and nestedness are significantly 
negatively correlated. However, this correlation explained 
less than 20% of variance along the assumed nestedness 
– turnover gradient, suggesting the existence of additional 
intermediate patterns elusive to both metrics.

The third problem with the analysis of binary matrices is 
that raw scores of all these metrics heavily depend on matrix 
shape and fill and thus cannot be compared directly (Gotelli 
and Ulrich 2012). Consequently, pattern identification 
involves a second step, a comparison with an appropriate 
ecological standard, often in form of a randomised matrix 
(Gotelli and Graves 1996). Large effect sizes reveal the exis-
tence of the focal pattern, while small effect sizes imply a 
lack thereof. Theoretically, it should be possible to define 
a gradient (based on effect sizes) spanning, for instance, 
from strongly nested – to random – to strongly anti-nested. 

However, because there are three idealized patterns, it is 
problematic to place an assemblage on a single gradient from 
segregated to nested by using effect sizes measured relative 
to a specific null model. Furthermore, to date, there is no 
procedure permitting to place a given meta-community 
unequivocally within the triangle defined by the modular, 
nested, and turnover vertices (Fig. 1).

There have been several attempts to provide a unify-
ing framework (Leibold and Mikkelson 2002, Presley 
et al. 2010) of meta-community structure. However, these 
attempts have not found a solution to the issue, nor they 
have included additional environmental information aimed 
at linking the observed patterns to ecological processes. We 
argue that, in order to make further progress in the clas-
sification of communities, we need to incorporate both 
environmental data, and species functional traits (McGill 
et  al. 2006). Here we propose an expanded and unify-
ing framework for the identification and measurement of 
nestedness, modularity, and turnover that surpasses the 
present methods of co-occurrence analysis by incorporat-
ing data on environmental characteristics and species traits. 
We show the simultaneous analysis of co-occurrences and 
environmental data provides new insight into the mecha-
nisms of community assembly and the spatial distribution 
of species niches. 

Methods

A multidimensional unifying concept for the study of 
meta-community structure

Eigenvector ellipses and their higher dimensional counter-
parts, ellipsoids, are commonly used in statistics (Friendly et al. 
2013) and ecology (Legendre and Legendre 1998, Doledec 
et al. 2000) to visualise and quantify the spatial arrangement 
of sets of variables in two- and multi-dimensional space. 
Specifically, in principal components analysis (PCA), these 
ellipsoids are generated from the variance–covariance matri-
ces of a set of equally weighed variables for which the asso-
ciated eigenvectors and eigenvalues depict, respectively, the 
direction in space, and the semi-radii. In ecological analysis, 
these eigenvector ellipsoids were used to identify a functional 
niche space within an n-dimensional hyperspace defined by 
a focal set of species characters (Hutchinson 1978, Jackson 
et  al. 2011, Zalewski et  al. 2014, Maire et  al. 2015, Qiao 
et al. 2016). When applied to environmental measures col-
lected at each site, our ellipsoid approach shows how species 
are distributed across multiple environmental dimensions. 
By identifying the region within this hyperspace occupied 
by each species, the ellipsoids can be interpreted as the rea-
lised range of environmental conditions within which a focal 
species occurs (Doledec et al. 2000, Janžeković and Novak 
2012). More notably, they provide novel ways to derive met-
rics of species turnover, modularity or nestedness. Building 
on this idea, here we use eigenvector ellipsoids (as defined 
in the Supplementary material Appendix 1) to redefine the 
concepts of nestedness, modularity, and turnover in terms 
of environmental characteristics or geographic positions of 
a set of sites hosting a meta-community. The corresponding 
Fortran software application ‘NicheNew’ is available from 
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niche overlap between pairs of species as exemplified in the 
supplementary material (Supplementary material Appendix 
3 Fig. A3.1). The directions of axes of the k-dimensional  
ellipsoid E(c) are given by the unit eigenvectors u1,...,uk of the 
matrix Σ; these vectors are the columns of the U matrix. The 
half-lengths lj , j  1,...,k , of axes are defined by l rj j= 2λ ,  
where lj is the eigenvalue of Σ and is contained in the diago-
nal k  k matrix L (Supplementary material Appendix 1).

