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Null model tests for niche conservatism, phylogenetic

assortment and habitat filtering
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Summary

1. Phylogenetic and trait analyses are powerful tools for disentangling the mechanisms underlying

the structure of plant and animal communities, and their use has become prominent in the last dec-

ade. However, few studies have simultaneously incorporated data on species traits or phylogeny,

environment, and species co-occurrences. Therefore, the relative importance of these factors as driv-

ers of community assembly is largely unknown.

2. We introduce new and conceptually simple null model tests and appropriate metrics to disentan-

gle the relationships between species co-occurrence, traits or phylogeny and environmental factors

not covered by available packages for phylogenetic analysis. We illustrate the methods with an

extensive data set on understory plant assemblages sampled in three Polish forests.

3. Benchmark testing indicates that the proposed methods have good error behaviour when tested

against a variety of artificial matrix sets covering a wide range of observed patterns. Test results are

largely independent of matrix size and matrix fill and have adequate power to detect even weak pat-

terns of non-randomness. The different metrics used are uncorrelated with one another and capture

different, and often divergent, patterns expressed within the samematrix.

4. Our case study revealed three distinct patterns in forest understory plant assemblages: (i) multi-

ple patterns of species associations withinmeta-communities mightmask the influence of phylogeny

and environmental variables on species occurrences, (ii) the strength of environmental and phyloge-

netic signals depend on the co-occurrence pattern (segregated, aggregated, clumped) andmight vary

within a single meta-community, and (iii) a random association of phylogeny and species co-occur-

rence coupled with significant correlations between environmental factors and phylogeny might

reveal species with traits that have passed through environmental filtering.

Key-words: clumping score, C-score, meta-community, null model, phylogeny, species

co-occurrence, statistical inference, togetherness

Introduction

AlthoughDarwin (1859) suggested early on that closely related

species may be stronger competitors because of similarities in

morphology and resource use, phylogenetic analyses of

community structure have become prominent only in the last

decade (Webb et al. 2002; Emerson & Gillespie 2008;

Cavender-Bares et al. 2009; Pillar & Duarte 2010; Alexandrou

et al. 2011). The phylogenetic framework emphasizes the

importance of evolutionary and biogeographic constraints,

including niche conservatism (reviewed in Wiens & Graham

2005; Losos 2008; Wiens et al. 2010), in controlling the

structure of contemporary ecological communities (Emerson

& Gillespie 2008; Cavender-Bares et al. 2009). Statistical tests

have been developed to identify phylogenetic overdispersion

(segregation, evenness), that is, the tendency for related species

to co-occur less often than expected by chance, and phyloge-

netic underdispersion (clustering, aggregation), that is, a trend

for related species to co-occur more often than expected by

chance (Pausas &Verdú 2010).

The environment (habitat) may serve as a filter for species

that possess appropriate physiological, ecological or behavio-

ural adaptations to successfully colonize a particular habitat

(Wiens&Graham 2005; Losos 2008). In contrast to traditional

ecological models of limiting similarity and niche overlap,

habitat filtering in combination with niche conservatism*Correspondence author. E-mail: ulrichw@umk.pl
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predicts that closely related species should co-occur more

often than expected by chance in similar environments (Losos

2008; but see Mayfield & Levine 2010). As noted long ago

by Williams (1947), the relative strengths of competitive

segregation and habitat filtering will determine whether closely

related species co-occur more or less often than expected by

chance.

Statistical tests for the detection of niche conservatism rely

on parametric least-squares models (Blomberg, Garland &

Ives 2003; Cattin et al. 2004), fourth corner statistics (Dray &

Legendre 2008), eigenvector analysis (Pavoine et al. 2011;

Diniz-Filho et al. 2012), or variance partitioning combined

with phylogenetic or trait distance metrics (Webb et al. 2002;

Freckleton & Jetz 2009; Kooyman et al. 2011). Recent mecha-

nistic simulation models (Gotelli et al. 2009) and null model

randomizations (Hardy 2008; Pillar & Duarte 2010) have also

been proposed to test for phylogenetic patterns. However,

despite the ‘jungle of methods’ available for community

phylogenetics (Pausas & Verdú 2010), few studies have simul-

taneously incorporated data on phylogeny, environment and

species co-occurrences when assessing patterns of community

assembly (cf. Ives &Helmus 2011; Baraloto et al. 2012).

Cavender-Bares et al. (2004) correlated phylogenetic

distances between species pairs with trait similarity and pair-

wise values of niche overlap to show thatQuercus species were

phylogenetically overdispersed along a moisture gradient.

Helmus et al. (2007) extended the method of Ives, Midford &

Garland (2007) to show how the error terms of logistic regres-

sion models of species occurrence can be used to identify phy-

logenetic effects and to link phylogeny and environmental

variables. Recently, Ives & Helmus (2011) used phylogenetic

generalized linear mixedmodels to partition patterns of species

occurrences into phylogenetic and environmental signals.

