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Null model analysis of species associations using abundance data
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Abstract. The influence of negative species interactions has dominated much of the
literature on community assembly rules. Patterns of negative covariation among species are
typically documented through null model analyses of binary presence/absence matrices in
which rows designate species, columns designate sites, and the matrix entries indicate the
presence (1) or absence (0) of a particular species in a particular site. However, the outcome of
species interactions ultimately depends on population-level processes. Therefore, patterns of
species segregation and aggregation might be more clearly expressed in abundance matrices, in
which the matrix entries indicate the abundance or density of a species in a particular site.

We conducted a series of benchmark tests to evaluate the performance of 14 candidate null
model algorithms and six covariation metrics that can be used with abundance matrices. We
first created a series of random test matrices by sampling a metacommunity from a lognormal
species abundance distribution. We also created a series of structured matrices by altering the
random matrices to incorporate patterns of pairwise species segregation and aggregation. We
next screened each algorithm–index combination with the random and structured matrices to
determine which tests had low Type I error rates and good power for detecting segregated and
aggregated species distributions. In our benchmark tests, the best-performing null model does
not constrain species richness, but assigns individuals to matrix cells proportional to the
observed row and column marginal distributions until, for each row and column, total
abundances are reached.

Using this null model algorithm with a set of four covariance metrics, we tested for patterns
of species segregation and aggregation in a collection of 149 empirical abundance matrices and
36 interaction matrices collated from published papers and posted data sets. More than 80% of
the matrices were significantly segregated, which reinforces a previous meta-analysis of
presence/absence matrices. However, using two of the metrics we detected a significant pattern
of aggregation for plants and for the interaction matrices (which include plant–pollinator data
sets). These results suggest that abundance matrices, analyzed with an appropriate null model,
may be a powerful tool for quantifying patterns of species segregation and aggregation.

Key words: abundance matrix; biogeography; co-occurrence; covariation; null model; passive sampling;
statistical test.

INTRODUCTION

A major research focus in ecology has been the

elucidation of community assembly rules, a set of

mechanisms that lead to nonrandom patterns in

multispecies assemblages (Weiher and Keddy 1999).

For example, Diamond (1975) hypothesized that pairs

of species that are close competitors may never coexist in

the same local assemblage, leading to a biogeographic

‘‘checkerboard distribution.’’ Patterson and Atmar

(1986) hypothesized that orderly extinction sequences

in fragmented habitats will lead to a pattern of species

‘‘nestedness’’ (Ulrich et al. 2009). More recent assembly

rules have been based on patterns of phylogenetic

clustering or overdispersion (Webb et al. 2002, Emerson

and Gillepsie 2008), patterns of species interaction

networks (Bascompte and Jordano 2007), and the

distribution of species-level morphological or physio-

logical traits (Bellwood et al. 2002, Lavorel and Garnier

2002).

Assembly rules are rarely tested experimentally (e.g.,

Fukami and Morin 2003, Irving and Connell 2006) and

are controversial because different mechanisms, includ-

ing stochastic processes, may lead to the same commu-

nity pattern (Gotelli 2004). Null models provide a

statistical test for whether an observed pattern is likely

in the absence of a particular mechanism (Gotelli and

Graves 1996), and they have always figured prominently

in the assembly rules literature (Williams 1964, Harvey

et al. 1983). The data for null model analyses are

typically in the form of a binary presence/absence matrix

(McCoy and Heck 1987): rows are species, columns are

sites or samples, and the entries indicate the absence (0)

or presence (1) of a species. In interaction or food web

matrices, both rows and columns may represent species,

and the entries represent the absence (0) or presence (1)
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of an interaction link, such as a trophic or pollinator

interaction (Jordano et al. 2003).
Although assembly rule patterns can be quantified

from presence/absence data, colonization or extinction
is usually preceded by changes in population size.

Colonization and extinction thus represent special cases
of change in abundance. An abundance matrix contains

rows as species, columns as sites or samples, and entries
representing the population size (which may be 0) of a
particular species in a particular site. Presence/absence

matrices can always be constructed from abundance
matrices, but not vice versa. The pattern of abundances

across replicated assemblages may potentially contain a
more complex and subtle signal of community assembly

rules than binary presence/absence matrices. Because
many assembly rules are based on the premise of species

interactions (Weiher and Keddy 1999), an appropriate
null hypothesis for abundance data might be that the

covariances between pairs of species equal zero (Schluter
1984). However, testing this null hypothesis with simple

and partial correlation analysis is problematic because
of constraints on the magnitude of correlations and

covariances (Brown et al. 2004).
Null models and randomization methods may be

preferable for the analysis of abundance matrices
because they are not as restrictive in their assumptions

as standard parametric statistics (Manly 1991). Howev-
er, until recently, relatively little attention has been paid

to assembly rule patterns in abundance matrices (Graves
and Gotelli 1993, Hausdorf and Hennig 2007, Lester et
al. 2009).

In this paper, we explore null model analyses of
abundance matrices. We present six candidate indices

that may be used to describe the structure of abundance
matrices, and we test each index with 14 potential null

model algorithms that randomize the pattern in an
observed abundance matrix. These benchmark tests

were applied to a series of artificial matrices that were
simulated from distributions with specified patterns of

randomness and structure. Finally, following the exam-
ple of several meta-analyses of binary presence/absence

matrices (Gotelli and McCabe 2002, Blüthgen et al.
2007, Ulrich and Gotelli 2007a), we assembled from the

literature and the Internet 147 empirical abundance
matrices and 36 mutualistic interaction matrices and

analyzed them with a subset of null models that
performed best in our initial benchmark tests.