We can now redefine perfect nestedness as a pattern in 
which, for any pair of species, the eigenvector ellipse of one 
species is fully contained within that of the second species 
(Fig. 1). This behaviour results in a nested Russian-doll pat-
tern when applied to a species rich meta-community. The 
common true subset definition of nestedness (Patterson and 
Atmar 1986) appears as a special case of this generalised 
definition.

Accordingly, we define perfect species turnover as a pat-
tern in which the eigenvector ellipses of any pair of species 
do not overlap. Again, this is an extension of the common 
definition of turnover based on presence–absence data only 
(Fig. 1). Perfect turnover is the opposite of perfect nested-
ness, but can be achieved only if m  n. At higher matrix 
fill, the eigenvector ellipses necessarily partly overlap, and 
turnover is associated with some degree of species aggrega-
tion/modularity due to spatially separated groups of species 
having high ellipsoid overlap (O).

The degree of modularity can be quantified by the 
coefficient of variation CVenv =

σ
µ

, where m is the average 

Euclidean distance between ellipsoid centroids within the 
hyperspace spanned by the Z-transformed environmental 
variables and s its standard deviation. High values of CVenv 
are associated with increased modularity. As a reference, a 
Poisson random distribution is characterized by CVenv ≈ 1. 
This metric distinguishes turnover and modularity from the 
placement of the ellipsoid centres. The turnover pattern is 
characterised by equally distributed ellipses in space (Fig. 1) 
resulting in comparably low values of CVenv.

Therefore, the ellipsoid approach makes it possible to 
identify three basic patterns in ecological presence–absence 

W. Ulrich by request. We provide the respective source code 
in the Supplementary material Appendix 3.

Environmental based patterns of co-occurrence

Our framework combines the m  n presence–absence 
matrix (m species, n sites) of species occurrences (M), and 
either a 2  n matrix of the geographical position of sites 
(typically longitude and latitude) (D), or a k  n matrix of 
k environmental variables (V) characterising each site. These 
matrices are used to define and to compare species-specific 
eigenvector ellipsoids.

As shown in the worked example in Supplementary mate-
rial Appendix 3 Fig. 3.1, for each species, the variables in 
D or V are normalised by the common Z-transformation 
to have a mean of zero and a standard deviation of one in 
order to ensure comparability between variables. Then, for 
each species, a C matrix of dimensions k  ni is obtained 
by reducing D or V to a submatrix that includes only the ni 
sites of occurrence of the i-th species (Fig. 1). Each C matrix 
is then used to define an ellipsoid E(C), which identifies the 
realised environmental niche (the range of environmental 
conditions) (Fig. 1, 2) for each one of the m species as:

E C x R x c x c r

x c U U x c r

T

T T

( ) = ∈ −( ) − ≤

= −( ) − ≤

−

−

{ ; ( )

( )

£1 2

1 2
	 (1)

where r2 is the 99% a quantile of a c2-distribution with k 
degrees of freedom. The vector c, indicating the ellipsoid 

centre, has coordinates (c1,...,ck) with c
n

vj
i

jss

ni=
=∑1

1 , 

j  1,...,k. Here nj is the number of occurrences of the focal 
species, and vi is the environmental value associated with 
each occurrence. The matrix Σ is the k  k variance – cova-
riance matrix of environmental variables (Supplementary 
material Appendix 1).

Equation 1 reveals whether or not a vector x representing 
the environmental features (or the geographic coordinates) 
at a given location belongs to a given environmental niche. 
Specifically, our approach quantifies the overall degree of 
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Figure 2. Ellipsoids of the functional traits realised in a given habitat calculated from local communities generate three basic patterns in the 
distribution of trait space: Habitat filtering, trait displacement, and trait clustering. As in Fig. 1, the distribution of eigenvector ellipsoids 
with the coordinate system made by ellipsoid overlap and the coefficient of variation of ellipsoid centre distances (CVtrait) allows for an 
identification of these patterns.
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Vegetation surveys, conducted according to Braun-Blan-
quet (1964) sampling procedures, took place from June 
to August 2003 to 2005. From these data, we compiled a 
single presence–absence data matrix Mtotal documenting the 
occurrence of 90 understorey plant species (matrix rows) 
across 130 plots (matrix columns; Supplementary material 
Appendix 2).

