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Abstract 

The connected health movement and remote patient monitoring promise to revolutionize patient 
care in multiple clinical contexts. In orthopedics, continuous monitoring of human joint and muscle tissue 
loading in free-living conditions will enable novel insight concerning musculoskeletal disease etiology. 
These developments are necessary for comprehensive patient characterization, progression monitoring, 
and personalized therapy. This vision has motivated many recent advances in wearable sensor-based 
algorithm development that aim to perform biomechanical analyses traditionally restricted to confined 
laboratory spaces. However, these techniques have not translated to practical deployment for remote 
monitoring. Several barriers to translation have been identified including complex sensor arrays. Thus, the 
aim of this work was to lay the foundation for remote gait analysis and techniques for estimating clinically 
relevant biomechanics with a reduced sensor array.  

 

The first step in this process was to develop an open-source platform that generalized the 
processing pipeline for automated remote biomechanical analysis. The clinical utility of the platform was 
demonstrated for monitoring patient gait following knee surgery using continuous recordings of thigh-
worn accelerometer data and rectus femoris electromyograms (EMG) during free-living conditions. 
Individual walking bouts were identified from which strides were extracted and characterized for patient 
evaluation. A novel, multifactorial asymmetry index was proposed based on temporal, EMG, and 
kinematic descriptors of gait that was able to differentiate between patients at different stages of recovery 
and that was more sensitive to recovery time than were indices of cumulative physical activity. 

 

The remainder of the work focused on algorithms for estimating joint moment and simulating 
muscle contraction dynamics using a reduced sensor array. A hybrid technique was proposed that 
combined both physics and probabilistic models in a complementary fashion. Specifically, the notion of a 
muscle synergy function was introduced that describes the mapping between excitations from a subset of 
muscles and excitations from other synergistic muscles. A novel model of these synergy functions was 
developed that enabled estimation of unmeasured muscle excitations using a measured subset. Data from 
thigh- and shank-worn inertial sensors were used to estimate segment kinematics and muscle-tendon unit 
(MTU) lengths using physics-based techniques and a model of the musculoskeletal geometry. These 
estimates of muscle excitation and MTU length were used as inputs for EMG-driven simulation of muscle 
contraction. Estimates of muscle force, power, and work as well as net joint moment from the proposed 
hybrid technique were compared to estimates from laboratory-based techniques. This presents the first 
sensor-only (four EMG and two inertial sensors) simulation of muscle contraction dynamics and joint 
moment estimation using machine learning only for estimating unmeasured muscle excitations.  

 

This work provides the basis for automated remote biomechanical analysis with reduced sensor 
arrays; from raw sensor recordings to estimates of muscle moment, force, and power. The proposed hybrid 
technique requires data from only four EMG and two inertial sensors and work has begun to seamlessly 
integrate these sensors into a knee brace for monitoring patients following knee surgery. Future work 
should build on these developments including further validation and design of methods utilizing remotely 
and longitudinally observed biomechanics for prognosis and optimizing patient-specific interventions. 
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 Chapter 1: Wearable Sensors for Remote Patient Monitoring in Orthopedics: A Narrative Review 

 

A modified version of this chapter has been submitted for publication as: Gurchiek, RD, Beynnon, BD, 

Agresta, CE, Choquette, RH, McGinnis, RS (2020). Wearable sensors for remote patient monitoring in 

orthopedics: A narrative review. Minerva Ortopedica e Traumatologica.. 

 

1.1. Introduction 

1.1.1. Prevalence of musculoskeletal disorders 

Over the past three decades, musculoskeletal disorders rank among the top 10 factors underlying 

the increased health burden across the globe [1]. Notably, among working age males and females (20-50 

years old), musculoskeletal disorders are one of the three greatest contributors to years lived with a disability 

and the majority of these conditions concern the lower body (lumbar region and below) [2]. In particular, hip 

and knee osteoarthritis (OA) are a leading cause of disability affecting over 300 million people worldwide 

[2], [3]. These have detrimental economic effects both in terms of human capital [2] and healthcare spending. 

For example, in the USA, orthopedic surgeries were the most common inpatient operating room procedures 

in 2012 [4] and in 2016 the largest expenditures were in musculoskeletal disorders (over $350 billion) with 

the majority in the 20-64 year old category [5]. Thus, a clear need has been recognized for innovative 

approaches in the management and monitoring of patients with orthopedic conditions [6]. 

1.1.2. Remote patient monitoring framework 

Remote patient monitoring via mobile health technologies (Figure 1) promise major contributions 

to these innovation efforts and across multiple clinical contexts [7]–[9]. The development of digital 

biomarkers has become a major thrust area [10] and may play an important role in optimizing patient care in 

orthopedic medicine. This connected health movement is largely driven by advances in sensor hardware, 

wearability, and methods for estimating clinically relevant biomechanical and physiological variables [11]–

[16]. Analyses previously restricted to confined laboratory spaces can now theoretically be performed 
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remotely. This includes estimation of spatiotemporal descriptors of gait [17], gait speed [18]–[20], joint 

and/or single segment kinematics [21]–[23], inverse dynamics (e.g., joint moments, ground reaction forces) 

[14], [24]–[27], and indices of motor control (e.g., muscle synergy analysis [28], activation patterns [29]). 

We say “theoretically” because the potential to actually deploy these techniques for remote observation is 

merely suggested given that they require only wearable sensor data and given sufficient estimation 

performance based on validation studies. However, it is not clear to what extent these methods have actually 

been deployed for this purpose. 

Biomechanical outcomes at a joint-, limb-, and/or muscle-specific level are useful for diagnosis 

and, importantly, for identifying causal factors related to disease onset and progression [30]–[32]. The 

potential to continuously monitor tissue loads and characterize the biomechanics of free-living movement, at 

this level of detail, indicate several improvements to the current standard of care. Compared to laboratory-

based analysis, remote observations would enable increased observation frequency and ecologically valid 

evaluation. Concerning ecological validity, in-lab observations may not accurately reflect those in free-living 

conditions and especially for gait speed-dependent variables [33]–[35]. Concerning increased observation 

frequency, continuous monitoring and longitudinal data are needed to understand patient-specific responses 

to joint and tissue loads, prescribed or otherwise [30]. Remote gait analysis, in particular, is important in this 

context because of the relationship between ambulatory loads and tissue health [31], [36]. 

 

Figure 1: Schematic overview of remote monitoring framework. Wearable sensors continuously 
record data that are automatically processed for estimation of clinically relevant biomechanical 
variables. These data are aggregated and used for patient characterization at single time-points 
and across multiple days for trends analysis. 
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Increased observation frequency (e.g., analysis of every daily walking bout) facilitates novel 

investigation into several disease-related phenomena that are currently not well understood. For example, in 

the context of anterior cruciate ligament reconstruction surgery (ACLR), uncertainty surrounds the cause and 

effect relationship between post-surgery biomechanics and early onset knee OA as well as how to prescribe 

optimal loading in rehabilitation [37]. Further, healthy articular cartilage appears to adapt favorably to 

mechanical loading and yet unfavorably for aged or diseased tissue [32], [38]. In the context of OA, this 

transition is thought to occur near the onset of the disease but a more exact characterization remains unknown 

[38]. These are likely related to the accumulation and type of load (e.g., compressive or shear) [39] and thus 

continuous monitoring may help elucidate these and other cumulative load-dependent processes. Further, 

longitudinal observations enable prognosis concerning anticipated trajectories of clinical outcomes based on 

personalized prediction models [40], [41]. These trajectories should be characterized as soon as possible as 

early identification is critical in musculoskeletal disease [30], [38], [42]. For example, in the context of 

ACLR, pathomechanics manifest early [37], [43], [44] but their effects can be mitigated given the efficacy 

of gait retraining [45], [46] and because adopted gait patterns are learned over a long period of time [47]. 

These trajectories and intervention responses are patient-specific and based on dense datasets which augment 

clinical decision-making and personalized treatment plans [48].  

Beyond performing the same evaluations characteristic of traditional human motion capture in 

laboratory environments, some insight is unique to remote analysis being completely outside the scope of 

infrequent laboratory observations. This includes, for example, analyzing the variation in gait mechanics 

across multiple time scales (e.g., stride-by-stride, hour-by-hour, day-by-day), quantification of cumulative 

tissue loads, evaluating the retention of movement patterns in a gait retraining context [45], [46], [49], and 

the assessment of physical activity (PA). Concerning the latter, indices of cumulative PA (e.g., daily step 

count) are common for patient characterization in orthopedics. However, analyzing free-living gait at a stride-

by-stride level is advantageous in terms of both granularity and, for particular mechanical variables (e.g., 

joint moment), sensitivity to disease etiology [50], [51]. Novel measures have been proposed unique to 

wearable sensor data that classify health status (e.g., fall risk [52], OA risk [41]) or predict changes in 

cartilage microstructure [53] as well as surrogate measures that correlate with traditional biomechancial 
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variables of clinical importance [54], [55]. Controlled, laboratory-based evaluations are the gold standard 

and are necessary to probe specific mechanical properties related to musculoskeletal disease. However, it is 

clear that remote observations should be incorporated to augment this process for comprehensive evaluation. 

1.1.4. Review aim 

Despite this promising potential, the extent to which these techniques have actually been utilized 

for remote monitoring of patients with musculoskeletal disorders remains unclear. Jung et al. (2020) recently 

reviewed 58 studies utilizing wearable sensors for remote monitoring in multiple subject populations, but 

none were specifically related to orthopedic conditions [56]. They also summarize previous reviews similarly 

concerned with a general cohort [57] as well as in specific clinical contexts (e.g., multiple sclerosis [8], 

Parkinson’s disease [58]), but not for musculoskeletal disorders. 

In an orthopedic context, Arnold et al. (2016) reviewed eight studies concerning changes in PA 

following total hip or knee arthroplasty (THA or TKA, respectively) [59]. Similarly, Withers et al. (2017) 

reviewed 17 studies concerning changes in PA following THA [60], but only four of these used a wearable 

sensor. Johns et al. (2020) reviewed 12 studies concerning changes in PA following interventions for ankle 

OA, but only one used a wearable sensor [61]. These reviews were less concerned with the methodological 

aspects of remote monitoring, but rather regarding clinical insight based on one type of wearables-based 

outcome; namely, the effect of select interventions on changes in PA. Small et al. (2019) limited their review 

to 45 studies that used inertial sensors to evaluate patients following knee arthroplasty in both free-living and 

laboratory environments. Their categorization of wearables-based assessments included (1) functional and 

gait parameters, (2) physical activity, and (3) joint instability. However, remote monitoring was not analyzed 

as a distinct category, although 28 of their reviewed studies monitored patients in free-living conditions using 

a wearable sensor. 

To the author’s knowledge, no previous reviews have addressed specifically the remote analysis of 

individual strides as an approach separate from indices of cumulative PA. Thus, the current review aimed to 

characterize the extent to which wearable sensors have been used for remote analysis at a stride-by-stride 

level (or some other task-specific segmentation) as opposed to indices of cumulative PA. 
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1.2. Search strategy 

The PubMed database was searched on September 15, 2020 for relevant articles using search terms 

related to the use of wearable sensors for remote monitoring of gait in orthopedic populations. Only journal 

articles (no conference proceedings) written in English were considered. Articles were removed if they did 

not clearly use a wearable sensor for evaluation and/or if they did not passively evaluate free-living activity. 

Passive evaluation was defined as the evaluation of unprescribed movement. For example, performing a 

prescribed 10 m walk test or prescribed in-home rehabilitation exercises were considered active, not passive, 

evaluations. Studies characterizing only active evaluations were not included for review even though the 

environment might have been remote. The references in each identified article were searched for additional 

studies to include. All relevant articles in the aforementioned previously published reviews [59]–[62] were 

also included. 

The following data were extracted from each reviewed article: clinical context (e.g., OA, ACLR); 

impaired or surgical joint or region; and the type, number, and location of wearable sensors. Further, the 

primary outcome from this review concerned a categorization of the variables estimated from the remote 

analyses. Specifically, all outcome variables were categorized as a either a measure of cumulative PA or as 

pertaining to a stride-level analysis. For example, common measures of cumulative PA include daily step 

count, percentage of time spent walking, and energy expenditure whereas stride-by-stride variables may 

include gait speed, stride frequency, or sit-to-stand time. Some activity monitors output step count in one-

minute epochs from which stride frequency (strides/minute) can be calculated as an indicator of activity 

intensity. However, stride frequency computed as the number of strides counted in one minute is not 

necessarily equivalent to the average stride frequency computed for each individual stride in the same minute 

[63]. Thus, cadences based on step counts stored in one-minute bins were not considered stride-level 

variables. In most cases, evaluative outcomes were processed using proprietary software. Others described 

custom algorithms that processed raw data for identifying walking bouts (e.g., in 5 second epochs) and gait 

events (e.g., foot contact). For the latter case, some of these studies also reported stride frequency, but without 

explicitly stating that stride frequency was computed per stride. In these instances, it was assumed that the 
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variables were computed stride-by-stride as these algorithms, gait event detection in particular, are sufficient 

to do so and because the raw sensor data were processed. 

 

1.3. Results 

A total of 90 studies were identified that met all inclusion and exclusion criteria. Note that these 

data were compiled after the study presented in Chapter 3 was published; thus, it was included for review. A 

general increasing trend was observed in the number of studies monitoring patients remotely (Figure 2). 

Across all studies, most patients suffered from musculoskeletal diseases of the knee (70 studies) followed by 

the hip (24 studies), spine (5 studies), and ankle (2 studies) (Figure 3). The most popular locations for 

wearable sensors were the waist (40 studies), thigh (28 studies), and shank (17 studies) while less than 10% 

of studies used sensors located on the chest/trunk, wrist, upper arm, and foot (Figure 3). Accelerometers were 

the most common type of sensor (84 studies). Electromyography (EMG) sensors were used in three studies 

and smartphones were used in two studies. Magneto-inertial measurement units (MIMU; accelerometer, 

gyroscope, magnetometer) were also used in two studies [64], [65]. However, the processing algorithm was 

described as “acceleration-based” and the associated reference describing the development of the algorithm 

apparently required only accelerometer data [66]. Thus, it is not clear how the gyroscope and magnetometer 

data were used, if at all.  

 

Figure 2: Publications per year of studies that utilized wearable sensors for remote monitoring 
in patients with orthopedic conditions. 
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Most studies quantified cumulative PA (87 studies, 97%) compared to only ten studies (11%) that 

characterized movement on a stride-by-stride level (Figure 3). One study used stride-level data, including 

chair rise time, as inputs to a regularized linear model for estimating timed-up-and-go (TUG) time (trained 

on in-lab observations) [67]. All other studies evaluating stride-level outcomes report an aggregate measure 

(e.g., mean) of all identified strides [34], [68]–[72] or a select few [73]–[75] for walking gait as well as sit-

to-stand time for identified sit-to-stand events in two studies [73], [74]. Stride-level variables were mostly 

temporal (e.g., stride frequency, duty factor) in addition to gait speed [34], knee flexion angle [75], and 

between-leg asymmetries based on rectus femoris muscle activity (EMG) and thigh kinematics [70]. Table 1 

summarizes each study pertaining to the inquiries of the current review. 

 

 

 

Figure 3: Summary of the studies included for review including wearable sensor location (A, 
blue), the joint/region of interest (A, red) and the percentage of studies that characterized free-
living movement using either indices of cumulative PA (B) and/or stride-level variables (C). 
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Table 1: Summary of studies included in review 

 
Author 

(year) [reference] Clinical Context Sensors 
type (#): location PA Stride-Level 

     Oldham and Howe 
(1998) [76] KOA, pre-TKA EMG (2): VL, RF Y N 

Walker et al. 
(2002) [77] KOA, TKA ACC (1): trunk Y N 

Talbot et al. 
(2003) [78] KOA ACC (2): waist Y N 

Franklin et al. 
(2006) [79] TKA ACC (1): ankle Y N 

Brandes et al. 
(2008) [80] KOA, pre-TKA ACC (2): waist, ankle Y N 

de Groot et al. 
(2008) [81] 

KOA, HOA, TKA, 
THA 

ACC (3): sternum, both 
thighs Y N 

Howe and Rafferty 
(2009) [82] KOA EMG (2): VL, VM 

ACC (1): thigh Y N 

Foucher et al. 
(2010) [34] post-THA ACC (1): ankle N gait speed 

Schulte et al. 
(2010) [83] LSS, SS ACC (1): ankle Y N 

Tsuji et al. 
(2010) [84] KOA, TKA ACC (1): waist Y N 

Vissers et al. 
(2010) [85] KOA, TKA ACC (3): sternum, both 

thighs Y N 

Winter et al. 
(2010) [86] 

KOA, HOA, LSS, pre-
TKA, pre-THA, pre-SS ACC (1): ankle Y N 

Assal et al. 
(2011) [87] AOA, TAA ACC (1): ankle Y N 

Brandes et al. 
(2011) [88] KOA, TKA ACC (4): ankle, thigh, 

waist x2 Y N 

Hayes et al. 
(2011) [89] TKA ACC (5): chest, both 

thighs, both feet Y N 

Robbins et al. 
(2011) [90] KOA ACC (1): waist Y N 

Tonelli et al. 
(2011) [91] KOA, pre-TKA ACC (1): thigh Y N 

Vissers et al. 
(2011) [73] HOA, THA ACC (3): sternum, both 

thighs Y stride frequency 
chair rise time 

Holsgaard-Larsen and Roos 
(2012) [92] 

KOA, HOA, pre-TKA, 
pre-THA ACC (1): upper arm Y N 

Chmelo et al. 
(2013) [93] KOA ACC (1): waist Y N 
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Doré et al. 
(2013) [94] 

KOA, other knee 
abnormalities ACC (1): unclear Y N 

Fujita et al. 
(2013) [95] HOA, THA ACC (1): waist Y N 

Lin et al. 
(2013) [96] HOA, THA ACC (1): waist Y N 

Maly et al. 
(2013) [97] KOA ACC (1): waist Y N 

Vissers et al. 
(2013) [74] 

KOA, HOA, TKA, 
THA 

ACC (4): sternum x2, 
both thighs Y stride frequency 

chair rise time 

Bolszak et al. 
(2014) [98] post-TKA ACC (1): waist Y N 

Dessery et al. 
(2014) [99] KOA ACC (1): waist Y N 

Harding et al. 
(2014) [100] 

KOA, HOA, TKA, 
THA ACC (1): waist Y N 

Lützner et al. 
(2014) [101] TKA ACC (1): shank Y N 

White et al. 
(2014) [102] KOA ACC (1): ankle Y N 

Davenport et al. 
(2015) [103] 

post-hip surgery (hip 
fracture) ACC (1): thigh Y N 

Kahn and Schwarzkopf 
(2015) [104] KOA, TKA ACC (1): waist Y N 

Kretzschmar et al. 
(2015) [105] KOA ACC (1): waist Y N 

Lee et al. 
(2015) [106] KOA ACC (1): waist Y N 

Lo et al. 
(2015) [107] KOA ACC (1): waist Y N 

Maly et al. 
(2015) [108] KOA ACC (1): waist Y N 

Øiestad et al. 
(2015) [109] KOA ACC (1): ankle Y N 

Song et al. 
(2015) [110] KOA ACC (1): waist Y N 

Verlaan et al. 
(2015) [68] KOA ACC (1): thigh Y stride frequency 

Fukutani et al. 
(2016) [111] KOA ACC (1): thigh Y N 

Kahn and Schwarzkopf 
(2016) [112] KOA, TKA ACC (1): waist Y N 

Liu et al. 
(2016) [113] KOA ACC (1): waist Y N 

Lützner et al. 
(2016) [114] KOA, TKA ACC (1): shank Y N 
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Mobbs et al. 
(2016) [115] 

SS (multiple 
indications) ACC (1): waist Y N 

Taniguchi et al. 
(2016) [116] post-TKA ACC (1): unclear Y N 

Toogood et al. 
(2016) [117] post-THA ACC (1): ankle Y N 

White et al. 
(2016) [118] KOA ACC (1): ankle Y N 

Bell et al. 
(2017) [119] post-ACLR ACC (1): waist Y N 

Brisson et al. 
(2017) [120] KOA ACC (1): waist Y N 

Cooper et al. 
(2017) [121] KOA, TKA ACC (1): thigh Y N 

Engdal et al. 
(2017) [122] post-THA ACC (1): thigh Y N 

Mehta et al. 
(2017) [123] 

hip arthroscopy 
(femoroacetabular 

impingement) 
phone (1): unclear Y N 

Schotanus et al. 
(2017) [69] KOA, TKA ACC (1): thigh Y stride frequency 

Agarwal et al. 
(2018) [124] KOA ACC (1): waist Y N 

Daugaard et al. 
(2018) [125] KOA, post-TKA ACC (1): thigh Y N 

Fenten et al. 
(2018) [126] post-TKA ACC (1): thigh Y N 

Fenton et al. 
(2018) [127] KOA ACC (1): ankle or waist Y N 

Halilaj et al. 
(2018) [53] KOA ACC (1): waist Y N 

Hayashi et al. 
(2018) [128] post-TKA, post-THA ACC (1): waist Y N 

Hjorth et al. 
(2018) [129] post-THA, post-RHA ACC (1): thigh Y N 

Losina et al. 
(2018) [130] KOA, TKA ACC (1): unclear Y N 

Master et al. 
(2018) [131] KOA ACC (1): waist Y N 

Pellegrini et al. 
(2018) [132] TKA ACC (1): waist Y N 

Sliepen et al. 
(2018) [133] KOA ACC (1): thigh Y N 

Twiggs et al. 
(2018) [134] KOA, TKA ACC (1): wrist Y N 



 
11 

Allen et al. 
(2019) [135] KOA ACC (1): waist Y N 

Chapman et al. 
(2019) [75] TKA ACC (2): thigh, shank N knee flexion 

angle 

Frimpong et al. 
(2019) [136] KOA, TKA ACC (1): waist Y N 

Gilmore et al. 
(2019) [137] 

post-SS (multiple 
indications) ACC (1): thigh Y N 

Gurchiek et al. 
(2019) [70] post-ACLR EMG (2): both RF 

ACC (2): both thighs Y stride frequency 
asymmetry 

Hjorth et al. 
(2019) [71] post-THA, post-RHA ACC (1): thigh Y stride frequency 

Jeong et al. 
(2019) [138] KOA ACC (1): wrist Y N 

Kuenze et al. 
(2019) [139] post-ACLR ACC (1): waist Y N 

Kuenze et al. 
(2019) [140] post-ACLR ACC (1): waist Y N 

Luna et al. 
(2019) [141] 

KOA, HOA, TKA, 
THA ACC (1): wrist Y N 

Ramkumar et al. 
(2019) [142] KOA, TKA phone (1): unclear Y N 

Saporito et al. 
(2019) [67] post-THA ACC (1): trunk N multiple 

Shofer et al. 
(2019) [143] 

AOA, TAA, ankle 
arthrodesis ACC (1): ankle Y N 

Vaughn et al. 
(2019) [144] TKA, THA ACC (1): waist or thigh Y N 

Baez et al. 
(2020) [145] post-ACLR ACC (1): waist Y N 

Brisson et al. 
(2020) [146] KOA ACC (1): waist Y N 

Christiansen et al. 
(2020) [147] post-TKA ACC (1): waist Y N 

Jelsma et al. 
(2020) [65] post-RHA MIMU (1): thigh Y N 

Jelsma et al. 
(2020) [64] post-THA, post-RHA MIMU (1): thigh Y N 

Keppler et al. 
(2020) [148] 

hip surgery (hip 
fracture) ACC (1): waist Y N 

Lisee et al. 
(2020) [149] post-ACLR ACC (1): waist Y N 

Sakakima et al. 
(2020) [150] 

multiple (spine, hip, 
knee) ACC (1): waist Y N 

Taylor et al. 
(2020) [151] 

post-hip surgery (hip 
fracture), hip fracture ACC (1): thigh Y N 
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Vangeneugden et al. 
(2020) [72] KOA ACC (1): thigh Y stride frequency 

Voinier et al. 
(2020) [152] KOA ACC (1): ankle Y N 

     KOA: knee OA, TKA: before (pre-) and after (post-) TKA, HOA: hip OA, THA: before (pre-) and after (post-) 
THA, LSS: lumbar spinal stenosis, SS: spinal surgery, AOA: ankle OA, TAA: before (pre-) and after (post-) total 
ankle arthroplasty, RHA: before (pre-) and after (post-) resurfacing hip arthroplasty, VL: vastus lateralis, RF: rectus 
femoris, VM: vastus medialis, ACC: accelerometer (or pedometer) 

 

1.4. Discussion 

The main finding of this review was that despite a plethora of research dedicated to wearable 

sensor-based biomechanical analysis and the potential to improve patient care by deploying these techniques 

remotely, these developments have not translated to remote deployment. Only ten studies characterized free-

living gait on a stride-by-stride level extracting variables often computed in laboratory-based gait analysis. 

Moreover, only three of these ten studies computed non-temporal descriptors of gait. The first was Foucher 

et al. (2010) [34] who found that gait speed increased from three weeks to twelve months post-THA when 

observed remotely; a finding that was reflected in laboratory observations (for which patients were told to 

walk at a “normal comfortable” speed). However, conclusions regarding comparisons to healthy controls 

differed between laboratory and remote observations at the later time point. Specifically, laboratory-based 

observations suggested slower gait in patients at 12 months post-THA compared to healthy controls, while 

remote observations suggested no difference. The second was Chapman et al. (2019) [75] who found that 

knee flexion range of motion during the stance phase of gait recovers faster than for the swing phase of gait 

in patients rehabilitating from TKA. The knee flexion angle estimate was based on estimates of the angular 

deviation of the thigh and shank segment long axes relative to the direction of gravity using accelerometer 

outputs from thigh- and shank-fixed sensors. This method is similar to what has been deployed for attitude 

estimation in less dynamic conditions; for example, to evaluate knee flexion range of motion [153] or for 

drift correction in integration-based approaches [16], [154]. To the author’s knowledge, this is the first and 

only in-lab validation (and subsequent remote deployment) for knee flexion angle estimation using an 

accelerometer-only technique during dynamic activity like gait. The third was Gurchiek et al. (2019) [70] 

who found that stride-level descriptors of gait biomechanics were more sensitive to recovery time than were 
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indices of PA (step count, time spent walking) in patients rehabilitating from ACLR (Chapter 3). They 

proposed a multifactorial asymmetry measure that considered between-leg differences in duty factor, 

between-leg differences in phase-specific (stance or swing) mean muscle excitation, and between-leg 

similarity in like time-series (thigh acceleration and rectus femoris muscle excitation). Moreover, they 

illustrate the fluctuation of this asymmetry measure throughout the entire wear time. Analysis of within-day 

gait variability is unique to remote monitoring and has been explored by others for temporal gait variables 

[72] and PA [72], [136], [137]. 

Contrary to the scarce use of wearables-based biomechanical analysis at a stride-by-stride level, 

the results of this review confirm the popular belief that indices of PA are the most common metric used for 

remote monitoring in orthopedics. These metrics were used to investigate multiple scientific inquiries 

including evaluating the effect of select interventions on the recovery and progression of PA over time [64], 

[69], [77]–[79], [81], [83], [84], [87], [88], [95], [96], [99]–[101], [104], [114], [115], [117], [121], [123], 

[128], [130], [132], [134], [136], [137], [141]–[143], [147], [148], [151] and to compare PA between 

impaired and unimpaired populations [68], [76], [77], [80], [82], [86], [92], [95], [101], [119], [125], [139], 

[149], [150]. Another popular comparison was between wearables-based estimates of PA and subjective, 

questionnaire-based assessments wherein discrepancies were most often found [77], [119], [139], [143], 

[144] or weak correlations [89]. Others suggest the extent to which objective and subjective PA assessments 

yield similar conclusions may depend on sex [98] and/or the specific metric used [98], [136]. 

Indices of cumulative PA alone often represent a targeted outcome in interventions [81], [84] as 

they are vital for cardiovascular health [155] and weight loss [156] which positively affects tissue health in 

obese populations [157], [158]. Beyond the distinct clinical insight unique to indices of PA, the relationship 

between these measures and other targeted outcomes is also relevant, for example, as a potential surrogate 

measure and for understanding what underlies variance in PA (pain, muscle strength, etc.). Regarding PA as 

a potential surrogate measure, analysis of this relationship ultimately concerns the extent to which 

conclusions drawn about a patient are similar when characterized using PA compared to other outcomes. 

Across the studies included in the current review, this analysis was by way of correlation/regression analysis 
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or by examining whether or not two groups that differed according to one measure also differed according to 

PA-based metrics (e.g., comparing groups between two time points or comparing unimpaired and impaired 

groups). For example, studies from the current review identified positive relationships between PA and gait 

speed [102], [106], [127]. Mixed results were observed for other outcomes including, for example, pain in 

TKA [77], [81], [100], [112], THA [96], [100], knee OA [90], [91], [93], [111], [113], [146], and spine 

surgery [115], [137]; muscle strength in knee OA [78], [93], [138] and ACLR [139]; ground reaction force 

during gait in knee and hip OA [80], time since surgery following ACLR [70], [119], spine surgery [83], 

[115], and TKA/THA [95], [128], [141] which may be patient-specific [128], [141]; and joint range of motion 

in knee OA [91] and TKA [116], [136]. While some of this variation may be due to differences in the clinical 

context and/or the specific PA metric, these findings suggest caution should be taken concerning PA as a 

biomarker for recovery, as an indication of gait quality (and vice versa), and for prognosis. 

Concerning prognosis, some have found no relationship between PA and cartilage tissue health 

[109], [118] or inconclusive results [105] while others have identified relationships [53], [94], [120], [152]. 

This discrepancy between studies that have and have not identified associations between PA and tissue 

morphology/degradation appears related to the consideration of additional factors that provide context for 

interpreting the cumulative PA metric. For example, Halilaj et al. (2018) showed that while indices of PA 

alone were not associated with region-specific tissue degradation, canonical correlation analysis identified a 

novel activity index and microstructural index that were significantly correlated (r = 0.96, p = 0.004) [53]. 

Moreover, bivariate correlations between the activity index and activity intensities indicated that both under-

loading and over-loading can be detrimental to tissue health. Others have made similar observations wherein 

PA contextualized by BMI [152] or pain [107] explain variance in tissue health. Further, the theoretical 

cumulative knee adductor load (CKAL, product of the daily step count and the average knee adduction 

moment impulse measured in-lab) has been found to better discriminate between healthy individuals and 

patients with knee OA than the peak knee adduction moment alone [97]. However, conflicting results suggest 

that CKAL and other load-contextualized PA metrics do not explain any additional variance in cartilage 

morphology across samples of patients with clinical knee OA [108], [120]. The CKAL metric assumes that 

the average knee adduction moment trajectory across a number of strides measured in a single, laboratory-
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based gait analysis is representative of every stride taken during daily life. This is likely not a valid 

assumption given that joint moment is gait speed-dependent (and nonlinearly in some cases) [159], in-lab 

“normal” gait speeds are not representative of out-of-lab observations [33]–[35], and because gait 

biomechanics vary stride-by-stride and throughout the day [70]. These motivate the characterization of 

cumulative tissue loads on a stride-by-stride basis that may pave the way to a better understanding of optimal 

loading and how to prescribe it.  

Several factors may underlie the observed scarcity of studies implementing wearables-based 

remote biomechanical analysis. These include the requirement of additional analyses, algorithm processing 

time, lack of open-source algorithms and validation datasets, insufficient algorithm validation, a disconnect 

between algorithm developers and clinicians who wish to deploy those algorithms, and convenience of the 

wearable sensor system. For example, remote patient monitoring requires activity identification and gait 

event detection [70] (Figure 1) which may not be necessary for algorithm validation since data are labeled 

and other instrumentation can detect gait events (e.g., force plates). Open-source algorithms streamline use 

by teams not involved in the algorithm development both for deployment and further validation for which 

open-source datasets are important. Some algorithms may be insufficiently validated based on the validation 

sample (e.g., sample size [13], lack of validation on impaired populations [12]) or inadequate statistical error 

analysis [13]. In addition to these factors, Loncar-Turukalo et al. (2019) identified technology acceptance, 

comfortability, and the lack of research on battery technology and energy efficient solutions as potential 

barriers to the connected health movement [11]. Arguably, comfortability and the convenience of the 

wearable sensor system are the biggest hurdles preventing remote biomechanical analysis in practice. Many 

methods require complex sensor arrays across multiple body segments that are unattractive, inconvenient, 

and may discourage use [160], [161]. This has motivated the pursuit of reduced-sensor arrays [162], [163] 

and that seamlessly integrate into accessories commonly worn by patients (e.g., shoe [164], knee brace [165]). 