MATERIALS AND METHODS

Strategies for evaluation of null model algorithms

Before a new randomization test is applied to

empirical data, its performance needs to be evaluated
with artificial data sets that have specified amounts of

randomness and structure (Gotelli 2001). Two proper-
ties are desirable in a statistical test. First, when the test

is confronted with ‘‘random’’ matrices, it should not
reject the null hypothesis too frequently, and a

traditional Type I error criterion of 5% is usually

employed. Second, when the test is confronted with

‘‘structured’’ matrices, it should not accept the null

hypothesis too frequently. The statistical power of the

test is the probability of correctly rejecting the null

hypothesis when it is false. There is no convention for

power levels, but a value of 0.8 (the null hypothesis is

correctly rejected 80% of the time) has been suggested

(Cohen 1992). However, power analyses are rarely

conducted in ecological studies (Toft and Shea 1983),

perhaps because they require specification of an

alternative hypothesis and an effect size that can be

detected by the test.

In the context of null model analysis, what constitutes

a ‘‘random’’ or a ‘‘structured’’ matrix? The primary goal

in much null model analysis has been testing for the

effects of species interactions on community patterns

(Gotelli and Graves 1996). So, a ‘‘random’’ matrix

would consist of repeated samples from an assemblage

that is not structured by species interactions. Unfortu-

nately, we can only speculate what such assemblages

would look like (Colwell and Winkler 1984).

Three approaches have been used to create ‘‘random’’

binary matrices for the purposes of benchmarking the

performance of null models. First, Gotelli (2000) began

with an empirical presence/absence matrix and created a

mixture of random matrices by uniformly reshuffling

elements within the matrix, sometimes constraining the

reshufflings within each row or column of the original

matrix. The disadvantages of this method are that it is

somewhat arbitrary, that it may include some of the

same null model algorithms that are being tested, and

that the results may be conditional on a particular

matrix size, dimension, or percentage fill. A second

approach is to specify a mechanistic colonization model

that does not include species interactions, such as the

neutral model (Bell 2005), and then use that model to

create random matrices that can be used to evaluate null

model procedures (Ulrich 2004). The disadvantage of

this method is that the test is narrowly optimized for one

particular mechanistic model, and there is no logical

reason that this model should have priority. Moreover,

even the simplest mechanistic model may contain several

parameters and specifying or estimating those parame-

ters from real data is not easy (Gotelli and McGill 2006).

A third approach, which we have used here and in our

other studies (Ulrich and Gotelli 2007a, b, Gotelli and

Ulrich 2010), is to create unstructured matrices by

randomly sampling from a specified statistical distribu-

tion. This distribution should have two properties: first,

matrices that are created in this way should be similar to

empirical matrices in ‘‘external’’ properties such as their

marginal totals of species richness (number of species

occurrences per site) and species occurrence (number of

site occurrences per species), but should be random with

respect to the ‘‘internal’’ structure of the matrix (co-

occurrence and covariance in abundance). Second,

sampling from this statistical distribution should mimic

a generic process model of random, independent
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colonization. However, like a nonparametric test, our

random sampling algorithm does not specify the

colonization and extinction details of a true process

model. With this strategy, the hope is that the results will

be more general and capture stochastic patterns that

might arise from a variety of different process-based

models.

To meet these criteria (realistic marginal distributions

and mimicry of a process model), we have created

random matrices by drawing samples from a lognormal

species abundance distribution. This distribution cap-

tures a property that has been observed in many real

assemblages: a small number of species are very

common, but most species are very rare (Preston

1962). When species are ranked according to their

abundance or occurrence, this generates a characteristic

right-skewed histogram that is approximated by sam-

pling from a lognormal distribution. Whether the

lognormal distribution itself is caused by species

interactions or reflects neutral processes is still open to

debate (May 1975, Sugihara 1980, McGill et al. 2006),

but abundance and occurrence data collected for many

taxa at widely different spatial scales often conform to

an approximate lognormal distribution (McGill et al.

2007, Ulrich et al. 2010).

The distribution of species richness (species per site) is

more problematic because it depends largely on the

spatial grain and extent of sampling, which are often

determined by the investigator. For island archipelagos,

there may be a large amount of heterogeneity in the

abundance and number of species per site, much of

which is correlated with island area (Williamson 1981).

In contrast, for small-scale samples of fixed area in

homogeneous habitat, there may be relatively little

variance in species richness per site. Without any a

priori guide to modeling the species richness distribu-

tion, we used a random uniform distribution to

determine the total abundance (number of individuals)

per site and then sampled the individuals (and species)

from the lognormal distribution. Although the formal

definition of a Type I error is incorrect rejection of a true

null hypothesis, we use an operational definition here of

rejection of H0 on a set of appropriate test matrices

created by random sampling from a lognormal distri-

bution.

Just as it is challenging to specify community patterns

in the absence of species interactions, it is equally

challenging to specify the patterns that would be

expected if communities were organized by strong

species interactions. Formal mathematical theory is of

little help here, because even simple models with

appropriate parameter values can generate virtually

any quantitative pattern of abundance and co-occur-

rence (Pielou 1981). However, the assembly rules

literature (and much of the statistical analysis of

empirical community structure) has emphasized that

negative species interactions will lead to segregated

patterns of species occurrence, including missing species

combinations and checkerboard distributions (Diamond

1975), species exclusion by strong predator effects

(Morin 1983), and phylogenetic overdispersion of

species that do co-occur (Emerson and Gillespie 2008).

Aggregated patterns of co-occurrence can arise through

species mutualisms and positive interactions, guild

structuring, ordered extinction or differential coloniza-

tion, and habitat filtering (see review in Ulrich et al.

[2009]).

Therefore, a worthwhile strategy for evaluating null

model algorithms is to measure their ability to detect

these simple patterns. For example, Gotelli et al. (1997)

began with a highly structured artificial matrix (first

proposed by Diamond and Gilpin [1982]) that contained

numerous segregated species pairs that never occurred

together in the same site (checkerboard distributions).

These kinds of extreme patterns are easily detected by

most null model tests. Next, Gotelli et al. (1997)

randomly swapped a few elements within some rows of

the matrix, which has the effect of partially randomizing

some of the species occurrences. The null model tests are

applied to the new matrix, and the procedure is

repeated, progressively adding more noise to the matrix.