These and previous methods use metrics (such as the average

phylogenetic distance) that summarize patterns measured for a

presence–absence matrix as a whole. However, recent analyses

(Gotelli & Ulrich 2012; Ulrich & Gotelli 2012) have demon-

strated that such matrices may exhibit very different and even

contrasting internal patterns. For example, in the analysis of

species co-occurrences, certain species pairs may be aggre-

gated, others may be segregated, and still others may be

randomwithin the samematrix (Ulrich&Gotelli, 2010). These

pairwise patterns cannot be easily teased apart with metrics

that describe average patterns across all species pairs. Thus, an

approach that dissects the matrix to focus on specific internal

structures might be more suited to infer phylogenetic and envi-

ronmental signals than approaches based on averaged matrix

structures.

In this article, we introduce a general methodology to simul-

taneously link different patterns of species co-occurrence

(within ecological species · sites matrices) to phylogeny and

environmental factors. We provide new and conceptually sim-

ple null model tests and appropriate metrics to disentangle the

relationships among three primary data structures: an m · m

matrix of pairwise phylogenetic distances among a set of m

species, a k · nmatrix of k environmental variables measured

at n sampled sites and an m · n matrix of the presence or

absence of each of the m species recorded in each of the n

samples. We illustrate the methods with an extensive data set

on understory plant assemblages gathered in Polish forests

(M. Piwczyński et al., unpublished), which allows us to dem-

onstrate how the proposedmethods can (i) tease apart different

types of co-occurrence patterns and (ii) relate them to phylog-

eny and environmental conditions.

Methods

SPECIES OCCURRENCES AS A LINK BETWEEN

PHYLOGENY AND ENVIRONMENT

The phylogenetic input matrix for our analyses is a symmetric m · m

matrix (Cphyl) that contains estimates of phylogenetic distance or

other measures of genetic or phenotypic distance between all possible

pairs of species in the meta-community (Pausas & Verdú 2010; de

Vienne, Aquileta & Ollier 2011). We then relate phylogeny directly to

patterns of pair-wise species co-occurrences and use randomizations

of species occurrences among different sites to compare observed and

expected phylogenetic distances across co-occurring species within a

meta-community.

To relate phylogeny to species occurrences and environmental

conditions, we need two additional input matrices: a k · n matrix

containing measures of k environmental variables at each of n sam-

pled sites (Venv) and a standardm · n presence–absence matrix of the

occurrences of the m species at the n sites (Mocc). Recent studies have

tried to identify the influences of phylogeny and environment on

community structure by analysing separately traces of phylogenetic

history and the effects of environmental conditions (Kluge & Kessler

2011) or by using approaches that quantify the impact of environ-

mental variables on species presences as an input in the phylogenetic

analysis (Helmus et al. 2007, 2010). In such analyses, species occur-

rences are potentially linked to phylogenetic distances of other species

(contained inCphyl) or environmental variables associated to each site

(contained inVenv). However, wemight also interpret observed occur-

rences as a direct link between phylogeny and environment (Fig. 1).

If phylogenetic history explains part of the way species interact and

environmental forces influence species assembly, patterns in the Cphyl

andVenv matrices should be correlated when filtered according to cer-

tain predefined substructures in theMocc matrix. In the simplest case,

we focus on joint species co-occurrences to link these matrices

(Fig. 1).

For a presence–absence matrix with m rows and n columns, there

are a total of mn(m ) 1)(n ) 1) ⁄ 4 unique submatrices that can be

constructed. Our approach takes advantage of the fact that even a

moderately sized presence–absence matrix potentially contains thou-

sands or evenmillions of 2 · 2 submatrices that can be organized into

simple binary patterns. Multiple occurrences of these binary patterns

can then be related to phylogenetic differences between pairs of spe-

cies and environmental differences between pairs of sites for a more

powerful set of tests. Although the submatrices are not necessarily

independent of one another, the same dependence structure is present

in the simulated null matrices, which should safeguard against the

detection of spurious patterns in the real data. As in previous frame-

works (cf. Wiens & Graham 2005; Emerson & Gillespie 2008; Losos

2008; Pillar &Duarte 2010), large and small phylogenetic distances of

co-occurring species (Dphyl) indicate phylogenetic overdispersion and

underdispersion, respectively, regardless of environmental conditions

(Fig. 2). Similarly, large and small differences between two sites in a

certain environmental variable (Denv) indicate environmental

Null model tests for phylogenetic species assembly 931
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overdispersion and underdispersion (habitat filtering), respectively,

irrespective of phylogenetic relatedness (Fig. 2).

Our approach quantifies these patterns for multiple units of 2 · 2

submatrices within a single presence–absence matrix and allows us to

link Denv and Dphyl directly. First, we use clumped 2 · 2 submatrices

of the form {{1,1},{1,1}} as a metric of species aggregation across

sites (Ulrich &Gotelli 2012). Each clumped submatrix represents one

pair of species that co-occurs at one pair of sites. This structure can be

used to link the phylogenetic distances between the species (contained

in Cphyl) with the environmental distances between the sites (calcu-

lated from Venv). A positive correlation between Denv and Dphyl

(RDenvDphyl) indicates joint occurrences of phylogenetically closely

related species in similar habitats and joint occurrences of phylogenet-

ically distant species in dissimilar habitats. If this joint occurrence is

caused by similar ecological requirements, it would suggest the exis-

tence of niche conservatism (Fig. 2). In contrast, a negative correla-

tion between environmental differences among sites and phylogenetic

distances between species of clumped occurrence would show that

phylogenetically distant species co-occur in ecologically similar habi-

tats.