Accelerometers were the most common wearable sensor used across all studies. Gyroscopes have 

greater power requirements compared to accelerometers which may have discouraged the use of IMU-based 

joint angle estimation algorithms. Advances in battery technology has been identified as a research gap in 
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remote monitoring [11] and may help overcome this barrier. Only three studies monitored muscle activity 

remotely using wearable EMG sensors [70], [76], [82]. This represents a relatively unexplored area in general 

that should be explored given the clinical relevance of muscle activation patterns and their relation to other 

biomechancial variables of interest. For example, EMG data are the most common input to machine learning 

models for estimating biomechanical time-series (Chapter 4) [12]. Novel models of muscle coordination have 

been developed that enable estimation of unmeasured muscle excitations from a measured subset thus 

reducing the number of required sensors (Chapter 5) [162]. However, interpretation of EMG recordings in 

applications requiring normalization by the maximal voluntary contraction is complicated in remote analysis 

since the properties of the skin-electrode interface varies throughout the day (e.g., sweat, temperature) and 

affects the normalization constant. Thus, compensatory methods should be the focus of future research. 

A general increasing trend with respect to time was observed in the overall number of studies 

monitoring patients remotely in orthopedics (Figure 2). This finding has been observed in related reviews 

[11], [12] and reflects the increasing popularity in wearables-based human motion analysis. Impairments of 

the knee joint were studied the most across all articles included in this review which is consistently observed 

in reviews concerning rehabilitation in OA [166], [167]. However, considering only studies concerned with 

knee/hip OA or TKA/THA, the knee joint comprised 77% of studies in this review which is comparable to 

the same ratio for estimates of the global prevalence of knee and hip OA (87%) [2]. Despite the great number 

of studies focused on the knee joint, only 7% were concerned with monitoring patients post-ACLR. This 

should be the focus of future work as remote monitoring could be especially relevant for this population in 

the early rehabilitation stages. 

 

1.5. Conclusion 

Indices of cumulative PA are the most common metric for remote monitoring in orthopedics. 

Remote biomechanical analysis at a stride-by-stride level is relatively under-utilized considering the vast 

increase in research devoted to wearables-based algorithm development. Analyses of cumulative PA have 

provided unique, clinically relevant insight that should be incorporated into patient evaluations. Likewise, 
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analysis of individual strides has led to the development of novel digital biomarkers for monitoring 

rehabilitation progression. Future deployment of algorithms for continuous monitoring of joint and tissue 

loads may help clarify uncertainty surrounding their relationship with tissue degradation and implications for 

optimal loading. 

 

1.6. Dissertation outline 

 This literature review highlights the need for practically deployable remote gait analysis 

techniques. In particular, open-source algorithms that automatically process raw data from a reduced sensor 

array for estimating clinically relevant biomechanical variables are needed. Thus, the aim of this dissertation 

was to lay the foundation for these techniques. Throughout this work, a focus was placed on exploring 

methods for monitoring knee joint loads using a reduced sensor array. Chapter 2 describes the validation of 

an algorithm for identifying gait events using a single, thigh-worn accelerometer. Chapter 3 describes the use 

of this algorithm as a part of an open-source platform that generalizes the processing pipeline for remote 

biomechanical analysis and its application for monitoring patients recovering from knee surgery. With the 

general analytical framework established, Chapters 4-6 then focus specifically on the development of 

methods for biomechancial analysis using a reduced sensor array. Chapter 4 is a review of machine learning 

techniques that have been proposed as solutions to the reduced sensor array estimation problem. The findings 

of that review motivated a potential hybrid technique combining both physics and probabilistic models 

comprised generally of two steps: (1) estimate a complete set of muscle excitations using only a measured 

subset (thus reducing the number of required sensors) and (2) use the complete set of muscle excitations from 

step (1) along with inertial sensor-based estimates of the system kinematics to drive the muscle contraction 

dynamics using EMG-driven techniques. In this way, clinically relevant biomechanics can be estimated (e.g., 

muscle force, moment, power). Chapter 5 describes the development and validation of a Gaussian process 

model of muscle synergy functions as a solution to step (1). Chapter 6 then describes the development and 

validation of the hybrid technique in step (2) utilizing the Gaussian process model developed in Chapter 5. 

Chapter 7 concludes with a summary of developments and implications for future work. 
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Chapter 2: Gait Event Detection Using a Thigh-Worn Accelerometer 

 

A modified version of this chapter was published as: Gurchiek, RD, Garabed, CP, McGinnis, RS (2020). Gait 

event detection using a thigh-worn accelerometer. Gait and Posture, 80: 214-216. 

 

2.1. Introduction 

Recent developments in remote gait analysis promise improved monitoring of patients with both 

neurological and musculoskeletal conditions [8], [33], [70], [168], [169]. Gait event detection is doubly 

important for remote analyses as it provides the information needed to compute spatiotemporal gait variables, 

which alone are clinically informative, and it enables more complex analyses that require accurate gait phase 

segmentation (e.g., see Chapter 3 [70]). For example, knowledge of gait phase can aid in the use of 

simplifying assumptions such as zero foot velocity during stance for pedestrian tracking [170] or zero distal 

contact forces during the swing phase of gait for inverse dynamics-based estimates of joint moment [27].  

 Several gait event detection methods have been proposed and differ according to algorithm used 

and the number, type, and location of wearable sensors [171]. Methods utilizing a single, thigh-worn 

accelerometer are practically deployable as they present minimal burden to the patient and have demonstrated 

clinical utility [70], [172]. Aminian et al. (1999) validated an algorithm using a thigh-worn accelerometer for 

estimating spatiotemporal variables for preferred walking speeds which relied on constant low-pass filter 

cutoff frequencies. A modified version of the Aminian algorithm with adaptable cutoff frequencies was used 

for monitoring patients’ gait following knee surgery (Chapter 3) [70]. It is important to note that accurate 

estimates of spatiotemporal gait variables do not infer accurate estimation of the actual foot contact or foot 

off events. These errors should be characterized so that gait phase-dependent task constraints can be applied 

appropriately. However, errors in thigh-worn accelerometer-based estimates of foot contact and foot off 

events have not been reported in previous studies [172]–[174]. Therefore, the purpose of this study was to 

quantify the error in estimating foot contact and foot off events during gait using a similar version of the 
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algorithm proposed in Chapter 3 [70]. We also report spatiotemporal gait variable estimation performance 

for comparison to previous studies. 

 

2.2. Methods 

2.2.1. Experimental design 

Thirty-two healthy subjects (16 female, 21 ± 3 years old, height (data available from 31 subjects): 

1.74 ± 0.09 m) walked for one-minute at various self-selected walking speeds on a pressure treadmill 

(h/p/cosmos quasar, Nussdorf-Traunstein, Germany, 100 Hz) with a three-axis accelerometer (Opal, APDM, 

Inc., Portland, OR, USA) on the left and right lateral thigh. The range of walking speeds (0.56 – 1.78 m/s) 

and stride times (0.91 – 1.57 s) analyzed well encompass those observed for young and elderly healthy 

populations [33], [175] as well as for patients with neurological and musculoskeletal impairment [70], [168]. 

Ground truth foot contact and foot off instances were identified from the vertical ground reaction force 

measurements provided by the treadmill using a 20 N threshold. Accelerometer data were downsampled from 

the original sampling frequency (128 Hz) to 31.25 Hz to mimic sampling frequencies used for remote 

monitoring [70]. All subjects provided written consent to participate and study activities were approved by 

the local Institutional Review Board. 

2.2.2. Event detection algorithm 

The first step is to estimate the direction of the thigh longitudinal axis in the sensor frame. During 

a standing calibration trial, the thigh is assumed vertical such that the longitudinal axis of the thigh is aligned 

with the gravity vector but pointing up. Because the subject is still during this calibration trial, the average 

value of the measured accelerometer data during this period approximates the world frame vertical axis (i.e., 

the thigh longitudinal axis by assumption) represented in the sensor frame. The algorithm takes as input the 

raw accelerometer data projected onto this thigh longitudinal axis during walking. 

Next, the power spectral density (PSD) of the thigh accelerations during the whole walking bout 

is estimated. The dominant frequency between 0.5 and 4 Hz is used to approximate the step frequency (Figure 
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4a). Next, we approximate the stride frequency as the largest frequency less than the approximate step 

frequency that is associated with a peak in the PSD (Figure 4a). The acceleration signal is then low-pass 

filtered at the approximate step and stride frequencies as well as five times the approximate stride frequency. 

Low-pass filtering with a cutoff equal to five times the approximate stride frequency is intended to retain 

only those signal characteristics associated with the true thigh kinematics while removing those 

characteristics due to noise (e.g., soft-tissue artefact). Scaling with stride frequency in this way enables the 

algorithm to adapt to variable gait speeds (more signal content is retained for larger stride frequencies) and 

the choice of five as the scalar is based on cutoff frequencies used to remove soft-tissue artefact in surface 

electromyography signal processing [176]. 

These three signals are then used to identify foot contact and foot off events. The acceleration 

signal low-pass filtered at the approximate step frequency is characterized by two peaks per stride cycle and 

one of them is associated with foot off (arrow 3 in Figure 4b). The peak associated with foot off is most often 

the larger one, but not always. To identify the correct peak in the step frequency filtered signal, we take 

advantage of the fact that the thigh acceleration low-pass filtered at the approximate stride frequency has 

only one minimum per stride which precedes foot contact and is associated with mid-swing. Thus, the 

proposed algorithm works by first identifying all local minima in the stride frequency filtered signal (arrow 

1 in Figure 4b) providing a rough estimate of the instant of mid-swing prior to each foot contact. In some 

rare cases, we found the stride frequency filtered signal will have two minima per stride. These cases are 

identified by computing the time difference between all identified minima. If any two minima differ by less 

than a user-specified parameter (minimum stride time), then the algorithm has to decide which is the correct 

one (i.e., the one that precedes the true foot contact). To make this decision, we take advantage of the fact 

that the signal immediately following the true pre-contact minima is expected to be more variable (due to 

high frequency characteristics associated with impact) than the signal in the interval following the false one 

(which precedes swing phase). We compute the sample variance of the signal (high-pass filtered at 10 Hz) 

for two intervals: (i) the interval beginning with the first minimum and ending with the second and (ii) the 

interval following the second minimum with length equal to that in (i). The minimum preceding the interval 

with largest variance is then identified as the true pre-contact minimum. For each of these identified pre-
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contact minima, we find the next positive going 1 g crossing in the signal low-pass filtered at five times the 

approximate stride frequency (determined via linear interpolation where necessary). This event is the estimate 

of foot contact. Finally, we identify the last peak in the step frequency filtered signal preceding each pre-

contact minima in the stride frequency filtered signal. This event is the estimate of foot off. 

The proposed algorithm is different than that proposed in [172] in that adaptable cutoff frequencies 

were used and in the definition of the signal feature associated with foot contact. In [172], foot contact was 

associated with a peak in the raw acceleration signal that occurs near the positive going 1 g crossing signal 

feature in the proposed algorithm. We did not find that this peak was reliably identifiable for all subjects. We 

found that the positive going 1 g crossing was more reliably identifiable and it provided a consistent starting 

point for stride cycles which is important in computing time-series asymmetries for clinical evaluation (see 

Chapter 3) [70]. 

 

 

Figure 4: Gait event detection algorithm. First, step (fstp) and stride (fstr) frequencies are 
approximated from the power spectral density of the raw accelerometer signal (a). Foot contact 
and foot off events are then determined algorithmically by associating consistently identifiable 
features in the processed accelerometer signals (b, arrows 1-3) with ground truth data obtained 
from the measured vertical ground reaction forces (b, GRF, solid grey line, left vertical axis). 
The minimum in the fstr-filtered signal (b, dashed black line) preceding foot contact (b, arrow 1) 
are identified first. The estimate of foot contact is then associated with the positive going 1 g 
crossing (b, arrow 2) in the 5 Hz-filtered signal (b, solid black line) following this minimum. 
Finally, the foot off event is associated with the second peak (b, arrow 3) in the fstp-filtered signal 
(b, dotted black line) following foot contact. 
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2.2.3. Statistical analysis 

Estimation performance was quantified across all strides using the absolute error (AE) and root 

mean square error (RMSE) between the reference measurements and accelerometer-based estimates of foot 

contact and foot off events as well as stride time, stance time, and swing time. The bout-average stride, stance, 

and swing time estimates were further evaluated using Pearson’s correlation coefficient and Bland-Altman 

analysis for repeated measures [177], [178]. 

 

2.3. Results 

Across all strides (N = 3,898), the estimation error was 39 ± 28 ms AE (47 ms RMSE) for foot 

contact; 28 ± 28 ms AE (40 ms RMSE) for foot off; 11 ± 14 ms AE (17 ms RMSE) for stride time; 46 ± 31 

ms AE (55 ms RMSE) for stance time; and 45 ± 30 ms AE (54 ms RMSE) for swing time. The correlation 

between the estimated and measured bout-average stride, stance, and swing times were 1.00, 0.92, and 0.80, 

respectively. The bias and 95% limits of agreement (lower limit, upper limit) for the bout-average stride, 

stance, and swing time estimates were 0 (-2, 3) ms, 13 (-85, 110) ms, and -12 (-109, 85) ms, respectively 

(Figure 5). The (5th, 95th) percentiles (mean ± 1.65 SD) of the foot contact and foot off estimation errors were 

(-91, 51) ms and (-70, 60) ms (Figure 6). 

 

 

Figure 5: Bland-Altman plots of the estimation error (vertical axis) between the measured and 
estimated bout-average stride time (a), stance time (b), and swing time (c) against the mean of 
the measured and estimated values (horizontal axis). The solid black line in each figure is the 
bias (mean error) and the dashed black lines denote the 95% limits of agreement (LOA). 
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2.4. Discussion 

The RMSE in estimating foot contact and foot off events (47 ms and 40 ms) present improvements 

over that reported for a shank accelerometer (80 ms and 68 ms) [17]. Methods using a sacral accelerometer 

appear more accurate for foot contact estimation (28 ms RMSE), but with comparable foot off estimation 

errors (40 ms RMSE) [17]. Based on the error distributions in estimating these gait events (5th and 95th 

percentiles), biomechanical analyses enforcing task constraints dependent on the stance (swing) phase of gait 

should force the assumption only for data at least 91 ms after (51 ms before) the estimated foot contact event 

and 60 ms before (70 ms after) the estimated foot off event.  This knowledge provides the intervals of time 

during which one may apply stance phase- (e.g., zero velocity updates) and/or swing phase- (e.g., zero distal 

contact force) based assumptions with 95% confidence. The largest of these (91 ms) amounts to less than 

three samples for the 31.25 Hz sampling frequency. In a post-hoc analysis we found nearly identical results 

in foot contact and foot off estimation error with data sampled at 128 Hz (40 ms and 28 ms AE, respectively) 

and thus inaccuracies in the proposed algorithm cannot be attributed to the relatively low sampling frequency. 

Bland-Altman analysis revealed an apparent relationship between stance and swing time errors and their 

 

Figure 6: Error distributions for estimates of foot contact (a, left) and foot off (b, right) events. 
The solid black line is a normal distribution fit to the discrete histogram data (grey bars). Errors 
are computed as the algorithm estimated timestamp minus the reference measurement 
timestamp such that a negative error means the algorithm estimate was early and a positive error 
means the algorithm estimate was late. The dashed black lines in each figure indicate the 5th 
(lesser number) and 95th (greater number) percentiles. 
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magnitudes (Figure 5). Similar results have been observed previously [17] and warrants further investigation. 

Nevertheless, spatiotemporal gait variables were estimated with strong correlations (r ³ 0.80) and low 

absolute errors (11 to 46 ms) comparable to other methods [17]. These results were observed for a large 

sample size relative to previous studies of similar aim [17], [172], [173] and for a broad range of gait speeds 

and stride times which are representative of a multitude of subject populations [33], [70], [175], supporting 

the use of this approach for remote gait analysis. 
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Chapter 3: Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application 

 

A modified version of this chapter was published as: Gurchiek, RD, Choquette, RH, Beynnon, BD, 

Slauterbeck, JR, Tourville, TW, Toth, MJ, McGinnis, RS (2019). Open-source remote gait analysis: A post-

surgery patient monitoring application. Scientific Reports, 9(1): 17966. 

 

3.1. Introduction 

The digital medicine revolution is driven by advances in wearable sensor technology and the 

algorithms for analyzing and interpreting their data. These mobile health technologies enable improved 

remote patient monitoring, personalized intervention, and could be used to provide improved continuity 

across care transitions. While transitional care has been recognized as a national priority [179], and has been 

shown to improve outcomes, increase the efficient use of health care resources, and decrease health care costs 

[180], [181], current interventions are resource and personnel intensive [182]. Digital medicine innovations 

that harness existing cyber infrastructures, wearable sensors, and mobile devices may improve the efficiency 

and effectiveness of transitional care interventions. This approach could be transformative for a broad range 

of clinical domains, including for neurological [183], musculoskeletal [184], and mental health [9], [185] 

conditions.  

Concerning current techniques for remote patient monitoring, physical activity is the most targeted 

health behavior, with a large commercial market. However, these measures are too general for most clinical 

applications as they provide minimal biomechanical or physiological insight at a joint- or limb-specific level. 

For both neurological and musculoskeletal disorders, physical activity (e.g., step count) is often the primary 

outcome measure from free-living wearable sensor data (Chapter 1) [119], [186]. In these clinical 

populations, traditional gait analysis provides far more valuable information concerning 

neuromusculoskeletal health and, in the aftermath of various clinical interventions, recovery of physical 

function [47]. However, these traditional assessments are constrained to specialized motion analysis 

laboratories which may not accurately reflect an individual’s free-living gait [33]. This motivates the pursuit 

of remote gait analysis techniques able to capture more clinically relevant biomechanics including 
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quantitation of motor control indices (e.g., muscle activation patterns [187]) and musculoskeletal dynamics 

[188].  

To answer this unmet need, several groups have started to explore methods for tracking free-living 

gait biomechanics [29], [33], [168], [189]–[193]. The general framework for remote gait analysis shared by 

these efforts has three steps: (1) identification of walking bouts, (2) stride detection, and (3) analysis. This 

approach has been used to detect and characterize bradykinesia in Parkinson’s disease patients [189] and 

demonstrate that in-lab observations of gait speed [33] and gait asymmetry [168], [192] differ from daily-

life. The components of this framework reflect recent advances in wearable sensor-based activity 

identification [194], event detection [195], and biomechanical analysis [20], [26], [27], [196]–[198]. The 

development and application of these solutions are multi-disciplinary efforts requiring research teams with 

expertise in medicine, data science, and engineering. Open-source solutions may allow analysis of wearable 

sensor data collected in free-living conditions by teams without expertise in signal processing or machine 

learning. This reduces barriers to applying digital health solutions for remote patient monitoring.  

To this end, we present an open-source analytical platform which captures this general framework 

(Figure 7) and could be applied for remote biomechanical analysis of any task (see https://github.com/M-

SenseResearchGroup/RemoteBMX). It has been designed with a modular structure to enable flexibility and 

to encourage improvements and customization from members of the scientific community. For example, 

customization could allow for the analysis of other tasks (e.g., stair ascent, running), the extraction of 

alternative clinical information, or the utilization of different wearable sensors. These modifications are 

dependent on the patient population being monitored. To demonstrate how the platform may be tailored for 

a specific patient population, it was deployed as a rehabilitation monitoring application in patients recovering 

from reconstructive surgery of the anterior cruciate ligament (ACLR). ACLR is the most effective treatment 

for ACL rupture [199]. However, approximately 50% of patients who undergo ACLR will go on to develop 

post-traumatic osteoarthritis (PTOA) [200]. Previous research suggests that altered gait biomechanics 

following ACLR are responsible for this phenomenon [31], [200]. Pathological gait is often characterized by 
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inter-limb asymmetries which manifest early in the post-surgical period [43], [44], [201], and develop into 

compensatory gait patterns over time [47], [202]. It is imperative that these maladaptations are identified 

early so that corrective rehabilitative interventions can be pursued [45]. Thus, this application presents an 

ideal candidate for which to demonstrate the clinical utility of the proposed platform. 

Platform modifications were context-specific and driven by the current understanding of the clinical 

problem. In the context of ACLR, inter-limb gait asymmetry has been identified as a biomarker for recovery 

[44], [201], [203]. These asymmetries represent altered gait kinematics that are linked to PTOA-related knee 

 

Figure 7: Graphical summary of the proposed remote gait analysis. The proposed approach is 
comprised of three basic steps: (1) walking bout identification, (2) stride extraction and gait 
phase segmentation, and (3) biomechanical analysis of individual strides. 
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joint contact forces in this population [47], [204], [205]. Quadriceps muscle dysfunction is common following 

ACLR [187], [203], [206], [207] and may be responsible for the development of pathological gait. Thus, 

direct observation of asymmetric gait kinematics and quadriceps muscle activity in the early post-operative 

period could identify pathological gait and signal the need for remedial actions to prevent developing PTOA. 

However, algorithms for extracting this information from wearable sensor data captured in free-living 

conditions do not yet exist. 

To this end, patients recovering from ACLR present an ideal population for which to specify and 

test the use of the proposed platform. Our analysis was tailored for monitoring gait asymmetries relating to 

spatiotemporal variables, and kinematic and muscle activation time-series. Our novel analysis quantifies 

asymmetry in the following gait measures: duty factor (DF); mean surface electromyography (sEMG) 

amplitude of the rectus femoris during the stance and swing phase of gait; muscle activation time-series; as 

well as cranial-caudal (CC), medio-lateral (ML), and antero-posterior (AP) thigh acceleration time-series. A 

composite asymmetry score was also defined as the average of these seven asymmetries. We show the ability 

of these asymmetry indices to discriminate between patients at different time points in the recovery process 

and compared to healthy controls. Step count estimates from a commercially available activity monitor worn 

by some of the patients also enables a comparison of the proposed analysis to current techniques for 

monitoring recovery. 

 

3.2. Methods 

3.2.1. Study design 

Our system was deployed to evaluate gait in three groups of subjects: (1) subjects less than six 

weeks after ACLR (T1: 3 male, 3 female, recovery time (mean ±	SD) = 2.1 ± 1.6 weeks, age = 26 ± 11 yo, 

height = 1.74 ± 0.11 m, mass = 70.52 ± 16.21 kg), (2) subjects at least six weeks after ACLR (T2: 2 male, 

4 female, recovery time = 17.2 ± 2.0 weeks, age = 26 ± 6 yo, height = 1.70 ± 0.13 m, mass = 77.82 ± 15.44 

kg), and (3) healthy controls (C: 8 male, 8 female, age = 23 ± 5 yo, height = 1.74 ± 0.11 m, mass = 70.51 ± 

13.17 kg). Each subject wore a single sensor (BioStamp, MC10 Inc., Lexington, MA) on the muscle belly of 



 
29 

the rectus femoris of each thigh, which recorded tri-axial accelerometer (sampling frequency: 31.25 Hz, 

range: ± 16 g) and surface electromyography (sEMG) (sampling frequency: 250 Hz) data during daily life 

for one day. Daily step counts from a waist worn activity monitor (Actigraph, Pensacola, FL) were also 

available for nine ACLR patients (T1: N = 4, T2: N = 5). These enable a comparison between the proposed 

analysis and current standards (e.g step counts [119]) in their respective sensitivity to patient recovery. This 

study was approved by the University of Vermont Institutional Review Board. All study activities were in 

accordance with the relevant guidelines and informed consent was obtained from all participants. 

3.2.2. Remote gait analysis platform 

The general approach to biomechanical analysis of any task in daily life using the proposed 

platform takes on the following form: (1) activity identification, (2) event detection, and (3) analysis. The 

specifications for the current ACLR patient monitoring application were described graphically in Figure 7. 

This framework easily allows future users to make application-specific modifications to analyze different 

tasks (e.g., crutching, stair ascent) or analyze differently the same tasks presented in the current study. For 

monitoring ACLR patients, the proposed analysis requires, at a minimum, raw accelerometer data to operate. 

Herein, we also consider sEMG data to provide a more complete picture of free-living gait biomechanics in 

this population. 

3.2.3. Identification of walking bouts 

A support vector machine (SVM) binary classifier (Gaussian kernel) was used to identify walking 

bouts. The model was trained using annotated tri-axial accelerometer data from the healthy control group 

recorded during various activities including multi-speed walking and running over ground and on a treadmill, 

stair ascent and descent, crutching, sitting, standing, and lying down. Annotated walking, crutching, lying 

down, sitting, and standing data were also available from three ACLR patients. Data from each activity were 

partitioned into four-second, non-overlapping windows. This yielded a total of 3,102 observations (1,318 

walk; 1,784 not walk) for training the walking classifier. 

The constant thigh relative sensor attitude was determined for each leg by considering 

accelerometer data during a standing calibration trial (as in [26]) and used to project raw accelerometer data 
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onto the thigh-fixed cranial-caudal axis (referred to as ##! , % ∈ {(, )}, (: right, ): left, directed proximally). 

The first principal component of acceleration in the transverse plane during each four-second window was 

assumed to coincide with the antero-posterior axis of the thigh (referred to as +,!, points anteriorly, see 

[153]), from which the medio-lateral axis (referred to as -)!, points laterally) can also be determined. 

Accelerometer data were projected onto these three anatomical axes and used to extract a total of 152 time 

and frequency domain features. Performance of the classifier was evaluated using leave-one-subject-out 

(LOSO) cross-validation where, for each iteration, data from one subject was removed for testing and a 

classifier was trained on the remaining data using only those features from the training set with a Davies-

Bouldin index [208] (DBI) less than two. From the LOSO validation, the classifier achieved 98.32% 

accuracy, 97.04% sensitivity, 99.27% specificity, and the area under the ROC curve (AUC) was 1.00. The 

classifier made no misclassification errors (100% accuracy) on the 132 observations from the three ACLR 

patients during the LOSO validation, which supports its use to identify gait in this population. 

Following this performance characterization, annotated data from all sixteen healthy controls and 

the three ACLR subjects were used to train the classifier deployed for the proposed analysis. Davies-Bouldin 

feature selection (DBI < 2) indicated six features to use as input to the classifier: (i) average 25th quantile of 

##" and ###, (ii) average correlation between ##" with +,# and ### with +,", (iii) correlation between ##" 

with ###, (iv) average skewness of +," and +,#, (v) average percentage of signal power contained below 

0.25 Hz for +," and +,#, and (vi) average median value of +," and +,#. 

These six features were extracted from each four-second window of raw accelerometer data 

collected during daily life from all subjects and were used as input to the SVM classifier to label each window 

as “walking” or “not walking.” This enabled an estimate of the total amount of time spent walking which we 

used as an indicator of gross physical activity. Windows labeled as walking were aggregated into walking 

bouts if (1) at least two consecutive windows (8 seconds) were classified as walking, and (2) the posterior 

probability of the window’s walking classification was at least 0.8. This threshold was determined as the 

point that minimized the distance between the classifier’s ROC curve and the point (0, 1) on the true positive 

rate-false positive rate plane. A very small subset (451 observations or approximately 0.19%) of bouts 
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containing clipped sEMG (e.g., due to sensor delamination from skin) and/or accelerometer signals were 

removed. 

All aspects of the walking classifier presented herein (feature extraction, training, validation, etc.) 

were performed using the MATLAB R2018a Statistics and Machine Learning Toolbox (Version 11.3) and 

our open-source platform specifically designed for wearable sensor-based activity identification. This 

platform streamlines the development of activity classifiers by enabling the building of population-specific 

feature sets, the extraction of novel features, feature manipulation (e.g., PCA, DBI), training and testing of 

various classification models, and automated leave-one-subject-out cross-validation with detailed error 

analysis. For more details see https://github.com/M-SenseResearchGroup/ActivityIdentification. 

3.2.4. Stride extraction and gait phase segmentation 

Foot contact and foot off events were identified as described in Chapter 2. The implementation 

used in this analysis slightly differs from the description in Chapter 2 in the identification of the true pre-

contact minima and in that the signal used for foot contact estimation (positive going 1 g crossing) is based 

on a constant 5 Hz cutoff frequency as opposed to the adaptable cutoff frequency described in Chapter 2 (five 

times the approximate stride frequency). Constraints were placed on the stride time (0.91 s – 1.57 s) and duty 

factor (DF, percentage of stride cycle spent in stance) (0.44 – 0.73) of identified strides to avoid accidental 

analysis of non-walking data [175]. To be considered for further analysis, an eight-second walking bout had 

to include at least two strides. 

3.2.5. Biomechanical analysis 

Accelerometer and sEMG signals from each extracted stride were used to compute discrete 

biomechanical variables to evaluate gait. We quantify asymmetries in gait kinematics and muscle activity 

between legs during each stride using accelerometer data in each anatomical direction low-pass filtered with 

a cutoff frequency of 6 Hz (as per [209]) and the envelope of the sEMG data (computed as per [209]). These 

four time-series (sEMG, CC, AP, ML) were normalized by stride time so that each sample corresponds to a 

percentage of the gait cycle. 
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Eight indices of asymmetry (referred to as asymmetries) were computed for each eight-second 

walking bout. Three of these asymmetries (.$ , / ∈ {1,2,3}) were the relative difference between discrete 

biomechanical variables of each leg as per 

.$ = 4
5$ −7$
7$

4 (3.1) 

where 5$ and 7$ are the values of discrete variable / for the injured and healthy leg respectively. The three 

discrete variables for this analysis were mean sEMG during stance, mean sEMG during swing, and DF. The 

other four asymmetries (.%) are defined as per 

.% = 0.5(1 − =%). (3.2) 

where > ∈ {sEMG, CC, AP,ML}, and =% is the correlation coefficient of the ensemble means of like time-

series between the injured and healthy legs. The final index of asymmetry was a composite asymmetry score 

equal to the mean of the aforementioned asymmetries. 

3.2.6. Statistical analysis 

Outlier asymmetries were identified for each patient and removed after the biomechanical analysis 

as a final check to remove potentially errant data. A one-way analysis of variance (ANOVA) was used to 

compare the daily average of gait asymmetries and stride times between the three groups. Normality was 

checked using the Kolmogorov-Smirnov test. If the assumption of normality was violated, group distributions 

were compared using the Kruskal-Wallis test. If a significant difference was detected, post-hoc pairwise 

comparisons were made using Tukey’s honest significant difference criterion. Effect sizes (Cohen’s d) were 

computed where the ANOVA revealed significant differences and were interpreted qualitatively as weak 

(G < 0.25), small (0.25 ≤ G < 0.5), medium (0.5 ≤ G < 1.0), and large (G ≥ 1.0) [210]. The agreement 

between our estimate of gross physical activity (total time spent walking) and the Actigraph step counts 

estimate was evaluated using Pearson’s correlation. 

To compare the sensitivity of physical activity with that of our composite asymmetry score and 

estimated stride times to time spent in recovery, we also determine the correlation between recovery time 
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with composite asymmetry, stride time, Actigraph step counts, and estimated time spent walking for each 

ACLR patient using Spearman’s rank correlation. The level of significance was set to 0.05 for all statistical 

tests. 

 

3.3. Results 

Subjects were categorized as either T1 (less than 6 weeks post-surgery), T2 (greater than 6 weeks post-

surgery) or C (healthy controls). Data were collected for 20.24 ± 6.28 hours on average for each subject 

(except one T1 patient for whom no walking bouts met the criteria for analysis) and a total of 41,893 strides 

were analyzed (T1: 1,743 strides, T2: 9,616 strides, C: 20,939 strides). Estimated total time spent walking 

(hours) was strongly correlated (= = 0.71, L = 0.03) with Actigraph step counts (Figure 8) but showed a 

stronger correlation with recovery time (= = 0.63, L = 0.08) than Actigraph step counts (= = 0.25, L =

0.52), although neither was statistically significant. The composite asymmetry score (= = −0.87, L < 0.01) 

and stride time (= = −0.91, L < 0.01) were both strongly associated with recovery time (Figure 9). 

 

 

 

Figure 8: Scatter plot of the total time spent walking from the proposed method vs step counts 
estimated by Actigraph activity monitors. 
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Stride times and most gait asymmetry measures decreased across groups (i.e., T1 > T2 > C). 

Pairwise significant differences were found between C and T1 as well as T1 and T2 for stride times and all 

asymmetries (all with large effect sizes) except mean normalized sEMG which was trending towards 

significance (stance: L = 0.05, swing L = 0.12) (Table 2). All time-series (sEMG, CC, AP, ML), duty factor, 

and composite asymmetries were significantly different (L < 0.01) between C and T1, but only the CC 

acceleration time-series, duty factor, and composite asymmetries were significantly different between T1 and 

T2 (Table 2). There were no differences between C and T2 for any asymmetries. 

The proposed framework enables the investigation of gait biomechanics continuously throughout 

the day. To demonstrate the utility of this application, composite asymmetry scores averaged over each 15-

minute bin are illustrated in Figure 10 for one patient with longitudinal observations at about 2 weeks post-

surgery (red dashed line) and again 17 weeks later (blue dashed line). The solid lines illustrate the average 

trend of the other groups for comparison (T1: red, T2: blue, C: black). 

 

 

 

Figure 9: Percent difference in the median Actigraph step counts (a), strides times (b), and 
composite asymmetry scores (c) between the T1 (red) and T2 (green) groups. Error bars denote 
the 25th and 75th quantiles. 
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3.4. Discussion 

Herein, we present a new computational platform that enables multi-modal gait analysis in free-

living conditions based on data from commercially available wearable devices. We demonstrate the utility of 

this platform in a sample of patients recovering from ACLR. Results suggest that platform-derived gait 

measures agree with gold standard actigraphy but better discriminate between patients’ gait at different time 

points in the recovery process. Similarly, platform-derived measures are able to detect gait differences 

between patients at different stages of recovery, and with large effect sizes. We further discuss the 

implications of these results and how this new platform could be deployed for remote gait analysis in a variety 

of clinical populations. 