This procedure is analogous to taking a new (ordered)

deck of playing cards, swapping two of the cards, and

then asking a naive observer to inspect the deck after

each swap and decide whether it has been shuffled or

not. As more and more noise is progressively added to

the deck through additional swaps, at some point it

becomes impossible to recognize the ‘‘structure’’ that

was present in the original ordering. Gotelli (2000) used

this method and found that the fixed–fixed algorithm for

presence/absence analysis could still detect significant

patterns when ;50% of the original checkerboard

matrix had been reshuffled.

In this study (and in Ulrich and Gotelli [2007a] and

Gotelli and Ulrich [2010]), we have taken the opposite

approach: we begin with a ‘‘random’’ matrix and then

increase the numbers of segregated or aggregated species

pairs within it and ask whether the null model algorithm

can detect the change. This procedure directly addresses

one of the early criticisms of null model analysis:

matrices with a small number of strongly interacting

species pairs might appear random because the interac-

tions cannot be detected in a large matrix with many

noninteracting species pairs (the ‘‘dilution effect’’;

Diamond and Gilpin 1982). Additional analysis of

individual species pairs can also help to pinpoint which

particular pairs are contributing to nonrandomness of

the pattern for the entire matrix (Gotelli and Ulrich

2010).

It may be impossible to generate an optimal test

because of the inevitable trade-off between Type I and

Type II statistical errors. In our analyses, we have

placed a greater priority on minimizing Type I errors

(incorrect rejection of a true null hypothesis; Shrader-

Frechette and McCoy 1992). There are two reasons for

this. First, the entire null models controversy originat-
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ed precisely over the question of Type I errors: did

apparently unusual biogeographic patterns in species

occurrence imply the existence of strong species

interactions and assembly rules or might they have

arisen by chance (Connor and Simberloff 1979)?

Second, most of the data sets that have been used in

null model analysis are ‘‘natural experiments’’ and are

not based on controlled field manipulations. In such

cases, the inference of mechanism from pattern is

always weaker, so we prefer a more conservative

approach that minimizes Type I errors. Therefore, we

first confronted our candidate algorithms and metrics

with the ‘‘random’’ matrices to eliminate tests with high

Type I error rates. Then we evaluated a subset of

algorithms and metrics for their performance on a set

of ‘‘structured’’ matrices.

In spite of our attempt to test a broad array of null

models and algorithms, these analyses are still optimized

for their performance on the set of matrices that we

created by random sampling from a lognormal distri-

bution of species abundances. The tests are not fail-safe;

it is certainly possible to generate matrices with a model

of species interactions that would be incorrectly

classified as random (Colwell and Winkler 1984) or,

conversely, to generate matrices with a model of a

stochastic process (Ulrich 2004) that would be incor-

rectly classified as nonrandom. But our benchmark

analyses at least provide insight into how these analyses

will perform with a set of artificial matrices that

resemble real data in many respects and whose

properties are known. In the future, perhaps it will be

possible to tailor a particular test algorithm to a

particular empirical matrix for maximum power. Re-

cently, Ladau (2008) has proposed optimal null model

tests based on formal parametric statistical theory.

These alternative procedures are promising, although

they are vulnerable to most of these same criticisms

discussed here and are not as transparent as traditional

null model analysis.

Matrix structures

We simulated two types of random abundance

matrices (200 matrices each) to study the properties of

14 randomization algorithms and six measures of

covariation (Fig. 1). Additionally we used 185 empirical

matrices compiled from the literature that contained

abundance data to apply the best performing random-

ization algorithms and measures and to infer the

frequency of nonrandom species associations. Of these

matrices, 149 were standard abundance matrices (rows¼
species, columns ¼ sites) and 36 of these matrices were

interaction matrices (rows, columns¼ species).

Random matrices.—We created 200 matrices (MR) by

assigning individuals randomly to matrix cells. The

number of columns (¼ sites) in each matrix was

determined by sampling from a random uniform

distribution (5 � n � 50 sites). To determine the number

of rows (¼ species), we first set the total number of

species in the metacommunity ST by sampling from a

random uniform distribution (10 � ST � 200 species).

However, not all of these species will necessarily be

represented in the matrix because some rare species will

be missing due to insufficient sampling. To mimic these

sampling effects (the ‘‘veil line’’ of the lognormal

distribution; Preston 1962), we first specified the total

abundance Ni of species i by sampling from a lognormal

distribution of abundances:

Ni ¼ exi=2a ð1Þ

where xi ; N(0, 1) and a is a shape-generating parameter

for each matrix that is sampled from a continuous

uniform distribution (0.1 � a � 1.0). A recent meta-

analysis (Ulrich et al. 2010) confirmed that the

lognormal distribution most often provides the best fit

to abundance data sampled from natural communities.

The distribution of Ni is actually a scale mixture of a

lognormal and a uniform distribution, with a ¼ 0.5

generating a standard lognormal. For large, well-

sampled communities, the value of a is often ;0.2

(Preston 1962, May 1975). To mimic the frequently

observed lower truncation of the lognormal (the veil

line), we sorted the ST species according to decreasing

abundance and used only the Smax most abundant

species in which the cutoff point ‘‘max’’ was sampled

from a random uniform distribution (ST/2 � Smax �
ST). This sampling procedure resulted in a matrix with

Smax rows and n columns.

To mimic different carrying capacities per site, the

relative abundances Aj for each site j were also drawn

from a random uniform distribution (0 , Aj � 1.0).

Having established the relative abundances for the

columns and the rows of the matrix, we then assigned

individuals randomly to each cell in the matrix, with

the probability of choosing a particular row and

column being set proportional to the row and column

abundance totals (see Gotelli 2000). We placed

individuals randomly in this way until all Smax species

were represented by at least one individual in at least

one site. The relative abundance distributions generat-

ed in these matrices reflected a variety of patterns that

can arise by sampling from a lognormal distribution

and are similar to abundance distributions measured in

nature (Magurran 2004, McGill et al. 2007, Ulrich et al.

2009).