Complementary to a clumped submatrix is a checkerboard pattern

(Fig. 1) formed by submatrices of the form {{1,0},{0,1}}. As with

clumping, we can use the checkerboard pattern to link phylogeny and

habitat properties across multiple submatrices. Complementary to

the interpretation of clumped submatrices, a small phylogenetic dis-

tance between the two species in a checkerboard submatrix indicates

phylogenetic overdispersion (Fig. 2), and a large phylogenetic dis-

tance indicates phylogenetic underdispersion. For a checkerboard

submatrix, large differences in environmental characteristics would

indicate that species pairs that do not co-occur are found in sites that
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Fig. 1. A graphical representation of the relationships between species co-occurrence patterns, phylogenetic distance and environment. Phylo-

genetic distance (associated pairs in bold) and environmental distance are linked through three different types of co-occurrences (checkerboard,

togetherness and clumping), each of which is represented by a distinct 2 · 2 submatrix structure. Phylogenetic assortment and habitat filtering

link phylogenetic history to species co-occurrence. Niche conservatism is revealed when phylogenetically closely related species tend to have simi-

lar habitat requirements and thus occur in similar habitats.
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Fig. 2. Guidelines to interpret the relationships between environmental conditions, phylogeny and patterns of co-occurrence according to the

methodology introduced. The metrics CDenv, CDphyl (clumping), HDenv, HDphyl (checkerboard) and TDenv, TDphyl (togetherness) are defined as the

average Euclidean difference of all pairwise distances between species (Dphyl) and differences in habitat properties (Denv). RCDenvDphyl (clumping),

RHDenvDphyl (checkerboard) and RTDenvDphyl (togetherness) are defined as the Pearson coefficient of the correlation between all the clumped,

checkerboard and togetherness submatrices present in the species · sites matrix (Mocc), and Denv and Dphyl (see main text for details). Positive

and negative effects refer to comparisons of the observed scores to respective null model expectations and provide evidence of the following

processes: EO, environmental overdispersion; EU, environmental underdispersion; NC, niche conservatism, ND, niche divergence; PO,

phylogenetic overdispersion; PU, phylogenetic underdispersion.
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differ environmentally. This result would point to habitat filtering,

because co-occurring species would presumably be found on sites

with similar environmental characteristics. Alternatively, if environ-

mental differences between sites in a checkerboard submatrix are

small, then the pair of species is spatially segregated between a pair of

environmentally similar sites. For checkerboard submatrices, a posi-

tive correlation between environmental and phylogenetic distances

implies that phylogenetically distant species pairs are segregated

across environmentally different sites (Fig. 2).

In addition to clumped and checkerboard submatrices, a third

submatrix structure is togetherness. Stone & Roberts (1992) used

togetherness submatrices of the form {{1,0},{1,0}as a measure of

species pairs with similar habitat requirements, because the two focal

species co-occur at one site and jointly avoid another site (Fig. 1). For

togetherness submatrices, positive RDenvDphyl (togetherness) correla-

tions indicate that phylogenetically related species have identical

patterns of occurrences in environmentally similar and dissimilar

sites. Negative RDenvDphyl (togetherness) correlations indicate that

phylogenetically related species have identical patterns of occurrences

in environmentally dissimilar sites. Two other possible submatrix

structures are {{0,0},{0,0}} and {{1,1},{0,0}}, but we do not use this

in our analyses because they lack occurrence information of at least

one species.

Correlations between Cphyl and Venv for clumped, checkerboard

and togetherness submatrices in aMocc matrix jointly describe evolu-

tionary and environmental influences on patterns of species aggrega-

tion and segregation, and potentially allow us to tease apart the

interactions of these factors. Although the clumping, checkerboard

and togetherness submatrices are linked by the internal structure of

Mocc (Stone & Roberts 1990), each of these structures defines a some-

what different aspect of community assembly (Ulrich &Gotelli 2012).

METRIC DEFIN IT ION AND STATIST ICAL INFERENCE

We define the metrics CDenv, CDphyl (clumping), HDenv, HDphyl (check-

erboard) and TDenv, TDphyl (togetherness) as the average Euclidean

distance in phylogeny between all species pairs k and l, and environ-

mental characteristics between all pairs of sites i and j, calculated for

all of the unique submatrices of each type (clumped, checkerboard or

togetherness) withinMocc

CDenv ¼
1

N

X
i;j
jDijjjclumping eqn 1

CDphyl ¼
1

N

X

k;l

jDkljjclumping eqn 2

HDenv ¼
1

M

X

i;j

jDijjjcheckerboard eqn 3

HDphyl ¼
1

M

X

k;l

jDkljjcheckerboard eqn 4

TDenv ¼
1

L

X

i;j

jDijjjtogetherness eqn 5

TDphyl ¼
1

L

X

k;l

jDkljjtogetherness eqn 6

whereN is the number of clumped submatrices in Mocc, M is the

number of checkerboard submatrices, and L is the number of

togetherness submatrices.