Table 2: Comparison of daily average stride times and asymmetries 

 Mean (SD) Pairwise Comparisons 

Variable T1 T2 C C-T1 C-T2 T1-T2 

ST 1.34 (0.08) 1.14 (0.07) 1.10 (0.05) 4.08** 0.34 2.70** 

DF 0.13 (0.05) 0.04 (0.02) 0.03 (0.01) 4.20** 0.61 2.48** 

EMG St 0.22 (0.12) 0.13 (0.03) 0.15 (0.04) ANOVA p = 0.05 

EMG Sw 0.41 (0.14) 0.27 (0.04) 0.29 (0.12) ANOVA p = 0.12 

EMG(t) 0.41 (0.10) 0.29 (0.11) 0.25 (0.07) 2.10** 0.52 0.07 

AP(t) 0.32 (0.13) 0.10 (0.05) 0.07 (0.04) 3.57** 0.49 0.08 

ML(t) 0.38 (0.13) 0.28 (0.04) 0.24 (0.06) 1.74** 0.51 0.08 

CC(t) 0.20 (0.08) 0.06 (0.04) 0.03 (0.02) 4.19** 0.26 2.20** 

Comp. 0.29 (0.05) 0.17 (0.03) 0.15 (0.03) 3.78** 0.65 2.96** 

ST: Stride Time; units seconds. Duty Factor (DF), EMG Stance (EMG St), and EMG Swing (EMG Sw) 
asymmetry scores are the percent difference between the healthy and injured leg (i.e., 0.5 indicates that the 
between leg difference is 50% that of the healthy leg). EMG(t), AP(t), ML(t), and CC(t) are pattern 
asymmetries for the sEMG time-series and the antero-posterior, medio-lateral, and cranial-caudal thigh 
acceleration time-series respectively. Composite asymmetry score (Comp.) is the average value of the other 
seven asymmetry scores. Bold numbers in the pairwise comparisons are effect sizes (*p ≤ 0.05, ** p ≤ 0.01) 
and non-bold numbers are the p values for non-significant pairwise differences. 

 



 
36 

Currently, actigraphy technologies are broadly used for characterizing free-living physical activity 

and gait [119], [186]. The statistically significant association we observe (Figure 8; = = 0.71, L = 0.03) 

between actigraphy-derived daily step counts and platform-derived walking time suggest that the proposed 

analysis platform is valid for capturing free-living physical activity. Similar findings of agreement between 

different indices of physical activity have been reported elsewhere [119]. Although the correlation between 

recovery time and the platform-derived measure of walking time (= = 0.63, L = 0.08) appears stronger than 

that for actigraphy-derived step counts (= = 0.25, L = 0.52), neither was statistically significant, which also 

agrees with previous work [119]. This finding is intuitive as there are a variety of extraneous variables that 

affect daily physical activity and have nothing to do with rehabilitation progress (e.g., weather, day of the 

week). These results suggest a fundamental limitation of physical activity indices for monitoring 

rehabilitation progression. The vast majority of research investigating pathological biomechanics 

characteristic of gait following ACLR suggests the existence of more sensitive metrics including quadriceps 

activation [211], ground reaction force [44], and joint work [201]. However, these metrics currently require 

laboratory-based methodologies that are not widely transferable to clinical use.  

The proposed platform answers this unmet need by capturing more subtle biomechanical changes 

in gait associated with recovery under free-living conditions. Our results demonstrate that platform-derived 

stride times are more strongly associated with recovery time (= = −0.91, L < 0.01) than both actigraphy-

derived step counts (= = 0.25, L = 0.52) and platform-derived estimates of total walking time (= =

0.63, L = 0.08). These results are supported by previous work where decreased walking speeds have been 

associated with decreased joint health following ACLR [212] (stride times are associated with walking speed 

[175]). These results provide additional evidence in support of the utility of platform-derived measures of 

free-living gait biomechanics. 

Stride time, walking speed, and other spatiotemporal parameters are informative biomechanical 

measures related to recovery in this population, and more broadly are important indicators of mobility 

impairment [20], [33], [197], [212]. Nevertheless, a need has been recognized for more sensitive biomarkers. 

For example, it has been shown that spatiotemporal symmetry may manifest even in the presence of a true 
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gait abnormality [213]. Further, research suggests the pursuit of metrics that characterize the full waveform 

pattern of mechanical variables throughout the gait cycle [214]. In light of these results, the proposed 

platform has been designed to capture additional measures that may be more indicative of, and sensitive to, 

rehabilitation progress. Figure 9 and Table 2 report results from our efforts to define a novel gait asymmetry 

analysis that incorporates temporal (duty factor), kinematical (ML, AP, CC acceleration time-series), and 

neuromuscular (sEMG Swing, sEMG Stance, and sEMG time-series) measures. The effect sizes of the 

differences between groups were largest for the asymmetries relating to kinematic measures and duty factor. 

The mean normalized sEMG during stance and swing asymmetries were the only variables for which no 

significant difference was found, which may reflect increased within subject and group variance. The 

composite measure that captures asymmetries within each of these domains demonstrates significant 

differences between T1 and T2/C with large effect sizes (G = 2.96 and G = 3.78 respectively) suggesting 

that this measure may be useful for tracking biomechanical changes associated with rehabilitation progress. 

To this end, we further examine the association of these measures of free-living gait biomechanics 

with time since surgery. Both stride time and our new composite asymmetry score present strong 

relationships with recovery time (= = −0.91, L < 0.01 and = = −0.87, L < 0.01 respectively) and are 

noticeably larger than that observed for any gross index of physical activity. Further, when comparing T1 

and T2, the largest effect sizes were observed for the composite asymmetry (G = 2.96) which was also 

responsible for the largest percent difference between T1 and T2 (−43%) when compared to both stride time 

(−19%) and step counts (+12%) (Figure 9). This suggests that these more detailed biomechanical measures 

may provide increased sensitivity to recovery time in this population and thus may be suitable candidates to 

pursue in developing novel digital biomarkers for tracking rehabilitation progress and gait asymmetries that 

have pathological consequences [44], [201]. The proposed asymmetry analysis also provides the clinician 

with insight into patient-specific adaptations and their particular mechanistic origin since it captures indices 

of both muscle activation and limb kinematics. 
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Having established the improved association between free-living measures of gait asymmetry and 

recovery time, we further examine how this new measure changes over the entire wear time for patients 

monitored in this study. Figure 10 reports the composite asymmetry score captured during every gait bout 

identified between 11 am and 8 pm for a single patient with longitudinal observations and with the group 

average trend for subjects in the T1, T2, and C groups for comparison. The difference between groups based 

on asymmetry magnitudes alone reflects the same general pattern observed in Table 2, namely a convergent 

trend toward decreased gait asymmetries with increased recovery time. However, Figure 10 provides 

additional insight whereby gait asymmetries appear more variable throughout the day for the early post-

surgery time point when compared to the later time point and that of the control group. This supports the 

need for remote gait monitoring, as this variability would not be captured in a single gait assessment. Further 

investigation is necessary to understand the origins of this observation which may, for example, indicate an 

increased susceptibility to fatigue early in rehabilitation. The similar trends observed between the dashed 

 

 

Figure 10:  Composite asymmetry score throughout the day (averaged over every 15-minute 
bin) for a patient with longitudinal observations: 2.1 weeks post-surgery (red dashed line) and 
19.1 weeks post-surgery (blue dashed line). The solid lines illustrate the average trends for the 
T1 (red), T2 (blue), and C (black) groups. The longitudinal patient’s data was not included in 
the group means. 
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lines (single patient, different time points) and the solid lines (average of all other patients within respective 

group) of like colors suggests the results of our cross-sectional design may mirror what would be seen in a 

longitudinal study. Further investigation using a longitudinal design is necessary to confirm this conjecture. 

Far fewer strides were identified and analyzed for patients in the T1 group (≈ 350 strides/day per 

patient) than for those in the T2 (≈ 1,600 strides/day per patient) and C (≈ 1,310 strides/day per patient) 

groups. One explanation is that the T1 patients simply walk less, which is also supported by the Actigraph 

step counts. Intuitively, this may reflect a natural tendency for an individual to avoid an activity like walking 

which loads the recently reconstructed knee. Despite the difference in the number of strides analyzed for the 

T1 group compared to T2/C, we see this as an acceptable limitation as the availability of gait biomechanics 

characterizing even 350 strides per day is already a substantial improvement over the current standard which 

often yields fewer observed strides and with limited ecological validity. 

In the approach to remote patient monitoring proposed herein, we chose sensor locations that 

would minimize user burden while also providing the kinematic and muscle activity data key to the presented 

analysis. A minimum of one sensor per leg was required to extract inter-leg kinematic and muscle activation 

asymmetries. Future work could consider additional sensor locations in an effort to provide improved clinical 

utility. For example, if the muscle activity from a quadriceps antagonist (e.g., a knee flexor) were available 

it may provide insight into co-contraction indices and would perhaps make the knee extensor muscle 

activation time-series more interpretable. Inclusion of a sensor on the shank could allow for the extraction of 

knee joint kinematics [75], [153] that could add additional information indicative of recovery. However, 

current hardware constraints on the capacity of on-board memory and battery prevented use of gyroscope 

data and required a relatively low accelerometer sampling frequency (31.25 Hz) in order to enable sEMG 

data collection over the recording durations considered herein. While higher sampling frequencies and 

additional sensor modalities would be useful, accelerometer data recorded at 31.25 Hz is likely sufficient for 

capturing the segment kinematics of interest which is supported given the accelerometer signal power 

spectrum (see Figure 4) and the fact that traditional laboratory-based gait analysis often employs cutoff 

frequencies ≤ 8 Hz for low-pass filtering kinematic data [175], [209], [215]. 
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The results presented herein demonstrate the clinical utility of the proposed analysis platform for 

remote monitoring of patients recovering from ACL reconstruction surgery. Our analysis describes an 

unprecedented evaluation of muscle activation concurrently with kinematical time-series during free-living 

gait. These constitute a novel asymmetry analysis which presents a substantial improvement over current 

techniques utilized for remote monitoring. Further investigation is necessary to fully realize the practical 

application of the proposed approach for continuous patient monitoring with a larger sample, longitudinal 

design, and more frequent observation (i.e., more than just two time points) during the recovery process. The 

underlying MATLAB code has been open-sourced and structured in a modular fashion so that users can 

easily add/edit functionality for their specific use case. For example, different activity classification models 

or stride segmentation algorithms that incorporate data from other wearable sensors located on different body 

segments could be inserted that are more precisely tuned for a given patient population. There are certainly 

algorithmic improvements and additions that could be made for the proposed remote gait analysis such as 

automatic anatomical calibration or estimation of other biomechanical variables. The modularity of the 

platform is intended to promote these improvements so that the platform may serve as a basis upon which to 

build a comprehensive approach for remote gait analysis. This contribution comes at a critical time in the use 

of wearable sensors for providing free-living patient monitoring capabilities. An open-source platform will 

promote cross-disciplinary efforts to further advance remote patient monitoring paradigms and digital 

medicine. Future research should investigate similar applications in other clinical contexts and begin the 

difficult task of understanding how to translate the detailed, big-data evaluations enabled by continuous 

monitoring paradigms into optimizing patient-specific interventions. 

 

3.5. Post-hoc analysis of different data aggregation methods 

 The previous analysis demonstrated the clinical utility in characterizing stride-level variables for 

remote monitoring. Despite these promising results, it remains unclear whether the mean value is the best 

aggregation method to characterize the distribution of daily stride metrics. This question has increasing 

relevance for remote patient monitoring and, beyond gait analysis, digital health in general. Indeed, optimal 
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aggregation methods may be context specific (e.g., biomarker dependent and/or disease dependent). Thus, 

this post-hoc analysis investigated several data aggregation methods for characterizing the distribution of gait 

biomarkers for the same sample of patients recovering from ACLR regarding their sensitivity to recovery 

time. 

The distribution of all composite asymmetry scores and stride times from the entire wear time for 

each subject were aggregated by six different methods: mean, median, mode, 95th percentile, 5th percentile, 

and IQR (Figure 11). The mode was calculated from approximate probability densities (Figure 11) for both 

asymmetry and stride time distributions. First, probability values were assigned for intervals of equal size. 

Then, a one-to-one correspondence was defined for these probability values with the mid-point of their 

respective interval. Probability values for asymmetries and stride times at a finer resolution were then 

 

Figure 11: Approximate probability density functions (PDF) of composite asymmetry scores 
across all walking bouts during a single day for an ACLR patient for whom longitudinal data 
were available at both the T1 time point (1.4 weeks) (top) and the T2 time point (15.1 weeks) 
(middle). Data for an example healthy control is included in the bottom plot. The mean, median, 
mode, 95th percentile, and 5th percentile are indicated by the dashed red, solid green, thick solid 
black, rightmost solid blue, and leftmost solid blue vertical lines respectively. The shaded grey 
area indicates the interquartile range. 
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estimated by interpolation. The mode corresponds to the asymmetry or stride time associated with the largest 

peak in the approximate probability density function (Figure 11).  

The primary finding of this post-hoc analysis was that the aggregation method yielding the greatest 

sensitivity to rehabilitation progress may be biomarker specific. For summarizing daily gait asymmetry, the 

5th percentile was most sensitive to recovery time (T = -0.92) with both the mean and median also yielding 

strong relationships (T = -0.87 and T = -0.89 respectively) (Figure 12). However, the mode of stride times 

demonstrated the strongest association with recovery time (T = -0.93 vs. T = -0.83). The mean and median 

yielded similarly strong relationships (T = -0.91 for each). These findings were reinforced by the observed 

percent differences between groups. The 5th percentile yielded the largest differences in the composite 

asymmetry score when comparing both T2 relative to T1 (-47%) and C relative to T1 (-64%) whereas the 

mode yielded the largest differences for stride times when comparing T2 relative to T1 (-21%) and C relative 

to T1 (-23%). Taken together, these results indicate the need to consider multiple aggregation methods when 

summarizing the distribution of digital biomarkers captured during daily life. 

 

 

 

Figure 12: Scatter plots of daily asymmetry scores (top row) and stride times (bottom row) vs. 
recovery time post-surgery in weeks (T1: red, T2: blue) where daily distributions were 
aggregated as per the mean, median, mode, 95th percentile, 5th percentile, and interquartile range 
(IQR) (from the left column of plots to the right, respectively). The Spearman rank correlation 
coefficient (r) is included in each figure where the correlation was significant (p < 0.05). All stride 
time units are seconds. Composite asymmetry scores are unitless. 
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Lower values of the composite asymmetry score and stride time are associated with less 

impairment. As such, the 5th percentile can be interpreted as a confident lower bound on the observation of 

these measures and may indicate the best-case observation of each these biomarkers. Alternatively, the 95th 

percentile may be interpreted as a confident upper bound representing the worst-case scenario. In this study, 

the 95th percentile yielded significant relationships between recovery time with both stride times and 

composite asymmetry scores and significant differences between groups for all metrics. While these were 

not as pronounced as for the 5th percentile, both aggregation methods may be useful in a clinical evaluation 

for quantifying confidence bounds of biomarker distributions.  

While the mean and median yielded similar results across all metrics analyzed, their differences 

reflect the multi-modal nature of the biomarker distributions (e.g., see Figure 11). Because of this multi-

modal distribution, the IQR was computed as opposed to variance as an index of spread, albeit the IQR was 

least able to distinguish group differences. Even still, the IQR was significantly greater in the T1 group 

compared to both the T2 and C groups for the composite asymmetry scores (but not stride times) which may 

reflect a larger fluctuation of gait mechanics throughout the day. The source of this variation is unclear and 

could, for example, be related to a greater susceptibility to fatigue, smaller bouts of walking, or pain. Future 

investigations are necessary to fully understand this observation. 

The inherent non-normality of the observed biomarker distributions further displaced the mode 

from other measures of central tendency, namely the median and mean (which would otherwise be expected 

to coincide). The mean is commonly used to summarize biomarker distributions and is justified by its 

discriminative ability as shown in this study. These results demonstrate similar discriminative ability with 

the median, which may be less susceptible to outliers and potentially a better choice for aggregating digital 

biomarkers observed during daily life.  

Future work should consider developing aggregation methods that also capture temporal changes 

in these biomarkers to additionally capture physiologically relevant measures like fatigue. Moreover, these 

aggregation methods should be confirmed in a larger sample and with additional groups throughout recovery. 
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Chapter 4: Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of 

Machine Learning Techniques 

 

A modified version of this chapter was published as: Gurchiek, RD, Cheney, N, McGinnis, RS (2019). 

Estimating biomechanical time-series with wearable sensors: A systematic review of machine learning 

techniques. Sensors, 19(23): 5227. 

 

4.1. Introduction 

Since the turn of the century, wearable sensors have experienced substantial technological 

advancements that have reduced their size and power requirements, improved their wearability, and increased 

the quality and types of data they capture. These improvements have allowed the application of wearable 

sensors to important clinical challenges impacting human health. These challenges include the development 

of novel digital biomarkers [10] that could be used for diagnosis, prognosis, and clinical decision making in 

a variety of neurological [7], [8], mental health [9], [185], and musculoskeletal [29], [153], [196], [213] 

disorders. 

As described in Chapter 1, clinical evaluation using these biomarkers could be enhanced by also 

considering remote observation made during a patient’s daily life (e.g., daily biomechanical variability is 

clinically informative in persons with multiple sclerosis [8]). Recent research suggests remote observations 

may differ than those made in the lab or clinic [33], [168], [192], and thus may provide additional information 

for informing clinical decision making. Additionally, remote observation could be used as an endpoint for 

assessing efficacy of interventions designed to target specific biomechanical indices (e.g., using biofeedback 

to reduce knee loading [216]). Taken together, these developments suggest that remote observation of patient 

biomechanics during daily life is emerging as an important tool for improving human health. Thanks to recent 

technological advancements, wearable sensors are ideally positioned to enable remote patient monitoring. 

However, wearable sensors do not necessarily provide direct measurement of the mechanisms underlying 

any particular clinical condition. Previous research on the mechanistic origins of various diseases (e.g., 

musculoskeletal [31], [200], [217], neurological [218]) motivate the incorporation of physically interpretable 
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biomarkers as a part of a comprehensive patient evaluation. These biomarkers, when observed continuously 

via remote patient monitoring, may then directly inform an optimal clinical intervention [45], [219], [220]. 

In this review we focus on the estimation of physically interpretable biomarkers for musculoskeletal and 

neurological disorders which take the form of biomechanical time-series representing joint, segment, and 

muscle kinetics and kinematics.  

4.1.1. Physical models 

The aforementioned biomechanical time-series may be determined from wearable sensor data 

using established mathematical relationships governed by physical models. For example, strapdown 

integration [154] of the angular rate signal from a segment attached gyroscope is a physics-based estimate of 

segment orientation where an accompanying accelerometer and magnetometer may provide the initial 

conditions and drift correction over time (e.g., see [196]). The development of sensor fusion techniques for 

removing integration drift in orientation estimates has been (and continues to be) a research focus [154], 

[221]. Inertial sensor estimates of segment kinematics are sufficient to estimate joint kinetics during open-

chain tasks using an inverse-dynamics approach given estimates of segment inertial and geometric 

parameters [27]. However, additional sensors are needed for closed-kinetic chain tasks since then external 

contact forces must be considered (i.e., measured). Alternatively, wearable surface electromyography 

(sEMG) sensors may inform a solution for the net joint moment using Hill-type muscle models and thus also 

joint and/or segment kinematics for open-chain tasks via forward-dynamics [209], [222], [223]. However, as 

noted in [224], it is quickly realized that the number of sensors required to inform a physical model is 

inhibitive since the muscle activation of every muscle must be estimated thus limiting the use of these 

approaches for remote patient monitoring.  

One solution is to simplify the physical model such that a reduced number of sensors can be used 

to measure all required independent variables. Many techniques for simplification have been proposed and 

are context dependent. For example, sacral accelerations have been assumed to represent those of the center 

of mass enabling a single inertial sensor estimate of ground reaction force [26]. For muscle force estimation, 

muscle contraction dynamics are often simplified to comply with a lumped-parameter Hill-type model as 
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opposed to a continuum model [225]–[228]. Further, it is common practice to assume unobserved muscle 

states (e.g., activation, tension) can be computed in terms of a single or multiple synergistic muscles whose 

states are available (e.g., via sEMG) [209], [224], [229]. Recently, Dorschky et al. (2019) present a physics-

based technique for estimation wherein the states of a neuromusculoskeletal model (including the 

biomechanical time-series of interest) were optimized to agree with measured sensor data using trajectory 

optimization [25]. While the results were promising, the model was only two-dimensional, requires an inertial 

sensor on each of seven segments, and was further limited by computation time (mean CPU time was 50 ± 

26 min across 60 optimizations where each optimization had 10 strides). The model simplifications and 

unwieldy sensor arrays required for physical modeling approaches motivate alternative methods for 

estimating biomechanical time-series, and especially for remote patient monitoring. 

4.1.2. Regression techniques 

Regression models that capture the relationship between wearable sensor inputs and 

biomechanical time-series outputs may provide an opportunity to further simplify the wearable sensor system 

required for remote patient monitoring. These models are developed from a large number of observations 

through a process that may be referred to as system identification [230], function approximation [231], or 

machine learning [232], depending on the field. It is important to note, however, that many of the physics-

based techniques also regress model parameters from a large number of observations [228], wherein that 

process is often referred to as “calibration” and the parameters being regressed are physical constructs based 

on the derivation of the model from first principles (e.g., tendon slack length, muscle activation constants 

[209]). The current review will focus on the use of non-physical regression as a means for estimating joint, 

segment, and muscle kinetics and kinematics from wearable sensor data. 

4.1.3. Relevant literature reviews 

Techniques for estimating biomechanical time-series from wearable sensor data have been the 

focus of previous literature reviews. Faisal et al. (2019) recently provided a high-level overview of sensing 

technologies, applications of wearables in monitoring joint health, and analysis techniques [233]. Several 

reviews are available concerning the use of Hill-type muscle models for sEMG informed muscle force 
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estimation which can be used to estimate kinematics via forward-dynamics [223], [224], [228], [234]. 

Dowling (1997) mentions the potential use of neural networks in this context but does not review any relevant 

literature. Sabatini (2011) provides an overview of the use of inertial sensors for estimating segment and joint 

kinematics using physics-based techniques and sensor fusion algorithms [154]. Ancillao et al. (2018) review 

physics-based techniques for estimating ground reaction forces and moments using wearable inertial sensors 

[14]. While these previous reviews capture the current state of physics-based techniques well, there has not 

been a comprehensive review of regression techniques for estimating joint, segment, and muscle kinetics and 

kinematics from wearable sensor data. Schöllhorn (2004) provides a relevant review, but focuses only on 

neural networks and, as will be seen later, none of the articles they reviewed met the inclusion criteria outlined 

below and thus we also include studies using neural networks in this review [235]. Shull et al. (2014) review 

the applications of wearable sensors for clinical evaluation and for biofeedback, but they were only interested 

in gait, did not focus on the estimation technique, and none of the papers they reviewed used sEMG [236]. 

Caldas et al. (2017) review the application of adaptive algorithms for estimating gait phase, spatiotemporal 

features, and joint angles [237]. While joint angles are relevant to this review, Caldas et al. focus only on the 

use of inertial sensors and only mention three studies used to estimate joint angles; two of which are also 

included here. Finally, Ancillao et al. (2018) also reviewed machine learning techniques for estimating 

ground reaction forces and moments [14]. Thus, studies estimating only ground reaction forces and moments 

were excluded in this review. 

The aim of this review was to characterize the use of regression algorithms to estimate 

biomechanical time-series from wearable sensor data. A secondary aim was to develop a classification 

method to group the prediction equations based on their technical similarities. 

 

4.2. Methods 

4.2.1. Search strategy 

The PubMed and IEEE Xplore databases were searched for relevant articles in August 2019. 

Search terms were chosen to reflect the aims of the current review namely studies investigating (1) regression 
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of (2) human biomechanical time-series using (3) wearable sensor data (see Table 3 for search terms 

pertaining to items 1-3). After duplicates were removed, the title and abstract of each article was screened to 

determine if the full text would be reviewed. 

4.2.2. Inclusion and exclusion criteria 

Only peer-reviewed journal articles (no conference proceedings) written in English were 

considered. Articles were included in the review if they met all criteria within the following three categories: 

(1) Sensor criteria: clear use of data for estimation from a sensor that is currently deployable as a 

wearable. Studies investigating model inputs dependent on virtual wearable sensor data derived 

from a non-wearable sensor were excluded. Studies using exoskeletons were excluded if the 

wearable sensor is only feasibly deployed using the exoskeleton. 

(2) Prediction criteria: use of non-physical regression (not classification, regressed parameters must not 

be physical constructs). The estimated variable must have been a biomechanical time-series 

describing either the kinetics or kinematics of a joint, segment, or muscle. Studies were excluded if 

they estimated only grip or pinch forces unless the contact forces of each involved segment were 

estimated separately. Finally, studies estimating only ground reaction forces and moments were 

excluded as methods for this purpose have recently been reviewed [14]. 

(3) Validation criteria: all studies reviewed must have reported the objective (i.e., numerical) 

quantification of testing error using their estimation method. Studies were excluded if they report 

statistics for the training error only or if the only description of performance was given graphically. 

Studies utilizing inappropriate validation were excluded (e.g., one that could not be repeated or one 

using an invalid gold standard for validation).  

These exclusion criteria were used for both the title/abstract screening and for full-text review. For many 

papers, the presence of one or several exclusion criteria was made clear via the title and/or the abstract. 

Therefore, these articles were removed after the title/abstract screening and were not full-text reviewed. 
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4.2.3. Data analysis 

All studies that met the inclusion criteria were characterized by the sample size, subject 

demographics (sex, health status, age), wearable sensors (type, sampling frequency), biomechanical variable 

estimated, tasks for which the estimation was validated, model characteristics, and estimation performance. 

One aim of the current review was to summarize the various estimation techniques and their performance. A 

detailed description of the methods and error statistics used in each study is infeasible, so we grouped 

prediction equations post-hoc according to a grouping method which distinguishes the different techniques 

for comparison (see Section 4.3.4.). Further, we report summary statistics which summarize the overall 

performance (e.g., range of root mean square error across all observed tasks). 

 

Table 3: Search terms and their relation to review relevant items 

Review Relevant Item Search Terms 

Regression 

 
regress* OR "machine learning" OR "artificial intelligence" OR "statistical 
learning" OR "supervised learning" OR "unsupervised learning" OR "neural 

network" OR perceptron OR "support vector" OR "gaussian process" 
 

Biomechanical Time-Series 

 
joint OR limb OR segment OR ankle OR knee OR hip OR wrist OR elbow 

OR shoulder OR muscle 
 

AND 
 

angle OR velocity OR acceleration OR moment OR torque OR force OR 
kinematic* OR kinetic* OR biomechanics OR mechanics OR dynamics 

 

Wearable Sensors 

 
wearable OR accelerometer OR gyroscope OR electromyo* OR EMG OR 
sEMG OR "inertial sensor" OR "inertial measurement unit" OR IMU OR 

insole OR goniometer 
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4.3. Results 

A total of 46 articles met the inclusion criteria for full-text review out of 2,259 distinct articles 

identified via database search and from external sources (Figure 13). There was a clear increasing trend in 

the number of articles which met our review criteria published since the earliest identified in 1995 (Figure 

14). 

 

 

 

 

Figure 13: Flow chart of article selection process. Of the 123 full-text reviewed articles, 77 were 
removed on the basis of one or several exclusion criteria pertaining to the sensors used, the 
prediction approach, and/or the validation procedure. See section 4.2.2. for details concerning 
specific exclusion criteria. 

Records identified through database 
searching:
N = 2,320

Records identified through other 
sources:
N = 49

Records after duplicates removed:
N = 2,259

Title/abstract review
Records removed:

N = 2,136

Full-text articles assessed for eligibility:
N = 123

Records removed: N = 77
-Sensor criteria: N = 33
-Prediction criteria: N = 27
-Validation criteria: N = 17

Full-text articles included in review:
N = 46
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4.3.1. Subject demographics 

Across all participants used for validating the regression techniques, most were unimpaired males 

(64%) followed by unimpaired females (29%) and impaired individuals (7%). Three studies validated their 

algorithm on just one person while only 11 studies validated their algorithm on a sample size of greater than 

10 participants. One study [238] did not report any information concerning the subject sample (other than 

that they were “normal” subjects) and the largest sample size for which an algorithm was validated was 33 

(all unimpaired, 15 female) [239].  

4.3.2. Wearable sensors 

Surface electromyography sensors were the most popular wearable sensors used (32 studies) 

followed by inertial sensors (nine studies, four used magnetic/inertial measurement units, three used inertial 

measurement units, and two used accelerometers only) and high density sEMG (HD-sEMG) (five studies). 

One study used an electrogoniometer in addition to sEMG [240] and two studies used mechanomyography 

sensors in addition to sEMG [241], [242]. Two studies used force sensitive resistors to instrument insoles 

[243], [244] and one of these used an additional load cell over the Achilles’ tendon [244]. The average sensor 

sampling rate across all studies using sEMG was 2,288.8 Hz (range: 500 – 16,000 Hz) and was 303.75 Hz 

 

Figure 14: Number of articles included in the review for each five-year bin. The oldest paper 
included in our review was published in 1995. 
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across the nine studies using inertial sensors (range: 50 – 1,500 Hz). Grid sizes for HD-sEMG included 128, 

160, and 192 with an average sensor sampling rate of 1,838.4 Hz (range: 1.0 – 2.048 kHz). 

4.3.3. Biomechanical variables 

Across all studies, the most frequently estimated biomechanical time-series was joint kinematics 

(23 studies) followed by joint kinetics (16 studies), segment kinetics (seven studies), and segment kinematics 

(five studies) (Figure 15). Of the 16 studies estimating joint kinetics, only three estimated the intersegmental 

force. No studies estimated joint contact forces, individual muscle forces, or muscle kinematics. Most studies 

focused on joint/segment biomechanics in the sagittal plane (87%), followed by the frontal plane (46%), and 

transverse plane (33%) (Figure 15). Across all studies and considering the major upper and lower extremity 

 

Figure 15: Description of the biomechanical variables estimated across all reviewed studies. The 
top row of figures illustrates the percentage of studies that estimated joint kinematics (a), joint 
kinetics (b), segment kinetics (c), and segment kinematics (d) and the bottom row of figures are 
radar plots illustrating the number of studies estimating the major upper and lower extremity 
joint kinematics (blue) and kinetics (red) in the sagittal (e), frontal (f), and transverse (g) planes. 
No studies estimated muscle forces or joint contact forces. 
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joints, the wrist joint received the most attention (28%), followed by the knee (26%), the elbow (24%), the 

ankle (20%), the shoulder (15%), and the hip (13%). 

4.3.4. Classification of prediction equations 

One aim of the current review was to develop a classification method post-hoc allowing a high-

level comparison of the structure of the many different prediction equations used in the reviewed papers. 

Note that estimation performances were not compared statistically between methods from different studies 

as the nature of the model validation procedures were too often different enough such that a comparison of 

error statistics would not be appropriate. The rest of this section describes the classification we have 

developed for this comparison. We feel this method best groups the reviewed papers for an insightful 

comparison, but it is by no means unique. The description of all techniques used in the reviewed papers 

according to this classification is presented in Table 4 in addition to some other study characteristics for a 

succinct overview of all reviewed papers. It is recommended that the description of the classification system 

be read first to best understand the comparison in Table 4. 

We use U(V) ∈ ℝ& to denote the G-dimensional input used to estimate the >-dimensional output 

(biomechanical time-series) X(V) ∈ ℝ% at time V. All reviewed papers presented regression algorithms to 

determine the parameters of a prediction equation Y:ℝ& → ℝ% which defines the explicit mapping U(V) →

X(V). In the context of this review, the %'( element \!(V) of the input U(V) may be a wearable sensor 

measurement after some pre-processing step (called an exogenous input) or a state variable being fed back. 

This state variable may be either an element ]!(V − V&) of a previous output X(V − V&) (i.e., at time V − V&, 

V& > 0), or some other internal state (e.g., an output from a hidden neuron in a neural network). All prediction 

equations reviewed in this paper use exogenous inputs. In this review, we use the term feedback to refer to 

models which also use output and/or internal state variable feedback. For example, herein Elman networks 

[245], long-short term memory (LSTM) neural networks [246], [247], and non-linear/linear autoregressive 

(with exogenous inputs) models [242], [248] are all considered to have a feedback structure.  