Because the method of placing individuals in the

matrix might potentially affect the assemblage patterns,

we created 200 additional random matrices (MS), using

a slightly different algorithm. As before, the matrix

dimensions were established by random uniform draws

to determine the number of columns (5 � n � 50) and

the maximum number of species in the metacommunity

(10 � ST � 200), again sampling from a truncated

lognormal abundance distribution. However, for the MS

matrices, we placed individuals sequentially (site by site)

until for each site j the designated number of species Sj
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was achieved. Sj was determined by random sampling

from a uniform distribution (1 , Sj � ST).

Empirical matrices.—We also analyzed 149 species 3

sites abundance matrices collected from the literature;

all matrices used in our analyses are found in the

Supplement. We classified matrices according to the

taxon studied (mammals, birds, fish, arthropods, non-

arthropod invertebrates, and plants), biome (terrestrial,

aquatic), and, for terrestrial studies, habitat (mainland,

island). We used only matrices that were based on

quantitative sampling and provided integer counts of

abundance (no biomass measures or ranked abundanc-

es). We analyzed separately 36 interaction matrices

(species 3 species) that included abundance data from

the National Center for Ecological Analysis and

Synthesis (NCEAS) database (available online4; see also

the Supplement). In 53 of the data sets, the entries were

density rather than abundance. We created abundance

matrices in these cases by assuming the rarest species in

the matrix was represented by a single individual.

Although multiple matrices were used from some

studies, these almost always were for samples of

different taxa or different sites. Twenty of the matrices

were of the same taxa (studies on seasonal species

turnover of spiders, ground, and rove beetles) sampled

in different times. Therefore, we treated each empirical

matrix as an independent observation in our analyses of

summary patterns.

Covariance metrics

We developed and analyzed six indices that quantify

the pattern of species aggregation and segregation in

abundance matrices; some of these are directly analo-

gous to co-occurrence metrics that are commonly used

in the analysis of presence/absence matrices.

1) We used an abundance analog of ‘‘checkerboard’’

distributions (Diamond 1975). In presence/absence

matrices, ‘‘checkerboard units’’ (Stone and Roberts

1990) represent submatrices of the following form:

1 0

0 1

(rows and columns of this submatrix form do not have

FIG. 1. Flowchart illustrating benchmark testing of covariation metrics (CA to Mantel) and null model algorithms (IA to PC)
against two sets of random matrices (random, MR, and sequential, MS) and two sets of seeded matrices (Mmod), and testing of
empirical matrices. See Materials and methods: Strategies for evaluation of null model algorithms and Covariance metrics for
explanations of abbreviations.

4 hhttp://www.nceas.ucsb.edu/interactionweb/html/
datasets.html#anemone_fishi
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to be adjacent). The more checkerboard units there are

in a matrix, the more segregated species are in their

occurrence. We define an ‘‘abundance checkerboard’’ as

a 2 3 2 submatrix of the form

a b
c d

� �
a . b a . c d . b d . c

or

a , b a , c d , b d , c ð2Þ

where a, b, c, and d represent the abundances of two

species in two different sites. The metric CA is a count of

the total number of abundance checkerboards in the

matrix. This metric can be standardized with regard to

matrix size (m rows, n columns) by

CAST ¼
4CA

mðm� 1Þnðn� 1Þ : ð3Þ

The standardized CA value can range from 0.0 to 1.0,

with high values of CA indicating more negative

covariation in abundances.

2) Similarly, we define the number of species

abundance aggregations AA as a count of aggregated

2 3 2 submatrices of the form

a b
c d

� �
a . b a . c d , b d , c

or

a , b a , c d . b d . c: ð4Þ

Again a standardized metric has the following form:

AAST ¼
4AA

mðm� 1Þnðn� 1Þ : ð5Þ

The standardized AA value can range from 0.0 to 1.0,

with high values of AA indicating positive covariation in

abundance of species. AA and CA are correlated, but

may differ in their ability to detect positive or negative

covariation.

3) Rather than just counting abundance checker-

boards as CA and AA, we can quantify the strength of

covariance from the differences in abundance of the

checkerboard elements:

AST ¼
4
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� cÞ2 þ ðb� dÞ2

a2 þ b2 þ c2 þ d2

s

mðm� 1Þnðn� 1Þ : ð6Þ

Large values of AST suggest strong positive covariance

among species.

4) The variance test of Schluter (1984) is a metric of

species covariance in abundance. This test compares the

variance of row totals V with the sum of the column

variances W. If the average covariance in abundance

among all pairs of species ;0.0, the value U ¼ V/W

should be v2 distributed with n degrees of freedom. Low

values of U indicate negative covariation in abundance.

5) Chao et al. (2008) extended the Morisita index of

similarity for two communities to a matrix-wide metric

for n communities of the following form:

MA ¼

Xm

i¼1

Xn

j¼1

pij

 !
2

�
Xn

j¼1

ðpijÞ2
" #

ðn� 1Þ
Xn

j¼1

ðpijÞ2
ð7Þ

where pij is the relative abundance of species i in site j.

Low values of MA indicate dissimilarity of species

relative abundance distribution among sites, which can

be interpreted as a measure of negative covariance in

relative abundances.

6) The Mantel test identifies nonrandom correlations

between two matrices (Mantel 1967). To assess whether

the MR matrices were nonrandom, we used the mean

Mantel correlation between the MR matrix (using the

Pearson correlation as distance metric) and the matrices

generated by different null model algorithms. The

expected correlation and confidence limits came from

100 randomly sampled null matrices. The Mantel test

used in this way can indentify nonrandomness, but it

does not indicate whether an observed matrix is

unusually aggregated or segregated.

To compare the performance of the above metrics to

those that are commonly used for presence/absence

analyses, we used the C score (CS; Stone and Roberts

1990) as a measure of species segregation and the

discrepancy metric BR (Brualdi and Sanderson 1999) as

a measure of species nestedness (Ulrich et al. 2009).