In each of the 130 studied plots, standard humus horizon 
soil samples were collected (Operat 2003, 2004, 2005). 
For the present study, we estimated soil fertility from the 
plot average of pH, N content, and the respective carbon–
nitrogen (C/N) ratio. Species functional traits were assessed 
by Ellenberg indicator values (Ellenberg et  al. 1992), with 
light, moisture, and soil nitrogen demands calculated by 
JUICE 7.0 (Tichý 2002) (Supplementary material Appen-
dix 2). For simplicity we refer to them as functional traits 
although they rather reflect resource demands. Distances 
in trait space were assessed using the centroid distances of 
the respective eigenvalue ellipsoids. Of course the results of 
our approach depend on trait choice. Therefore, a careful 
choice of those traits that potentially influence the pattern 
of species co-occurrence is crucial for a proper interpretation 
of the results. 

Data analysis

To relate environmental conditions to the pattern of species 
co-occurrence and environmental ellipsoid overlap (Oenv), 
we used a sliding window approach, moving a window of 
eight columns along the 130 forest plots (with overlap of 
four columns). Prior to this operation, the plots were sorted 
according to the first eigenvector of the geographic distance 
matrix. This sorting ensured that the 31 resulting windows 
contained nearby plots with comparably similar environ-
mental characteristics. This procedure ensured sufficient 
environmental variability among the windows to obtain 
reliable regression results, whereas a comparable bootstrap 
resampling approach would have combined plots regardless 
of their respective spatial and environmental distances. We 
used the same window approach for species traits and moved 
a sliding window (width eight, overlap four species) along 
the rows of species. This resulted in 15 windows combining 
species of similar numbers of occurrences.

Intuitively, raw scores of ellipsoid overlap and centroid 
distance should be affected by matrix size and fill. To test for 
these effects, we first applied a general linear model (with 
identity link function and equiprobable error structure) to 
assess (using all species pairs) the dependence of pairwise 
ellipsoid overlap and centroid distances on: the numbers of 
occurrences of the two species; fill of the matrix; and the 
respective pair-wise Sørensen similarity index. This was 
computed as 2njoint/(n1  n2), where njoint is the number of 
joint occurrences and n1 and n2 the numbers of occurrences 
of both species. Additionally, we calculated for each sliding 
window the C-score as a measure of matrix-wide species 
segregation (Stone and Roberts 1990) and the NODF score 
(Almeida-Neto et al. 2008), which quantifies the degree of 
ordered species loss among plots (the degree of nestedness).

In species co-occurrence analysis, statistical inference is 
commonly based on a null model approach (Gotelli 2000, 
Gotelli and Ulrich 2012) to eliminate influences of matrix fill 

matrix. The results can be conveniently summarized in a 
plot of the coefficient of variation CVenv versus ellipse over-
lap Oenv (Fig. 1). This representation provides an intuitive 
way to discriminate between nestedness (high Oenv and low 
CVenv), turnover (low Oenv and low CVenv), and modularity 
(intermediate Oenv and high CVenv) (Fig. 1). 

Functional trait based patterns of co-occurrence

The ellipsoid approach also applies to species trait data  
(cf. Lamanna et al. 2014 for a related approach), coded in 
a m  t species  trait matrix T. As for the environmen-
tal variables the trait variables must allow the calculation  
of variance–covariance matrix, in this case based on 
interspecific variability. The transposes of the M and T 
matrices, with dimensions n  m and t  m, respectively, 
define the size of the trait ellipsoids of each site calculated 
over all occurring species, which constitutes a measure 
of the realised total trait space per site calculated over all 
species present there. These trait ellipsoids are calculated 
from all species occurring at a focal site. The respective 
quotient of realised trait space (defined by the occurring 
species) to total trait space (defined by all species of the 
meta-community) quantifies the proportion of trait space 
utilized and allows for comparisons among sites. Thus 
our approach adds to the traditional study of functional 
trait space (D’Andrea and Ostling 2016) the environmen-
tal perspective by calculating habitat specific total traits 
spaces.