We further define for each of the Mocc matrix patterns (checker-

board, clumping and togetherness) the metrics RCDenvDphyl (clump-

ing), RHDenvDphyl (checkerboard) and RTDenvDphyl (togetherness) as

the Pearson coefficient of correlation between all N, M and L Denv

and Dphyl that occur in Mocc. These nine metrics (six averages and

three correlations) encompass the major patterns of association

between phylogeny, environment and species co-occurrences. The

electronic Appendix S1 contains a worked example of all the neces-

sary calculations.

We tested for the statistical significance of these metrics using a null

model approach. Observed scores of each metric were compared to

the distribution of scores obtained from a randomization of theMocc

matrix. We used the fixed–fixed (FF) null model (10 · n · m swaps

for each randomized matrix), in which the row and column totals of

the original presence–absence matrix are maintained. This model pre-

serves observed heterogeneity in species occurrences and site species

richness and performed well in benchmark tests of null model perfor-

mance (Gotelli 2000; Gotelli &Ulrich 2012).

Statistical significances came from the respective tail distributions

of 1000 randomized matrices at the two-sided 5% and 1% error

level. Additionally, we calculated standardized effect sizes (SES) as

Z-transformed scores (Z = Obs ) Exp) ⁄StDevExp; where Obs and

Exp are observed and expected scores and StDevExp is the standard

deviation of expectation. SES scores should have values below

)1Æ96 and above +1Æ96 at the two-sided 5% error level under the

assumption that the respective null distribution is approximately

normal.

ARTIF IC IAL DATA FOR BENCHMARK TESTING

In line with the theory of benchmark testing of ecological null and

simulation model testing (Hartig et al. 2011; Gotelli & Ulrich 2012),

we constructed four sets of 200 artificial matrices each to infer type I

and II error rates of our different metric – null model combinations

(Table 1).

In the first set of artificial matrices (prefix R), the RMocc matrices

were created by assigning individuals randomly to matrix cells, as

described in Ulrich & Gotelli (2010). The numbers of columns

(=sites) and rows (species) in each matrix were determined by sam-

pling from two random uniform distributions (10 £ n £ 100 sites and

10 £ n £ 100 species). Individuals of each species were placed into the

cells according to randomdraws from the twomarginal total distribu-

tions, a uniform random distribution for sites and a log-normal spe-

cies – abundances distribution for species (Ulrich & Gotelli 2010)

according to:

Ni ¼ e
xi
2a eqn 7

where xi � N(0,1) and a is a shape-generating parameter for the

log-normal distribution of each matrix that is sampled from a

continuous uniform distribution (0Æ03 £ a £ 0Æ3). This algorithm

generated a wide range of relative abundance distributions with

an approximately log-normal shape that are qualitatively similar

to empirical relative abundance distributions (Ulrich, Ollik &

Ugland 2010). The phylogenetic distance matrix (RCphyl) was

simulated from a Brownian motion branching algorithm that gen-

erates a random phylogeny for the m species of RMocc evolving

by genetic drift or variable selection (Felsenstein 2004). The envi-

ronmental matrix (RVenv) contained a single environmental vari-

able generated from a uniform random distribution.

In the second set of artificial matrices (prefix S), the SMocc, SCphyl

and SVenv matrices were constructed as before. Next, between 1 and

Null model tests for phylogenetic species assembly 933
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10% (values drawn from a uniform random distribution) of the

clumped {{1,1},{1,1}}submatrices of SMocc were transformed into

checkerboard submatrices {{1,0},{0,1}}. The SMocc matrices were

thus more segregated than expected by chance while the SCphyl and

SVenv matrices still were random (Table 1).

In the third set of artificial matrices (prefix E), we linked a non-ran-

dom phylogenetic structure with a segregated matrix pattern while

leaving the environmental matrix uniform random. The EMocc

matrices were segregated by the same procedure as were the SMocc

matrices. The SCphyl matrices were constructed from a non-random

exponential branching process, in which more recently evolved

species had lower abundance. In these matrices, phylogenetic distance

was negatively correlated with species abundance, but not with the

pattern of species co-occurrences.

In the fourth set of artificial matrices (prefix V), we added checker-

board submatrices to the lower right quarter of the ordered occur-

rence matrices (VMocc) to increase the pattern of species segregation.

We also modified the environmental variable matrix (VVenv) in such a

way that the values of this variable increased exponentially with site

number (as for V2 in Fig. 1). Thus, similar environmental variable

expressions were weakly correlated with larger phylogenetic distance

in this data set, and both the environmental variable and the phyloge-

netic distance were weakly to moderately associated with segregated

species co-occurrences.