Null model algorithms

Compared to the analysis of binary presence/absence

matrices (Gotelli 2000), there are many more possible

algorithms and constraints that can be used to

randomize an abundance matrix. Null model algorithms

for abundance matrices can be divided into individual-

based and population-based algorithms. Individual-

based algorithms randomize the placement of individu-

als in the matrix. Population-based algorithms preserve

population abundance values and randomize their

occurrences among sites or species. Individual-based

algorithms can be further divided into fixed-zero and

floating-zero algorithms. Fixed-zero algorithms preserve

species occurrences, so that the pattern of presences and

absences (but not abundances) in the null matrices

match those in the original matrix. Floating-zero

algorithms allow for the placement of individuals in

matrix cells that contained zeroes in the original matrix.

We did not analyze any population-based floating-zero

algorithms.

We used three population-based fixed-zero algo-

rithms:

1) PM reshuffles populations equi-probably among

the nonempty cells of the entire matrix. This model

alters row and column abundance totals but preserves
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species occurrences and the grand total of abundances

for the entire matrix. Following the recommendation of

Lehsten and Harmand (2006), we used 1003 n3m such

reshufflings to generate each null matrix for the PM, PC,

and PR algorithms.

2) PC reshuffles populations equi-probably among the

nonempty cells of each column. This model preserves

species occurrences and total abundance per site, but

alters abundances of each species.

3) PR reshuffles populations equi-probably among the

nonempty cells of each row. This model preserves

species occurrences and total abundance per species,

but alters abundances of each site.

We used two individual-based fixed-zero algorithms:

1) OS first clears the matrix to be tested and then

assigns individuals randomly only to cells that originally

had nonzero values. The probability of placing an

individual in a particular cell is proportional to the

observed row and column abundance totals for that cell.

Individuals are assigned sequentially to the matrix in

this way until the total number of individuals in the

original matrix is reached. OS preserves species occur-

rences, but does not preserve observed row and column

total abundances.

2) OF first clears the matrix to be tested and then

assigns individuals randomly only to cells that originally

had nonzero values. The probability of placing an

individual in a particular cell is proportional to the

observed row and column abundance totals for that cell.

Individuals are assigned sequentially to the matrix in

this way until, for each row and column, total

abundances are reached. This algorithm allows the

abundance in each cell to vary, but preserves both

species occurrences and row and column abundance

totals of the original matrix. In a few cases, this

algorithm stopped placing individuals before the total

abundances were reached because the simultaneous

constraints on row and column totals could not be

met. However, the total number of individuals that

could not be placed was always less than 10 (,0.1%) and

should not affect the performance of the test.

We used nine individual-based floating-zero algo-

rithms:

1) IR assigns individuals randomly to matrix cells

with probabilities proportional to observed row and

column abundance totals until total species richness is

reached. In a few cases, this algorithm generated

matrices with empty columns (sites), which were

discarded prior to analysis.

2) IS assigns individuals randomly to matrix cells with

probabilities proportional to observed row and column

abundance totals until the total number of occurrences

is reached for each row and column.

3) ISR sequentially (row by row) assigns individuals

randomly to each row with probabilities proportional to

observed column abundance totals until the respective

number of row occurrences is reached.

4) ISC sequentially (column by column) assigns

individuals randomly to each column with probabilities

proportional to observed row abundance totals until the

respective column total species richness is reached.

5) IT assigns individuals randomly to matrix cells with

probabilities proportional to observed row and column

abundance totals until, for each row and column, total

abundances are reached.

6) ITR sequentially (row after row) assigns individ-

uals randomly to each row with probabilities propor-

tional to observed column abundance totals until the

respective row total (the number of individuals) is

reached.

7) ITC sequentially (column after column) assigns

individuals randomly to each column with probabilities

proportional to observed row abundance totals until the

respective column total (the number of individuals) is

reached.

8) IA reassigns all individuals randomly to matrix

cells with probabilities proportional to observed row

and column abundance totals until the matrix-wide total

number of individuals is reached. In a few cases, this

algorithm generated matrices with empty rows (species)

or columns (sites), which were discarded prior to

analysis.

9) IF is a two-step algorithm that preserves row and

column abundances and species richness. In the first

step, the algorithm converts the abundance matrix into a

presence/absence matrix. Using a standard swap proce-

dure (Gotelli 2000), 2 3 2 submatrices of the form

1 0

0 1

� �
or

0 1

1 0

� �

to

0 1

1 0

� �
or

1 0

0 1

� �

are reshuffled, again using 100 3 n 3 m reshufflings. In

the second step, the nonzero cells are cleared and then

filled according to the OF algorithm.

All null models and indices were calculated with the

software applications CoOccurrence and Matrix (see

Supplement).

Diagnostic tests

We first determined, for each combination of null

model (14 algorithms) and covariation index (six

indices), whether the null model correctly identified

most of the random matrices as being random. For each

algorithm–index combination, we estimated the tail

probabilities for the set of 200 random MR test matrices

by simulating 1000 null assemblages for each random

matrix. For the MS test matrices, we also simulated 1000

null assemblages, but used only the four most promising

algorithm–index combinations (Fig. 1), based on their

performance with the MR test matrices. If the analysis is

not prone to Type I statistical errors, then approximate-
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ly five of the 200 test matrices should be statistically

significant in the upper tail (P . 0.975) and five should
be significant in the lower tail (P , 0.025) of the

distribution.

After discarding a large number of model–index

combinations that failed this test, we then studied the
statistical power of the most promising combinations. We

did this by modifying the 200MR matrices and generating

from each of them four new matrices (Mmod). First, we
generated 600 matrices for which 0.01% to maximally

33% randomly selected aggregated abundance checker-

boards (as defined by Eq. 4) were rearranged as
segregated checkerboards (as defined by Eq. 2). We then

generated 200 matrices for which 0.01–33% randomly

selected segregated abundance checkerboards (Eq. 2) of
each MR matrix were changed into aggregated checker-

boards. Because such changes potentially alter many

other checkerboards in the matrix, the resulting number
of segregated or aggregated checkerboards ranged from 0

to 7% of the total number of 2 3 2 submatrices [nm(n�
1)(m � 1)/4]. We then calculated the fraction of these
modified matrices that were correctly identified as

statistically significantly segregated or aggregated (P ,

0.05 in either tail) by the different algorithms. From these

analyses, we were able to identify combinations of

algorithms and metrics that had the best power for
detecting segregated and aggregated distributions from

nonrandom matrices. Naturally, greater replication in

benchmark tests would be desirable, but the tests are
time-consuming, and the results were clear-cut with these

samples of 200 and 600 test matrices.