As for environmental ellipsoids, the overlap in trait ellip-
soids (Otrait) and the variability in trait centroid distances 
(CVtrait) can be used to assess whether species assemble 
according to similar traits, as predicted by habitat filter-
ing theory, or whether species assemble to equally fill the 
available trait space, as predicted by classical niche theory 
(Fig. 2). Nested trait ellipsoids indicate that communities 
assemble for similar trait centroids and thus point to habitat 
filtering effects. In contrast, segregated trait ellipsoids point 
to trait displacement among species (Fig. 2). One of the pro-
cesses leading to displacement is interspecific competition. 
A major advantage of our ellipsoid method is the possibil-
ity of identifying a third pattern of trait space distribution, 
namely the displacement of trait clusters (Fig. 2). These are 
characterised by intermediate average ellipsoid overlap and 
high variability in ellipsoid centroid distances. These clus-
ters may indicate joint influences of habitat filtering and 
competitive effects. 

Study sites and sampling of empirical data

We studied the Scots pine Pinus sylvestris understorey 
vegetation of 130 plots (400 m2 each) from three Forest 
Divisions (Bolesławiec, Głogów and Oława) in southwest-
ern Poland (Supplementary material Appendix 4 Fig. A4.1). 
The investigated plots were located in habitats spanning 
from pine mono-stands to mixed pine forests, and showed 
a wide variation in both soil moisture (from dry to boggy) 
and soil fertility (from poor sandy to fertile fine-textured). 
Respective raw data regarding species composition, plot 
geographic position, age, and soil fertility are provided in the 
Supplemenary material Appendix 2.
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based on presence–absence data were assessed from stan-
dardized effect sizes (SES  Δ/s; s is the standard deviation 
of the null model distribution) and similarly linked to soil 
variables. Effect sizes of predictors were estimated by partial 
h2-values. Because the results obtained with FF and SH were 
qualitatively similar to those obtained with EE, we show the 
EE results only and provide the respective results from FF 
and SH in the electronic supplement D.

Results

Ellipsoid overlap and species co-occurrences

Presence–absence based co-occurrence analysis revealed 
for the majority of shifting windows a significantly aggre-
gated pattern of co-occurrence in comparison to the 
EE null model (average SES C-score  –12.9  0.53, 
average SES NODF  1.29  0.29; mean  SE, Fig. 3c) 
and a segregated pattern in comparison to the FF null 
model (average SES C-score  4.16  0.62, average SES 
NODF  –2.34  0.71).

and size. We tested the performance of three well-established 
null models (Gotelli 2000, Gotelli and Ulrich 2012), and 
compared the above described metric scores with those 
obtained from 19 the fixed – fixed (FF) randomization based 
on the independent swap algorithm, 2) the equiprobable 
– equiprobable (EE) randomization based on an equiprob-
able random reshuffling of matrix occurrences, and 3) an 
equiprobable reshuffling (SH) of each environmental variable 
among columns. We choose these three algorithms because 
they span from very permissive (EE, which does not account 
for differential occurrence probabilities that are not linked 
to the focal pattern) to very conservative (FF and SH, which 
assume observed numbers of occurrences to be independent 
of the focal pattern).

Each analysis was based on 200 null matrices. We used 
raw scores of Oenv and CVenv and respective null model 
effect sizes (Δ  Obs – Exp; Obs and Exp: observed and 
expected scores) as response variables in a general linear 
model (identity link function, equiprobable error struc-
ture) to infer possible dependencies on soil characteristics  
(ln-transformed averages per window and the respective stan-
dard deviations). The degrees of segregation and nestedness 
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Figure 3. (a) Observed variability (black circles) in environmental centroid distances (CVenv) but not ellipsoid overlap (Oenv) was larger than 
expected from the equiprobable (EE) null model (open circles, equivalent to the random space in Fig. 1 and 2) in all 31 shifting windows 
moved across plots of the matrix of forest understorey plants. Observed variability in ellipsoid overlap (CVoverlap) was higher than expected 
from EE (b). Observed Oenv (c) and CVenv (d) did not depend on the standardised effect size (SES) of the C-score (EE null model).
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plants was partly determined by soil factors (Table 2, Supple-
mentary material Appendix 4 Table A4.1). We found that 
nitrogen content and the respective variability among plots 
increased ellipsoid overlap, but did not influence distances 
among ellipsoid centroids (Table 2). In turn, pH and variabil-
ity in pH were positively correlated with the distances among 
ellipsoid centroids. Neither of these patterns was detected by 
traditional species based co-occurrence analysis (Table 2).  
High C/N ratios and consequently low nitrogen availabil-
ity decreased average distances among ellipsoid centroid  
(Table 2) and therefore the degree of species aggregation. 
Again, this pattern was not detected by the occurrence-
based analysis. Compared to EE and FF, the SH null model 
proved to be conservative, and did not point to environmen-
tal influence of ellipsoid overlap and distances (Supplemen-
tary material Appendix 4 Table A4.2). High pH (r  0.54, 
P(r  0)  0.01) and the high C/N ratio (r  0.40, P(r  0) 
 0.05), but not soil nitrogen content (r  0.05, P(r  0) 
 0.50) increased species richness. Variability in soil 
characteristics was not detectably linked to species richness 
(all pairwise r  0.1, P(r  0)  0.1, not shown).

