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Rapid biotic homogenization of marine fish
assemblages
Anne E. Magurran1, Maria Dornelas1, Faye Moyes1, Nicholas J. Gotelli2 & Brian McGill3

The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial

ecosystems. However, the responses of entire marine assemblages are not well-understood,

in part, because few monitoring programs incorporate both spatial and temporal replication.

Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic

groundfish assemblages monitored over 5� latitude to the west of Scotland. These fish

assemblages show no systematic change in species richness through time, but steady change

in species composition, leading to an increase in spatial homogenization: the species identity

of colder northern localities increasingly resembles that of warmer southern localities. This

biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over

the same time period suggesting that climate change is primarily responsible for the spatial

homogenization we observe. In this and other ecosystems, apparent constancy in species

richness may mask major changes in species composition driven by anthropogenic change.
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T
he Anthropocene1,2 is characterized by marked changes in
the diversity of natural assemblages across the Earth3.
There is, however, increasing evidence that community

responses to anthropogenic impacts are complex and scale
dependent4. Although heavily transformed terrestrial habitats
exhibit species loss3, recent meta-analyses have detected no
systematic change in local a diversity5,6. In contrast, temporal
turnover (temporal b diversity)7 in local assemblages is occurring
at rates in excess of background levels predicted by null and
neutral models6. b diversity measures change in community
composition over time (or space), and will be influenced by a
range of processes including species invasion and shifts in species
ranges. Dornelas et al.6 hypothesized that elevated rates of
turnover could be a result of increasing biotic homogenization,
a process whereby previously differentiated assemblages
increasingly resemble one another in species composition. This
hypothesis of a linkage between untrending local species richness,
high turnover in local species composition and declining spatial b
diversity (increasing homogenization) has not yet been tested in
any ecosystem.

To date, investigations of biotic homogenization have focused on
direct human influences on freshwater and terrestrial assemblages8.

For example, deliberate introductions of gamefish are largely
responsible for the greater homogeneity of contemporary
freshwater fish assemblages in the United States compared with
the time of the European settlement9. However, open water marine
communities–especially those in offshore localities–are arguably
less vulnerable to biotic homogenization than terrestrial ones
because they are initially less spatially differentiated10–12 and less
subject to some of the direct human interventions driving terrestrial
homogenization such as species introductions and habitat
modification. Nonetheless, for many marine species13, recent
shifts in geographic ranges and phenology have been linked to
anthropogenic climate change14–17 and temporal turnover in
marine assemblages has also increased relative to null
expectations6. This makes offshore marine ecosystems a good
candidate for testing the role of elevated community turnover in
homogenization.

Using data collected during a systematic Scottish groundfish
survey, we probe marine community shifts by quantifying
temporal trends in a and b diversity over almost three decades.
We show that biotic homogenization is driven by elevated species
turnover, transforming marine assemblages in ways that resemble
terrestrial assemblages.
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Figure 1 | Temporal trends in a diversity (rarefied species richness) and b diversity (Jaccard similarity, relative to the initial year), in each latitudinal

band, over the duration of study. Trend lines (OLS regression) are colour coded red if significantly negative (Po0.05, n¼ 28) and grey if not significant.

(There were no significant positive slopes). See Supplementary Figure 2 for overall trend.
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Results
a and b diversity. With a total regional count of 131 species
recorded, and an average local species richness of 21.5 (per 30
latitudinal band, per year), there was no systematic change in
rarefied species richness across the 29 years of sampling (ordinary
least squares (OLS) regression, r2¼ 0.005, P¼ 0.15, n¼ 252, see
Supplementary Figure 2), although the nine 300 latitudinal bands
exhibit heterogeneous temporal trends in species richness (a
diversity; left-column panels, Fig. 1). In contrast to species rich-
ness, community composition shows increasing change relative to
the baseline level within each latitudinal band, reflecting the
temporal turnover that is typical for other marine, terrestrial and
freshwater assemblages6 (Jaccard similarity; right-column panels,
Fig. 1).