EMPIRICAL CASE STUDY

We used phytosociological data from three forest sites within the

Cedynia Landscape Park (Poland) to construct three Mocc presence–

absence matrices (M. Piwczyński et al., unpublished data). These

matrices included 96 plots: 45 plots sampled in a semi-natural oak for-

est dominated byQuercus petraea (Matt.) Liebl., 21 plots surveyed in

a planted Scots pine (Pinus sylvestris L.) forest and 30 plots sampled

in a mixed hardwood-deciduous forest. In each plot, the presence and

absence of all understory vascular plants was recorded (see M.

Piwczyński et al., unpublished data). The oak, pine and mixed forests

contained 66, 69 and 115 species, respectively. We constructed the

respective Venv matrices for each site using average raw Ellenberg

indicator values (Ellenberg et al. 1991) of three important environ-

mental variables (air temperature, soil pH and soil nitrogen) for all

species present in each plot. We constructed the phylogenetic trees

and the respective Cphyl matrices of phylogenetic distances for all

species using the Phylomatic phylogenetic database and toolkit for

the assembly of phylogenetic trees (Webb & Donoghue 2005), and

the R package ape (Paradis, Claude & Strimmer 2004). Trees gener-

ated by this software were based on the APG III (Angiosperm Phy-

logenyGroup, 2009).We used other publishedmolecular phylogenies

to resolve the majority of polytomies contained in APG III. Because

DNA sequence data were not available for all taxonomic levels of res-

olution, we assigned branch lengths to the tree with the Branch

Length Adjustment (BLADJ) option in Phylocom (Webb, Ackerly &

Kembel 2008), using minimum ages for genera and families and

higher taxa from the molecular dating of Wikström, Savolainen &

Chase (2001). We spaced undated nodes evenly between dated ones.

Because Wikström’s dating does not include ferns, we used ages gen-

erated by Schuettpelz & Pryer (2009) to assign them to nodes in the

phylogeny.

To test for patterns in theMocc matrices of the oak, pine andmixed

forests, we used the C-score (Stone & Roberts 1990), the togetherness

index (Stone & Roberts 1992) and the clumping score (Ulrich &

Gotelli 2012) to assess matrix wide patterns of segregation (C-score),

aggregation (clumping) and habitat similarity (togetherness).

Statistical inference was based on the null distributions obtained from

1000 randommatrices generated by the FF null model.

SOFTWARE

All the calculations were made with the Niche software, which is

freely available at http://www.umk.pl/�ulrichw. Niche provides all

the above-defined metrics (based on presence–absence and abun-

dance matrices), together with the respective null model options, and

allows for the analysis ofmultiple data sets.

Results

BENCHMARK TESTING

The metrics CDenv, CDphyl, HDenv, HDphyl, TDenv, TDphyl all had

low type I error probabilities (around or below 5%) when

tested with the random Rmatrices and the two-sided 95% tail

distributions of the FF null model (Table 2). Similar results

were obtained for the S and Ematrices, which were segregated,

but had random associations with phylogeny and environmen-

tal characteristics. The correlation-based metrics (RCDenvDphyl,

RHDenvDphyl and RTDenvDphyl) had similar good performance

with the R, S, and E matrices (Table 2). Matrix size and fill

had only weak influence on metric performance and explained

at most 2Æ5% of the variation in test results (Table 3). For the

least structured R matrices, the SES of RCDenvDphyl and

RTDenvDphyl wereweakly correlatedwithmatrix size. This weak

positive correlation was mainly caused by positive values of

very large randommatrices (species · sites > 5000).

The Vmatrix set was designed to test for Type II error rates

and contained weak non-random phylogenetic, environmental

and species co-occurrence signals. The phylogeny metrics

CDphyl, HDphyl and TDphyl correctly identified between 54% and

80% of theVmatrices as being phylogenetically overdispersed

(Table 2). The metrics CDenv, HDenv and TDenv correctly identi-

fied between 25% (CDenv) and 74% (TDenv) of theVmatrices as

being environmentally underdispersed (Table 2).

Under- and overdispersion with respect to phylogeny and

environment resulted in opposite patterns of correlation coeffi-

cients in the Vmatrices (Table 2). RTDenvDphyl pointed in 21%

Table 1. Species · sites (Mocc), phylogenetic distance (Cphyl) and environmental (Venv) matrix sets used in the present benchmark testing

Matrix type Mocc Cphyl Venv

Random (R) Random Random Random

Segregated occurrences (S) Segregated Random Random

S + exponential phylogenetic distance matrix (E) Segregated Non-random Random

E + exponential environmental variables (V) Segregated Non-random Non-random
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of theVmatrices to overdispersion of species with similar habi-

tat requirements, while RCDenvDphyl indicated that over 10% of

matrix sets were underdispersed when considering joint species

occurrences. The SES scores of RCDenvDphyl, RHDenvDphyl and

RTDenvDphyl were only weakly correlated with one another

(Fig. 3), suggesting that they are quantifying different aspects

of pattern in the focalMocc matrix.

CASE STUDY

The plant communities in the oak, pine and mixed forests

showed clear evidence of phylogenetic assortment and habitat

filtering (Table 4). Irrespective of the forest type and environ-

mental variable considered, the SES scores of CDenv were sig-

nificantly negative. Therefore, species pairs co-occurred more

often in plots with similar levels of temperature, pH and nitro-

gen than expected from the FF null model. This signal of posi-

tive habitat filtering was slightly weaker in the case of TDenv.