In general, an exogenous input \!(V) will be either the value of a sensor time-series _ at time V, 

_(V), or a discrete feature which describes _ over some finite time interval. Note that _(V) may be the raw 
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sensor signal itself or after some pre-processing step. For example, in this review, we classify the value of an 

sEMG envelope at some time instant as a time-series input, even though this value may depend on previous 

(or future) raw sEMG samples. Similar to system theory, we use the term dynamic to refer to models which 

use past exogenous inputs, for example \!(V − V&) for		V& > 0, to estimate X(V) at time V. Note the difference 

between what we call a dynamic structure versus a feedback structure is that dynamic refers to the use of past 

exogenous inputs whereas feedback refers to the use of past outputs and/or internal state variables as a part 

of the input. We further classify discrete exogenous inputs as time-domain (TD) if computed in the time-

domain (e.g., root mean square value) and frequency-domain (FD) if computed in the frequency-domain 

(e.g., Fourier coefficients). We also report which studies first decomposed the sEMG into motor unit action 

potentials (MUAPs) from which time domain (MUAP-TD) or frequency domain (MUAP-FD) discrete 

features were extracted. 

Previous efforts to classify prediction equations have identified two classes, (1) a mixture of linear 

models and (2) a weighted sum of basis functions, into which a wide range of techniques can be classified 

[249]. We found that all prediction equations used in the studies reviewed herein can be viewed as a weighted 

sum of basis functions (where the weight of any one particular basis function is not restricted to be constant 

as in [249]). Given this general perspective, we identified a three-class classification for grouping the 

techniques used in each of the 46 reviewed papers: (i) polynomial mixtures (ℙ)), (ii) neural networks (NN), 

and (iii) nonparametric regression (NP).  

The ℙ* class is viewed as a special case where the basis functions are strictly a'(-order 

polynomials, a ∈ ℕ. Often, models are classified as either linear or non-linear, but here we consider both 

first-order polynomial mixtures (a = 1) and higher order polynomial mixtures (a > 1) as sub-classes of ℙ*. 

This is because a first-order linear model may use features which are non-linear transformations of raw sensor 

signals. For example, consider a model using the sEMG amplitude at time V (denoted by \(V)) for estimation. 

Then the prediction equation ](V) = .+\(V) + .,\,(V), for coefficients .+, ., ∈ ℝ, may be interpreted as a 

linear model with two features as inputs (namely sEMG amplitude and squared sEMG amplitude) or as a 2nd 

order polynomial with a single input (i.e., sEMG amplitude). To improve clarity, we report both the 
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polynomial model order and a description of the features used for estimation in Table 4. Prediction equations 

belonging to the ℙ* class in this review include those resulting from Gaussian mixture regression [250], lasso 

[251] and ridge [252] regression, and an ensemble of polynomials [252] among others. 

The NN class is viewed as a special case where the basis functions are neural networks. This 

formulation allows for both radial basis function networks [253] and an ensemble of networks [254] as the 

final prediction equation. 

The NP class refers to models which require access to all training data when making predictions 

(as defined in [231]). All NP prediction equations in this review are either linear smoothers [231], [255] or 

(kernelized) support vector regression (SVR). Linear smoothers express the estimated output for a test input 

as a linear combination of all training targets. These include the prediction equations resulting from Gaussian 

process regression [242], [256], kernel ridge regression [252], kernel smoothers [257], [258], and k-nearest 

neighbors regression [259]. 

4.3.2. Descriptive statistics of prediction equations 

Neural networks were the most popular model (33 studies, 72%) followed by polynomial mixtures 

(14 studies, 30%) and nonparametric regression (seven studies, 15%). Of the 14 polynomial mixtures, 12 

were first-order (linear models) of which nine used time-series inputs. Time-series inputs were used more 

often (72% of studies) than discrete features (33% of studies). Across the 15 studies using discrete features 

as inputs, 13 contained time-domain features, three contained frequency-domain features, and three studies 

estimated the decomposition of the raw sEMG signals into individual MUAPs before computing discrete 

features. Ten studies used a dynamic structure and nine studies used a feedback structure. Seven studies used 

principal component analysis as an unsupervised feature reduction method. Most studies present subject-

specific models (80%). No final prediction equations developed in any studies were open-sourced, but one 

paper [260] provided open-source code for their MUAP decomposition algorithm. Table 4 provides an 

overview of the prediction equations used in each study as well as a summary statistic summarizing 

estimation performance. 
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Table 4: Overview of the 46 reviewed papers 

Reference 
(year) 

Sensors 
(!!, max number) 

Variable 
(location): plane(s) Tasks Inputs Model Performance Summary 

Koike and Kawato [254] 
(1995) sEMG (2 kHz, 10) " (elbow): S 

" (shoulder): F ISO, OC TS NN (FB, dyn) CD: 0.89 

Suryanarayanan et al. [238] 
(1996) sEMG (2 kHz, 1) # (elbow): S OC TS NN (dyn) RMSE ≤ 15% 

Shih and Patterson [261] 
(1997) sEMG (900 Hz, 4) 

" (elbow): S 
" (wrist): S 

" (shoulder): S 
# (elbow): S 
# (wrist): S 

# (shoulder): S 

WCP TS NN 
RMSE: 0.67 – 5.76 Nm, 0.64 – 5.62 Nm 

RMSE: 4.78 – 13.76°, 4.73 – 14.33° 
 

van Dieën and Visser [262] 
(1999) sEMG (600 Hz, 6) " (lumbo-sacral): S ISO, 

LOC TS ℙ" (dyn) RMSE: 26 - 54 Nm, 49 – 160 Nm 

Au and Kirsch [263] 
(2000) sEMG (500 Hz, 6) 

# (shoulder): S, F, T 
# (elbow): S 

#̇ (shoulder): S, F, T 
#̇ (elbow): S 

#̈ (shoulder): S, F, T 
#̈ (elbow): S 

OC, 
LOC TS NN (dyn) RMSE: 14.2 – 19.6° 

RMSE: 8 – 17.2° (impaired subjects) 

Dipietro et al. [264] 
(2003) sEMG (1 kHz, 5) ( (hand): T OC TS NN (FB) RMSE: 7.3 – 11.5% 

Song and Tong [240] 
(2005) 

sEMG (1 kHz, 3) 
goni (1 kHz, 2) " (elbow): S LOC TS NN (FB) nRMSE: 4.53 – 8.45% 

nRMSE: 10.56 – 16.20% (sEMG only) 
Clancy et al. [230] 

(2006) sEMG (4096 Hz, 8) " (elbow): S ISO TS ℙ" (dyn) MAE: 7.3% 

Došen and Popovič [265] 
(2008) 2D ACC (200 Hz, 4) 

# (ankle): S 
# (knee): S 
# (hip): S 

(̈ (hip joint center): 
S 

MSW TS NN (dyn) 

RMSE: 1.19 – 3.60°, 1.18 – 2.62° 
RMSE: 0.26 – 0.39 m/s2, 0.29 – 0.46 m/s2 

CC (#): 0.97 – 0.998, 0.97 – 0.998 
CC ((̈): 0.96 – 0.99, 0.91 – 0.99 
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Findlow et al. [257] 
(2008) IMU (100 Hz, 4) 

# (ankle): S 
# (knee): S 
# (hip): S 

Normal 
Walk TS NP (KS) 

MAE: 1.69 – 2.30°, 4.91 – 9.06° 
MAE: 1.78 – 5.32° (reduced sensor array) 

CC: 0.93 – 0.99, 0.70 – 0.89 
CC: 0.87 – 0.99 (reduced sensor array) 

Goulermas et al. [258] 
(2008) IMU (--, 4) 

# (ankle): S 
# (knee): S 
# (hip): S 

MSW TS NP (KS) CC: 0.97, 0.96, 0.83 

Hahn and O’Keefe [266] 
(2008) sEMG (1 kHz, 7) 

" (ankle): S 
" (knee): S 
" (hip): S 

Normal 
Walk TS NN 

CD: 0.54 – 0.84 (sEMG only) 
CD: 0.77 – 0.92 (sEMG with demographics & 

anthropometrics) 
Mijovic et al. [253] 

(2008) 2D ACC (50 Hz, 2) #̈ (forearm): S OC TS NN (RBF) CD: 0.841 – 0.998, 0.75 – 0.99, 0.03 – 0.88 

Delis et al. [267] 
(2009) sEMG (1744.25 Hz, 2) # (knee): S Normal 

Walk 
DISC 
(TD) NN (SOM) CC: 0.59 – 0.84 

Jiang et al. [268] 
(2009) sEMG (1 kHz, 8) CF (hand) ISO DISC 

(TD) 
1) NN 
2) ℙ" 

1) CD: 0.86 
2) CD: 0.78 

Youn and Kim [241] 
(2010) 

sEMG (1 kHz, 2) 
MMG (1 kHz, 2) CF (hand) ISO DISC 

(TD) NN 
nRMSE ≤ 16% (MMG only) 
nRMSE ≤ 13% (sEMG only) 

nRMSE ≤ 10% (sEMG + MMG) 

Ziai and Menon [251] 
(2011) sEMG (1 kHz, 8) " (wrist): S ISO TS 

1) ℙ" 
2) ℙ" (lasso) 

3) ℙ" (LWPR) 
4) NP (SVR) 
5) NN (2L) 

1) nRMSE: 2.88% 
2) nRMSE: 2.83% 
3) nRMSE: 3.03% 
4) nRMSE: 2.85% 
5) nRMSE: 2.82% 

Nielsen et al. [269] 
(2011) sEMG (1024 Hz, 7) CF (hand) ISO DISC 

(TD) NN 

RMSE: 0.16 N 
RMSE: 0.10 N (impaired subjects) 

CD: 0.93 
CD: 0.82 (impaired subjects) 

de Vries et al. [270] 
(2012) 

MIMU (50 Hz, 4) 
sEMG (1 kHz, 13) 

ISF (SC): S, F, T 
ISF (AC): S, F, T 

ISF (shoulder): S, F, 
T 

ISF (elbow): S, F, T 

LOC, 
ADL TS NN nRMSE: 7 – 17% 

Jiang et al. [271] 
(2012) sEMG (2048 Hz, 7) # (wrist): S, F, T OC DISC 

(TD) NN CD: 0.74 – 0.78 

Muceli and Farina [272] 
 (2012) 

HD-sEMG 128 (2048 
Hz, 2) # (wrist): S, F, T OC TS NN CD: 0.79 – 0.89 
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Clancy et al. [239] 
(2012) sEMG (4096 Hz, 2) " (elbow): S ISO TS ℙ", ℙ#, ℙ$, ℙ% 

(dyn) 
nMAE: 4.65 – 6.38% 

nMAE: 5.55 – 7.97 % (reduced training set) 
Howell et al. [243] 

(2013) FSR (118 Hz, 12) " (ankle): S 
" (knee): S, F 

Normal 
Walk TS ℙ" nRMSE: 5.9 – 17.1% 

CC: 0.82 – 0.97 
Kamavuako et al. [273] 

(2013) sEMG (10 kHz, 6) " (wrist): S, T ISO DISC 
(TD) NN nRMSE: 6.1 – 13.5% 

CD: 0.87 – 0.91 

Jiang et al. [274] 
(2013) sEMG (2048 Hz, 7) # (wrist): S, F, T OC DISC 

(TD) NN 
CD: 0.63 – 0.86, 0.34 – 0.74 

CD: 0.61 – 0.77, 0.46 – 0.59 (impaired 
subjects) 

Farmer et al. [248] 
(2014) sEMG (1 kHz, 4) # (ankle): S Normal 

Walk TS NN (FB, dyn) RMSE: 1.2 – 5.4° 

Ngeo et al. [256] 
(2014) sEMG (2 kHz, 8) # (MCPs): S OC 

TS 
DISC 
(TD) 

1) NN (dyn) 
2) NP (GPR, dyn) 

1) CC: 0.71 (TS inputs only) 
2) CC: 0.84 (TS inputs only) 

Hahne et al. [252] 
(2014) 

HD-sEMG 192 (2048 
Hz, 1) # (wrist): S, F OC DISC 

(TD) 

1) ℙ" (ridge) 
2) ℙ" 
3) NN 

4) NP (KRR) 

4) CD: 0.8 (reduced sensor array) 
CD: 0.8 – 0.9 (range across all models) 

Jacobs and Ferris [244] 
(2015) FSR (1 kHz, 8) 

Load Cell (1 kHz, 1) " (ankle): S 
MSW, 
Calf 

Raises 
TS NN 

nRMSE: 7.04 – 13.78% 
nRMSE: 8.72 – 16.52% (FSR only) 

nRMSE: 20.47 – 46.02% (Load Cell only) 
de Vries et al. [275] 

(2016) 
 

MIMU (50 Hz, 4) 
sEMG (1 kHz, 13) 

ISF (shoulder): S, F, 
T 

LOC, 
ADL TS NN nSEM: 4 – 1 % 

nSEM: 3 – 21% (reduced sensor array) 

Wouda et al. [259] 
(2016) MIMU (240 Hz, 5) 

# (ankle): S, F, T 
# (knee): S, F, T 
# (hip): S, F, T 

# (shoulder): S, F, T 
# (elbow): S, F, T 
# (wrist): S, F, T 
# (spine): S, F, T 

OC, 
ADL, 
MSW, 
MSR, 
sport 

TS 1) NN 
2) NP (k-NN) 

1) Mean Error: 7° 
2) Mean Error: 8° 

Michieletto et al. [250] 
(2016) sEMG (1 kHz, 8) # (knee): S Seated 

Kick TS ℙ" (GMR) Custom error statistic (see paper) 

Xiloyannis et al. [242] 
(2017) 

sEMG (--, 5) 
MMG (--, 5) #̇ (MCPs): S 

OC, 
ADL, 
ISO 

TS 1) ℙ" (FB) 
2) NP (GPR, FB) 

1) CC: 0.54 
2) CC: 0.79, 0.62, 0.67 (sEMG only) 
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Zhang et al. [276] 
(2017) sEMG (1 kHz, 8) # (shoulder): S, F, T 

# (elbow): S OC DISC 
(TD) NN CD: 0.90 – 0.91, 0.86 – 0.87 

Ding et al. [277] 
(2017) sEMG (2 kHz, 8) # (elbow): S 

# (humerus): S, F, T 
OC, 
ADL TS 

1) NN 
2) NN (FB) 

3) NN (FB, UKF) 

1) RMSE: 11 - 14°, CC: 0.88 – 0.90 
2) RMSE: 11 - 15°, CC: 0.87 – 0.89 
3) RMSE: 7 – 9°, CC: 0.95 – 0.96 

Clancy et al. [278] 
(2017) sEMG (2048 Hz, 16) CF (hand): S, F 

" (wrist): T ISO TS ℙ" RMSE: 6.7 – 10.6%, 11.0 – 15.7 (4 sensors) 

Xia et al. [246] 
(2018) sEMG (2 kHz, 5) ( (hand): S, F, T OC 

DISC 
(FD) 
DISC 
(TD) 

1) NN (CNN) 
2) NN (C-LSTM, 

FB) 

1) CD: 0.78 
2) CD: 0.90 

Wouda et al. [279] 
(2018) MIMU (240 Hz, 3) # (knee): S MSR TS NN RMSE: 2.27 – 8.41°, 6.29 – 25.05° 

CC: 0.98 – 0.99, 0.77 – 0.99 

Sun et al. [260] 
(2018) sEMG (16 kHz, 1) CF (forearm) ISO 

DISC 
(MUAP-

TD) 
ℙ" CD: 0.72 – 0.89 

Chen et al. [280] 
(2018) sEMG (1.2 kHz, 10) 

# (ankle): S 
# (knee): S 
# (hip): S 

MSW TS NN (DBN) RMSE: 2.45 – 3.96° 
CC: 0.95 – 0.97 

Xu et al. [247] 
(2018) HD-sEMG 128 (1 

kHz, 1) CF (forearm) ISO TS 

1) NN (CNN) 
2) NN (LSTM, 

FB) 
3) NN (C-LSTM, 

FB) 

1) nRMSE: 7.33 – 10.93% 
2) nRMSE: 6.16 – 9.33% 
3) nRMSE: 5.95 – 9.74% 

Wang et al. [245] 
(2019) sEMG (1.6 kHz, 5) # (knee): S LOC DISC 

(FD) NN (FB) nRMSE: 3.55 – 5.13% 

Dai and Hu [281] 
(2019) 

HD-sEMG 160 (2048 
Hz, 1) # (MCPs): S OC 

TS, DISC 
(MUAP-

FD) 
ℙ# CD: 0.66 – 0.81 (TS inputs) 

CD: 0.69 – 0.86 (MUAP-FD inputs) 

Dai et al. [282] 
(2019) sEMG (2048 Hz, 16) CF (hand): S, F 

" (wrist): T ISO TS ℙ" (dyn) RMSE: 7.3 – 9.2%, 11.5 – 13.0% (4 sensors) 

Kapelner et al. [283] 
  (2019) 

HD-sEMG 192 (2048 
Hz, 3) # (wrist): S, F, T OC 

DISC 
(TD, 

MUAP-
TD) 

ℙ" CD: 0.77 (MUAP-TD inputs) 
CD: 0.70 (TD inputs)  
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Stetter et al. [232] 
(2019) IMU (1.5 kHz, 2) ISF (knee): S, F, T 

MSW, 
MSR, 
sport 

TS NN (2L) nRMSE: 14.2 – 45.9% 
CC: 0.25 – 0.94 

Sensors: !!: sampling frequency (-- indicates !! not reported), ACC: accelerometer; IMU: inertial measurement unit (accelerometer + gyroscope); MIMU: IMU with magnetometer, 
HD-sEMG N: high density grid of N surface electromyography electrodes, FSR: force sensitive resistors (instrumented insole); MMG: mechanomyography; goni: electrogoniometer 
Variables: ": net joint (muscle) moment; #, #̇, #̈ : joint/segment angular position, velocity, acceleration; (, (̇, (̈: segment position, velocity, acceleration; ISF: joint intersegmental 
force; CF: joint/segment contact force, AC: acromio-clavicular joint, SC: sterno-clavicular joint, MCPs: one or several of the metacarpophalangeal joints 
Tasks: ISO: isometric; OC, LOC: open-chain, loaded open-chain; MSW: multi-speed walking; ADL: activities of daily living (brushing teeth, drinking, etc.); MSR: multi-speed 
running; sport: sport related movements (e.g., jumping, kicking, throwing) 
Inputs: TS: time-series; DISC: discrete; TD, FD: time-domain, frequency domain; MUAP: sEMG data were first decomposed into motor unit action potentials from which discrete 
features were extracted 
Model: FB: model exhibits output and/or internal state variable feedback (includes autoregression); dyn: dynamic (dependent on previous inputs); ℙ&: mixture of *-th order 
polynomials; GMR: Gaussian mixture regression; NN: neural network; RBFN: radial basis function network; SOM: self-organizing map; DBN: deep belief network; NP: 
nonparametric regression; KS: kernel smoother; GPR: Gaussian process regression; SVR: support vector regression; KRR: kernel ridge regression; k-NN: k nearest neighbors 
regression; UKF: unscented Kalman filter; CNN: convolutional neural network, LSTM: long-short term memory network, C-LSTM: CNN in series with LSTM; 2L: two hidden 
layers 
Performance Summary: RMSE: root mean square error; nRMSE: normalized RMSE (e.g., RMSE in physical units normalized by maximum); MAE: mean absolute error; nMAE: 
normalized mean absolute error (see nRMSE); nSEM: normalized standard error of measurement; CC: correlation coefficient; CD: coefficient of determination; italic performance 
metrics indicate results for task extrapolation (e.g., trained on normal walking data, tested on fast walking data), bold performance metrics indicate results for subject 
extrapolation (all data in the test set were associated with different subjects than were data in the training set) 
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4.4. Discussion 

Remote monitoring of patient segment, muscle, and joint kinematic and kinetic time-series has 

been established as an important component of digital health. Practical limitations in the number of sensors 

that can be deployed simultaneously to a given user motivate the pursuit of regression-based approaches. 

Thus, the primary aim of this review is to summarize relevant developments in the use of regression for 

estimating these biomechanical time-series. This review is timely given the increase in relevant studies since 

the turn of the century (Figure 14) and the limitations of other systematic reviews in the area. While many 

different techniques were observed since the first relevant method published in 1995, there are some common 

themes consistent across studies which we discuss below. Additionally, we discuss challenges concerning 

the practical implementation of the reviewed methods and common characteristics of the techniques that 

provided the best performance to provide possible directions for future work. In particular, we discuss how 

incorporating domain knowledge often improved performance and the implications for hybrid estimation 

(i.e., using both physics-based and machine learning techniques in concert). Note that our identification of 

techniques that may improve performance was not based on a comparison of methods between the studies 

reviewed herein. Instead, we draw conclusions concerning techniques that led to improved performance only 

where those conclusions were inferred within individual studies that report an appropriate statistical 

comparison. 

4.4.1. Overview of regression techniques 

Neural networks were the most popular regression model. Most incorporated a 3-layer feed 

forward neural network (non-recurrent, single hidden layer) [241], [244], [251]–[253], [256], [259], [261], 

[263], [265]–[276], [279] and differed based on the choice of activation function and/or number of hidden 

neurons. The number of hidden neurons in the NN models reviewed was usually optimized over a set of 

predefined values [240], [241], [245], [248], [252], [256], [259], [263], [264], [266], [268], [269], [271], 

[272], [277] but sometimes not [232], [244], [261], [265], [270], [275]. Two papers considered an ensemble 

of networks. Koike and Kawato (1995) trained two task-specific NNs (one for postural activities and the 
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other for dynamic) and a gating network which provided the weights for linearly combining the joint torque 

estimates from the two task-specific NNs [254]. Ding et al. (2017) utilized an unscented Kalman filter for 

combining two NNs to estimate elbow joint angle and upper arm orientation [277] wherein a recurrent NN 

trained using sEMG data with reduced information redundancy (using a custom reduction approach) was 

used to model the time-update equation and a second NN trained to estimate a redundant sEMG time-series 

was used as the measurement-update equation. Convolutional and long-short term memory NN (CNN and 

LSTM, respectively) were first used in 2018. Xia et al. (2018) found that an LSTM in series with a CNN (C-

LSTM) outperformed a CNN alone for estimating hand position during general open-chain tasks [246]. 

Likewise, Xu et al. (2018) found that C-LSTM outperformed LSTM alone which outperformed CNN alone 

(nRMSE: 8.67%, 9.07%, and 12.13%, respectively) for estimating contact forces at the distal forearm and 

was one of the few studies to use a leave-one-subject-out validation approach [247].  

Polynomial mixtures were the next most popular model and of these, first order polynomials were 

most common. Consideration of simple linear models is motivated by an observed relationship between 

sEMG amplitude and muscle force, especially at lower force levels. However, to increase muscle force, 

additional motor units are recruited and/or stimulation frequency increases which along with heterogenous 

activation within a muscle and load sharing between muscles makes this relationship non-linear [224], [228]. 

Some reviewed papers compared linear models (ℙ!) to both neural networks [251], [252], [268] and 

nonparametric regression [242], [251], [252]. Although between model comparisons varied and two of these 

four studies only considered isometric tasks [251], [268], the NN and NP performances were no different 

than those from linear models. Comparisons have also been made between first order and higher order 

polynomial mixtures. It was shown in [262] that linear models performed equally as well as second order 

models for estimating lumbo-sacral joint torque using sEMG and Clancy et al. (2006) show that superior 

sEMG amplitude estimation techniques (e.g., whitening, multi-channel) can improve linear models [230]. 

Alternatively, Clancy et al. (2012) show that 2nd or 3rd order polynomials outperformed 1st and 4th order 

models (with regularization and optimal dynamic orders) for estimating isometric elbow joint torque using 

sEMG inputs [239]. A few studies considered an ensemble of polynomials. Michieletto et al. (2016) used 

Gaussian mixture regression, which can be shown to be a linear mixture [249], to estimate knee 
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flexion/extension angle using sEMG inputs [250]. Hahne et al. (2014) used degree-of-freedom-specific linear 

models to estimate wrist joint angle and linearly combined their estimates using weights determined by a 

logistic regression model trained to classify the degree-of-freedom of the movement (the weights were the 

posterior class probabilities) [252]. 

Nonparametric regression was used least frequently. This may be due to the amount of data 

necessary to compute an estimate given the nonparametric models used in the reviewed studies (although 

reduction methods exist [231]). While this may be prohibitive for real-time applications (e.g., for prosthetic 

control [252]) it may still be a feasible method for remote patient monitoring applications where data can be 

stored locally during the day and processed at a later time. Linear smoothers were the most popular 

nonparametric regression. The first study to use nonparametric regression in the proposed context was in 

2008 where the Nadaraya-Watson estimator, a kernel smoothing technique, was used to estimate lower 

extremity joint angles using IMU data [257]. Goulermas et al. (2008) built upon this model by incorporating 

an additional term in the Gaussian kernel intended to accentuate or attenuate a training target’s contribution 

to the final estimate according to a custom pattern similarity index [258]. Several papers noted the advantage 

of nonparametric regression for small training sets. For example, Ngeo et al. (2014) show Gaussian process 

regression outperformed a neural network in estimating finger joint angles using sEMG data, especially for 

smaller data sets [256]. Similarly, Hahne et al. (2014) found that kernel ridge regression outperformed a 

neural network for both a reduced training set and when reducing the number of sEMG channels of a high-

density array (from 192 to 12 – 16) [252]. 

4.4.2. Concerns for practical implementation 

Remote patient monitoring and myoelectric prosthetic control were the two most common 

applications used to motivate the many different techniques reviewed which indicates that eventual users of 

these systems are expected to present with clinical impairment. However, our results show that most studies 

do not validate their estimation techniques on impaired individuals. Evaluating algorithm performance on 

unimpaired populations is certainly useful for algorithm development as it reduces extraneous variables and 

simplifies study recruitment and retention efforts. Nevertheless, these algorithms need to be deployed to 
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impaired populations and, while some studies present improved or equal performance for impaired 

individuals, many show that performance decreases. Thus, caution should be taken when considering how 

well a technique will work when deployed for a population on which it has not been validated. This clearly 

applies for a model trained on healthy participants but deployed to participants with impairment (though in 

some cases the drop in performance is minimal [20]). However, one also cannot assume that a model trained 

and tested on impaired participants will have identical performance characteristics as the same model trained 

and tested on healthy participants. 

In addition to generalizing performance across populations, more research is needed to better 

understand how these regression models generalize across individuals and tasks. The majority of studies 

(80%) developed subject-specific models and only 33% of studies explored task extrapolation. The latter 

may be less of a barrier to implementation since in practice task identification will likely be a part of the 

pipeline for automated analysis [70], in which case highly accurate activity classification models are required 

[284]. Thus, task specific models could be selected following task identification. However, given the 

approaches reviewed herein, subject-specific models require every user to be observed in-lab for model 

training. Further, the observation sets for model training must be broad enough in scope (e.g., multi-speed, 

multi-load) so that they can be confidently applied for estimation in unconstrained environments. These 

requirements substantially limit the scalability of these solutions for remote patient monitoring. Subject-

general models may be one of the more difficult challenges to overcome in the future as they appear to 

frequently result in performance decreases [253], [257], [258], [279]. Intuitively, this may indicate that 

current regression models are learning person-specific patterns as opposed to generalizable phenomena. This 

may be a result of the small sample sizes used for model training in many of the reviewed studies. To fully 

realize the potential of regression techniques for estimating biomechanical time-series, future work should 

incorporate observations from impaired populations in their training and validation sets and larger sample 

sizes to foster learning of generalizable phenomena. 

The clinical utility of the reviewed estimation techniques is largely driven by the estimated 

biomechanical variables. This review found no relevant studies which estimated muscle or joint contact 
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forces. This is likely due to the fact that direct measurement of these variables is substantially more invasive 

than joint or segment mechanics. Nevertheless, indirect muscle and joint contact force estimates enabled by 

traditional laboratory-based gait analysis can be informative clinically [219], [220]. Thus, models trained 

using these indirect estimates as training targets may be useful for estimating muscle and joint contact forces 

in remote environments. Further, future research should investigate the estimation of frontal and transverse 

plane joint mechanics. Specifically, frontal plane joint moment may be especially useful in monitoring 

patients at risk of developing knee osteoarthritis and remote observation of these mechanics may provide 

clinical endpoints to evaluate intervention efficacy or inform rehabilitation decision making [46], [216]. 

There is room for improvement in this area as only one study [243] reports the estimation of non-sagittal 

plane moment of any lower extremity joint (frontal plane knee joint moment during walking), and 

performance was inferior to sagittal plane estimates achieving normalized root mean squared error of 16.4 ± 

5.7% (vs. 10.7 ± 5.3% for sagittal plane moments) in healthy subjects.  

Deployment of many of the reviewed techniques is further complicated by hardware limitations. 

Of particular concern are the battery capacity and memory constraints of current wearables. Of the more 

popular wearable sensors, gyroscopes are notorious for limiting long-term capture due to their power 

requirements and would thus limit immediate application of several methods reviewed [232], [257]–[259], 

[270], [275], [279]. Alternatively, accelerometers and sEMG are able to provide continuous recording for at 

least 24-hours with current battery technology. The use of sEMG for remote monitoring is less common than 

accelerometry and has been used primarily for quantifying indices of physical activity [285]–[288]. Recent 

efforts have estimated muscle activation time-series during walking using methods similar to those used to 

estimate muscle force using Hill-type muscle models [29], [70], [193]. This pre-processing step was used by 

several reviewed papers suggesting they may be practically deployed. However, the sEMG sampling 

frequency used in many of the reviewed studies (500 Hz to 16 kHz) was much higher than what has been 

used for remote monitoring (10 – 250 Hz). It is currently unknown to what extent estimation performance is 

influenced by sEMG sampling frequency. Future research should explore these limitations in search of 

hardware and algorithmic solutions that are practically deployable for remote patient monitoring. 
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An additional practical concern is the number of wearable sensors required for the reviewed 

algorithms. Several studies considered the effect of reducing the number of sensors on estimation 

performance. Clancy et al. (2017) present a backward stepwise selection method for reducing the number of 

necessary sensors [278]. They show that additional sensors beyond four (up to 16) provided no statistically 

significant advantage for estimating degree of freedom specific wrist joint kinetics. This reduction method 

was later used by Dai et al. (2019) for a similar application where the reduction approach generally 

outperformed pre-selected sensor locations [282]. Dai and Hu (2019) present a method for reducing a high-

density grid of 160 sEMG electrodes down to an 8x8 grid, however, the 8x8 subset was finger specific (for 

estimating finger kinematics) [281]. Future work in the development of regression approaches for estimating 

biomechanical time-series should incorporate analysis of the effect of reducing instrumentation complexity 

(i.e., reducing the number and types of sensors required) on estimation performance.  

Finally, only one study provided open-source code for any part of their methodology [260]. The 

code was for performing the MUAP decomposition of the raw sEMG signals and not the actual regression 

model. Providing open-source code for subject-general models will allow non-specialized research teams 

without expertise in engineering or computer science to utilize these methods for clinical purposes. Further, 

it will allow 3rd party validation; a necessary component prior to practical deployment and to promote 

confidence from the public in the clinical utility of these tools. Open-source data as well as open-source code 

in future studies would help speed the pace of development of these techniques. 

4.4.3. Incorporating domain knowledge 

While we excluded physics-based techniques from the current review, several papers incorporated 

domain knowledge into their approach (e.g., muscle and neural physiology, rigid body dynamics) which was 

often reported to improve performance. For example, Koike and Kawato (1995) incorporated feedback of 

joint angular position and velocity specifically on the basis of the well-known force-length and force-velocity 

property of muscle [254]. Further, pre-processing of the raw sEMG signals to optimally estimate sEMG 

amplitude was often motivated by an understanding of muscle activation dynamics. State-of-the art 

estimation incorporates signal whitening and the use of multiple channels (multiple sensors per muscle) 
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[228], [230], [289]. These techniques have been shown to improve estimation performance compared to other 

methods [230], [239]. Most papers used the standard high-pass filter, rectify, low-pass filter processing to 

estimate sEMG amplitudes and a broad range of low-pass filter cutoff frequencies were used [200], [240], 

[242], [247], [248], [250], [251], [256], [261]–[263], [266], [270], [280], [282]. In addition to enveloping 

techniques, some incorporate the fact that the observed sEMG is the superposition of many MUAPs. Three 

studies (all since 2018) computed discrete features as model inputs after first performing MUAP 

decomposition (Table 4). Given their results, Dai and Hu (2019) recommend the MUAP decomposition over 

standard enveloping techniques [281]. Sun et al. (2018) identified shape-based clusters (#-means, 5 ≤ # ≤

20) of MUAPs extracted from the biceps brachii sEMG and suggest the different clusters represent different 

motor units [260]. The final estimation can be seen as a scaling of a single feature related to the number of 

activated motor units which they use to represent firing rate (see eq. (10) in [260]). Thus, the pre-processing 

of the raw sEMG signal, to estimate both sEMG amplitude and MUAPs, based on its physiological origin 

[228], [289] may have contributed to improved estimation performance. 