Average variability in distance but not in trait overlap was 
in all 15 sliding windows higher than expected from the EE 
null model (Fig. 4a). Distance in environmental space was 
significantly negatively correlated with trait overlap (Fig. 4b) 
and with variability in trait centroid distances (Fig. 4c). In 
11 of the 15 sliding windows, average trait overlap among 
species was higher than expected from the EE null model 
(Fig. 4b).

Discussion

We have shown that species occurrence ellipsoids based on  
sets of environmental variables are able to discern between 
basic patterns of species co-occurrences (Fig. 1, 2). 
Importantly, our approach goes beyond the traditional  
one-dimensional view of co-occurrence centred upon the 
nestedness – turnover gradient (Leibold and Mikkelson 2002, 
Presley et  al. 2010). Because it is based on environmental 
and functional trait data, our approach offers a straight-
forward method to assess how environmental characteris-
tics determine patterns of species co-occurrences. Finally, 
it allows for a direct comparison of environmental and 
functional niche space (Fig. 1, 2).

Crucially, our method shifts the analysis of co-occurrence 
from an occurrence-based perspective to a niche-occupancy 

Pairwise species environmental ellipsoid overlap of the 
understorey plant communities increased with the respec-
tive pairwise Sørensen similarity of species occurrences 
(r  0.53, P(r  0)  0.0001 and Table 1). Average overlap 
varied between 0.3 and 0.8 and did not differ from random 
expectation (Figs. 3a, Supplementary material Appendix 4  
Fig. A4.2a–A4.3a). The C-score was not related to the average 
ellipsoid overlap (Fig. 3c, Supplementary material Appen-
dix 4 Fig. A4.2c). For the EE and FF null models, observed 
but not expected variability in ellipsoid centroid distances 
increased with spatial segregation (Fig. 3d, Supplementary 
material Appendix 4 Fig. A4.2d). Distances among ellip-
soid centroids decreased with increasing similarity (r  0.75, 
P(r  0)  0.0001 and Table 1).

Observed variability in overlap, calculated from all 
pairwise species comparisons, was in all sliding windows 
higher than expected from the EE null model (Fig. 3c) and 
from the FF and SH null models (Supplementary material 
Appendix 4 Fig. A4.2a, A4.3a). Observed variability in over-
lap was always higher than expected from the EE null model 
(Fig. 3b) but did not differ from FF and SH expectations 
(Supplementary material Appendix 4 Fig. A4.2b, A4.3b).

Ellipsoid overlap in relation to environmental 
conditions

The relationship between environmental ellipsoid over-
lap and distances among ellipsoid centroids of understorey 

Table 1. General linear modelling (normal error structure, identity 
link function) using all pairs of understorey forest species and 12 
sliding windows (N  10699). S1, S2, V1, V2: numbers of occur-
rences and environmental ellipsoid volumes of the two species 
compared; J: pair-wise Sørensen similarity; fill: matrix fill. Given are 
partial h2 values. Raw scores and effect sizes Δ of the equiprobable 
null model of the environmental ellipsoid overlap (Oenv) and the 
respective centroid distances (Denv) served as dependent variables. 
Significances: *: p  0.05, **: p  0.01, ***: p  0.001. (): positive 
effect; (–): negative effect.