We also calculated a standardized effect size (SES) as

a Z-transformed score [Z ¼ (x � l)/r], where x is the
observed index for the MR or MS test matrix, l is the

mean of the 1000 simulated indices for each of the null

model algorithms, and r is the standard deviation of the
1000 simulated indices. The use of SES is based on the

assumption of an approximately normal error distribu-

tion. This was indeed the case: the mean skewness of all

null model distributions was only 0.004 with a standard

deviation of 0.37. For a random sample of scores that

follows a normal distribution, ;95% of the SES values

should be ,j2.0j. We used the SES to test whether null

model results were sensitive to basic matrix properties

(size, fill, and mean species abundances).

Based on the results of these tests, we used one of the

algorithms (IT) in combination with four metrics (MA,

U, CA, SA) to test for patterns of segregation and

aggregation in the empirical matrices.

RESULTS

Performance of null model algorithms

with random test matrices

Null models that reshuffled whole populations (PM,

PR, PC) performed poorly (Table 1). Irrespective of

metric, they identified more than 70% of the randomMR

matrices as being segregated. The two null models that

resampled observed occurrences (OA, OF) identified

between 10% (OA with the variance test) and 83% (OA

with the Mantel test) of the test matrices as nonrandom.

Individual-based null models that were conditioned on

row, column, or total abundances (IA, IT, ITC, ITR)

performed better than those that were constrained to

match observed species richness (IS, ISC, ISR, IR). In

particular, the individual-based null models IT, ITC,

and ITR identified only 0–15% of the MR matrices as

being not random (Table 1). The performance of the

two-step IF null model was a bit worse: 0–27% of

random MR matrices were statistically significant. For

the sequentially filled random MS matrices, IA, ITC,

and ITR performed worse and incorrectly classified 0–

79% as not random (Table 2). Overall, the best

performing null model was IT, which identified a

maximum of 17% of the MR matrices (with the AA

metric) and 13% of the MS matrices (with the Mantel

test) as being not random.

TABLE 1. Numbers of random matrices (MR; from a total of 200) identified by six metrics of species covariation as being either
segregated of aggregated (using the upper [UCL] and lower [LCL] 97.5% confidence limits).

Algorithm

CA SA AA MA U Mantel

LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL

IA 0 39 0 40 6 10 5 8 3 2 0 0
IT 20 1 17 2 2 34 0 21 2 20 0 0
ITC 1 29 1 26 3 14 10 8 8 4 0 0
ITR 3 14 2 12 9 5 2 8 4 6 0 0
IS 43 25 38 19 1 89 0 39 0 98 0 2
ISC 1 34 1 30 42 0 10 15 1 80 4 0
ISR 90 68 7 174 189 9 131 66 94 74 189 0
IR 65 6 50 15 113 0 91 0 73 4 49 0
IF 8 11 10 12 54 0 25 12 3 45 0 0
OA 58 2 40 3 77 1 5 48 2 17 0 166
OF 0 72 0 88 12 4 8 24 20 56 0 164
PM 182 3 183 2 0 191 0 194 0 196 0 158
PR 171 1 173 0 0 174 1 145 1 181 15 142
PC 180 1 183 1 0 191 0 193 0 193 0 158

Note: See Materials and methods: Strategies for evaluation of null model algorithms and Covariance metrics for explanations of
abbreviations.
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Performance of covariance metrics

with random test matrices

For the best performing null models IA, IT, ITC, and

ITR, many of the six metrics tested had satisfactory Type

I error rates and correctly classified .77% of the MR

matrices as being random (Table 1). For theMS matrices,

all metrics except the Mantel test performed well with the

IT null model, but largely failed with IA, ITR, and ITC

(Table 2). Results of null model tests using the metrics

MA, AA, and U were least dependent on matrix size, fill,

and mean abundance (Table 3). The Z-transformed

values of CA, SA, and, particularly, the Mantel test

TABLE 2. Numbers of sequential matrices (MS; from a total of 200) identified by six metrics of species covariation as being either
segregated or aggregated (using the upper [UCL] and lower [LCL] 97.5% confidence limits), using only the most promising null
models of Table 1.

Algorithm

CA SA AA MA U Mantel

LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL

IA 0 133 0 133 94 0 20 2 64 25 0 0
IT 3 9 1 11 5 2 0 11 0 13 26 1
ITC 0 69 0 72 8 2 61 3 69 3 0 0
ITR 0 84 0 83 82 0 2 67 1 37 0 158

Note: See Materials and methods: Strategies for evaluation of null model algorithms and Covariance metrics for explanations of
abbreviations.

TABLE 3. Pearson correlation coefficients between matrix size,
fill, and mean abundance (¼mean number of individuals per
cell), and the Z-standardized covariation metric for the four
best-performing null models (Table 1) of the random
matrices (MR).

Matrix and properties IA IT ITC ITR

CA

Size 0.00 �0.16 0.02 �0.09
Fill 0.44 �0.26 �0.30 �0.31
Mean abundance 0.31 �0.14 �0.23 �0.15

SA

Size �0.02 �0.16 0.01 0.09
Fill 0.43 �0.26 �0.29 �0.31
Mean abundance �0.29 �0.12 �0.20 �0.13

AA

Size 0.00 0.17 0.00 �0.03
Fill 0.23 0.11 0.10 0.11
Mean abundance 0.10 0.09 0.02 0.07

MA

Size �0.03 0.01 �0.02 �0.09
Fill 0.14 0.01 0.18 0.04
Mean abundance 0.09 �0.01 0.15 0.06

U

Size 0.10 0.17 0.11 0.09
Fill 0.18 0.00 0.18 �0.07
Mean abundance 0.12 0.05 0.19 �0.01

Mantel

Size �0.04 0.05 �0.06 0.08
Fill 0.54 0.27 0.36 0.41
Mean abundance 0.27 0.21 0.13 0.21

Note: Significant correlations (P , 0.05) appear in boldface.
See Materials and methods: Strategies for evaluation of null
model algorithms and Covariance metrics for explanations of
abbreviations.