An electromechanical delay (delayed increase in muscle force following neural excitation) is also 

known to characterize muscle contraction dynamics [228]. This phenomenon may provide a physiological 

justification for the improvements in performance associated with the use of a dynamic model structure 

allowing previous sEMG values to have lasting effects on the estimated output. Total delay was sometimes 

optimized using a grid search (625 – 875 ms [263], 50 – 150 ms [248]) and sometimes not (130 ms [262], 

0.5 ms [238], 488.3 ms [282]). Clancy et al. (2006) found that performance increased with greater total time 

delay up to about 10 or 15 samples (i.e., 244.1 or 366.2 ms) [230]. Likewise, Clancy et al. (2012) tried 

between 1 and 30 sample delays and found that lesser time delays (namely total delay < 5 samples or 122.1 

ms) resulted in poorer performance [239]. Overly large delays also resulted in poor performance, especially 

for high polynomial orders which they attribute to overfitting. The best total delays (439.5 ms – 683.ms) were 

dependent on polynomial order and the regularization method. Ngeo et al. (2014) modeled the sEMG to 

activation dynamics using the method described in [290] and optimized the electromechanical delay. Optimal 

values were person-specific (between 39.6 – 75 ms) and they show that incorporating electromechanical 

delay into their activation model improved performance compared to neglecting it [256]. Some of the optimal 
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delays reported in the reviewed studies are larger than what is reported elsewhere in the literature (30 – 150 

ms) [228]. One explanation may be that in addition to the delayed effect of neural excitation, more 

information concerning the sEMG time-history could help a regression algorithm capture some sub-task 

related neural control pattern which may be inferred from a sufficiently large (i.e., > 150 ms) window of 

time. The muscle synergy hypothesis may provide a physiological basis for expecting said pattern to exist 

[291]. This concept was mentioned in several reviewed papers and thus we pay it special attention next. 

4.4.4. Reference to muscle synergies 

Several papers referred to the muscle synergy hypothesis in the development of their models and 

in the discussion of its performance. The muscle synergy hypothesis provides a potential explanation of how 

the central nervous system accomodates redundancy in motor control [292]. The theory suggests that the 

activation time-series of a given muscle is a linear combination of a small set of basis waveforms. Non-

negative matrix factorization (NNMF) is an algorithm commonly used in muscle synergy analysis to 

optimally determine the basis functions and the coefficients for linear combination given a set of muscle 

sEMG or activation time-series [291]–[293]. Jiang et al. (2009) used these techniques directly in their 

estimation and show that for estimating contact forces at the hand, their method using NNMF is nearly 

unsupervised in that target force values are not needed and is only supervised in the sense that the degree of 

freedom must be known for model training [268]. 

Others have referred to muscle synergies as a possible explanation for the observed accuracy of 

some regression techniques [230], [263], [264], [276]. The synergy hypothesis indicates that the activity of 

all muscles contributing to a given joint torque may be approximated given a common and observable subset 

of sEMG observations. While the estimation of muscle activation time-series was not included in the current 

review, we note that Bianco et al. (2018) explored the possibility of estimating unmeasured muscle 

activations from sEMG time-series measured from eight different muscles using the traditional linear 

combination of basis waveforms formulation of muscle synergies [294]. To the authors’ knowledge, no 

studies have regressed unmeasured muscle activations using a reduced number of wearable sensors. In this 

formulation, the function being identified in the regression would effectively model the synergistic 
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relationship between muscles. Such an approach might enable estimated activations to inform a complete set 

of Hill-type muscle models crossing the joint of interest to estimate muscle force. Wang and Buchannan 

(2002) tried a similar approach wherein a neural network was trained to learn the muscle activation dynamics 

(intramuscular EMG to muscle activation model) using estimated torque error to drive parameter adaptation 

in the learning process [295]. However, they estimated activations only for those muscles with measured 

intramuscular EMG. Thus, advances in modeling the observed synergistic behavior of muscle activations 

may prove useful for improving estimation of biomechanical time-series with a minimal number of wearable 

sensors. These observations motivated the developments described in Chapter 5. 

The muscle synergy hypothesis suggests that an observed set of muscle activation or sEMG time-

series carries redundant information and can be explained by a lower dimensional structure (e.g., less than 

the number of sensors available). Regularization is a common technique in machine learning used to reduce 

model complexity and prevent overfitting, usually at the expense of training error. Reducing the number of 

inputs by removing redundant information also reduces model complexity and the muscle synergy hypothesis 

may provide a physiological basis for this phenomenon. Clancy et al. (2012) compared ridge regression to 

their pseudo-inverse based regularization wherein the reciprocals of singular values below some threshold 

were replaced with zero [239]. The best ridge regression results were similar to the pseudo-inverse 

regularization. However, optimal fits were less sensitive to changes in pseudo-inverse tolerances near the 

optimum than they were to changes in the ridge penalty hyperparameter suggesting the pseudo-inverse 

technique may be easier to tune. This technique, also used in [278] and [282], along with self-organizing 

maps [267] and principal component analysis [247], [252], [269], [272], [276], [280], [283] are examples of 

unsupervised feature reduction techniques. Chen et al. (2018) found that using a deep belief network to reduce 

10 inputs to three outperformed the PCA approach for the same dimensionality reduction task [280]. This 

might be considered a supervised dimensionality reduction (as would lasso regression [251]) as the 

determination of the weights in the hidden neurons of the deep belief network are optimized so that the final 

output best approximates the training set targets. Thus, although feature reduction is common in machine 

learning for improving generalizability, it may be further justified on a physiological basis given the 

assumption that a lower dimensional structure of the inputs exists. 
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4.4.5. Towards a hybrid approach 

A general conclusion from these observations is that clever incorporation of domain knowledge 

in regression techniques may improve performance. In the papers we reviewed, this was mostly by way of 

sensor signal pre-processing, feature engineering, and model structure (e.g., feedback or dynamic). 

Incorporation of domain knowledge in regression has been suggested for other biomechanics applications 

[19], and as shown in [231], a good understanding of system dynamics can directly inform kernel structure 

in Gaussian process regression. For these reasons, hybrid methods using both physics-based and machine 

learning techniques in concert are being proposed in other fields including climate sciences [296], GPS-

inertial navigation [297], and general chaotic processes [298]. As noted in a recent editorial [299] concerning 

climate modeling, “The hybrid approach makes the most of well-understood physical principles such as fluid 

dynamics, incorporating deep learning where physical processes cannot yet be adequately resolved.” The 

general approach observed in many of these techniques are generalizable and applicable beyond specific 

scientific disciplines and thus may prove beneficial for remote patient monitoring. One approach might be to 

regress an unobserved internal state for which the physical relationship with observed measurements is either 

not well understood or not fully informed (e.g., not enough sensors) and then to drive a physical model using 

the estimated internal state variable. For example, this was done in [295] where the authors’ chose to model 

muscle activation dynamics using a neural network since they determined these dynamics to be the least well 

understood. A second approach might be the fusion of a regression estimate and a physical model estimate. 

Along these lines, if uncertainties are modeled, the parameters of the regression (or the physical model) may 

be adapted in real-time. Gui et al. (2019) use a similar approach to remove the need to calibrate an EMG-

torque model [300]. In the proposed context this could be especially useful as it may be interpreted as real-

time subject specification from a general model. Further, it may enable the adaptation of a model to time-

varying signal characteristics (e.g., due to electrode displacement, changes in skin conductivity, specific 

spatial position of inertial sensors) which may negatively impact estimation [251]. Future developments in 

hybrid methods that take advantage of the strengths of both physical models and machine learning may help 

realize the maximum potential of remote patient monitoring. 
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4.5. Conclusion 

Regression techniques present an alternative approach to physical models for estimating 

biomechanical time-series using wearable sensor data. These methods could be transformative for 

personalizing healthcare interventions as they allow the monitoring of a patient’s biomechanics continuously 

and in unconstrained environments. The aim of this review was to summarize relevant regression techniques 

in this context to imply directions for future research concerning practical implementation and improving 

estimation performance. Several reviewed studies found that incorporating some form of domain knowledge 

resulted in better estimation accuracy. Advances in this area along with open-source algorithms, validation 

in impaired populations, and consideration of practical hardware limitations (e.g., battery capacity and 

memory) may expedite future developments to make clinical implementation a reality. In summary, future 

work should consider the following: 

§ Development of methods using hardware specifications that can be implemented remotely and for 

a full 24-hour capture 

§ Development of subject-general models or real-time calibration 

§ Development of hybrid machine learning and physics-based estimation 

§ Open-source algorithms 

§ Development of regression models for estimating muscle forces and joint contact forces 

§ Validation of models on impaired populations 
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Chapter 5: A Gaussian Process Model of Muscle Synergy Functions for Estimating Unmeasured 

Muscle Excitations Using a Measured Subset 

 

A modified version of this chapter was published as: Gurchiek, RD, Ursiny, AT, McGinnis, RS (2020). A 

Gaussian process model of muscle synergy functions for estimating unmeasured muscle excitations using a 

measured subset. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(11): 2478-2487. 

 

5.1. Introduction 

Recent developments in remote gait analysis point toward the need to incorporate free-living 

observation of joint mechanics into comprehensive patient evaluations [70], [160], [301]. These 

measurements could capture patient-specific responses to prescribed interventions with an observation 

frequency not possible using laboratory-based approaches. Moreover, these measurements of clinically 

relevant biomechanics could be used to inform patient-specific modifications to rehabilitation programs and 

to evaluate their efficacy [46], [216] across a broad range of clinical populations [8], [37].  

 Analysis of muscle excitations during gait are integral to delivering on this vision. In this paper, 

muscle excitation (a.k.a. sEMG amplitude [228], [302]) refers to the time-varying excited state of muscle and 

is related to motor unit recruitment and firing rate [302]. Muscle excitation is distinguished from muscle 

activation which is defined functionally for scaling active muscle force in sEMG-driven muscle force 

estimation [228] and has been related to the calcium dynamics promoting muscle force production [224], 

[303]. Muscle excitations alone provide clinical insight into motor control. To this end, are used to quantify 

control complexity in patients with neurological disorders via synergy analysis [28], [304] and, in a remote 

gait analysis application, for monitoring rehabilitation progress following knee surgery (Chapter 3) [70]. 

Further, excitations drive muscle activation dynamics which are used to estimate muscle forces [209], [224], 

[290]. Remote estimation of muscle forces provides an avenue for advancing the current state of remote 

monitoring techniques (mostly limited to spatiotemporal variables [8], [301]) to incorporate additional 

clinically relevant biomechanical variables. For example, muscle work could be utilized in an adaptive 

rehabilitation context for its relation to work-induced muscle hypertrophy [305]. Further, muscle forces are 
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necessary to estimate muscle contributions to joint contact force and net joint moments using force plate-free 

techniques [209], [290] (a requirement for remote monitoring) both of which provide invaluable insight in 

many orthopedic conditions [31], [37]. 

Wearable sEMG sensors provide the hardware solution to realize the aforementioned remote 

analyses, but one of the primary limitations to practical deployment is the number of sensors necessary [224]. 

For joint contact force and net joint moment estimates, a sensor would be required on every muscle. Such a 

complex wearable system greatly impedes users’ daily life; an increased burden that may discourage use 

[160]. Non-sEMG data have been used to estimate muscle forces and/or excitations (with or without sEMG 

data) using both regression [306]–[309] and optimization-based solutions to the muscle redundancy problem 

following inverse-dynamics [310]. However, wearable sensor solutions in this context also require many 

sensors [25], [311] limiting use in remote gait analysis. 

Regression techniques have been proposed as a means to reduce the number of necessary wearable 

sensors for estimating biomechanical time-series (Chapter 4) [12]. These have proven successful for 

estimating joint moments, which as discussed earlier, serve as the starting point for optimization-based 

muscle force solutions. However, as mentioned in Chapter 4 [12], a hybrid approach may enable a more 

generalized solution wherein machine learning is used to augment estimation where the physics are least well 

understood [299]. For example, consider that a model using only sEMG inputs trained to estimate joint angle 

during open-chain tasks must learn (1) the mapping from a subset of measured excitations to a complete set, 

(2) muscle activation dynamics, (3) muscle contraction dynamics, (4) rigid body dynamics, and (5) forward 

integration of the kinematic equations. In this example, steps (2)-(5) and their associated physics have been 

well studied whereas the mapping described in step (1) is least well understood. Thus, the proposed hybrid 

solution would be to approximate the behavior of step (1) using machine learning wherein a complete set of 

muscle excitations would be informed by a measured subset. This complete set of excitations could then 

drive the dynamics of steps (2)-(5) using sEMG-driven techniques which are well described in the 

biomechanics literature [209], [290]. The success of regression models motivates the existence of the 

mapping in step (1) (which we refer to as synergy functions) and is further supported by recent results 
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suggesting a subset of muscles may carry the information necessary for reconstructing unmeasured 

excitations [294]. 

In this study, we propose to model synergy functions as a Gaussian process (GP) and develop an 

approximation to their behavior that allows estimation of unmeasured excitations from a measured subset. 

Gaussian process regression is suitable in this context as it has been shown advantageous for small datasets 

[256] and because it provides the variance of the estimate which may prove beneficial in sensor fusion 

frameworks considered in future applications. Further, a GP model permits a connection to probabilistic 

theories of motor control [312]. The novel developments in this study (building on our preliminary work 

[313]) include the Gaussian process model of muscle synergy functions and the estimation of unmeasured 

muscle excitations using only a subset of sEMG data. 

 

5.2. Gaussian process model of muscle synergy functions 

The main assumption made in this development is the existence of a function, (": ℝ# → ℝ, which 

maps the excitation ,"(.) ∈ ℝ of muscle 1 (called the output muscle) at time . from an input vector 2(.) ∈

ℝ# (Figure 16). Specifically, 2(.) is composed of excitations from a subset of 3 muscles (called the input 

muscle set) during a finite time interval, [.! .$], such that .! ≤ . ≤ .$ (called the input window). The 6-

dimensional input 2(.) is partitioned as per 

2(.) = [8!(.) 8%(.) ⋯ 8&(.)] (5.1) 

where 8'(.) is ;-dimensional, 

8'(.) = [<',! <',% ⋯ <',$] (5.2) 

and <',) is the =th sample of the excitation time-series of the >th input muscle such that <',! = <'(.!) and <',$ =

<'(.$). Thus, the dimension of the input, 6 = 3;, is dependent on the number of input muscles, the size of 

the input window (.$ − .!), and the sEMG sampling frequency. The idea employed here is that the subset of 

input muscles and the output muscle are controlled in a coordinated fashion (i.e., synergistically) to achieve 

some sub-task during the time interval [.! .$] (e.g., propulsion of the center of mass during walking) and 
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that this relationship can be inferred just from the excitations of the input muscles. Due to the nature of this 

mapping, we refer to (" as a synergy function. 

 Our approach is to approximate (" using Gaussian process regression [231]. To this end, we model 

the synergy function (" as a GP indexed on the input muscle excitations. This implies [314] that the scalar 

("(2) is a random variable with Gaussian distribution as per ("(2)	~	BCD"(2), F"% (2)G and is jointly 

Gaussian with ("(2*) (a synergy function output associated with an arbitrary input vector 2′) with covariance 

given by 

covC("(2), ("(2′)G = L"(2, 2*) (5.3) 

where L"(2, 2*) is a muscle-specific covariance function defining the covariance between ("(2) and ("(2*). 

Thus, for consistency, the variance of ("(2), denoted as F"% (2), is L"(2, 2) and the mean is defined by a 

muscle-specific mean function D"(2). 

To learn the behavior of the synergy function (", we observe the synergistic relationship between 

the input muscle excitations and those of the output muscle given a set of M measured input-output pairs, 

C,",' , 2'G, called the training set. It is assumed that the measured output muscle excitations ,",' in the training 

set are additively corrupted with muscle-specific, independent and identically distributed, zero-mean 

Gaussian noise, N",' 	~	B(0, O"% ), so that 

,",' = ("(2') + N",' . (5.4) 

The M measured output muscle excitations in the training set are used to form a column vector Q" (a random 

vector), 

Q" = [,",! ,",% ⋯ ,",+], (5.5) 

which is characterized by a joint multivariate Gaussian distribution, Q"	~	B(R", Σ"), expressed in terms 

of its mean vector R" and M ×M covariance matrix Σ". Since N",' is zero-mean, the mean vector R" is 

(element-wise expectation in eq. (5.5)) 

R" = [D"(2!) D"(2%) ⋯ D"(2+)], (5.6) 
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and due to the independence assumption, the element in row U and column V of Σ" is 

[Σ"]-,. = L"(2- , 2.) + O"% [I]-,. (5.7) 

where [I]-,. is the element in row U and column V of the M ×M identity matrix I [231], [315].  

Given an unseen input, 2∗ (not in the training set), the corresponding synergy function value, ("∗ = ("(2∗), 

must also be jointly Gaussian with Q" (per the GP model) and thus 

X	
Q"
("∗

	Y	~		B Z	X	
R"

D"(2∗)
	Y , X	

Σ" ["(\, 2∗)

[", (\, 2∗) L"(2∗, 2∗)
	Y	] (5.8) 

where we have used [", (\, 2∗) to denote the M-element row vector of covariances between ("∗  and each 

muscle excitation in the training set Q" such that 

[", (\, 2∗) = [L"(2!, 2∗) ⋯ L"(2+, 2∗)]. (5.9) 

and the symbol \ is used to denote all input vectors in the training set. Finally, the conditional distribution 

of the synergy function value ("∗  is given by conditioning the joint Gaussian prior in eq. (5.8) on the observed 

training data, Q". This conditional distribution is Gaussian with mean [231], [315] 

("̅∗ = D"(2∗) + [", (\, 2∗)Σ"!"(Q" − R") (5.10) 

and variance 

(F"∗ )% = L"(2∗, 2∗) − [", (\, 2∗)Σ"!"["(\, 2∗). (5.11) 

Therefore, in the proposed estimation procedure, given a subset of (unseen) measured muscle excitations 

organized as a model input, 2∗, our estimate of ,"∗  is ("̅∗  in eq. (5.10) and can be written as 

,"∗ = D"(2∗) + _",!L"(2!, 2∗) +⋯+ _",+L"(2+, 2∗) (5.12) 

where the coefficient _",' (specific to output muscle 1) is the >th element of the column vector `" given by 

`" = Σ"!"(Q" − R") (5.13) 

and it is clear that the output ,"∗  is a scalar. The variance of the estimate is the sum of the variance, (F"∗ )%,  
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of the conditional distribution of ("∗  in eq. (5.11) and the noise variance O"%  in eq. (5.4) as per 

var(,"∗ ) = (F"∗ )% + O"% . (5.14) 

When deploying this method in practice, the _",' are already known as they depend on training 

data only and as seen in eq. (5.13) require inversion of the covariance matrix Σ". This inversion can be 

thought of as training the model and is required in eq. (5.11) to describe the uncertainty of the estimate, ,"∗ , 

in eq. (5.14). Further, the mean function and covariance function may depend on one or more 

hyperparameters (including the noise variance O"% ) which are optimized by minimization of the negative log 

marginal likelihood over the training data using conjugate gradient descent. Hyperparameters for the models 

used in this work are introduced when the mean and covariance functions are specified. All aspects of training 

the GP models were done using the GPML toolbox [316], [317] in MATLAB R2019b. A custom package was 

developed that streamlines the development of different model structures (e.g., input muscle sets, input 

window size) for training, testing, and evaluation. 

 

 

 

 

Figure 16: Visual overview of the proposed estimation procedure. In this example, four muscle 
excitation time-series are available from measured sEMG data (input muscles: vi) and are used to 
estimate the excitation time-series of six other muscles (output muscles: yi). To estimate the muscle 
excitation at time t (green dashed line) for a given output muscle, a finite time interval [t1 tn] (black 
dashed lines), called the input window (shaded red area), of each input muscle is input to the 
corresponding synergy function (fi). 
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5.3. Experimental validation 

Sixteen unimpaired subjects walked for one-minute at a self-selected normal walking speed on a 

level treadmill (h/p/cosmos quasar) while sEMG data (BioStamp nPoint, MC10, Inc., sampling frequency: 

1000 Hz) were continuously recorded from 10 muscles of the right leg: tibialis anterior (TA), peroneus longus 

(PL), lateral gastrocnemius (LG), medial gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus 

femoris (RF), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST). Electrode placement was 

according to SENIAM recommendations [318]. Muscle excitations were computed from raw sEMG data 

using methods common for estimating muscle force [209]. Specifically, sEMG data were digitally high-pass 

filtered at 30 Hz, rectified, low-pass filtered at 6 Hz, and normalized by the maximum value across the 

walking trial and several muscle-specific maximum voluntary contraction trials (MVC). All muscle 

excitation time-series were resampled to 250 Hz to explore application of the proposed approach for sampling 

frequencies used in remote monitoring [70]. Following a visual sEMG data quality check, all data for seven 

subjects were removed as there was no clear signal during walking for at least one muscle. Thus, all data 

used in this study were from the other nine subjects (five males, height: 1.8 ± 0.1 m, mass: 72.3 ± 12.4 kg, 

age: 21 ± 1 years). The average walking speed across all subjects was 0.84 ± 0.13 m/s and the average stride 

time was 1.31 ± 0.22 s. All subjects provided written consent to participate and all activities were approved 

by the University of Vermont Institutional Review Board (#18-0518).  

The proposed GP model for estimating muscle excitations is modifiable in many ways. In this 

study, we explore the effects of different model characteristics at three levels: (1) input muscle sets, (2) 

structure of the input window, and (3) stationarity of the covariance function. All models explored were 

subject-specific models, i.e., all data used to train and test a given model were from the same subject. Models 

were trained on 15 seconds of data from the first half of the one-minute walking trial. Models were evaluated 

using 15 seconds of data from the second half of the trial, and thus these data were not “seen” by the model 

during the training process. A constant mean function was assumed for all GP models dependent on a single 

hyperparameter V", 

D"(2) = V". (5.15) 
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5.3.1. Input muscle sets 

The impact of input muscle set on estimation performance was explored using an exhaustive 

approach. We trained models using every possible combination of four, three, and two input muscles (out of 

the 10 we instrumented) yielding 210, 120, and 45 combinations, respectively. For each input set, GP models 

were trained to estimate the excitations of each of the muscles not in the input set. For this analysis, we used 

a scaled, squared exponential covariance function with isotropic length scale given by 

L"(2, 2*) = c! expZ−
g,g
2c%%

] (5.16) 

where g = 2 − 2′ and the hyperparameters are the scalar c! and the characteristic length scale c%. The 

window size (.$ − .!) was set to 1.0 s and the window relative output time (.$ − .) was set to 0.5 s. The 

maximum number of function evaluations for hyperparameter optimization was set to 50. 

5.3.2. Model selection 

Only one input muscle set for each of the four-, three-, and two-muscle input sets was used to 

further examine the effect of window structure (section 5.3.3.) and the stationarity of the covariance function 

(section 5.3.4.). Using an exhaustive search approach, one would normally score the performance of each 

input set according to some performance metric and choose the one with the best score. However, several 

different metrics are common for evaluating estimation of biomechanical time-series including Pearson’s 

correlation coefficient (r), percentage of variance accounted for (VAF), root mean square error (RMSE), and 

mean absolute error (MAE) [12]. In an attempt to select the best input set with consideration of each of these 

metrics we utilized a z-score averaging method. To this end, each metric was computed for each muscle-

specific synergy function corresponding to each muscle in the output set for each investigated input set. These 

were evaluated by comparing the estimated excitations with the true measured excitations in the test set. 

Performance metrics for a given input set were first averaged across all output muscles and then across all 

subjects yielding four metrics (r, VAF, RMSE, MAE) for each input muscle set. Four additional metrics per 

input muscle set were computed wherein the same procedure was repeated except that muscles were weighted 

in the averaging across muscles according to their relative physiological cross-sectional area (PCSA, data 
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taken from [319]). This was done to bias the selection of muscles with the greatest capacity to produce muscle 

force (on average). In practice, the excitations of the long head of the BF and of the ST are often assumed 

equivalent to that of the short head of the BF and the semimembranosus, respectively [209]. Therefore, for 

the PCSA-weighted average, the BF weighting was based on the sum of the PCSA of the long and short 

heads of the BF and the ST weighting was based on the sum of the PCSA of the ST and the semimembranosus. 

Thus, eight performance metrics were available for each input muscle set. The values for each metric were 

converted to z-scores (demeaned and normalized by the standard deviation across all models). RMSE and 

MAE z-scores were negated so that larger values indicated better performance for all metrics. Finally, the 

average of these z-scores served as the single performance metric by which the models were ranked. This 

was done separately for the four-, three-, and two-muscle input sets under consideration. 

5.3.3. Input window structures 

Window structure was modified according to the input window size (.$ − .!) and the window 

relative output time (.$ − .). Fourteen input window structures were explored, namely, every combination 

of seven input window sizes (1.75, 1.50, 1.25, 1.00, 0.75, 0.50, and 0.25 seconds) and two window relative 

output times: 0.0 s such that . = .$ and half the window size such that . = 0.5(.! + .$). Each window 

structure was explored separately for the best four-, three-, and two-muscle input sets determined from section 

5.3.1. The same mean function, covariance function, and optimization settings were used in this analysis. 

The best input window structure was chosen using the z-score averaging method in section 5.3.2. 

5.3.4. Covariance function stationarity 

This analysis concerns the stationarity of the covariance function for the proposed estimation 

problem. The squared exponential covariance function in eq. (5.16) is stationary (i.e., it is a function only of 

g = 2 − 2′ which is unchanged given a translation of the origin). As an example non-stationary covariance 

function, we use the neural network covariance function given by [231], [320] 

L"(2, 2*) = c!% arcsin

⎝

⎛ 2m,2m*

n(c%% + 2m,2m)Cc%% + 2m*,2m*G⎠

⎞ (5.17) 
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where 2m, = [2,		1] and c' are hyperparameters. It was shown in [320], that eq. (5.17) is the covariance 

function for a neural network with an error function activation in the hidden layer as the number of hidden 

units tends to infinity. Six models were trained, one for each of the best four-, three-, and two-muscle input 

sets described previously and for both the squared exponential and neural network covariance functions. The 

best window structure determined from the analysis described in section 5.3.3. was used for each model. 

Since there were only six models to train and this was the last level of model characteristics explored, we 

allowed the hyperparameter optimization to continue until convergence. 

5.3.5. Muscle activation dynamics 

One potential use of this method may be to estimate muscle force using a reduced sEMG array 

wherein excitations are input to a muscle activation model. To evaluate the error in estimating muscle 

activations in this way, we used estimated and measured excitations as inputs to a critically damped, linear, 

second-order activation model with unity gain and 3 Hz natural frequency [321]. Only the four-muscle input 

set with squared exponential covariance function was used for this analysis. 

5.3.6. Comparison to NNMF-based methods 

To the authors’ knowledge, no previous study has presented similar results in estimating muscle 

excitations from a measured subset to which ours could be compared. However, Bianco et al. (2018) showed 

that synergy excitations computed from a subset of measured muscles could reconstruct unmeasured 

excitations if the synergy weights for the unmeasured muscles were known [294]. Following this approach, 

three synergy vectors and the corresponding excitations were determined for the best four-muscle input set 

using an iterative procedure utilizing both the multiplicative update and alternating least squares algorithms 

for non-negative matrix factorization (NNMF). This was done using test set data for each subject. Synergy 

weights for the output muscles were determined using linear least squares regression as in [294]. 

5.3.7. Statistical analysis 

All models were evaluated using the performance metrics described in section 5.3.2.: r, VAF, 

RMSE, and MAE. RMSE and MAE values are expressed as a percentage of MVC. These quantify estimation 
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performance by comparing estimated muscle excitations to measured excitations in the test set (all unseen 

data). Metrics were computed for each output muscle separately and averaged across subjects. Average 

correlations were corrected using Fisher’s z transformation [322] and interpreted qualitatively as weak (r £ 

0.35), moderate (0.35 < r £ 0.67), strong (0.67 < r £ 0.90), and very strong (r ³ 0.90) [323]. Per the analysis 

described in section 5.3.5., activations driven by the estimated excitations were compared to those driven by 

the measured excitations using r, VAF, RMSE, and MAE. The reconstruction accuracy of the NNMF 

approach was compared to the estimation accuracy of the proposed method using VAF. 

 

5.4. Results 

According to the z-score averaging method and following the analysis described in section 5.3.1., 

the best four-muscle input set was BF, PL, SOL, VL (r = 0.76, VAF = 86%, RMSE = 3.6%, MAE = 2.4%) 

and strong correlations (r > 0.67) were observed for 200 out of the 210 sets. The best three-muscle input set 

was BF, PL, SOL (r = 0.73, VAF = 84%, RMSE = 3.4%, and MAE = 2.2%) and strong correlations were 

observed for 80 out of the 120 sets. The best two-muscle input set was LG, SOL (r = 0.67, VAF = 74%, 

RMSE = 4.1%, and MAE = 2.7%) and strong correlations were observed for only two out of the 45 sets (the 

other was PL, MG). These muscle sets were used for the remaining analyses. Heatmaps illustrating the pair-

wise predictability for unique muscle pairs as well as for individual muscles are shown in Figures 17-19. 

The window relative output time corresponding to half the window size, . = 0.5(.! + .$), 

performed better than . = .$ for all models. Generally, larger window sizes performed better up to what 

appears to be a point of diminishing returns (Figure 20). For both the four- and three-muscle input sets, the 

1.75 and 1.50 s window sizes had a z-score of 0.53. For the two-muscle input set, the 1.75 s window size (z-

score = 0.52) was only slightly better than the 1.50 s window size (z-score = 0.51). Thus, in the remaining 

analyses, a 1.50 s window size with 0.75 s window relative output time was used. 
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Figure 17: Average z-score (used to rank input muscle sets as described in manuscript) of all 
four-muscle input sets containing each unique pair of input muscles. The z-score corresponding 
to a muscle paired with itself indicates the average z-score across all four-muscle input sets that 
contained that muscle. For example, the average z-score for four-muscle input sets that included 
BF and SOL was 0.61 and the average z-score for four-muscle input sets that included SOL was 
0.46. Each unique pair of muscles were present in 28 of the 210 total four-muscle input sets and 
each unique muscle was present in 84 of the total 210 sets. 
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Figure 18: Average z-score (used to rank input muscle sets as described in manuscript) of all 
three-muscle input sets containing each unique pair of input muscles. The z-score corresponding 
to a muscle paired with itself indicates the average z-score across all three-muscle input sets that 
contained that muscle. For example, the average z-score for three-muscle input sets that included 
BF and SOL was 0.73 and the average z-score for three-muscle input sets that included SOL was 
0.65. Each unique pair of muscles were present in 8 of the 120 total three-muscle input sets and 
each unique muscle was present in 36 of the total 120 sets. 
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Figure 19: Average z-score (used to rank input muscle sets as described in manuscript) of all two-
muscle input sets containing each unique pair of input muscles. The z-score corresponding to a 
muscle paired with itself indicates the average z-score across all two-muscle input sets that 
contained that muscle. For example, the average z-score for two-muscle input sets that included 
BF and SOL was 0.9 and the average z-score for two-muscle input sets that included SOL was 
0.88. Each unique pair of muscles were present in only 1 of the 45 total two-muscle input sets and 
each unique muscle was present in 9 of the total 45 sets. 
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The estimation performance for models using the squared exponential and neural network 

covariance functions are presented in Table 5. Although their performances were similar, the subject-

averaged statistics shown in Table 5 suggest the stationary covariance function (squared exponential) 

performed better across all output muscles and input muscle sets except that the two-muscle input model with 

neural network covariance resulted in a slightly greater correlation (r = 0.68) for the VL model compared to 

r = 0.67 for the squared exponential covariance. For the four-muscle input set, all correlations were strong 

and on average accounted for ³ 85% VAF. Likewise, all correlations were strong for the three-muscle input 

set except for the RF (r = 0.66). The two-muscle input set performed surprisingly well with strong correlations 

across all muscles except moderate correlations observed for the BF (r = 0.65) and RF (r = 0.63). Further, 

the BF model accounted for only 55% VAF which was noticeably less compared to other muscles. The next 

lowest VAF for the two-muscle input set was 75% for ST while all models for the three-muscle input set 

explained more than 80% VAF. Figure 21 depicts a graphical comparison of estimated and measured 

excitations. 

Comparison of muscle activations informed by measured and estimated excitations are presented 

in Table 6 (four-muscle input set). Strong to very strong correlations were observed across all muscles and 

on average, activations driven by the estimated excitations were able to explain more than 90% VAF in the 

 

Figure 20: Relationship between window size (in seconds) and z-scores used to rank window 
structures for window relative output times t = tn (dashed grey line) and t = 0.5(t1 + tn) (solid black 
line) using the best four-muscle input set (BF, PL, SOL, VL: leftmost plot), the best three-muscle 
input set (BF, PL, SOL: middle plot), and the best two-muscle input set (LG, SOL: rightmost 
plot). 
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true activation time-series except for the ST (VAF = 89%) with MAE < 4.0%. Figure 22 depicts a graphical 

comparison of estimated and true activations for every output muscle and for every subject.  

The NNMF-based reconstruction performance quantified by VAF was 74 ± 15% for MG, 82 ± 

9% for LG, 66 ± 13% for TA, 67 ± 15% for ST, 89 ± 9% for VM, and 80 ± 15% for RF which was less than 

that observed for all output muscle models using the four-muscle input set except for the VM (NNMF: VM 

VAF = 89%, GP: VM VAF = 87%). 