The pattern expressed by HDenv was complementary to that of

CDenv: in all forest types, there were significantly greater differ-

ences than predicted by the null model in temperature, pH and

nitrogen levels among sites in which species did not co-occur.

The phylogenetic signal was weaker than the environmental

signal (Table 4). In the oak and pine forests, the SES scores of

TDphyl that are based on the togetherness pattern as a metric of

similarity in habitat requirements were significantly negative.

Thus, species with identical patterns of presences–absences

were phylogenetically closer than expected by chance (underdi-

spersed). Consistent with this pattern, the SES scores of HDphyl

were positive (although statistically not significant), indicating

more distant phylogenetic relationships of segregated subma-

trices and therefore negative phylogenetic assortment (under-

dispersion). In the mixed-forest matrix, the phylogenetic signal

was not different from random (Table 4).

In the oak forest, phylogenetic relatedness for co-occurring

species (clumping, togetherness) was significantly and nega-

tively correlated with similarity in pH requirement (Table 4).

Seven of the nine RCDenvDphyl correlations evaluated were neg-

ative, pointing to a weak tendency towards divergent niches of

co-occurring species (Table 1). The respective RHDenvDphyl

scores obtained in the oak and pine forests were mainly insig-

nificant and suggest a diffuse pattern of niche evolution. In the

mixed forest, the patterns were not significant (Table 4). In

eight of nine tests, the correlation between environmental and

Table 2. Benchmark testing for statistical error rates of theDphyl,Denv and RDenvDphyl metrics applied to clumped, checkerboard and togetherness

submatrices using 200 random R, S and Ematrices and 200 non-random Vmatrices. Entries are the percentages of significant scores below the

lower (LCL) and above the upper (UCL) two-sided 95% confidence limits of the null distribution (obtained from 1000 randomizations each of

the species · sites presence–absence matrices according to the fixed–fixed null model). The parametric significance gives the percentage of

significant RDenvDphyl correlations, according to the two-tailed t-distribution for all submatrix patterns. For comparison, we also present results

of standard parametric F-tests for the correlations

Clumping C-score Togetherness

Parametric

significance

LCL UCL LCL UCL LCL UCL LCL UCL

R

Phylogeny 0 0 0Æ5 1 1Æ5 0 – –

Environment 3Æ5 2Æ5 2 1Æ5 1Æ5 2 – –

Correlation 2 1Æ5 2Æ5 2 3 2 12 14

S

Phylogeny 0Æ5 0 1 1 1 0Æ5 – –

Environment 3Æ5 2Æ5 3Æ5 1Æ5 2Æ5 4 – –

Correlation 2Æ5 2Æ5 5 4 4Æ5 3Æ5 12Æ5 14Æ5
E

Phylogeny 2 2 4 1Æ5 4Æ5 4Æ5 – –

Environment 3Æ5 3 3Æ5 2Æ5 2Æ5 2 – –

Correlation 0 0Æ5 1 0Æ5 0 2 20 21

V

Phylogeny 0 53Æ5 80 0 0 77Æ5 – –

Environment 25 0 1 72Æ5 1 74 – –

Correlation 10 0 38 0 0Æ5 20Æ5 18 58Æ3

Table 3. Pearson correlation coefficients between metric scores and both matrix size (species · sites) and matrix fill for the least structured

artificialRmatrix set (Table 2). *P < 0Æ05; **P < 0Æ01

Metric

Matrix size Matrix fill

Dphyl Denv RDenvDphyl Dphyl Denv RDenvDphyl

Clumping 0Æ01 0Æ09 0Æ15** 0Æ05 )0Æ09 )0Æ06
Checkerboard 0Æ05 )0Æ11 )0Æ04 )0Æ06 0Æ11 )0Æ04
Togetherness 0Æ03 )0Æ12* 0Æ16** 0Æ05 0Æ10 )0Æ06
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phylogenetic differences (RTDenvDphyl) yielded a pattern of dis-

similar habitat requirements of phylogenetically related species

(Tables 1, 4). Thus, our tests indicate a general tendency

against niche conservatism, but indicate trait- and habitat-spe-

cific patterns. Based on the average metric score, this tendency

was the weakest in the pine forest.

Discussion

GENERAL FRAMEWORK AND METRIC PERFORMANCE

The aim of this work was threefold: first, to provide a general

framework for the study of phylogenetic assortment, habitat

filtering and niche conservatism; secondly, to develop appro-

priate metrics to characterize and test each of these patterns;

and thirdly, to clarify how different patterns of species

co-occurrence might influence inference about evolutionary

and environmental signals. We demonstrated that our metrics

have a good error behaviour when tested against a variety of

artificial matrix sets covering a wide range of observed patterns

(Table 2). Previous studies have shown that results of phyloge-

netic analysis of community structure are potentially sensitive

to both spatial scale and meta-community size and abundance

(Swenson et al. 2006; Kraft et al. 2007; Hardy 2008). When

tested against three different sets of randommatrices (R, S and

E), our metrics proved to be largely independent of matrix size

andmatrix fill (Table 3).