TABLE 4. Proportions of modified matrices (Mmod; total of
800) that were detected as being either aggregated (�1% to
�10% checkerboards, given as a percentage of the total
number of 2 3 2 submatrices) or segregated (0.01% to 10%).

Change in number
of checkerboards IA IT ITC ITR

CA

�1% to �10% 0.05 0.45 0.06 0.27
0.01% to 0.1% 0.25 0.02 0.17 0.10
0.1% to 1% 0.53 0.11 0.43 0.35
1% to 10% 0.94 0.81 0.94 0.89

SA

�1% to �10% 0.06 0.46 0.08 0.28
0.01% to 0.1% 0.27 0.01 0.16 0.11
0.1% to 1% 0.50 0.10 0.40 0.30
1% to 10% 0.93 0.76 0.94 0.87

AA

�1% to �10% 0.09 0.13 0.06 0.06
0.01% to 0.1% 0.07 0.03 0.16 0.09
0.1% to 1% 0.25 0.13 0.43 0.33
1% to 10% 0.80 0.72 0.91 0.84

CS

�1% to �10% 0.08 0.44 0.10 0.30
0.01% to 0.1% 0.26 0.01 0.16 0.07
0.1% to 1% 0.39 0.06 0.30 0.20
1% to 10% 0.91 0.69 0.90 0.79

MA

�1% to �10% 0.03 0.15 0.02 0.06
0.01% to 0.1% 0.09 0.12 0.12 0.09
0.1% to 1% 0.36 0.36 0.46 0.33
1% to 10% 0.90 0.91 0.94 0.84

U

�1% to �10% 0.02 0.14 0.02 0.13
0.01% to 0.1% 0.03 0.06 0.08 0.05
0.1% to 1% 0.25 0.27 0.35 0.28
1% to 10% 0.87 0.89 0.90 0.87

Mantel

�1% to �10% 0.00 0.00 0.00 0.00
0.01% to 0.1% 0.02 0.01 0.02 0.01
0.1% to 1% 0.14 0.05 0.12 0.09
1% to 10% 0.54 0.42 0.51 0.41

BR

�1% to �10% 0.05 0.29 0.05 0.25
0.01% to 0.1% 0.20 0.02 0.14 0.07
0.1% to 1% 0.19 0.05 0.13 0.11
1% to 10% 0.76 0.58 0.74 0.70
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tended to correlate with matrix fill. The largest correla-

tion was between matrix fill and the Mantel value for the

IA algorithm (Pearson’s r¼ 0.54, P , 0.01).

Performance of null model algorithms and covariance

metrics with segregated and aggregated test matrices

The diagnostic tests with matrices in which we

increased or decreased the numbers of abundance

checkerboards reveal the power of the null models to

correctly identify nonrandom patterns. These tests

suggest that the IT algorithm was less powerful than

IA, ITC, and ITR for detecting species segregation, but

was more powerful for detecting species aggregation

(Table 3). CA and SA in combination with IT had the

best power to detect species aggregation and correctly

identified 45% and 46%, respectively, of the manipu-

lated matrices as aggregated (Table 4). The power of

both tests was comparable to the power of the C score

to detect aggregations when the same matrices were

analyzed in the form of presence/absence data. With

the IT algorithm, the abundance based metrics CA,

MA, and U correctly identified at least 81% of the

segregated matrices (1–10% increase in checkerboards)

as nonrandom. The presence/absence indices CS (C

FIG. 2. Fraction of 185 empirical abundance matrices that were significantly segregated (gray bars) or aggregated (white bars)
according to the metrics MA, U, CA, and SA under the IT null model: vertebrates (N ¼ 14), plants (N ¼ 3), non-arthropod
invertebrates (N¼ 6), Carabidae (N¼ 39), all arthropods (N¼ 126), and interaction matrices (N¼ 36). See Materials and methods:
Strategies for evaluation of null model algorithms and Covariance metrics for explanations of abbreviations.
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score) and BR (nestedness) were more conservative and

identified only 69% and 58%, respectively, of these

matrices as segregated (Table 4). With the IT algo-

rithm, the MA performed best (91% of segregated

matrices correctly identified), but the Mantel test was

too conservative (only 42% of the matrices identified).

Based on analyses of both random matrices (Tables 1–

3) and structured matrices (Table 4) the IT algorithm is

best for testing empirical matrices. The CA and SA

metrics are more conservative, and the MA and U

metrics are more liberal in the detection of nonrandom

patterns.

Meta-analysis of empirical abundance matrices

MA and U identified .80% of the 185 real abundance
matrices as being significantly segregated (Fig. 2). CA

and SA gave similar results, except that most plant and

interaction matrices were classified as random. Howev-

er, CA and SA also identified aggregated patterns in the

plant and interaction matrices that were not detected

with MA and U. All four metrics identified .50% of the

aquatic, mainland, and island data set as being

significantly segregated (Fig. 3). Again, CA and SA

appeared to be more conservative than MA and U. The

C score, which is based only on presence/absence data,

was more conservative than the abundance-based

metrics and identified at most 39% of the animal and

interaction matrices as being segregated. However, this

score classified 33–81% of the matrices as being either

random or even aggregated (Fig. 4A) and the results did

not differ greatly among island/aquatic/mainland ma-

trices (Fig. 4B).

DISCUSSION

Careful benchmark testing of potential randomiza-

tion algorithms and community metrics is essential for

valid null model analyses (Gotelli 2001). In this case,

the vast majority of algorithms and metrics that we

evaluated had unacceptably high Type I error rates

when tested with a series of random matrices that were

created from random sampling of a lognormal species

abundance distribution (Table 1). In fact, the only

metric that met the strict criterion of rejecting H0 for
,5% of the null model matrices was the Mantel metric.