 

 

Table 5: Muscle excitation estimation performance 

  Stationary Covariance  Non-Stationary Covariance 

Input Output r VAF RMSE MAE  r VAF RMSE MAE 

4 
M

us
cl

es
 

(B
F,

PL
,S

O
L,

V
L)

 MG 0.89 88 (5) 7.2 (2.2) 4.7 (1.6)  0.89 87 (5) 7.4 (2.3) 5.0 (1.7) 
LG 0.81 85 (10) 4.9 (1.9) 3.2 (1.2)  0.80 83 (13) 5.1 (2.0) 3.5 (1.5) 
TA 0.81 88 (5) 4.0 (2.1) 2.8 (1.4)  0.79 85 (7) 4.3 (2.2) 3.2 (1.7) 
ST 0.82 82 (8) 2.4 (1.4) 1.5 (0.8)  0.81 80 (10) 2.5 (1.3) 1.6 (0.8) 
VM 0.78 87 (10) 2.1 (1.3) 1.3 (0.7)  0.77 85 (11) 2.2 (1.4) 1.4 (0.8) 
RF 0.68 88 (8) 0.8 (0.3) 0.5 (0.2)  0.69 87 (10) 0.8 (0.3) 0.5 (0.2) 

3 
M

us
cl

es
 

(B
F,

PL
,S

O
L)

 

MG 0.89 87 (5) 7.2 (2.2) 4.8 (1.6)  0.89 87 (5) 7.5 (2.3) 5.1 (1.7) 
LG 0.80 84 (10) 5.1 (2.1) 3.3 (1.2)  0.79 82 (12) 5.3 (2.3) 3.6 (1.6) 
TA 0.80 87 (5) 4.1 (2.1) 2.8 (1.4)  0.79 85 (6) 4.4 (2.2) 3.2 (1.7) 
ST 0.81 81 (8) 2.4 (1.4) 1.5 (0.8)  0.80 80 (8) 2.5 (1.3) 1.6 (0.8) 
VM 0.76 83 (15) 2.3 (1.5) 1.4 (0.8)  0.73 79 (19) 2.5 (1.6) 1.6 (0.9) 
VL 0.73 84 (11) 1.5 (1.2) 0.9 (0.7)  0.70 80 (16) 1.7 (1.4) 1.1 (0.9) 
RF 0.66 86 (7) 0.8 (0.3) 0.5 (0.2)  0.64 84 (10) 0.9 (0.4) 0.6 (0.2) 

2 
M

us
cl

es
 

(L
G

,S
O

L)
 

MG 0.91 90 (3) 6.5 (1.7) 4.3 (1.3)  0.91 90 (4) 6.5 (1.7) 4.4 (1.3) 
PL 0.76 80 (8) 6.5 (2.3) 4.2 (1.4)  0.76 78 (8) 6.7 (2.3) 4.5 (1.5) 
TA 0.80 87 (3) 4.1 (1.9) 2.9 (1.3)  0.78 85 (5) 4.4 (2.1) 3.2 (1.6) 
ST 0.76 75 (10) 2.7 (1.5) 1.8 (0.9)  0.74 73 (12) 2.8 (1.5) 2.0 (1.0) 
BF 0.65 55 (29) 4.8 (2.3) 2.9 (1.4)  0.61 46 (33) 5.2 (2.3) 3.4 (1.5) 
VM 0.71 82 (15) 2.4 (1.5) 1.5 (0.8)  0.69 79 (18) 2.5 (1.6) 1.6 (0.9) 
VL 0.67 81 (12) 1.5 (1.1) 1.0 (0.7)  0.68 81 (12) 1.5 (1.1) 1.0 (0.7) 
RF 0.63 84 (11) 0.9 (0.4) 0.6 (0.3)  0.63 83 (10) 0.9 (0.3) 0.6 (0.2) 

Measured and estimated excitations were compared for the best four, three, and two muscle input sets, the best 
input window structure, and for a stationary (squared exponential) and non-stationary (neural network) 
covariance function using only data from the test set. Performance metrics include correlation coefficient (r); 
percentage of variance accounted for (VAF); root mean square error (RMSE) in units percentage of MVC; mean 
absolute error (MAE) in units percentage of MVC. The reported VAF, RMSE, and MAE values are the average 
across all subjects for each muscle with the standard deviation in parentheses. The r values are the average 
correlation coefficients across all subjects using Fisher’s z transformation as described by Silver and Dunlap 
(1987). 
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Figure 21: Graphical comparison of the estimated excitation time-series (red line) and the measured 
excitation time-series (black line) for data from the test set of a typical subject. The shaded area 
represents the mean ± two standard deviations, i.e., the square root of the variance in eq. (5.14). 
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5.5. Discussion 

In this paper, we have demonstrated the ability to accurately estimate unmeasured muscle 

excitations using a subset of measured sEMG data. The feasibility of this approach has previously only been 

suggested based on conclusions from a recent review of regression techniques for biomechanical time-series 

[12] and was indirectly supported in [294]. Based on these previous results, we introduced the notion of 

muscle synergy functions (Figure 16) and developed from first principles the Gaussian process regression-

based approximation to their behavior (section 5.2.). 

An exhaustive search was used to study optimal input muscle sets. The set selection approach 

considered both the raw estimation performance metrics and weighted performance metrics according to the 

relative muscle PCSA. The former is important in clinical applications where excitations are used to quantify 

 

Figure 22: Graphical comparison of muscle activation time-series from estimated (red lines) and 
measured (black lines) muscle excitation time-series per the analysis described in section 5.3.5. 
Shown here are the middle five seconds of each activation time-series determined using a second-
order, linear activation model driven by corresponding excitations from the test set. Columns 
correspond to individual subjects and rows correspond to individual output muscles. Activation 
units have been normalized by the average activation throughout the full 15 seconds of test set 
data. 
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motor control complexity [28], [304] and to monitor progression following knee surgery [70]. Incorporating 

the additional PCSA-weighted average of performance metrics was done to purposely bias the muscle set 

selection such that the muscles with the greatest force producing capacity were estimated more accurately 

(on average). This choice was motivated by the potential use of this technique for estimating muscle force in 

remote gait analysis. This could be transformative for this area of research, providing insight into 

biomechanical variables more sensitive to disease etiology and that are ideal for personalizing rehabilitation 

(e.g., joint contact forces) [37]. Different selection criteria may be justified in other applications (e.g., muscle 

weights based on their relative contribution to the net joint moment during walking) and may lead to a 

different choice of an input muscle set. For example, to instrument a knee brace, one may wish to only 

consider muscles nearest the knee joint. In other applications where sensor placement is performed by the 

patient it may be beneficial to develop models using muscles which are easiest to locate for non-specialists. 

Our results suggest other input muscle sets not further analyzed beyond the analysis described in section 

5.3.1. may be equally viable candidates. For example, 200/210 four-muscle and 80/120 three-muscle input 

sets achieved strong correlations in the estimation performance. 

The soleus was the only muscle consistently chosen across the four-, three-, and two-muscle input 

sets. This may be due to the PCSA-weighted averaging method as the soleus is the largest muscle and thus 

was given the largest weight (24%). The best four-muscle input set (BF, PL, SOL, VL) included a muscle 

that crossed the knee joint anteriorly and posteriorly and the posterior ankle but with no dorsiflexor. The only 

dorsiflexor measured in this study was the TA, however, in our analysis the TA was consistently well 

estimated suggesting its behavior is well-inferred from the other input muscles during walking. 

A general increasing trend was observed between estimation performance and input window size. 

In section 5.2., we postulated that the input window size may serve to identify a neural control strategy to 

accomplish some sub-task during walking similar to how identified synergy vectors have been associated 

with certain phases of the gait cycle [291]. The average stride time of individuals in this study was 1.31 s and 

thus, using the 1.50 s window size and 0.75 s window relative output time, the synergy functions were able 

to “see” approximately the previous and future half gait cycle of input excitations to infer output excitations. 
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From this perspective, it may be that optimal window size is stride time (or gait speed) dependent. This 

should be investigated further in future research.  

It is important to note that the final estimator in eqs. (5.10) and (5.12) truly captures the synergistic 

relationship between input and output muscles as it has no indication of time. Thus, the approximated synergy 

functions are not directly time dependent. Further, any gait phase dependent periodicity inherent in the sEMG 

signal during walking is not directly modeled (e.g., by including gait-phase as an input). For this reason, the 

GP model may be sensitive to step-by-step variation in both sEMG magnitude and frequency (Figure 21). 

Although this is visually apparent for the TA in Figure 21 (from a single subject), we did not directly test this 

phenomenon which may be done in future work by deliberately imposing step-by-step variation in the 

experimental design. A future approach may incorporate time dependency by segmenting input excitations 

by stride, normalizing by stride time, and including the percentage gait cycle as an input.  

In addition to time independency, the proposed model is also independent of any kinematic 

behavior which may be incorporated by including inertial sensor data (e.g., angular rate, acceleration) as 

additional inputs [306]. Under the current approach, it may be that including a broad enough range of 

activities in the training set (e.g., stair ascension, cycling) could allow learning more generalizable 

phenomena enabling less strict activity identification specificity in the remote gait analysis pipeline (e.g., a 

locomotion activity classifier is less strict than a walking activity classifier) [70]. Future work should explore 

this further along with task and sub-task (e.g., variable gait speeds) extrapolation. 

The proposed synergy function models can be modified in many ways beyond input muscle sets 

and input window structure, especially regarding the GP model (e.g., mean and covariance function). It would 

have been infeasible to exhaustively explore all covariance functions. Rather we explored a stationary and 

non-stationary covariance function in eqs (5.16) and (5.17) respectively and found (negligible) superior 

performance using the squared exponential covariance. The squared exponential covariance utilized in this 

work was isotropic in that the characteristic length scale, c% in eq. (5.16), was the same for all inputs. An 

alternate approach to be explored in future work may be including length scales specific to each input muscle 

which can ultimately weight the relevance of specific input muscles for particular output muscles. For 
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example, the VL may be especially relevant for estimating VM output excitations, but this remains to be 

seen. Along these lines, a linear mean function may further improve estimation accuracy, D"(2) = r,2, 

wherein input muscles which are anatomically and/or functionally similar to the particular output muscle can 

be preferentially weighted according to the associated element in r (the hyperparameters). Finally, although 

all estimated output muscle excitations were in the interval [0 1] (a physiological constraint) the conditional 

distribution characterized in eqs. (5.10) and (5.11) suggests non-zero probability densities for excitations 

outside this interval. For this reason, a beta likelihood function may be more appropriate [317] and should be 

explored in future work. 

We explored the potential of driving muscle activation dynamics given the estimated muscle 

excitations. Our results suggest this is a valid approach with MAE less than 4.0% across all output muscles, 

strong correlations, and an ability to explain between 89-93% VAF (Table 6). For all output muscles, 

activation estimation performance metrics were greater than for excitation estimation. Activation dynamics 

essentially act to smooth input excitations which may underlie this observation. Thus, results may be further 

improved if a lesser low-pass filter cutoff frequency were chosen in the sEMG pre-processing. We chose 6 

Hz as this is common for muscle force estimation, but others have used less [324]. This should be explored 

in future research as well as quantifying the muscle force estimation error given the activation estimation 

proposed here. 

While there is no other study using a comparable approach (i.e., using only sEMG inputs) to 

compare our results, a comparison to a reconstruction approach using the more familiar NNMF-based 

synergy analysis is instructive. The proposed approach explained more percentage VAF across all output 

muscles except a negligible difference for the VM. The NNMF-based reconstruction VAF for some muscles 

was less than that reported for the three-synergy configuration in [294]. One explanation is that synergies 

were extracted from only four muscles in this study compared to eight in [294] and the optimal subset for the 

NNMF reconstruction may be different than for the GP model. Further, the results in [294] were for only two 

subjects compared to nine in this study. When comparing the NNMF reconstruction and GP estimation, it is 

important to note that the NNMF technique has an unfair advantage in that the synergy model was informed 
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partly by the data it sought to reconstruct. For this reason, as noted in [294], the NNMF approach does not 

solve the problem of estimating unmeasured excitations using a measured subset; it only provides insight 

into the feasibility of doing so. This is in contrast to the proposed approach wherein the GP model was 

informed by a completely different dataset than it was tested on. 

A major limitation in using Gaussian process regression (or any non-parametric regressor) is 

computation time. For the four-muscle input set, the average total model training time (six total synergy 

models, one for each output muscle) was 31 minutes per subject. For the same configuration, the average 

computation time to estimate 1.0 s of data was 0.2 s. This is less of a burden for remote patient monitoring 

applications as current pipelines generate clinical reports offline after a full 24-hour recording [70]. The 

estimation of muscle excitations in eq. (5.12) requires inversion of the large (M ×M) covariance matrix Σ". 

This inversion can be performed before deployment and thus speed up the estimation. The matrix Σ"!" is also 

required for computing the estimation variance in eqs. (5.11) and (5.14). Modeling these variances are a 

benefit of the GP approach as they provide an indication of the uncertainty of the muscle excitation estimate 

which may be useful if excitations are allowed to be adjusted in a sensor fusion framework given other 

measurements of the musculoskeletal system dynamics. 

Table 6: Muscle activation estimation performance 

Muscle r VAF RMSE MAE 

MG 0.93 93 (4) 5.2 (1.8) 3.5 (1.2) 
LG 0.86 91 (6) 3.5 (1.3) 2.4 (0.9) 
TA 0.83 92 (5) 3.1 (1.8) 2.1 (1.3) 
ST 0.88 89 (6) 1.7 (1.1) 1.1 (0.6) 
VM 0.84 92 (5) 1.5 (1.0) 1.0 (0.6) 
RF 0.74 93 (5) 0.5 (0.2) 0.4 (0.1) 

Measured and estimated excitations from the test set for the 
four-muscle input set (BF,PL,SOL,VL) were used to estimate 
muscle activations. Performance metrics include correlation 
coefficient (r); percentage of variance accounted for (VAF); 
root mean square error (RMSE) in units percent MVC; mean 
absolute error (MAE) in units percent MVC. The reported 
VAF, RMSE, and MAE values are the average across all 
subjects for each muscle with the standard deviation in 
parentheses. The r values are the average correlation 
coefficients using Fisher’s z transformation as described by 
Silver and Dunlap (1987). 
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The aim of this paper was to lay the foundation for future development in this area and thus we 

only investigated subject-specific models of unimpaired persons for normal walking speeds. Thus, our results 

are interpretable only in the context of estimating muscle excitations for gait speeds similar to those 

represented in the training set and specifically for the range of gait speeds and stride times analyzed in this 

study. Importantly, the range of stride times in this study cover the majority of those observed remotely in 

impaired and unimpaired gait [29], [70]. Our models being subject-specific may not be an immediate barrier 

to remote estimation of muscle forces as sEMG-driven muscle force estimation techniques also require a 

calibration session [209], [290]. Future research should explore application in impaired populations and 

subject-general models (the feasibility of which has been supported recently [325]). 

The muscles modeled in the current study are sufficient for sEMG-driven techniques currently 

used to estimate knee and ankle joint moments [209], [290]. However, other applications (e.g., estimating 

joint contact force) may require the estimation of deep-located muscle excitations which would otherwise 

require invasive measurement techniques. Our results motivate future investigations in this area. Note, 

however, that to implement the proposed method to estimate deep-located muscle excitations, data from those 

muscles must be available in the training set (as per eqs. (5.10) and (5.12)) and would still require invasive 

techniques for model training. 

All data from seven subjects were removed because of low-quality sEMG data for at least one 

muscle. Noise contamination in the sEMG signal is a well-known phenomenon [228], [318] and presents an 

issue that would need to be addressed for practical deployment of the proposed technique. For example, if an 

input excitation were of poor signal quality when applying this method in practice, a potential solution might 

be to use a pre-trained model which depends on input excitations from all other instrumented muscles (not 

noise contaminated). Compensatory methods of this sort and automated identification of poor sEMG signal 

quality should be investigated in future research. 
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5.6. Conclusion 

This study describes a Gaussian process model of the synergistic relationship between muscles. 

Importantly, this model enables estimation of unmeasured muscle excitations from a measured subset which 

makes it a practical solution for remote patient monitoring. Estimated excitations were shown able to drive 

activation dynamics with high accuracy. These results motivate future research into remote estimation of 

muscle force (e.g., given inertial sensor-driven estimates of muscle-tendon unit kinematics) for incorporation 

into a comprehensive remote patient monitoring framework. 
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Chapter 6: Hybrid Machine Learning and Physics-Based Simulation of Muscle Contraction 

Dynamics Using a Reduced Sensor Array 

 

6.1. Introduction 

Remote patient monitoring, enabled by advances in wearable sensor technology and estimation 

techniques, promises improved management of musculoskeletal disease. To date, most of these analyses are 

based on estimates of physical activity (Chapter 1). More recent developments quantify stride-by-stride gait 

biomechanics at a segment-, joint-, and muscle-specific level and have shown that these variables may be 

more relevant for monitoring patient health (Chapter 3) [70], [75]. However, the most clinically relevant 

biomechanical variables have not been observed outside of controlled, laboratory environments. Ideally, 

clinicians would have access to the cumulative loads experienced by muscle and other articular tissue across 

every step taken by the patient in daily life. Patient characterization at this level may enable personalized 

rehabilitation and optimal evaluation of intervention efficacy. Further, remote monitoring may provide novel 

insight into musculoskeletal disease etiology. For example, a well-known phenomenon in osteoarthritis 

concerns the positive effects of load on healthy tissue and yet detrimental effects on diseased tissue [38]. This 

transition is thought to occur near the onset of the disease, but a more exact characterization is currently 

absent. Monitoring cumulative tissue loads in a patient’s natural loading environment presents an avenue 

through which to elucidate these and other cumulative load-dependent phenomena. 

To realize these ideas, efforts must be made to characterize joint kinetics and muscle contraction 

dynamics in remote environments. The biomechanical variables associated with these analyses (e.g., joint 

moment, muscle power) provide far more clinical relevance than what is typically evaluated remotely (e.g., 

physical activity, spatiotemporal gait parameters). While both frontal plane and sagittal plane knee joint 

moment should be considered for management of musculoskeletal disease [50], [51], [120], [326]–[328], 

knee flexion moment in particular, is thought to play an especially important role in early knee osteoarthritis 

[50], [327] and for monitoring patients following reconstructive surgery of the anterior cruciate ligament 

(ACLR) [188], [329]–[333]. Concerning muscle contraction dynamics, muscle power is a well-known critical 
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determinant of physical function [334]. Moreover, the phenomena of work- [305] and load- [335] induced 

muscle hypertrophy motivate the estimation of cumulative muscle work and force which may provide a basis 

for optimal exercise prescription and understanding subsequent patient-specific responses. Muscle-specific 

work and power objectively quantify exercise or movement intensity and continuous observation may help 

elucidate exercise-dose response relationships in orthopedic populations [336]. These analyses may be 

especially relevant in monitoring patients post-ACLR for which both the knee extensor and flexor 

musculature is compromised [187], [203], [337] due in part to muscle atrophy [338], [339] and muscle 

activation deficits [203], [340]. In this context, early intervention is critical [44], [201], and continuous, 

remote monitoring is necessary to best inform personalized rehabilitation which has been shown effective at 

targeting specific biomechanical outcomes [46], [341]. 

Methods do exist for estimating these clinically relevant biomechanics and that use only data from 

wearable sensors [24], [25]. However, these methods require complex sensor arrays that may discourage use 

[342]. Regression techniques have been proposed as a means to reduce the number of required sensors [12], 

but possibly at the expense of generalizability. Hybrid solutions have been suggested wherein machine 

learning is used only where the physics are least well understood or insufficiently informed [12], [162], [299]. 

In this work, an approach of this sort was developed wherein Gaussian process (GP) synergy functions 

(Chapter 5) [162] were used to estimate a complete set of muscle excitations using only a measured subset 

thus reducing the number of required electromyography (EMG) sensors. These excitations were used along 

with estimates of muscle-tendon unit (MTU) kinematics from inertial measurement unit (IMU) data in an 

EMG-driven simulation to characterize the joint and muscle dynamics (Figure 23). 
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6.2. Overview of the proposed approach 

The primary aim of this development was to estimate knee flexion moment (KFM) and ankle flexion 

moment (AFM) as well as force, power, cumulative concentric work, and cumulative eccentric work for 

individual muscles during the stance phase of gait using a reduced sensor array. Specifically, these variables 

were estimated using data from only two IMUs (one on the shank and one on the thigh) and four EMG sensors 

(placed over the vastus medialis, peroneus longus, and lateral and medial gastrocnemii) via EMG-driven 

simulation of muscle contraction dynamics (Figure 23). These sensor locations were chosen because they are 

all close enough to the knee joint that they could be seamlessly built into a knee brace which may enable 

practical deployment of this technique for patients following knee surgery (Chapter 7). 

In the next section, the general physics governing muscle contraction dynamics are developed as 

well as the relationships between all biomechanical variables of interest. It will be shown that the estimation 

of these biomechanical variables requires three inputs including the length of each MTU, the moment arm of 

 

Figure 23: Overview of the proposed hybrid technique. Muscle excitations measured from a 
subset of muscles (far left) are used to estimate a full set of excitations using GP synergy 
functions (purple block) while IMU data (far right) are used to estimate MTU length (lmtu) and 
moment arm (r) via inverse kinematics (green block). Muscle excitation is input to the muscle 
activation (a) dynamics (blue block) which along with MTU length is input to the muscle 
contraction dynamics (red block). These dynamics are simulated using EMG-driven 
techniques. Muscle force (fm) is output from the contraction dynamics block and generates a 
muscle moment (t) acting through the MTU moment arm. 
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each MTU associated with the flexion degree of freedom (DOF) for the knee and ankle joints, and the 

excitation of each muscle. The subsequent sections then describe the computational methods used to estimate 

these inputs and for simulating the muscle contraction dynamics; both for implementing the proposed 

technique in practice using the reduced sensor array and for validation using optical motion capture (OMC), 

force plate data, and a full set of EMG (as opposed to the four EMG subset). 

The required MTU length and moment arm inputs are a function only of the segment kinematics 

given a calibrated model of the subject-specific musculoskeletal geometry. The required full set of muscle 

excitations (a.k.a. EMG amplitude [228], [302] which relate to motor unit recruitment and motor unit firing 

rate [302]) are estimated using pre-trained, subject- and muscle-specific GP synergy function models. 

Further, the muscle contraction dynamics described in the next section depend on several subject- and MTU-

specific parameters that need to be identified. 

Therefore, the proposed technique requires generally two steps for practical deployment: (1) model 

calibration and (2) remote estimation. Step (1), model calibration, requires a visit to a motion capture 

laboratory to perform the aforementioned calibration of the musculoskeletal geometry and GP synergy 

function models as well as the MTU parameter identification. The latter requires estimation of KFM and 

AFM via inverse dynamics analysis (ground truth) and via gold standard EMG-driven simulation of the 

muscle contraction dynamics (i.e., with a full set of EMG data and OMC-based inverse kinematics). Step (2), 

remote estimation, involves four sub-steps: (i) a daily calibration which in practice would happen every time 

a new set of sensors were placed on the person including sensor-to-segment alignment and maximal voluntary 

contractions (MVC) for EMG normalization, (ii) estimation of segment kinematics (and thus MTU length 

and moment arm) using only the shank- and thigh-worn IMU data, (iii) estimation of all muscle excitations 

using only the four measured excitations from the EMG-instrumented muscles as inputs to muscle-specific 

GP synergy functions, and (iv) simulation of the muscle contraction dynamics. Each of these components 

including the theory of muscle contraction dynamics are described in the following sections as they were 

implemented for validating the proposed technique. 
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6.3. Muscle contraction dynamics: theoretical developments 

This section describes the physics governing muscle contraction dynamics and, in particular, the 

equations needed to inform the biomechanical variables of interest: sagittal plane joint moment (KFM, AFM), 

muscle force, muscle power, and cumulative concentric and eccentric muscle work. The development here 

is deliberately generic wherein the sections that follow will specify the computational methods used in this 

work to simulate these dynamics in an EMG-driven approach. 

The flexion moment for joint = (Μ), a.k.a. an internal moment or the net muscle moment) is equal 

to the sum of the flexion moments generated by each MTU, denoted as t',) for MTU >, as per [343] 

M) = vt',)

+#

'0!

(6.1) 

where M" is the number of MTUs and the moment generated by MTU > is 

t',) = ("$U',) . (6.2) 

In eq. (6.2), ("$ is the contraction force produced by muscle > (along the MTU line of action) and U',) is the 

moment arm for MTU > associated with the flexion DOF for joint =. The moment arm is related to the MTU 

length (ℓ"12$) and flexion joint angle Cc) 	G according to the principle of virtual work [217], 

U',) = −
yℓ"12$
yc)

. (6.3) 

Note that the direction of ("$ is such that a positive contraction force is in the same direction as a negative 

fiber or MTU length change (the direction of shortening) which explains the reason for the negative sign in 

eq. (6.3). The muscle force ("$ is given assuming the phenomenological, lumped-parameter Hill muscle 

model (Figure 24) as per [344] 

("$ = {3$C(4$(ℓ$(6$ + (&$ + _'<|"$G cos}' (6.4) 

where {3$ is the maximal isometric force produced by muscle >, (4$ models the force-velocity property of 

muscle > [345], (ℓ$ models the active force-length property of muscle > [346], (6$ models the nonlinear 
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relationship between muscle activation and isometric muscle force [347], [348], (&$ models the passive force-

length property of muscle > [349], the product _'<|"$ models the effects of viscous damping within muscle 

fiber > where _' is the damping coefficient and <|"$ is the normalized fiber velocity [344], [350], and }' is 

the pennation angle of muscle fiber >. The maximal isometric force {3$ is given by the product of the 

physiological cross-sectional area of the muscle (�' , ) and the muscle stress at maximal isometric force (F'), 

{3$ = F'�' . (6.5) 

The functions (4$, (ℓ$, (6$, and (&$ collectively act to scale {3$ which is projected along the MTU line of action 

via the scalar cos}'. The input to the activation nonlinearity function (6$ is the activation signal (Ä', 0 ≤

Ä' ≤ 1, the dynamics of which are driven by the muscle excitation signal (Å') as per 

6Ä'
6.

= Ä̇'CÅ' , .#$ , É'G (6.6) 

where Ä̇' is the activation dynamics function, .#$ is an electromechanical time delay, and É' represents a set 

of activation dynamics parameters (e.g., activation time constant). Normalized fiber length CℓÑ"$G is input to 

both the active ((ℓ$) and passive ((&$) force-length functions where the normalization constant is the optimal 

fiber length (ℓ3$, the length at which the muscle produces maximum force during an isometric contraction) 

as per 

ℓÑ"$ =
ℓ"$
ℓ3$

(6.7) 

and ℓ"$ is the actual muscle fiber length. The output of the activation nonlinearity function (6$ is also input 

to the active force-length function (ℓ$ in order to model the dependency of the optimal fiber length on muscle 

activation only for normalization in eq. (6.7), which has been observed empirically [351]. This dependence 

has been modeled linearly as [209] 

ℓÜ3$C(6$G = −ℓ3$á'(6$ + ℓ3$(á' + 1) (6.8) 
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where á' represents the percentage change in the optimal fiber length for a completely inactive muscle (i.e., 

(6$ = 0). Note that the bar in ℓÜ3$ is used to indicate the activation-adjusted optimal fiber length and is used 

as the normalization constant in eq. (6.7) only for the active force-length function (ℓ$. The input to the force-

velocity function (4$ is normalized fiber velocity, 

<|"$ =
<"$
<3$

(6.9) 

where <3$ is the maximum fiber shortening velocity. Note that <"$ < 0 indicates a shortening fiber during a 

concentric contraction, <"$ = 0 indicates an isometric contraction, and <"$ > 0 indicates a lengthening fiber 

during an eccentric contraction. The MTU geometry (Figure 24) is modeled such that [344] 

ℓ"12$ = ℓ,$ + ℓ"$ cos}' (6.10) 

where ℓ,$ is the tendon length for MTU >. The geometry of the muscle fiber is modeled such that the fiber 

thickness (N') is constant, 

N' = ℓ"$ sin}' . (6.11) 

Let }3$ be the pennation angle when the muscle fiber length is optimal. Since eq. (6.11) must also be satisfied 

for ℓ"$ = ℓ3$, the pennation angle corresponding to an arbitrary fiber length is 

}' = asinZ
ℓ3$ sin}3$

ℓ"$
] . (6.12) 

Because the tendon and muscle are in series, the force in each element must be equivalent yielding the 

dynamic equilibrium equation [209], [344], [352] 

(å"$ − (å,$ = 0 (6.13) 

where (å"$ is the normalized muscle force (i.e., ("$ in eq. (6.4) divided by {3$) and (å,$ is the normalized 

tendon force function which models the nonlinear elastic behavior of the tendon. The force in the tendon is 

(,$ = {3$(å,$ . (6.14) 
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The normalized tendon force (å,$ is a function of tendon strain CO,$G where 

O,$ =
ℓ,$ − ℓ7$

ℓ7$
(6.15) 

and ℓ7$ is the tendon slack length. Muscle power (ç') is given by the product of muscle force and velocity as 

per 

ç' = −("$
6é'
6.

	 (6.16) 

where é' = ℓ"$ cos}' from eq. 6.10 and ("$ has been negated since a positive contraction force is in the 

same direction as a shortening fiber (é' < 0). Thus, ç' > 0 indicates the rate of work done by ("$ during a 

concentric contraction whereas ç' < 0 indicates the rate of work done by ("$ during an eccentric contraction. 

Cumulative concentric Cè.8$$G and eccentric Cè9..$G muscle work during the stance phase of gait (i.e., during 

the time interval .:; ≤ . ≤ .:< where .:; indicates the instant of foot contact and .:< indicates the instant 

of foot off) is given by the following time integrals: 

è.8$$ = ê (.8$$6é'

1%&

1%'

(6.17) 

and 

è9..$ = ê (9..$6é'

1%&

1%'

(6.18) 

where 

(.8$$ = ë
	("$ ,			6é' < 0
	0,			í.ℎÅUN>éÅ

(6.19) 

and 

(9..$ = ë
	("$ ,			6é' > 0
	0,			í.ℎÅUN>éÅ

. (6.20) 
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The fiber length ℓ"$ and the muscle activation Ä' are the state variables for the muscle contraction 

dynamics. The dynamics of Ä' were described in eq. (6.6) whereas the time-derivative of the fiber length 

state variable (i.e., fiber velocity <"$) appears in (å"$ in eq. (6.13) via the force-velocity function (4$ in eq. 

(6.4). Thus, the dynamic equilibrium in eq. (6.13) represents an implicit formulation for the dynamics of the 

fiber length state variable. Therefore, the computation of the biomechanical variables of interest during the 

stance phase of gait including sagittal plane joint moment M) in eq. (6.1), muscle force ("$ in eq. (6.4) or 

likewise tendon force (,$ in eq. (6.14) due to their equivalence in eq. (6.13), muscle power ç' in eq. (6.16), 

cumulative concentric work è.8$$ in eq. (6.17), and cumulative eccentric work è9..$ in eq. (6.18) has been 

shown to be completely informed given the initial conditions ℓ"$(.:;) and Ä'(.:;) and the following inputs: 

muscle excitation Å' for each muscle, MTU length ℓ"12$ for each MTU, and moment arm U',) for each muscle 

and each joint (flexion DOF for knee and ankle). 

 

 

Figure 24: Geometry and block diagram for the Hill muscle model. All black elements are 
associated with the tendon, all red elements are associated with the muscle fiber, and all grey 
lines indicate various geometric measurements. 
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6.4. Proposed technique: model calibration 

Practical deployment of the proposed sensor-driven technique requires an in-lab visit for model 

calibration. The following describes this process as it was implemented in this work including identification 

of the subject-specific musculoskeletal geometry, identification of MTU parameters related to muscle 

contraction dynamics, and training the GP synergy function models. 

6.4.1. Calibration of the subject-specific musculoskeletal geometry 

Generic musculoskeletal geometry 

The musculoskeletal model consisted of five segments including a foot, shank, thigh, patella, and 

pelvis; three non-translating joints including a two DOF ankle joint, single DOF knee joint (tibiofemoral), 

and a three DOF hip joint; thirteen MTUs including the tibialis anterior (TA), peroneus longus (PL), soleus 

(SOL), medial gastrocnemius (LG), lateral gastrocnemius (LG) vastus medialis (VM), vastus intermedius 

(VI), vastus lateralis (VL), rectus femoris (RF), long head of the biceps femoris (BFL), short head of the 

biceps femoris (BFS), semitendinosus (ST), and semimembranosus (SM). These muscles are sufficient to 

estimate KFM and AFM as in previous work [324], [353], [354]. The MTU path points (origin, insertion, 

and via points) for each MTU were informed using the data reported by Horsman et al. (2007) as was the 

cylindrical geometry of the femoral condyle (position, cylindrical axis, radius) and the origin and insertion 

of the patellar ligament [355]. The patellar ligament was modeled as an inextensible element. The average 

position of origin and insertion points was used for multi-element muscles (e.g., superior and inferior 

elements of the VL). 