Our benchmark testing (Table 2) and the case study

(Table 4) also indicate that our method has adequate power to

detect even weak patterns of non-randomness (as expressed in

the V matrices). Although the nine metrics we used are based

on small differences in submatrix structure, and are compared

with the same null models, they are surprisingly uncorrelated

with one another and capture different, and often divergent,

patterns expressed within the same matrix. Our construction

of the artificial V matrices introduced a weak segregated pat-

tern within the respective Mocc matrices. Therefore, the entire

matrix is transformed from being random to being segregated,

random and even aggregated for different subsets of species

and sites (Ulrich &Gotelli 2012).Many real empirical matrices

have such multiple substructures (Gotelli & Ulrich 2012;

Ulrich&Gotelli 2012), whichmakes any simplematrix classifi-

cation challenging. Our method is able to disentangle these

divergent patterns, and thus may provide more precise insights

into the phylogenetic structure of communities than previous

approaches that use metrics based only on the average degree

of species co-occurrence (Kembel et al. 2010; Ives & Helmus

2011).

Our approach can be adapted to test for species differences

other than phylogenetic distance. Instead of a matrix contain-

ing phylogenetic information, we could use a matrix with mor-

phological, physiological or molecular traits, or even

information on species habitat requirements. Then our metrics

quantify the degree to which species-specific traits are linked to

Table 4. Standardized effects sizes (SES) of test metrics for all vascular plant species in phytosociological plots within oak, pine and mixed

forests. *P < 0Æ05; **P < 0Æ01. Significance levels refer to the respective confidence limits of the null model distribution (causing two times

values of SES<|1Æ96| to be significant). Null distributions were obtained from 1000 randomizations of the Mocc matrices using the fixed–fixed

null model. Temperature (T), soil pH and nitrogen content (N) are entered as averaged Ellenberg values

Clumping Checkerboard Togetherness

T pH N T pH N T pH N

Oak

Denv )2Æ34* )4Æ61** )5Æ19** 3Æ16** 3Æ73** 3Æ94** 0Æ86 1Æ27 2Æ59**
RDenvDphyl 0Æ81 )2Æ63** )0Æ95 1Æ20 0Æ97 )0Æ15 )0Æ82 )1Æ78 )0Æ13
Dphyl )1Æ27 1Æ16 )3Æ22**

Pine

Denv )4Æ71** )3Æ57** )2Æ93** 3Æ76** 2Æ78** 1Æ99* 3Æ04** 2Æ13* 1Æ50
RDenvDphyl )0Æ74 )0Æ49 )2Æ03* 2Æ31* 0Æ35 1Æ33 0Æ29 )0Æ64 )0Æ10
Dphyl )0Æ10 1Æ80 )2Æ08*

Mixed forest

Denv )2Æ06* )5Æ27** )5Æ48** 3Æ11** 7Æ34** 7Æ43** 3Æ13** 7Æ37** 7Æ46**
RDenvDphyl )1Æ61 )0Æ53 0Æ24 )1Æ70* )0Æ72 )1Æ24 )1Æ70 )1Æ59 )2Æ87*
Dphyl 0Æ63 )0Æ52 )0Æ29

(a) (b) (c)

Fig. 3. Relationships between the standardized effects sizes (fixed–fixed null model) of RCDenvDphyl (clumping), RHDenvDphyl (checkerboard) and

RTDenvDphyl (togetherness). a:R
2 = 0Æ14; b:R2 = 0Æ23; c:R2 = 0Æ10 (allP < 0Æ01).
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patterns of species co-occurrence and habitat characteristics.

Our approach could be also extended to deal with metrics

other than distance. For example, Helmus et al. (2010) showed

that disturbed sites may contain more closely related species.

In our analysis, disturbance frequency or intensity could be

measured at each site and then tested for its influence on pat-

terns of species co-occurrence and phylogenetic relatedness.

A possible shortcoming of our method is that it might fail to

detect non-randomness if the probability of species occurrence

is a uni-modal or multi-modal function of environmental vari-

ables (Pausas & Verdú 2010). The easiest way to address this

problem is to graphically inspect the scatter plot of occurrence

vs. environmental variables for evidence of nonlinearity. In

such cases, the use of quadratic or even nonlinear regression

instead of simple correlation might be warranted (Huisman,

Olff & Fresco 1993). Our case study does not incorporate spe-

cies life history and morphological traits (Helmus et al. 2010;

Pausas & Verdú 2010; Pavoine et al. 2011), but these factors

can also be accommodated as a species differencematrix.