Biotic homogenization. It is possible for temporal turnover to be
independent at each site, with no spatial signature. Instead, we
found the temporal turnover depicted in Fig. 1 is at least partly
explained by the species composition in the different latitudinal
bands becoming progressively more similar over time (Fig. 2).
Moreover, the distance-decay relationship in composition is less
steep in later years, indicating that the northern and southern
assemblages are now less differentiated from one another than
they were three decades ago (Fig. 3 and Supplementary Fig. 4).
The result of these progressive changes is spatial biotic
homogenization. These analyses confirm the hypothesis of
Dornelas et al.6 that biotic homogenization can lead to a pattern
of constant local species richness but increasing change in species
composition. As further support, an analysis of spatial b diversity
partitioning18,19 reveals that turnover in species identity is a
consistently stronger driver of community reorganization than
change in species richness (Supplementary Fig. 5 and
Supplementary Fig. 6). This result is in contrast to a recent
meta-analysis20 which argued that changes in community
similarity are driven by changes in species richness rather than
changes in species composition.

Water temperature. What forces are responsible for this wide-
spread reorganization of marine fish assemblages? In this region
of the North Atlantic, average ocean temperature has increased by
c. 1 �C over the time frame of this study (Fig. 4a). Moreover, the
south–north temperature gradient has decreased, so that the
latitudinal bands in Fig. 1 are now thermally less differentiated
than they used to be (Fig. 4d), meaning the northerly waters have

increased in temperature more rapidly than the southerly waters.
The mean annual pairwise difference in temperature between
latitudinal bands (Fig. 4c) also declines through time. This decline
mirrors the shift in community similarity indicating that, as water
temperatures within the latitudinal bands converge over time, so
too does the composition of the assemblages found there.

Discussion
This investigation has documented rapid biotic homogenization
in marine fish assemblages and argued that these community
shifts are linked to climate. Other recent studies also highlight the
potential of anthropogenic climate change21,22 to restructure
marine communities. Climate velocity has been identified
as a predictor of biotic change14. Our data show that these
transformations are manifested over relatively small geographic
areas and short time periods. It is likely that climate change acts
in synergy with other anthropogenic stressors, such as pollution
and over-exploitation23. However, although fishing has heavily
impacted the North Atlantic for over a century, fishing effort (as
reported landings and trawling hours) has not increased
appreciably over the time period of this study24,25. Moreover,
coastal human population densities in this region have remained
low over the last three decades (for example, in 2011 mean
human population density was 5.1 km� 2).

Our perception of the natural state of marine communities is
shaped by shifting baselines26. Contemporary accounts of
Scottish waters in the eighteenth century attest to greater
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Figure 2 | Box plots (median, quartiles, range and outliers) of pairwise

similarities (Jaccard) between latitudinal bands in each year of the study.

The trend line (OLS regression) is shown (r2¼0.42, Po0.001). Years in

which the mean pairwise similarity is below the overall mean are shown in

red, and those above the mean in blue. (A similar pattern emerges if

Bray–Curtis similarity is used. See Supplementary Figure 3).
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Figure 3 | Similarity over space and time. (a) Contour plot illustrating the

relationship between Jaccard similarity and geographical distance (between

latitudinal bands) over the duration of the study. The scale bar is to the right

of the plot. The plot highlights increasing similarity through time, and

greater homogenization across distant localities. (bottom) Distance-decay

plots for an early ((b) 1986) and late ((c) 2013) year in the study. Median

slopes shown. Distances (km) are between latitudinal bands. Compositional

similarity of more distant localities increases through time (See

Supplementary Figure 4 for further analysis of distance decay).
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abundances of fish and sea mammals present at that time while
drawing attention to the impacts that commercial fishing were
having over 200 years ago27. The homogenization we document
here is a continuation of the ongoing change in fish communities
exposed to long-term anthropogenic pressures.