Static and functional calibration 

Two calibration trials were used to identify subject-specific parameters of the musculoskeletal 

geometry. A static calibration where the subject stood still in anatomical position was used as a reference 

configuration in which the relative positions of segment-fixed markers define each rigid body segment 

(Figure 25) with the exception of the patella (patellar kinematics were a function of the knee flexion angle 

only and thus no markers are placed on the patella). 



 

 106 

 

A second functional calibration trial [23] was used in order to identify hip, knee, and ankle joint 

center positions as well as the knee joint flexion axis. During the functional calibration trial, the subject 

exercised multiple movements of each joint exciting all joint DOFs and was encouraged to utilize the full 

range of motion for each DOF. For the hip joint, the subject moved their leg in a star pattern (pure hip flexion, 

simultaneous hip flexion/abduction, pure hip abduction, simultaneous hip extension/abduction, and pure hip 

extension) and a circular pattern (as if stepping over a hurdle). For the knee joint, the subject performed five 

knee flexion and extension movements. For the ankle joint, the subject performed five ankle plantarflexion 

and dorsiflexion movements and three circular movements in both clockwise and counterclockwise 

directions. 

 

Figure 25: Marker set and rigid body model. The black dots indicate the position of the labeled 
marker as placed on the subject during the reference configuration (anatomical position). The 
thick black line near the knee joint models the patellar ligament. The coordinate system {G} at 
the bottom right of the figure indicates the global (inertial) frame wherein x indicates the 
direction in which the subject walked for all walking trials and y indicates the global vertical 
direction aligned with gravity. 
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The kinematics of each segment during the functional calibration trial were computed independently 

without regard for any mechanical constraints. To this end, segment orientation (quaternion representation) 

for each segment-fixed coordinate system (formed using any three non-colinear markers from the reference 

configuration) is determined using Davenport’s solution to Wahba’s problem wherein every unique two-

marker combination for all segment-fixed markers during the static calibration trial were used as the reference 

vectors [356], [357]. Reference vectors were weighted by their length squared in the objective function of 

Wahba’s problem. Segment positions were computed as described by Spoor and Veldpaus (1980) [358]. 

Segment kinematics were then used to estimate the hip and ankle joint centers using the pivot technique 

[359], [360] as well as the position and orientation of the knee joint flexion axis using the SARA method 

[361]. The knee joint center was defined as the point on the line defined by the SARA-identified knee joint 

flexion axis (position and orientation) which was closest to the midpoint of the medial and lateral femoral 

epicondyles.  

Segment inertial properties 

The identified hip, knee, and ankle joint centers and the knee joint flexion axis were used to define 

the position and orientation of segment-fixed coordinate systems for each segment in the reference 

configuration (static calibration trial). Segment-fixed coordinate systems were defined so as to coincide with 

the principal axes of inertia of their respective segment. The position of each segment (coordinate system 

origin) was coincident with the segment center of mass. All inertial parameters (mass, center of mass location, 

and radii of gyration) were taken from de Leva (1996) [362]. The basis vectors of the pelvis coordinate system 

were defined as per the ISB recommendations [363]. The long axis of the shank was defined by the unit 

vector pointing from the midpoint of the medial and lateral malleoli to the midpoint of the medial and lateral 

tibial condyles and the frontal plane was defined by the long axis of the shank and the SARA-identified knee 

flexion axis. The thigh coordinate system was assumed to coincide with that of the shank in the reference 

configuration. The long axis of the foot was defined by the unit vector pointing from the heel to the second 

metatarsal and the sagittal plane was defined by the long axis of the foot and the global vertical axis as the 

foot was assumed flat in the reference configuration. The local position of each MTU origin, insertion, and 
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via point (where applicable) were scaled based on an anthropometric measurement of each segment relative 

to the same measurement from the data reported in Horsman et al. (2007) including the distance between the 

midpoint of the anterior superior iliac spinae to the hip joint center for the pelvis, the longitudinal segment 

lengths for the thigh and shank, and the distance between the ankle joint center and the midpoint of the first 

and fifth metatarsals for the foot. The insertion of the RF, VM, VI, and VL were moved posteriorly 1.00 cm 

and the shank-fixed MTU path points of the SM and ST (insertion and via points) were moved inferiorly 3.00 

cm in order to better align the knee flexion moment arms of these muscles with literature data [364], [365].   

Joint coordinate systems 

For an arbitrary system configuration, joint angles were generally defined as the angles associated 

with one, two, or three (depending on the number of joint DOFs) successive rotations that mapped a joint 

coordinate system fixed in the parent segment (proximal to the joint) to the same joint coordinate system 

fixed in the child segment (distal to the joint), i.e. a parent-to-child perspective, or vice versa, i.e. a child-to-

parent perspective [366]. The orientation of the joint coordinate system with respect to the segment 

coordinate systems of the parent and child segments was determined during the reference configuration. The 

hip joint coordinate system was defined by the flexion axis which was coincident with the medio-lateral axis 

of the pelvis pointing to the right, the adduction axis which was coincident with the antero-posterior axis of 

the pelvis pointing anteriorly, and the internal rotation axis which was coincident with the cranio-caudal axis 

of the pelvis pointing cranially. The hip joint rotation sequence was first about the flexion axis, second about 

the adduction axis, and third about the internal rotation axis with a parent-to-child perspective. The knee joint 

coordinate system was defined by the flexion axis identified as per the SARA method pointing to the right 

and two other arbitrary unit vectors forming an orthogonal basis. The knee joint rotation sequence was about 

the flexion axis only with a child-to-parent perspective. The ankle joint coordinate system was defined by 

the dorsiflexion axis which was coincident with the knee joint flexion axis such that the ankle joint sagittal 

plane was aligned with that of the knee joint, the adduction axis which was defined by the direction of the 

line orthogonal to the dorsiflexion axis that intersects both the heel and a point on the line defined by the 

dorsiflexion axis and the ankle joint center (similar to the subtalar joint axis in previous work [217], [366]), 
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and a third unit vector orthogonal to both the dorsiflexion and adduction axes. The ankle joint rotation 

sequence was first about the dorsiflexion axis and second about the adduction axis with a parent-to-child 

perspective. 

6.4.2. Identification of MTU parameters related to contraction dynamics 

 This calibration step is used to identify several MTU parameters related to the muscle contraction 

dynamics and requires a ground truth estimate of joint moment (inverse dynamics) as well as an OMC 

estimate of MTU kinematics (MTU length and moment arm) as inputs to the EMG-driven muscle contraction 

dynamics. 

Inverse kinematics: optical motion capture 

 The problem of inverse kinematics is to determine the set of generalized coordinates which 

completely specify the rigid body system configuration for each discrete time instant given measured 3-D 

marker positions. In this work, the system configuration was described by a set of 28 generalized coordinates 

including three translational coordinates for each segment which specifies the position of each segment 

coordinate system origin represented in the global frame and four rotational coordinates for each segment 

which are the Euler parameters (unit length quaternion) describing the orientation of each segment coordinate 

system relative to the global frame. These generalized coordinates are defined such that the position of marker 

; represented in the global frame {ï} at the discrete time instant L (óò $,=
> , a 3 × 1 column vector) is given by 

óò $,=
> = ô?(,=

> + ö?(,=ó$
@	 (6.21) 

where ó$
@ is the constant 3 × 1 position vector of marker ; represented in the segment-fixed coordinate 

system {õ} of segment é$ to which marker ; is attached (determined from the reference configuration), ô?(,=
>  

is the 3 × 1 column vector of the three translational coordinates of segment é$, and ö?(,= ∈ úù(3) is a 3 × 3 

rotation matrix parametrized by the four rotational coordinates (û?(,=) of segment é$ [26], [367], [368]. The 

set of 28 generalized coordinates (denoted 2=) at time instant L is determined following the approach 

described by Andersen et al. (2009) wherein the optimization problem was formulated as [369] 
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subject to a set of 16 equality constraints 

†
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⋮
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¢ = £

0
0
⋮
0

§ (6.23) 

where M"=-) is the number of markers available from the OMC system at time instant L, ó$,=
>  is the measured 

marker position for marker ;, and è$ is a 3 × 3 marker-specific weighting matrix. Four of the constraint 

equations enforce the unit length constraint on the quaternions parametrizing segment orientation (one for 

each segment); nine of the constraint equations enforce the non-translating joint constraints for each of the 

hip, knee, and ankle joints (three for each joint); two of the constraint equations enforce the hinge joint 

constraint on the knee joint; and one constraint equation enforces the universal joint constraint on the ankle 

joint [368], [369]. The objective function in eq. (6.22) subject to the equality constraints in eq. (6.23) is 

minimized using the fmincon function in MATLAB R2019b (MathWorks, Natick, MA) with the interior-point 

optimization algorithm and analytic Jacobian and Hessian matrices of the objective and constraint equations 

with respect to 2=. The constraint tolerance was set to 1e-6 and all markers were weighted equally (i.e., è$ =

•C, the 3 × 3 identity matrix, for all markers). The initial guess for 2! in the optimization was based on the 

unconstrained inverse kinematics solution described previously (Davenport’s q method [356], [357]) and the 

initial guess for 2= when L > 1 was 2=D! [369]. 

Joint angles were computed given the orientation of the joint coordinate system fixed in the parent 

segment (from the reference configuration) relative to the same fixed in the child segment using an 

appropriate Euler angle decomposition [367]. The patellar ligament angle relative to the shank segment was 

determined by linear interpolation of the data reported by van Eijden et al. (1985) and the angle of the patella 

relative to the patellar ligament was modeled as a constant 20° [217], [370]. 

Given the segment position and orientation at each instant in time, the velocity and acceleration 

for segment é (ô̇?> and ô̈?>, respectively) as well as the quaternion time-derivative (û̇?	) were determined by 
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numerical differentiation using the 5-point central difference method. The quaternion time-derivative at time 

instant L is related to the orientation û?,= and body-referenced angular velocity Cß?,=
@ G as per [154], [368] 

û̇?,= =
1
2
û?,=⨂©?,=

@ (6.24) 

where the non-italic ©?,=
@ ∈ ℍ denotes the pure quaternion (null scalar part) representing the cartesian vector 

ß?,=
@ ∈ ℝC in quaternion space (ℍ) and ⨂ denotes the quaternion product [371]. Thus, 

©?,=
@ = 2û́?,=⨂û̇?,= (6.25) 

where û́?,= denotes the quaternion conjugate (multiplicative inverse for unit quaternions) [371]. Then, the 

angular velocity ß?,=
@  in cartesian space is simply the vector part of the pure quaternion ©?,=

@  computed from 

eq. (6.25). Finally, the angular acceleration of segment é (ß̇?
@) represented in the segment-fixed coordinate 

system is computed via numerical differentiation of ß?,=
@  as before. All segment linear and angular velocities 

and accelerations were low-pass filtered using a 4th order, zero-phase, Butterworth filter with a 6 Hz cutoff 

frequency where the filter order and cutoff frequency were adjusted for the backward pass [372]. 

MTU length and moment arm 

The length of each MTU at each time instant was computed as the sum of the lengths of the line 

segments connecting the MTU path points (origin, via points, insertion) as per [217] 

ℓ"12$ = v ¨C≠',4E! − ≠',4G
,
C≠',4E! − ≠',4GÆ

! %⁄
++,-.$D!

40!

(6.26) 

where M&G1H$ is the number of MTU path points (one for each via point and both the origin and insertion) and 

≠',4 is the global position of MTU path point < for MTU >. Note that ≠',! corresponds to the MTU origin and 

≠',++,-.$  corresponds to the MTU insertion for MTU >. The MTU paths of the MG and LG were modeled as 

the shortest curve connecting the origin and insertion points but that wrap posteriorly around the cylinder 

modeling the femoral condyle. The portion of this curve intersecting the surface of the cylinder is generally 

an elliptical arc. Thus, for the MG and LG, via points were created along this intersecting elliptical arc at 



 

 112 

one-degree increments from which MTU length was computed using eq. (6.26). Moment arms for each MTU 

associated with the knee and ankle joint flexion DOF were estimated using a 3-point finite difference 

approximation to eq. (6.3).  

Inverse dynamics 

 The intersegmental forces [343] and joint moments acting on each segment at the proximal and 

distal joints were computed using the recursive Newton-Euler equations [215]. The intersegmental force at 

the proximal joint acting on segment é represented in the segment coordinate system CØ&/
@ G was computed as 

per 

Ø&/
@ = 1?ô̈?@ −1?∞@ − Ø#/

@ (6.27) 

where ô̈?@ = ö?ô̈?> is the linear acceleration of the center of mass of segment é represented in the segment 

coordinate system, ∞@ = ö?∞> where ∞> = [0 −9.81 0],	1/é% is the gravitational acceleration vector, 

and Ø#/
@  is the intersegmental force acting on segment é at the distal joint represented in the coordinate system 

of segment é. According to Newton’s 3rd Law 

Ø#/
@ = −ö?,ö?E!Ø&/0"

@ (6.28) 

where the segments have been indexed such that the distal joint of segment é is the proximal joint of segment 

é + 1. The joint moment acting on segment é at the proximal joint represented in the coordinate system of 

segment é C≤&/
I G was computed as per 

≤&/
@ = ≥?ß̇?

@ +ß?
@ ×	≥?ß?

@ −≤#/
@ − r&/

@ ×	Ø&/
@ − r#/

@ ×	Ø#/
@ (6.29) 

where ≥? is the inertia matrix of segment é; ≤#/
@  is the joint moment acting on segment é at the distal joint 

represented in the coordinate system of segment é; r&/
@  and r#/

@  are the position vectors pointing from the 

center of mass of segment é to the proximal and distal joint centers, respectively, represented in the coordinate 

system of segment é; and	× denotes the vector cross-product. Again, note that  

≤#/
@ = −ö?,ö?E!≤&/0"

@ (6.30) 
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where the segments have been indexed as in eq. (6.28). Only the KFM and AFM were needed in this work 

and thus the above equations were solved for the foot first followed by the shank. Note that the distal joint 

intersegmental force and distal joint moment for the foot segment correspond to the ground reaction force 

and moment measured by a force plate and the position of ground reaction force application is the force plate-

measured center of pressure. The KFM and AFM were then computed by projecting ≤&/
@  in eq. (6.29) onto 

the knee and ankle flexion axes, respectively, using an appropriate coordinate transformation. Note that since 

the knee flexion axis points to the right by definition, the moment projected onto this axis is actually an 

extension moment. Thus, it was negated so as to represent a flexion moment. 

EMG-driven simulation of muscle contraction dynamics 

 The general dynamics of a muscle contraction were developed previously. This section describes 

the specification of the muscle model used in this work and the computational methods utilized for simulating 

the contraction dynamics. Ten EMG sensors were placed over the TA, PL, SOL, MG, LG, VM, VL, RF, 

BFL, and ST according to SENIAM standards [318]. Raw EMG data for these muscles were high-pass 

filtered at 30 Hz, full-wave rectified, low-pass filtered at 6 Hz, and normalized by the MVC excitation value 

defined as the largest excitation value across several walking, running, and muscle specific MVC trials [209]. 

The high-pass and low-pass filters were both 4th order, zero-phase, Butterworth filters with order and cutoff 

frequency adjusted for the backward pass [372]. This EMG envelope was the muscle excitation signal Å' 

driving muscle activation dynamics and a lower bound was set such that 0.01 ≤ Å' ≤ 1.00 for all muscles 

[373]. The excitation of the BFS and SM was assumed equivalent to that of the BFL and ST, respectively, 

and the excitation of the VI was the average of VM and VL excitations, as done in previous work [353]. 

All MTU-specific parameters and functions described in the muscle contraction dynamics section 

(those indexed on >) need to be specified. The functions (4$, (ℓ$, (6$, (&$, (å,$, and Ä̇' have taken on various 

forms in the literature for EMG-driven simulation. Arguably the most uncertainty surrounds the muscle 

activation parameters [295] including the activation dynamics function Ä̇' and the activation nonlinearity 

function (6$ as the parameters of these functions are almost always included in the tunable parameter set 

[209], [290], [374]. Further, several models for (6$ and Ä̇' with different behavior have been used in previous 
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research and it is not clear which is most appropriate. Thus, a novel development of this work is to utilize 

Bayesian optimization [375], [376] to optimize these functions in addition to several other MTU parameters. 

The optimization process is detailed in the next section and the remainder of this section specifies all MTU 

parameters not optimized in the Bayesian global optimization.  

The following functions were used for all MTUs and thus the subscripted MTU index > has been 

dropped. The force-velocity function was taken from De Groote et al. (2016) as per [377] 

(4 = ¥! ln∂∑ + (∑% + 1)! %⁄ ∏ + ¥% (6.31) 

where 

∑ = ¥C<|" + ¥J (6.32) 

and ¥! = −0.318, ¥% = 0.886, ¥C = −8.149, and ¥J = −0.374. The active force-length function was 

modeled as the sum of three Gaussian density functions taken from De Groote et al. (2016) [377] as per 

(ℓ = vπ!,= exp ∫−
0.5CℓÑ" − π%,=G

%

πC,= + πJ,=ℓÑ"
ª

C

=0!

(6.33) 

where π!,! = 0.815, π%,! = 1.055,	πC,! = 0.162,	πJ,! = 0.063, π!,% = 0.433, π%,% = 0.717,	πC,% =

−0.030,	πJ,% = 0.200, π!,C = 0.100, π%,C = 1.000,	πC,C = 0.354, and	πJ,C = 0.000. Recall that for eq. 

(6.33) only, ℓÑ" = ℓ"/ℓÜ3 where ℓÜ3 is the activation-adjusted optimal fiber length in eq. (6.8) and the 

percentage change in optimal fiber length for a completely inactive muscle was set to 15% [209] such that 

á = 0.15 in eq. (6.8). The passive force-length function was taken from Thelen (2003) as per [378] 

(& =
exp º ΩO3"

CℓÑ" − 1Gæ − 1

exp(Ω) − 1
(6.34) 

where the shape factor Ω was set to 5.00 and the fiber strain due to the maximal isometric force O3" was set 

to 0.55 (average of the old- and young-age values in [378]). The tendon force-strain function was modeled 

exponentially, similar to that used by De Groote et al. (2016) [377], as per, 

(å, = D[exp(øO,) − 1] (6.35) 
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where D = exp(−øO3,) and the slope of (å, is equal to ø when O, = O3,. The slope ø was set to 35.00 and O3, 

was set to 0.04. The behavior of these functions specified in eqs. (6.31) – (6.35) is shown in Figures 26 and 

27. 

 

 

 

 

 

 

 

Figure 26: Force-velocity and active force-length functions. The solid black line in the force-
velocity plot (left) was the function used in this study, eq. (6.31), and the solid grey line is a 
popular model in explicit integration approaches which uses Hill’s hyperbolic force-velocity 
equation for negative (shortening) velocities (with the coefficient of shortening heat set to 0.25) 
and an approximation to the eccentric force generating behavior of lengthening muscle for 
positive velocities. Notice the discontinuity at zero velocity for the grey curve which is not 
suitable for implicit integration. While the curves appear more similar for negative velocities 
than for positive velocities, the eccentric behavior of the grey line is more similar to that of the 
black line after taking into the account the effects of viscous damping where larger damping 
coefficients are common in explicit integration approaches (e.g., b = 0.50 vs 0.01). The solid 
black line in the active force-length plot (right) was the function used in this study, eq. (6.33). 
The dashed lines show the effects of neglecting the increase in optimal fiber length as a function 
of decreased activation while the solid lines model those effects as in eq. (6.8). The grey line is 
a cubic spline interpolation of the force-length data tabulated in Gordon et al. (1966). The 
curves of lesser magnitude were for activation set to 0.5 while the others were for fully active 
muscle. 
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Fiber pennation angle }3$ was taken from Horsman et al. (2007) [355]. For all muscles, maximum 

shortening velocity <3 was set to 15 optimal fiber lengths per second [373], the damping coefficient _ was 

set to 0.01 [350], and the electromechanical time delay .# was set to 40 ms [209], [373]. The optimal fiber 

length ℓ3$ and tendon slack length ℓ7$ are often included in the tunable parameter set in the global 

optimization. However, since the present work includes more parameters related to activation dynamics than 

those previous studies, ℓ3$ and ℓ7$ were not tuned in the global optimization in order to avoid overfitting 

[290]. Instead, ℓ3$ and ℓ7$ were scaled similar to previous work [379] such that the range of muscle fiber 

lengths throughout the gait cycle would be within the range of previously published data if a rigid tendon 

model [344] were used. The range of normalized fiber length data were taken from Arnold and Delp (2011) 

 

Figure 27: Passive muscle force-length and tendon force-strain functions. The passive force-
length plot (left) shows the model, eq. (6.34), used in this study. The solid black line in the 
tendon force-strain plot (right) was the function used in this study, eq. (6.35). The solid grey 
line is a piecewise continuous model popular in explicit integration approaches where the 
tendon force-strain relationship is modeled nonlinearly in a region of low strains and linearly 
beyond this region. The function used in this study was modified from that used by De Groote 
et al. (2016), the grey dashed line, such that the slope of the tendon force with respect to strain 
was equivalent to the slope of the linear region of the piecewise model at the strain yielding 
maximal muscle isometric force (vertical black dashed line). 
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and Arnold et al. (2013) [373], [380]. The range of normalized MTU lengths (normalized by the MTU length 

in the reference configuration) were subject-specific and taken from walking trials during the in-lab 

calibration visit. Let ℓ"12
-9K  be the MTU length in the reference configuration; ¿"12 and ¿" be the maximum 

normalized MTU and fiber length during the gait cycle, respectively; and ¡"12 and ¡" be the minimum 

normalized MTU and fiber length during the gait cycle, respectively. Then by eq. (6.10) and the rigid tendon 

assumption one has 

X
¿"12ℓ"12

-9K

¡"12ℓ"12
-9K Y = º

1 ¿" cos}L
1 ¡" cos}M

æ º
ℓ7
ℓ3
æ (6.36) 

where }L = asin(¿"D! sin}3) and likewise for }M per eq. (6.12). The solution to the linear system eq. (6.36) 

yields the optimal fiber and tendon slack length for each MTU. 

The activation dynamics were simulated using a Runge-Kutta formula with the ode45 function 

in MATLAB. The muscle contraction dynamics are notoriously stiff [352] and thus, rather than solving for <" 

in eq. (6.13) and integrating explicitly, eq. (6.13) is integrated implicitly using the ode15i function in 

MATLAB and the analytic Jacobian of eq. (6.13) with respect to both the fiber length state variable ℓ" and its 

time-derivative <". It was for this reason that eqs. (6.31) – (6.35) were chosen for the Hill model as they are 

all continuous at the second derivative as opposed to some models popular for integrating the dynamics 

explicitly (in particular for piecewise formulations of (4 and (å, which are only continuous at the first 

derivative) [290], [350], [378]. The simulation was initialized using the MATLAB decic function to determine 

initial fiber length and velocity states that are consistent with the dynamic equilibrium in eq. (6.13). The 

decic function also requires an initial guess for fiber length and velocity which may not be dynamically 

consistent. In this case, fiber length and velocity were determined assuming a rigid tendon. Thus, tendon 

length was set equal to the tendon slack length such that fiber length was given from eq. (6.10) and fiber 

velocity was obtained from the MTU velocity (numerical differentiation of ℓ"12). The simulation was 

performed only for the stance phase of gait identified as the time interval for which the force plate-measured 

ground reaction force was greater than 20 N. The integrals in eqs. (6.17) and (6.18) were approximated using 

the trapezoidal method. 
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Bayesian optimization 

Bayesian optimization was used to tune a scalar that scaled the maximal isometric force {3$ and five 

muscle activation parameters including the activation dynamics function Ä̇', the activation time constant .G.1$, 

the activation to deactivation ratio ¬' = .G.1$/.#9G.1$ where .#9G.1$ is the deactivation time constant, the 

activation nonlinearity function (6$, and an activation nonlinearity function parameter √'. Muscles were 

grouped according to a strength group and an activation group wherein muscles belonging to the same group 

were assumed to have the same properties concerning the group-specific construct (i.e., strength or 

activation). The five strength groups were the knee extensors (VL, VM, VI, RF), knee flexors (BFL, BFS, 

ST, SM), gastrocnemii (MG, LG), uniarticular plantarflexors (SOL, PL), and dorsiflexors (TA). These groups 

were determined based on similar logic used in previous work (e.g., according to MTU structure and function) 

[209]. The activation groupings (novel to this work) were the same as the strength groupings except that all 

muscles within a group were required to have a similar proportion of type I (slow-oxidative) fibers 

determined from the tabulated data in Yamaguchi et al. (1990) [381]. The association between fiber type 

distribution and the activation-force relationship has been observed previously [348]. To this end, all muscles 

within each strength group with this proportion less than 60% were placed in a new group as well as those 

greater than or equal to 60%. This was the case only for the knee flexors where SM and ST were both 50% 

type I, while BFL and BFS were both 65% type I. Thus, the six activation groups were the knee extensors 

(VL, VM, VI, RF), lateral knee flexors (BFL, BFS), medial knee flexors (SM, ST), gastrocnemii (MG, LG), 

uniarticular plantarflexors (SOL, PL), and dorsiflexors (TA). This yields of total of 35 tunable parameters 

(one strength scalar for each of the five strength groups and five activation parameters for each of the six 

activation groups). 

The range of the strength scalar was 0.5 – 2.0 and it scaled {3$ initialized using eq. (6.5) where the 

physiological cross-sectional area �' was taken from Horsman et al. (2007) [355] and the muscle stress at 

maximal isometric force F' was set to 0.3 MPa. Five activation dynamics functions were considered. The 

first was a 1st order, linear model (abbreviated L1T1) based on that used by Winters and Stark (1988) [382], 

Ä̇' = .G̅.1$
D! (Å' − Ä') (6.37) 
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where .G̅.1$ is the average of the activation and deactivation time constants. The second was a 1st order, 

nonlinear, piecewise-continuous model (abbreviated N1T2) based on that used by De Groote et al. (2016) 

[377], 

Ä̇' =
1
2
X
(1 + tanh[0.1(Å' − Ä')])

.G.1$(0.5 + 1.5Ä')
+
(0.5 + 1.5Ä')(1 − tanh[0.1(Å' − Ä')])

.#9G.1'
Y (Å' − Ä'). (6.38) 

The third was a 1st order, bilinear model (abbreviated B1T2) based on that used by He et al. (1991) [383], 

Ä̇' = ∂C.G.1$
D! − .#9G.1$

D! GÅ' + .#9G.1$
D! ∏(Å' − Ä'). (6.39) 

The fourth was a 2nd order, linear model (abbreviated L2T1) based on the findings of Milner-Brown et al. 

(1973) [321], 

Ä̈' = −2Ω'Ä̇' − Ω'%Ä' + Ω'%Å' (6.40) 

where the natural frequency Ω' is equal to the average value of .G.1$
D!  and .#9G.1$

D! . The fifth was a piecewise 

version of the model eq. (6.40) (abbreviated L2T2) where Ω' = .G.1$
D!  for Ä̇' ≥ 0 (during activation) and Ω' =

.#9G.1$
D!  for Ä̇' < 0 (during deactivation). The range of the activation time constant was 10 – 60 ms and the 

range of the activation to deactivation ratio ¬' was 0.25 – 1.0. All five activation dynamics were unity gain 

and the excitation signal in each model was delayed according to the electromechanical time delay (40 ms). 

Three activation nonlinearity functions were considered. The first was the exponential model used by Lloyd 

and Besier (2003) [209] (abbreviated Aexp) based on the findings of Potvin et al. (1996) [347], 

(6$ =
exp(√'Ä') − 1
exp(√') − 1

. (6.41) 

The second was the piecewise A-model [384] developed by Manal and Buchanan (2003) (abbreviated A), 

based on the findings of Woods and Bigland-Ritchie (1983) [348] which is dependent on a single parameter 

√'*. The third was a modified version of the continuous approximation to the piecewise A-model used by 

Meyer et al. (2019) (abbreviated Ac) [374], 

(6$ = (1 − √'
**)Ä' + √'

** »1 +
…!

…% + …C(Ä' + …J)N1
 (6.42) 
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where …! = −7.623, …% = 4.108 …C = 29.280, …J = 0.884, …O = 17.227. The parameter √'** in eq. (6.42) 

was a function of √' such that the derivative of eq. (6.42) with respect to Ä' evaluated at Ä' = 0 was equivalent 

to that of eq. (6.41). A similar adjustment was made to the single parameter √'* of the piecewise A-model 

such that √'* =
3.!%
3.CO

√'**. These parameter adjustments were made so that the single tunable parameter √' 

yielded similar behavior in all three activation nonlinearity functions for the range −3 ≤ √ < 0 [209]. The 

step response for each activation dynamics model and the behavior of these three activation nonlinearity 

functions is shown in Figure 28. 

 

 

 

 

Figure 28: Activation dynamics and activation nonlinearity functions included in the tunable 
parameter set of the Bayesian global optimization. The step response for each activation 
dynamics model (with the electromechanical time delay td set to 40 ms, tact = 12 ms and z = 0.5 
such that tdeact = 24 ms) is shown in the left plot where the solid black line is the B1T2 model, the 
solid blue line is the N1T2 model, the dashed blue line is the L1T1 model, the solid red line is the 
L2T2 model, and the dashed red line is the L2T1 model. The behavior of the activation 
nonlinearity functions is shown on the right where solid lines correspond to A = -1.50 and dashed 
lines correspond to A = -2.50. The black lines correspond to the A model, the red lines 
correspond to the Ac model, the blue lines correspond to the Aexp model, and the grey line 
corresponds to the line of linearity. 
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 The objective function in the global optimization was the average normalized mean squared error 

between the inverse dynamics and EMG-driven estimates of KFM and AFM across multiple calibration 

walking trials where normalization was by the variance of the inverse dynamics-based joint moment estimate. 

The MATLAB function bayesopt was used to optimize the 35 MTU parameters using the expected-

improvement-plus acquisition function, 0.5 exploration ratio, 140 seed points (four times the number of 

parameters), 300 GP active set size, and the number of maximum objective function evaluations was set to 

1225 (the number of parameters squared). 

6.4.2. Gaussian process synergy model 

The proposed sensor-driven technique uses data from four EMG-instrumented muscles to estimate 

the excitation of the other six muscles (would be unmeasured in practice). This estimation was performed by 

training an appropriate GP synergy function model [162] as described in Chapter 5. To this end, the input 

muscles were the four EMG-instrumented muscles: VM, MG, LG, and PL. The input window length was set 

to 1.5 seconds, the window relative output time was 0.75 seconds (the middle of the input window), the GP 

model covariance function was the isotropic squared exponential, and the GP model mean function was a 

constant (as in Chapter 5). All aspects of training the GP synergy function models were done using the GPML 

and syner-gp toolboxes [162], [316], [317]. 

 

6.5. Proposed technique: IMU and EMG-driven simulation of muscle contraction dynamics 

This section describes the computational methods used for estimating the biomechanical variables 

of interest. Only the information from the calibrated model (musculoskeletal geometry, Bayesian optimized 

MTU parameters, and trained GP synergy model) and data from the reduced sensor array (two IMUs and 

four EMGs) are used in the following. 

6.5.1. Sensor-to-segment calibration 

The inverse kinematics solver requires only accelerometer and gyroscope data for thigh- and shank-

fixed IMUs. The angular rate and specific force outputs from these sensors must be expressed in the segment 
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coordinate systems associated with the 28 generalized coordinates described previously. Thus, the TRIAD 

algorithm [357] was used to determine the orientation of the thigh- and shank-fixed IMU coordinate systems 

with respect to the thigh and shank segment coordinate systems, respectively. This required two reference 

vectors be measured in both the IMU and segment coordinate system. To this end, the gravity vector and 

knee joint flexion axis were used. The representation of the gravity vector in the segment frame was computed 

by rotating the global vertical axis to the segment frame during the reference configuration (static calibration 

trial) and the representation of the knee joint flexion axis in the segment frame was given as per the SARA 

method described previously. The representation of the gravity vector in the IMU frame was computed as 

the average direction of the specific force measured by the accelerometer during the static calibration trial. 

The representation of the knee joint flexion axis in the IMU frame is determined using a nonlinear least-

squares method [198], [385]. In this approach, the objective function exploits a mechanical constraint 

imposed by modeling the knee as a hinge joint, namely that projections of the thigh and shank angular 

velocities measured by the segment-fixed gyroscopes onto the joint plane have the same magnitude [385]. 

This equality constraint is nonlinear in the unknown coordinates of the knee joint flexion axis in each IMU 

frame which is optimized in the least-squares sense using the Levenberg-Marquardt algorithm. Finally, the 

position vector of the knee joint center with respect to the thigh- and shank-fixed IMUs (constant) is 

determined using a nonlinear least-squares method [198], [385]. This approach exploits a mechanical 

constraint imposed by non-translating joints for which the position of the knee joint center with respect to 

either IMU is constant, namely that the magnitude of the knee joint center specific force computed using 

IMU data from either segment should be equivalent [385]. This equality constraint is nonlinear in the 

unknown coordinates of the position vector of the knee joint center in the IMU frame which is optimized in 

the least-squares sense using the Levenberg-Marquardt algorithm. Data recorded during the hip and knee 

joint movements of the star calibration task were used for both calibrations (knee joint flexion axis and knee 

joint center location) in addition to straight, level walking trials for the knee joint flexion axis calibration. 