However, this index does not indicate whether a

nonrandom matrix is predominantly aggregated or

segregated, and it had poor power for detecting

significant aggregation or segregation (Table 4). Most

of the null models tests showed some correlations with

measures of matrix size or fill (Table 3). However, most

of the correlations are fairly weak, and they reflect the

universal property that, as sample size becomes very

large, the null hypothesis will inevitably be rejected

because the randomization algorithm is not identical to

the (lognormal) sampling model that was used to

generate the test matrices.

Overall, the IT algorithm performed best, with fairly

low Type I error rates (Tables 1 and 2) but good power

for detecting aggregated or segregated distributions with

a variety of metrics (Table 4). It is interesting to note

FIG. 3. Fraction of 149 empirical abundance matrices that were significantly segregated (gray bars) or aggregated (white bars)
according to the metrics MA, U, CA, and SA under the IT null model: aquatic (N¼ 9), mainlands (N¼ 139), and islands (N¼ 23).
See Materials and methods: Strategies for evaluation of null model algorithms and Covariance metrics for explanations of
abbreviations.
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that the IT algorithm assigns individuals to matrix cells

proportional to observed row and column totals until,

for each row and column, total abundances are reached.

A similar null distribution underlies contingency table

analysis (Everitt 1980), in which the null hypothesis of

no species 3 site interaction is tested by assuming

independent marginal probabilities for each cell in the

matrix (cf. Diamond and Gilpin 1982). However, Monte

Carlo simulations usually do not produce identical

results to parametric tests of the same data (Gotelli

and Ellison 2004). In this case, a parametric chi-square

test (without corrections for small sample size or sparse

matrices; Gotelli and Ellison 2004) of the 200 random

MR matrices identified 33 (16.5%) as being not random

at the 5% error level, a value within the range observed

for the IT null model (Table 1). Alternative algorithms

are available that do not fix row and column abundance

totals, but allow them to vary among different simulated

matrices (see Gotelli and Graves [1996] and Gotelli

[2000] for a discussion of this algorithm for presence/

absence analysis). However, such tests are potentially

prone to greater Type I error, because the null

hypothesis might be rejected due to differences in row

and column sums per se, rather than because of

aggregated or segregated abundance distributions.

When we applied the IT test with several metrics to the

empirical abundance matrices, nearly all of them showed

strongly segregated patterns (Fig. 2), although a few

aggregated distributions were also detected for plant and

interaction matrices. Although differences among taxa

were strong (Fig. 2), differences among habitat type were

not (Fig. 2), which is similar to the findings of Gotelli

and McCabe (2002) for presence/absence matrices. The

frequency of segregated distributions in these real data

sets (Fig. 2) is far greater than would be expected from

the frequencies expected in our null model tests (Tables 1

and 2). When these same matrices were converted to a

presence/absence form and analyzed with the standard

fixed–fixed null model (Gotelli 2001), segregated patterns

still dominated, although the frequency of nonrandom

matrices was much lower (Fig. 4). These results suggest

that null model analysis of abundance matrices may

potentially be more powerful than null model analysis of

presence/absence matrices (Hausdorf and Hennig 2007),

although the latter are more common in the literature

and are easier for field biologists to generate. Detection

errors and imprecise counts are certainly present in both

abundance and presence/absence matrices, and they

potentially affect the power of the tests. However, these

factors have only recently been incorporated into

statistical tests for species interactions (Royle and

Dorazio 2008, Waddle et al. 2010).

Although ecologists routinely test for pairwise corre-

lations of species abundances (Brown et al. 2004), there

has been relatively little use of null models with

abundance data. Some null model tests have been

applied to the analysis of relative abundance distribu-

tions (McGill et al. 2007), although these tests often use

just the row sums of the species abundance matrix. Null

model tests have been used with species abundance

matrices in which the columns represent sampling

periods rather than sites. In the 1980s, ecologists used

null model tests of these data to determine whether

species ranks remained concordant through time (Gross-

man 1982, Ebeling et al. 1990), which is an important

measure of community, persistence, and stability (Pimm

1984). More recently, Houlahan et al. (2007) calculated

Schluter’s (1984) variance ratio (the U metric in our

analyses) for a large number of published species

temporal matrices. Most of these indices indicated a

pattern of species aggregation: abundances tended to

covary positively through time, suggesting that compen-

satory dynamics were not important. Schluter (1984)

found a similar pattern when he analyzed species 3 site

abundance matrices. However, the tests by Houlahan et

al. (2007) and Schluter (1984) assume that the columns

FIG. 4. Fraction of empirical abundance matrices (convert-
ed to presence/absence) with a significant C score (5% error
level) under the fixed–fixed null model classified (A) according
to taxon and type and (B) according to biome. In panel (B) only
the 147 species 3 site matrices are included. Gray bars indicate
species segregation; white bars indicate aggregation.
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of the matrix (sites or times) are equivalent and do not

affect the probability of occurrence of individuals of

different species (Gotelli 2001). In contrast, the IT

algorithm that we used preserves the column totals for

abundance, taking into account differences in suitability

or conditions among sites. With this null model, the U

metric reveals mostly segregated patterns in species

abundance matrices (Fig. 2).

In summary, null model analysis that was first

developed for binary presence/absence matrices can be

effectively extended to abundance matrices and may be a

more powerful test for segregated, aggregated, and

random patterns of abundance. The statistical perfor-

mance of null models against mechanistic colonization

and extinction scenarios is largely unknown, but some

insight can be gained by comparing the performance of

null models to simple sampling distributions, as we have
done here for the lognormal species abundance distri-

bution. Like nearly all previous null models, our

algorithms do not use information on the location of

the samples or take into account spatial autocorrelation

(Lichstein et al. 2002). Most existing tests (including

ours) also treat abundance and presence/absence data as

error-free and do not address the problem of undetected

species (Dorazio 2007). Species detection and spatial

autocorrelation are promising, but largely unexplored,

avenues for future null model analyses.
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