As we have shown, apparent constancy in widely used
measures of a diversity (that is, lack of trends in local species
richness) can mask enormous changes in an ecosystem. Local
richness has, on average, been maintained over the duration of
this study, with the same common species (including the Norway
pout Trisopterus esmarkii, and Atlantic herring Clupea harengus)
continuing to be overall dominants. However, our analyses
reveal that groundfish communities off western Scotland are
undergoing rapid reorganization. This change is driven by spatial
homogenization, that is increasing similarity between locations
100 s of kms apart–possibly linked to climate change. Our data
suggest that predicted changes in marine fish communities are
already underway6,17. Biogeographical shifts in zooplankton
species in the North East (NE) Atlantic28 provide further
evidence that the pace of change is marine communities
exceeds that in the terrestrial realm. This collapse of spatial b
diversity (that is, increasing homogenization) is arguably a far
greater and more pressing crisis than the loss of local species
richness. As long as species are not globally extinct this
homogenization is potentially reversible. However, this crisis is
largely unrecognized, and adds to the challenges already facing
marine biodiversity23.

Methods
Data. The Scottish groundfish survey takes place annually, in the seas to the north
and west of Scotland (Supplementary Fig. 1). Sampling began in 1985. Trawling
occurs in the first quarter of the year (January, February and March), and the same
methodology has been used throughout. Each sample is a discrete trawl occurring
at a precise geographical point within an International Council for the Exploration
of the Seas (ICES) statistical rectangle (rectangles represent a 300 latitude by 1�
longitude grid cell). Sample number varies between rectangles in a given year.
Species abundances are reported as catch per unit effort (that is the number of
individuals per species caught during a 1 h trawl). Body size (standard length) is

also recorded. We focus on the 35 rectangles (Supplementary Fig. 1) for which
there are good community time series. A total of 131 taxa have been sampled in
this study area over the 29 years of the survey. 126 of these taxa are finfish species,
the remaining 5 macroinvertebrates (squid and macrocrustaceans). As 1992 and
1995 have substantially fewer samples than other years, we exclude them from our
analyses. Species and temperature data were downloaded from the ICES portal
(DATRAS Fish Survey Data ‘Scottish West Coast Survey For Commercial Fish
Species 1985–2013’ (Available at https://datras.ices.dk, accessed on 2014)).
Information on coastal human population density was obtained from National
Records of Scotland, 2011 Census: Aggregate data (Scotland). UK Data Service
Census Support. Downloaded from: http://infuse.mimas.ac.uk. This information
is licensed under the terms of the Open Government Licence (http://www.
nationalarchives.gov.uk/doc/open-government-licence/version/2) accessed
on 2015.

Analysis. To understand how the composition of these groundfish communities is
changing through time, relative to latitude, we first assign the rectangles to nine 300

latitudinal bands. We then compile a community time series for each latitudinal
band. Sample rarefaction (as in ref. 6) ensures equal sampling effort across bands
and is used in the calculation of temporal a diversity (species richness) and
temporal b diversity (Jaccard similarity (presence/absence) and Bray–Curtis
similarity (quantitative)). We first calculate similarity in relation to the start of the
survey. Next, for each year, we compute the pairwise compositional similarity of
these latitudinal bands. We also construct distance-decay plots (similarity plotted
against geographic distance) for each year. Quantile regression is used to fit the
median slope of these relationships as it is robust against outliers. b diversity
partitioning18,19 enables us to compute the relative contributions of turnover and
nestedness to community change. To do this we recalculate Jaccard similarity as
Jaccard dissimilarity because b diversity partitioning conventionally focuses on
dissimilarity.

Geographical distances (in km) are calculated using the point distance tool in
ArcGIS. Analyses use R statistical software29. The vegdist function in the R package
vegan30 is used to compute similarities. The quantreg package31 is used to fit
median slopes, and the betapart package19 to partition b diversity into components
of turnover and nestedness.
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