Ellipsoid overlap Centroid distance

Variable Oenv Δ Oenv Denv Δ Denv

S1  0.01 0.01  0.01 0.10
S2 0.01 0.02  0.01 0.06
V1  0.01  0.01  0.01 0.01
V2  0.01  0.01  0.01 0.02
J () 0.34** () 0.56*** 0.02 (–) 0.46***
Fill 0.06 0.04  0.01  0.01
r2 (model) 0.37** 0.58*** 0.02 0.49***

Table 2. General linear modelling (normal error structure, identity link function), with log-transformed environmental predictor variables in 
rows and community response variables in columns (environmental ellipsoid overlap Oenv, respective centroid distances Denv, and the coef-
ficients of variation of overlap CVoverlap, and centroid distance CVenv (effect sizes Δ of the equiprobable null model), and standardised effect 
sizes of the C-score and NODF). Data from 31 sliding windows moved upon the matrix of understorey forest plants. Given are partial h2 
values. Significances: *: p  0.05, **: p  0.01, ***: p  0.001. (): positive effect; (–): negative effect.

Variable Δ Oenv Δ CVoverlap Δ Denv Δ CVenv SES C-score SES NODF

ln pH 0.01 0.01 (–) 0.11 (–) 0.31* 0.08 0.01
ln N () 0.20* () 0.27* 0 0.03 0.01  0.01
ln C/N 0.01 0 0.03 () 0.20 0.02 (–) 0.19*
ln StDev pH 0 0 () 0.19* () 0.26* 0.02 0.03
ln StDev N 0.02 0.03 0.05 0.01 0.07 0.06
ln StDev C/N 0 0.01 0.09 (–) 0.33**  0.01 () 0.28*
r2 (whole model) 0.45*** 0.55*** 0.37** 0.34** 0.03 0.26*
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space (Table 2). High pH and soil nitrogen content, both 
linked to nutrient rich soils and productivity, increased 
environmental overlap and decreased the degree of modu-
larity (Table 2). Consequently, we speculate that a modular 
community organisation might be particularly associated 
with variable and resource poor environments. These rela-
tionships did not depend on species richness and total ellip-
soid volume (Table 1), and were not evident in traditional 
co-occurrence analysis (Table 2). To our knowledge the 
relationship between niche modularity and environmental 
factors has not been studied so far. Interestingly, prior stud-
ies on the connection between plant species turnover and 
habitat productivity have returned inconsistent results (Paoli 
et al. 2006, Fernández-Going et al. 2013, Ulrich et al. 2014), 
perhaps because the pattern of niche modularity changes 
with soil characteristics.

Soil variables were correlated with both species rich-
ness and increasing modularity. Recent theoretical work 
(Ulrich et  al. 2017a) on variation in beta diversity (spe-
cies turnover) has shown that richness and the degree of 
turnover are intimately linked and cannot be disentan-
gled by simple null model analysis. Traditional statistical 
inference of species co-occurrences has tried to control 
for richness effects when inferring the degree of species 
turnover (Gotelli 2000). Our results here suggest that to 
a certain degree modularity itself in either traits or envi-
ronmental niches might be a consequence of increased 
species richness. We note that previous studies of food 
web structure also found a positive correlation between 
functional modularity and community species richness 
(Sebastián-González et  al. 2015, Montoya et  al. 2015). 
Further, a modular organisation can stabilise communities 
(Grilli et al. 2016). However, it remains an open question 
whether these results also hold for environmentally- and 
trait-defined niches.

We did not find evidence for a nested or segregated 
environmental niche structure. Instead, species occur-
rences were aggregated but not nested in comparison to 
an equiprobable null expectation. Nested patterns of co-
occurrences often result from neutral community assembly 
(Ulrich et al. 2009), whereas segregation occurs in hetero-
geneous habitats (Boeye et  al. 2014), or in competitively 
organised communities (Diamond 1975) or in communities 
with high rates of temporal species turnover (Thuiller et al. 

perspective. The geometry of species co-occurrences has 
been historically interpreted in terms of interspecific com-
petition (Diamond 1975, Gotelli 2000). Thus, mutual 
species exclusions served as a surrogate to study competi-
tive exclusion according to Gauses’ principle (1934), based 
on niche overlap and limiting similarity (MacArthur and 
Levins 1967, Chesson 2000). However, evidence for mutual 
exclusion is scarce (Abrams and Rueffler 2009, van Leeuwen 
and Etienne 2013) and evidence is mounting for other 
mechanisms leading to segregated species co-occurrences 
(Blois et al. 2014).