The question of how sample size might affect the identifica-

tion of meta-community patterns has been somewhat

neglected in phylogenetic and species co-occurrence analysis

(Hardy 2008; Gotelli et al. 2011; Gotelli & Ulrich 2012). The

problem here is that any large-scale distribution of species

across sites has a certain internal structure quantified by the

degree of spatial autocorrelation. The same holds for artificial

presence–absence matrices that are generated by certain algo-

rithms to obtain some non-random structure. Random sam-

ples from such autocorrelated data sets will only identify the

underlying pattern if the spatial grain of the sample matches

the respective grain of the original data sets. To explore this

problem, we constructed 100 data sets similar to the V set

(Table 1) but with 20 species and 1000 sites each. In each of

these data sets, we took 100 samples, each consisting of 10–100

randomly selected sites, and compared the RCDenvDphyl,

RHDenvDphyl and RTDenvDphyl correlations of the sample matri-

ces with the correlations in the full data set. Our results

(Table 5) show that subsampling is only partly able to recover

the original matrix structure. Thus, tests based on subsamples

of a large meta-community might have a reduced power to

detect patterns. However, this is true of virtually all statistical

tests (including parametric, Bayesian, and null model): as sam-

pling effort decreases, power inevitably diminishes. Neverthe-

less our results exemplify that sample size effects deserve more

attention when comparing the phylogenetic structure of meta-

communities of different taxa and habitats.

CASE STUDY

For three forest understory assemblages, temperature, pH and

nitrogen content were frequently correlated with patterns of

species occurrence, but were not necessarily related to phyloge-

netic structure (Table 4). The most striking example is the

mixed forest, in which none of the co-occurrence metrics were

correlated with phylogeny, but clumping and checkerboard

patterns were related to environmental variables. This result is

most parsimoniously explained by random species distribu-

tions across the phylogeny after sampling from a regional spe-

cies pool. According to the random sampling hypothesis

(Prinzing et al. 2008), species are able to coexist and interact

irrespective of the amount of shared evolutionary history.

Source-sink dynamics (mass effects; Shmida & Ellner 1984;

Prinzing et al. 2008) can also create temporary assemblages

from phylogenetically diverse lineages. Both processes can

counteract phylogenetic clustering, particularly at smaller spa-

tial scales.

The three submatrix structures (clumping, checkerboards

and togetherness) revealed various dependencies of species co-

occurrence on environment and phylogeny within the same

forest type (Table 4). This result is especially exemplified by

the togetherness index, which was correlated to phylogeny in

the oak and pine forests and was the only index showing a

strong correlation with a single environmental variable. This

pattern may reflect constraints imposed by environmental

stress. For example, the oak forest of our study area occurs on

severely nutrient-deficient sandy soils and is depauperate in

species (Puchałka, pers. comm.). This kind of habitat requires

special adaptations, such as mycorrhizal or bacterial symbio-

nts that fix nitrogen, sclerophyllous or highly pubescent leaves

that resist desiccation and slow growth rates (because of lim-

ited nutrients and water); these traits are typically correlated

with tolerance to mineral nutrient deficiencies (Grime 2001).

These traits are found inmany species, but are phylogenetically

clustered in only a few plant families (e.g. Ericaceae, Astera-

ceae, Poaceae). Small scale differences in soil quality within the

oak forest may allow more generalist species (e.g. ruderal) to

successfully colonize high nitrogen patches and possibly

displace specialists. As a result, species jointly avoid nitrogen-

poor sites and colonize nitrogen-rich sites irrespective of

phylogeny (Table 4).

In the oak forest, we found strong correlations between pH

and both clumping and phylogeny, although there was no rela-

tionship between phylogeny and co-occurrence (Table 4). Dif-

ferences in pH between two sites were negatively correlated

with the phylogenetic distance of the species involved. This

Table 5. Percentage of significant correlations betweenDenv andDphyl

in 100 matrix sets of the V type with 20 species and 1000 sites (V1000)

each, and in 100 random samples of 10–100 sites from each of these

matrices. r < |CL| gives the percentage of correlations where the

two-sided 95% confidence limits (CL) of the sample enclosed

the respective correlation in the original V1000 data. Direction gives

the percentage where the mean direction of the samples matched the

direction of the respectiveV1000 data

% Significant correlations

RCDenvDphyl RHDenvDphyl RTDenvDphyl

V1000 33 78 2

Samples 1 2 0

% correlations

r < |CL| 60 68 89

Direction 67 78 44
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pattern implicates at least two mechanisms: (i) competition as

a factor limiting co-occurrences of species with similar require-

ments (Webb et al. 2002) or (ii) convergent trait evolution in

unrelated lineages (Cavender-Bares, Keen&Miles 2006).

Concluding remarks

We distinguished between three different types of species

co-occurrences structures (checkerboards, togetherness,

clumping) that capture different patterns of community assem-

bly (Fig. 2). The presence of all three structures within a single

data matrix is a challenge for teasing apart the links between

phylogeny, environment and community assembly. In particu-

lar, clumping (a pattern of joint occurrences of species irrespec-

tive of site differences) and togetherness (joint occurrences

conditional on site differences) have not been clearly distin-

guished before (Ulrich &Gotelli 2012). Our proposedmethod-

ology highlights that the separate analysis of these metrics

might provide new insights when studying patterns of commu-

nity assembly.
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Appendix S1. Worked example of our null model tests for niche

conservatism, phylogenetic assortment and habitat filtering.
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