A major reason for this lack of corroboration might be 
that the use of occurrences as a proxy for niche segrega-
tion is only justified if the sites where species exclude one 
another have similar environmental characteristics (Blois 
et  al. 2014). Consequently, a common implicit assump-
tion of co-occurrence analysis is that sites are environmen-
tally similar. However, such an assumption is only rarely 
justified, and observed patterns of species co-occurrence 
might be more often the outcome of subtle environmen-
tal differences among sites rather than competitive inter-
actions among species. Environmental differences induce 
filter effects, leading to the development of associations 
of species with similar resource requirements, and there-
fore ecological niches. Consequently, observed patterns of 
species segregation might indicate species interactions or 
habitat filtering (Blois et al. 2014). Classical co-occurrence 
analysis is unable to discern between these two drivers in 
community assembly. The ellipsoid approach widens the 
analysis of species co-occurrences in both environmental 
and trait dimensions, improving the assessment of overlap 
in resource use.

In the present case study, we found clear indication of a 
modular organisation of understorey forest plant commu-
nities (indicated by the higher variability in centroid dis-
tances than expected from the null model) with respect to 
environmental characteristics (Fig. 3). This was not visible 
from co-occurrence analysis alone, which gave contrasting 
results mostly driven by null model’s choice (EE versus FF). 
Trait ellipsoid analysis also revealed a significant modular 
structure (Fig. 4), caused by co-occurring groups of species 
within similar environmental space (Fig. 3a). Importantly, 
our new approach allowed for the identification of the major 
drivers behind this modular pattern in environmental niche 
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Figure 4. (a) Observed variability (black circles ) in trait centroid distances (CVtrait) was in all shifting windows moved across species of the 
matrix of forest understorey plants larger than expected from the equiprobable (EE) null model (open circles, equivalent to the random 
space in Fig. 1 and 2) and increased with environmental ellipsoid overlap Oenv (r2  0.48, permutation p  0.01). Trait ellipsoid overlap 
Otrait (b: r2  0.95, p  0.001) and CVtrait (c: r2  0.52, p  0.001) decreased with environmental centroid distance Denv. Otrait was in 12 of 
the 15 windows larger than expected from the EE null model.
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2007). Consequently, our results do not point to competi-
tion as a major driver of community organisation. We also 
have no evidence for high colonisation rates from a regional 
species pool and a resulting neutral community organisation. 
However, because community structure is known to change 
with spatial scale (Cottenie 2005), our interpretation does 
not preclude strong within-plot competitive interactions at a 
spatial scale below the resolution of our data.

Our approach allows for a straightforward and readily 
interpretable link between trait and environmental niche 
spaces. Previously, such links were provided by (mostly) linear 
ordination techniques like correspondence analysis or non-
metric multidimensional scaling. However, these methods 
did not differentiate between the specific patterns of species 
co-occurrence. They did also not directly refer to species 
functional niches. Because the degree of trait modularity was 
negatively correlated with the segregation of environmental 
ellipsoids (and hence niche space; Fig. 4c), we argue that 
environmental filtering sorted species according to environ-
mental factors, which led to segregation in trait space. Such 
a pattern is expected if species with similar environmental 
demands have also similar functional traits. In this respect, 
we found a clear indication of modularity in the distribution 
of functional traits (Fig. 4a).

Interestingly, the degree of modularity was positively 
linked to average ellipsoid overlap. Thus, high overlap in 
environmental niche space, and therefore high species pack-
ing, might be associated with the appearance of species groups 
with similar functional traits. In turn, this might increase 
community stability, as reported by Bastolla et  al. (2009) 
and Rohr et  al. (2014) for mutualistic networks. However, 
specific studies aimed at linking trait distribution to species 
richness are lacking. In line with this finding, we observed 
decreased trait overlap with increasing environmental distance  
(Fig. 4b–c). Such a pattern is expected if environmental filter-
ing also filters for traits resulting in a distance decay of trait 
overlap along environmental gradients (Kraft et al. 2015).

Here we focused on presence–absence data. However, our 
approach can be easily extended to incorporate abundance 
data by weighting the environmental variables by abundances 
in the second mapping step of analysis. Furthermore, our 
method can be applied to dataset including phylogenetic 
information. In fact, because the ellipsoid method is able 
to directly link phylogenetic distances to environmen-
tal niche overlap, it has also the potential to identify those 
environmental or geographical variables that contribute 
most to phylogenetic differentiation.
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