The static and functional calibration trials would be performed each day when sensors are placed on the 

person. 
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6.5.2. Inverse kinematics: inertial motion capture 

This section describes the computation of all 28 generalized coordinates describing the rigid body 

system configuration during the stance phase of gait using only data from the thigh- and shank-worn IMUs. 

This analysis is henceforth referred to as inertial motion capture (IMC). Thigh and shank IMU data are 

expressed relative to their respective segment coordinate systems (those that coincide with the 

musculoskeletal model) based on the sensor-to-segment alignment described previously. The medio-lateral 

axis of the shank gyroscope signal is used to identify foot contact and foot off events as described by Mansour 

et al. (2015) [17]. The shank-worn accelerometer data is used to identify the stillest quarter of the identified 

stance phase. The average accelerometer output during this interval is used to estimate the shank orientation 

(ûQ) at the middle of this interval (assuming zero heading angle) [26]. Then, the shank orientation before and 

after this mid-stance instant (for the remainder of the stance phase) is obtained by integrating eq. (6.24). To 

this end, the angular rate is assumed constant between time instant .= and .=E! and equal to the average value 

of the gyroscope signal between these two time instants [386]. Then, the linear differential equation of the 

quaternion kinematics in eq. (6.24) has the analytic solution [154], [368] 

û?,=E! = û?,=⨂exp»©?,=
@ Δ.

2
 (6.43) 

where Δ. = .=E! − .=. The exponential map of the pure quaternion ©?,=
@ R1

%
 can be shown by expansion [368] 

to have scalar part (see Appendix C) 

ºexp »©?,=
@ Δ.

2
 æ
J
= cos »Ãß?,=

@ Ã
Δ.
2
 (6.44) 

and vector part 

ºexp »©?,=
@ Δ.

2
 æ
!:C

= Ãß?,=
@ Ã

D!
ß?,=
@ sin »Ãß?,=

@ Ã
Δ.
2
 . (6.45) 

Next, the knee joint angle is estimated using the method described by Seel et al. (2014) [198]. 

Briefly, the difference between the thigh and shank angular rates (gyroscope signals) about the knee flexion 

axis were integrated yielding a drift-prone estimate of knee joint angle. This estimate is fused with a noisy, 
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accelerometer-based estimate utilizing the fact that the specific force of the knee joint center computed using 

the shank- and thigh-worn IMU data along with the position vector of the knee joint center relative to the 

respective sensor frame (determined from the sensor-to-segment alignment) [387], [388] should differ only 

according to a single rotation about the knee flexion axis through an angle equal to the knee flexion angle 

[198]. The fusion was performed using a complementary filter (gain = 0.01) as done by Seel et al. (2014) 

[198].  

Thigh orientation can be determined just from the shank orientation and the knee flexion angle since 

the knee is modeled as a hinge joint. The pelvis orientation was assumed null (i.e., the identity quaternion) 

except that the heading angle was constant and equal to the average heading angle of the shank during the 

stance phase. The ankle joint center has a known (local) position relative to the knee joint center based on 

the musculoskeletal geometry. Thus, the acceleration of both the knee and ankle joint centers was computed 

from the shank-worn accelerometer (after removing gravity) along with the segment angular rate (gyroscope 

signal), and the known joint center position vector relative to the shank sensor frame (from the sensor-to-

segment alignment) as per standard rigid body dynamics analysis [387], [388]. The ankle joint center position 

is computed by double integration of the ankle joint center acceleration using the trapezoidal method. The 

foot orientation was determined by assuming the heading angle was equivalent to the shank heading angle 

through the stance phase, the roll angle was null, and the pitch angle was computed based on a simple foot-

ground contact model as shown in Figure 29. 

Thus, given all segment orientations and the ankle joint center position throughout the stance phase, 

the remaining generalized coordinates (the position of each segment coordinate system origin) were given 

completely by the musculoskeletal geometry model and because the joint center positions relative to each 

segment coordinate system were known. MTU length and moment arm were computed from the 28 IMC-

estimated generalized coordinates using the same methods as for the OMC estimates described previously. 
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6.5.2. Simulating muscle contraction dynamics 

The four measured muscle excitations were used as inputs to the GP synergy functions trained 

during the model calibration step yielding a complete set of 10 muscle excitation time series. These signals 

along with the IMC-based MTU length were used to simulate the muscle contraction dynamics as described 

previously along with the IMC-based moment arm estimates to estimate KFM and AFM as per eqs. (6.1) and 

(6.2). 

 

 

Figure 29: Simple foot-ground contact model for estimating foot pitch angle in the inertial 
motion capture inverse kinematics analysis. The ankle joint center throughout stance is 
available via direct integration as described in the main text. This foot-ground contact model 
is planar and thus only the vertical y and horizontal x position of the joint center in the global 
frame {G} is needed. The ankle joint center height at mid-stance is set equal to the height (black 
dashed line) in the reference configuration (middle configuration) from which the positions of 
the initial stance rotation point (red dot, directly inferior to the heel) and terminal stance 
rotation point (green dot, directly inferior to the toe) are computed (also available from the 
reference configuration). Initial stance is defined as the interval between foot contact and mid-
stance (left configuration) and terminal stance is between mid-stance and foot off (right 
configuration). Rotation of the foot during stance is assumed to occur about an axis (z, out of 
the page) through these points for their respective intervals (initial or terminal stance) and thus 
the magnitude of the red and green vectors (i.e., from the rotation point to the ankle joint 
center) should be close to constant. Then the angle between these vectors at each time instant 
during initial stance (red dashed arrow) or terminal stance (green dashed arrow) and the same 
vectors in the reference configuration (solid red and green arrows at mid-stance and thus also 
the reference configuration) is the foot pitch angle (q). Since the axis of rotation is out of the 
page, the pitch angle is positive in initial stance and negative in terminal stance. 
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6.6. Experimental validation 

6.6.1. Data collection 

The proposed technique was validated on a healthy 20 year-old female (height: 1.75 m, mass: 65.89 

kg). Analysis was for the right leg only. The subject performed 10 overground walking trials at a self-selected 

normal speed (stride time: 1.08 ± 0.02 m/s, stride length: 1.59 ± 0.05 m, stride velocity: 1.48 ± 0.05 m/s) 

for which the right foot completely contacted the force plate for a single contact. Thus, one stance phase was 

analyzed per trial. Marker position data were captured at 100 Hz using a 19-camera OMC system (Vicon 

Motion Systems, Oxford, UK). Force plate data (AMTI, Watertown, MA, USA) and raw EMG data 

(BioStamp, MC10, Inc., Cambridge, MA, USA) were collected at 1000 Hz. Force plate data were 

downsampled to 100 Hz for synchronization with marker data as were the EMG data after excitations were 

computed as described previously. Shank and thigh IMUs (BioStamp, MC10, Inc., Cambridge, MA, USA, 

gyroscope range: ± 2000°/s, accelerometer range: ± 16g) were placed over the distal lateral shank and 

anterior thigh, respectively. IMU data were recorded at 250 Hz, downsampled to 100 Hz, and synchronized 

with marker position data. 

The subject performed the static and functional calibration trials as described previously for 

calibrating the musculoskeletal geometry. The first seven overground walking trials were set apart for the 

global optimization of the MTU parameters. The last three overground walking trials, now referred to as test 

walking trials, were used for validating the proposed technique. The sensor-to-segment alignment described 

previously requires data captured during a static calibration trial, a functional calibration trial, and walking 

trials. Only the test walking trials were used for the sensor-to-segment alignment while the same static and 

functional calibration trials that were used for calibrating the musculoskeletal geometry were also used for 

the sensor-to-segment alignment. To train the GP synergy function models, the subject walked on a treadmill 

(h/p/cosmos quasar, Nussdorf-Traunstein, Germany) at a self-selected slow, normal, and fast speed. The 

training set consisted of 20 seconds of data from each of the three treadmill walking trials. 
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6.6.2. Statistical analysis 

Errors in estimating the biomechanical variables of interest using the proposed technique will 

generally be due to inaccurate MTU kinematics (MTU length and moment arm) and/or inaccurate estimation 

of the unmeasured muscle excitations from the GP synergy function model. Thus, each of these and their 

effects on the final estimation of the biomechancial variables of interest were analyzed separately only for 

the three test walking trials. The IMC estimates of MTU length as well as knee and ankle flexion moment 

arm for each MTU were compared to the ground truth OMC estimates. The GP synergy function estimates 

of muscle excitation and activation for the six unmeasured muscles (SOL, TA, VL, RF, ST, BFL) were 

compared to the measured data (ground truth). Estimates of muscle fiber length, force, power, and cumulative 

concentric and eccentric work were computed for four analyses: (1) OMC-based kinematics with a full set 

of EMG (OMC-Full, ground truth for simulating muscle contraction dynamics), (2) OMC-based kinematics 

with the four-EMG subset and GP synergy functions (OMC-GP, to assess the effect of the inaccuracies in 

the GP synergy functions), (3) IMC-based kinematics with a full set of EMG (IMC-Full, to assess the effect 

of inaccuracies in IMC-based kinematics), and (4) IMC-based kinematics with the four-EMG subset and GP 

synergy functions (IMC-GP, to evaluate the estimation error in using the proposed technique). Analyses (2) 

– (3) were compared to OMC-Full (ground truth) for evaluation of muscle fiber length, force, power, and 

cumulative concentric and eccentric work estimates. Finally, KFM and AFM were estimated using analyses 

(1) – (4) and were compared to the inverse dynamics-based estimate (ground truth) for evaluation.  

Estimation error of all time-series relative to the ground truth data specified for each comparison 

was quantified using the average Pearson correlation coefficient (r) and the average percentage variance 

accounted for (VAF) across all three test walking trials. Percentage variance accounted for was computed as 

per 

VAF = Z1 −
(Q − Qò),(Q − Qò)

Q,Q
] 100 (6.46) 

where Q is a column vector of ground truth values and Qò is the linear regression of Q (with no intercept) using 

the estimated values as the predictor. The correlation coefficient captures similarity in the shape of two curves 
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without regard for magnitude whereas VAF (a.k.a. the uncentered coefficient of determination) considers 

both shape and magnitude [389]. The average root mean squared error (RMSE) across all three test walking 

trials was also used to quantify errors in the proposed technique only (IMC-GP) to provide context for the 

error in physical units of measurement. For comparison to previous work, the RMSE is also reported as a 

percentage of the product BW*H [24], [25] (where BW is the subject body weight in Newtons and H is the 

subject height in meters) and as a percentage of the range of the joint moment during stance (denoted M-G$T9) 

[222], [390]. All trial-averaged correlation coefficients were corrected using Fisher’s z transformation [322] 

and interpreted qualitatively as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.90), and 

very strong (r > 0.90). All trial-averaged VAF were rounded to the nearest percentage. The estimation error 

of cumulative concentric and eccentric work as well as the peak knee extension moment (during the loading 

phase of initial stance) and peak ankle plantarflexion moment (toward terminal stance) was quantified by the 

mean absolute percent error (MAPE) and the mean absolute error (MAE) to provide context of the error in 

physical units of measurement. 

 

6.7. Results 

6.7.1. Muscle-tendon unit parameter identification 

 The MTU parameters identified via the Bayesian optimization as well as the optimal fiber length 

and tendon slack length computed via eq. (6.36) are tabulated in Table 7. Across all seven calibration walking 

trials, the average correlation between inverse dynamics and OMC-Full estimates of KFM and AFM was 

0.89 and 0.97, respectively, and the average RMSE of the OMC-Full estimate (training error) was 13.50 Nm 

(1.19% BW*H) for KFM and 11.12 Nm (0.98% BW*H) for AFM. The strength scalar was 1.54 for the knee 

extensor group, 1.23 for the knee flexor group, 0.71 for the gastrocnemii group, 0.77 for the uniarticular 

plantarflexor group, and 1.83 for the dorsiflexor group. All activation dynamics and activation nonlinearity 

functions were used for at least one activation group except for the N1T2 activation model. The range of the 

activation time constant was 25 – 58 ms and the range of the activation to deactivation ratio was 0.39 – 0.98. 

The length of each MTU in the reference configuration was 38.19 cm for the TA, 36.28 cm for the PL, 35.53 
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cm for the SOL, 55.68 cm for the MG, 53.60 cm for the LG, 25.74 cm for the VM, 21.47 cm for the VI, 25.17 

cm for the VL, 44.35 cm for the RF, 42.65 cm for the BFL, 24.95 cm for the BFS, 51.92 cm for the ST, and 

43.60 cm for the SM. The optimal fiber length and tendon slack length were all within the range of previously 

published data [209], [379], [391]. 

6.7.2. Inverse kinematics 

 The error statistics of the IMC-estimated MTU kinematics are tabulated in Table 8. IMC-estimated 

knee flexion angle was very strongly correlated (r = 0.99) with the OMC estimate and with low RMSE (1.81°) 

whereas only a moderate correlation (r = 0.39) was observed for the IMC-estimated ankle flexion angle and 

with larger errors (8.85° RMSE) which appears mostly due to an overestimated dorsiflexion angle in terminal 

stance (Figure 30). This was reflected in the estimation of flexion DOF moment arms for the respective joints 

(Figures 31 and 32) wherein moderate correlations (r = 0.40 – 0.62) were observed for the ankle joint but 

very strong correlations (r = 0.99) were observed for the knee joint. Likewise, RMSE in the IMC-estimated 

knee flexion moment arm was less than 0.15 cm but was between 0.22 and 0.82 cm for ankle flexion moment 

Table 7: Optimization of MTU parameters. Dashed lines separate activation groups. Bolded 
variables were tuned via Bayesian optimization and all others were computed from eq. (6.36). 

         

Muscle ℓ! 
(cm) 

ℓ" 
(cm) 

"# 
(N) #̇ %$%& 

(ms) & '' ( 

         TA 9.98 29.75 1461.45 L2T1 39.65 0.85 Ac -1.77 
PL 6.53 29.94 549.75 

L1T1 25.01 0.97 Ac -1.32 
SOL 8.63 30.15 4145.00 
MG 17.36 38.93 927.07 L2T2 58.23 0.98 A -1.61 
LG 13.81 41.06 507.98 
VM 9.09 18.67 2759.90 

B1T2 49.65 0.39 Aexp -2.34 
VI 8.89 14.70 1755.46 
VL 9.15 18.05 3211.43 
RF 7.12 37.46 1331.57 

BFL 10.18 34.61 992.43 
L2T1 38.99 0.94 Ac -2.98 

BFS 8.41 14.71 430.54 
ST 25.77 24.57 536.35 

L2T2 25.66 0.88 Ac -0.70 SM 11.70 34.43 623.92 
         

ℓ3: optimal fiber length, ℓ7: tendon slack length, {3: maximal isometric force, Ä̇: activation dynamics 
function, .G.1: activation time constant, ¬: activation to deactivation ratio where ¬ = .G.1/.#9G.1; (6: 
activation nonlinearity function;  √: the parameter of the activation nonlinearity function. 
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arm. A similar observation was made for MTU length wherein the IMC estimate for all MTUs crossing the 

knee joint (Figure 33) were strongly to very strongly correlated with OMC estimates (r = 0.83 – 1.00) while 

moderate correlations (r = 0.35 – 0.37) were observed for MTUs crossing only the ankle joint. The RMSE 

of the IMC-estimated MTU length was less than 1.00 cm for all MTUs and less than 0.50 cm for all MTUs 

crossing only the knee joint. For all MTUs, the IMC-estimate explained 100% VAF in the OMC-estimate for 

MTU length and both knee and ankle flexion moment arm except for the ankle flexion moment arm of all 

plantarflexor MTUs (PL, SOL, MG, LG) for which VAF was between 93 – 98%. 

 

 

 

 

 

 

 

 

Table 8: IMC vs. OMC estimated MTU kinematics across the three test walking trials. 

            
 MTU Length  Knee Flexion 

Moment Arm 
 Ankle Flexion 

Moment Arm 

Muscle r VAF 
(%) 

RMSE 
(cm)  r VAF 

(%) 
RMSE 
(cm)  r VAF 

(%) 
RMSE 
(cm) 

            TA 0.37 100 0.65  - - -  0.62 100 0.24 
PL 0.43 100 0.13  - - -  0.45 93 0.22 

SOL 0.35 100 0.69  - - -  0.40 98 0.75 
MG 0.87 100 0.71  0.99 100 0.06  0.44 98 0.82 
LG 0.83 100 0.71  0.99 100 0.06  0.44 98 0.73 
VM 0.99 100 0.10  0.99 100 0.09  - - - 
VI 0.99 100 0.10  0.99 100 0.10  - - - 
VL 0.99 100 0.10  0.99 100 0.09  - - - 
RF 1.00 100 0.29  0.99 100 0.13  - - - 

BFL 0.99 100 0.26  0.99 100 0.10  - - - 
BFS 0.99 100 0.13  0.99 100 0.08  - - - 
ST 0.98 100 0.41  0.99 100 0.13  - - - 
SM 0.97 100 0.26  0.99 100 0.14  - - - 
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Figure 30: Visual comparison of knee flexion angle (left) and ankle flexion angle (right) in 
degrees during the stance phase of gait for IMC (red) and OMC (blue) estimates. Solid lines 
indicate the median and the shaded area indicates the range across the three test walking trials. 
Positive values on the ankle flexion plot indicate dorsiflexion angle whereas negative values 
indicate plantarflexion. 
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Figure 31: Visual comparison of ankle flexion moment arm in cm during the stance phase of 
gait for IMC (red) and OMC (blue) estimates. Solid lines indicate the median and the shaded 
area indicates the range across the three test walking trials. Negative moment arms correspond 
to the generation of a plantarflexion moment. Positive moment arms correspond to the 
generation of a dorsiflexion moment. 
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Figure 32: Visual comparison of knee flexion moment arm in cm during the stance phase of 
gait for IMC (red) and OMC (blue) estimates. Solid lines indicate the median and the shaded 
area indicates the range across the three test walking trials. Negative moment arms correspond 
to the generation of an extension moment. Positive values correspond to the generation of a 
flexion moment. 
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Figure 33: Visual comparison of normalized MTU length (normalized by MTU length in the 
reference configuration) during the stance phase of gait for IMC (red) and OMC (blue) 
estimates. Solid lines indicate the median and the shaded area indicates the range across the 
three test walking trials. 
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6.7.3. Muscle excitation and activation 

 The error statistics of the estimated excitation and activation for all unmeasured muscles from the 

GP synergy function models are tabulated in Table 9 and a graphical comparison of muscle activation is 

displayed in Figure 34. Estimated excitations were strongly to very strongly correlated (r = 0.73 – 0.98) with 

measured excitations and explained 83 – 98% VAF with RMSE less than 3% MVC for all muscles except 

for the BFL (9.36% MVC). Muscle activations driven by the estimated excitations were very strongly 

correlated with those driven by the measured excitations (r ≥ 0.93) and explained between 93 and 99% VAF 

with RMSE less than 3% MVC for all muscles except the BFL (6.91% MVC). 

 

 

 

 

Table 9: Estimation of muscle excitation and activation for all GP synergy function output 
muscles compared to measured EMG data across the three test walking trials. 

        
 Excitation  Activation 

Muscle r VAF 
(%) 

RMSE 
(%MVC)  r VAF 

(%) 
RMSE 

(%MVC) 

        TA 0.92 94 2.16  0.98 99 1.94 
SOL 0.98 98 2.67  0.98 99 2.19 
VL 0.96 95 1.77  0.96 98 1.10 
RF 0.73 85 1.97  0.96 98 0.85 

BFL 0.95 90 9.36  0.96 94 6.91 
ST 0.80 83 2.06  0.93 93 1.81 

        

 

 

Figure 34: Visual comparison of muscle activation expressed as a percentage of MVC for all 
GP synergy function output muscles during the stance phase of gait driven by measured 
excitations (blue line, EMG) and estimated excitations from the GP synergy functions (red line, 
GP). Solid lines indicate the median and the shaded area indicates the range across the three 
test walking trials. 
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6.7.4. Muscle contraction dynamics 

 The error statistics characterizing the OMC-GP, IMC-Full, and IMC-GP simulation of contraction 

dynamics relative to the ground truth OMC-Full analysis are tabulated in Table 10 (time-series variables) 

and Table 11 (concentric and eccentric work) and graphically compared in Figures 35-37.  

Muscle fiber length 

For the IMC-GP analysis, estimated fiber length explained 100% VAF in the OMC-Full analysis 

for all muscles and with RMSE less than 0.50 cm for all muscles crossing only the knee joint (or less than 

3.50% of the optimal fiber length) and between 0.11 cm (PL) and 0.63 cm (MG) RMSE for all muscles 

crossing the ankle joint (or between 1.72% and 5.63% of the optimal fiber length). Correlation coefficients 

were very strong (r = 0.97 – 0.99) for all muscles crossing only the knee joint and were strong (r = 0.71 – 

0.83) for all muscles crossing the ankle joint except for the SOL (r = -0.07) and TA (r = 0.15). These low 

correlations for the SOL and TA were reflected in the IMC-Full analysis (r = -0.08 and 0.15, respectively), 

but not in the OMC-GP analysis (r > 0.99 for both muscles) suggesting errors in the IMC-based kinematics 

may have contributed more to these weak correlations than did inaccuracies in the GP synergy functions. 

Muscle force 

 For the IMC-GP analysis, estimated muscle force explained greater than 90% VAF for all muscles 

except for the SM (88% VAF) and was very strongly correlated with OMC-Full estimates except for all knee 

flexors wherein strong correlations were observed (r = 0.82 – 0.88). For all muscles, the estimation 

performance (r and VAF) of the OMC-GP and IMC-Full analyses were comparable or better than the IMC-

GP analysis. For only those muscles crossing the knee joint, the estimation performance of the IMC-Full 

analysis was comparable or better than the OMC-GP analysis. However, the opposite was observed for TA 

and SOL (the only synergy function output muscles crossing the ankle joint) wherein the estimation 

performance of the OMC-GP analysis was comparable or better than the IMC-Full analysis. The RMSE in 

estimating muscle force was between 9.41 N for PL and 178.53 N for SOL and as a percentage of each 

muscle’s maximum isometric force ({3 in Table 7) was 4.32% for TA, 1.71% for PL, 4.31% for SOL, 2.54% 
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for MG, 2.12% for LG, 0.91% for VM, 0.95% for VI, 1.91% for VL, 2.39% for RF, 6.17% for BFL, 10.24% 

for BFS, 4.04% for ST, and 2.68% for SM. 

Muscle power 

For the IMC-GP analysis, estimated muscle power for MTUs crossing the knee joint was strongly 

to very strongly correlated (r = 0.80 – 0.97) with estimates from the OMC-Full analysis and with VAF 

between 83 and 95%. However, moderate correlations (r = 0.56 – 0.68) were observed for uniarticular MTUs 

crossing the ankle joint (TA, PL, SOL) and with VAF between 16 and 37%. For all muscles, estimation 

performance (r and VAF) of the IMC-Full analysis was comparable or better than for the IMC-GP analysis, 

and the OMC-GP analysis was comparable or better than for the IMC-Full analysis. The RMSE in estimating 

muscle power was between 1.60 W for SM to 37.81 W for SOL. 

 

 

Figure 35: Visual comparison of normalized fiber length (normalized by the optimal fiber 
length) computed using OMC-Full (solid soft blue, ground truth), OMC-GP (dashed blue), 
IMC-Full (dotted red), and IMC-GP (solid maroon, proposed technique) during the stance 
phase of gait. Lines indicate the median and the shaded area indicates the range across the 
three test walking trials (shaded area only shown for OMC-Full and IMC-GP) 
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Figure 36: Visual comparison of muscle force in Newtons computed using OMC-Full (solid soft 
blue, ground truth), OMC-GP (dashed blue), IMC-Full (dotted red), and IMC-GP (solid 
maroon, proposed technique) during the stance phase of gait. Lines indicate the median and 
the shaded area indicates the range across the three test walking trials (shaded area only shown 
for OMC-Full and IMC-GP). 
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Figure 37: Visual comparison of muscle power in Watts computed using OMC-Full (solid soft 
blue, ground truth), OMC-GP (dashed blue), IMC-Full (dotted red), and IMC-GP (solid 
maroon, proposed technique) during the stance phase of gait. Lines indicate the median and 
the shaded area indicates the range across the three test walking trials (shaded area only shown 
for OMC-Full and IMC-GP). 

0 50 100
-100

-50

0

50
VL

0 50 100

-100

-50

0

50
VM

0 50 100
-60

-40

-20

0

20
VI

0 50 100

-20

-10

0

10

20
RF

0 50 100
0

20

40

60

BFL

0 50 100

0

10

20

30

40
BFS

0 50 100
0

10

20

30
SM

0 50 100
0

20

40

60
ST

0 50 100
-50

0

50

100
MG

0 50 100
-10

0

10

20

30
LG

0 50 100
-50

0

50

100

150
SOL

0 50 100
-10

-5

0

5

10
PL

0 50 100
-50

0

50
TA

% Stance % Stance % Stance

% Stance % Stance

OMC-Full OMC-GP

IMC-Full IMC-GP

!
(W

)
!

(W
)

!
(W

)



 

 138 

 

Table 10: Estimation of muscle fiber length, force, and power for the IMC-GP, OMC-GP, and 
IMC-Full analyses compared to the OMC-Full analysis (ground truth) across the three test 
walking trials. 

           
  IMC-GP  OMC-GP  IMC-Full 

Muscle Variable r 
VAF 
(%) RMSE  r 

VAF 
(%)  r 

VAF 
(%) 

           TA Fiber Length (cm) 0.15 100 0.56  1.00 100  0.15 100 
 Force (N) 0.91 93 63.11  0.99 99  0.92 94 
 Power (W) 0.68 37 13.85  1.00 99  0.62 39 
           PL Fiber Length (cm) 0.71 100 0.11  - -  - - 
 Force (N) 0.98 100 9.41  - -  - - 
 Power (W) 0.62 36 2.47  - -  - - 
           SOL Fiber Length (cm) -0.07 100 0.42  1.00 100  -0.08 100 
 Force (N) 0.96 98 178.53  0.99 99  0.97 98 
 Power (W) 0.56 16 37.81  0.99 98  0.60 20 
           MG Fiber Length (cm) 0.83 100 0.63  - -  - - 
 Force (N) 0.99 99 23.54  - -  - - 
 Power (W) 0.97 92 9.62  - -  - - 
           LG Fiber Length (cm) 0.80 100 0.59  - -  - - 
 Force (N) 0.98 99 10.79  - -  - - 
 Power (W) 0.95 89 3.60  - -  - - 
           VM Fiber Length (cm) 0.99 100 0.10  - -  - - 
 Force (N) 0.99 100 25.00  - -  - - 
 Power (W) 0.96 93 10.51  - -  - - 
           VI Fiber Length (cm) 0.99 100 0.10  1.00 100  0.99 100 
 Force (N) 0.99 100 16.73  0.99 100  1.00 100 
 Power (W) 0.97 95 4.75  1.00 100  0.97 95 
           VL Fiber Length (cm) 0.99 100 0.11  1.00 100  0.99 100 
 Force (N) 0.97 98 61.19  0.96 98  1.00 100 
 Power (W) 0.96 93 9.44  0.99 98  0.97 95 
           RF Fiber Length (cm) 0.99 100 0.24  1.00 100  1.00 100 
 Force (N) 0.93 98 31.86  0.96 99  0.95 99 
 Power (W) 0.80 83 5.11  0.99 99  0.81 86 
           BFL Fiber Length (cm) 0.99 100 0.27  1.00 100  0.99 100 
 Force (N) 0.82 91 61.21  0.89 94  0.94 97 
 Power (W) 0.83 86 7.95  0.95 95  0.88 91 
           BFS Fiber Length (cm) 0.99 100 0.16  1.00 100  0.99 100 
 Force (N) 0.82 92 44.07  0.89 94  0.97 99 
 Power (W) 0.97 95 3.17  0.99 98  0.99 98 
           ST Fiber Length (cm) 0.98 100 0.39  1.00 100  0.98 100 
 Force (N) 0.84 90 21.68  0.92 93  0.93 96 
 Power (W) 0.88 85 4.05  0.99 97  0.93 91 
           SM Fiber Length (cm) 0.97 100 0.30  1.00 100  0.97 100 
 Force (N) 0.88 88 16.70  0.94 92  0.93 94 
 Power (W) 0.96 93 1.60  0.99 98  0.97 95 
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Cumulative muscle work 

 For the OMC-Full analysis (ground truth), all posterior musculature (plantarflexors and knee 

flexors) did more concentric than eccentric work whereas all anterior musculature (dorsiflexor and knee 

extensors) did more eccentric than concentric work during stance. This was reflected in the power-time 

curves (Figure 37) where the posterior musculature produces mostly positive power, and the anterior 

musculature produces mostly negative power. The same observation was manifest in the IMC-GP analysis 

except for the PL and SOL. Estimation error was worst for PL eccentric work (121% MAPE), SOL eccentric 

work (385% MAPE), and RF concentric work (220% MAPE) and for all other muscles varied between 0% 

for BFL eccentric work and 77% for SM eccentric work in terms of MAPE. However, the largest percentage 

errors were observed for the work estimates corresponding to the type of work (concentric or eccentric) which 

was least for each muscle except for the uniarticular knee extensors (3-10% MAPE for concentric work) and 

for the BFL (0% MAPE for eccentric work). When considering only the type of work which was greatest for 

each muscle, MAPE varied between 4% for BFS concentric work and 42% for SOL concentric work. Across 

all muscles, estimation performance was comparable (within 4% MAPE) or superior for the OMC-GP 

analysis when compared to IMC-GP and IMC-Full (except for the BFS eccentric work for which the IMC-

Full analysis was superior) whereas the superiority in estimation performance of the IMC-GP vs. the IMC-

Full analyses varied between muscles and work type. 
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Table 11: Estimation of cumulative concentric (Con.) and eccentric (Ecc.) muscle work during 
the stance phase of gait for the IMC-GP, OMC-GP, and IMC-Full analyses compared to the 
OMC-Full analysis (ground truth) across the three test walking trials. 
           
  OMC-Full  IMC-GP  OMC-GP  IMC-Full 

Muscle Work 
Mean 

(J)  
Mean 

(J) 
MAE 

(J) 
MAPE 

(%)  
MAPE 

(%)  
MAPE 

(%) 

           TA Con. 1.74  2.93 1.20 68  21  56 
 Ecc. 5.32  4.17 1.15 22  11  23 
           PL Con. 0.85  0.65 0.20 22  -  - 
 Ecc. 0.39  0.81 0.42 121  -  - 
           SOL Con. 12.39  6.99 5.41 42  7  49 
 Ecc. 1.77  8.12 6.34 385  24  387 
           MG Con. 9.81  10.34 0.53 6  -  - 
 Ecc. 2.84  4.84 2.00 70  -  - 
           LG Con. 3.15  3.38 0.23 7  -  - 
 Ecc. 0.94  1.62 0.68 73  -  - 
           VM Con. 3.08  3.39 0.31 10  -  - 
 Ecc. 11.96  15.90 3.93 33  -  - 
           VI Con. 1.86  1.91 0.05 3  3  5 
 Ecc. 6.42  8.06 1.64 26  6  32 
           VL Con. 3.42  3.42 0.13 4  7  4 
 Ecc. 10.73  12.49 2.01 19  14  30 
           RF Con. 0.07  0.21 0.14 220  62  126 
 Ecc. 5.05  6.19 1.13 23  8  12 
           BFL Con. 10.46  9.53 0.93 9  13  13 
 Ecc. 0.00  0.00 0.00 0  0  0 
           BFS Con. 5.59  5.72 0.20 4  5  10 
 Ecc. 0.75  1.10 0.34 47  38  4 
           ST Con. 5.19  3.94 1.24 24  12  11 
 Ecc. 0.10  0.13 0.04 67  16  49 
           SM Con. 2.60  1.75 0.86 32  11  20 
 Ecc. 0.08  0.11 0.04 77  28  57 
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6.7.5. Muscle moment 

 Across all three test walking trials, the average KFM estimation error was 13.56 Nm (1.20% 

BW*H, 15.02% M-G$T9) for the proposed IMC-GP analysis when compared to inverse dynamics (Table 12). 

Most of the KFM error appears attributable to an overestimated extension moment toward terminal stance 

(Figure 38). Estimation error was similar for AFM (15.18 Nm RMSE, 1.34% BW*H, 14.06% M-G$T9) but 

the estimation error of the peak plantarflexion moment in terminal stance (31.32 Nm MAE, generally 

underestimated) was larger than that observed for the peak knee extension moment in initial stance (2.78 Nm 

MAE). The RMSE in Nm and as a percentage of BW*H for all other analyses are shown in Table 12. The 

RMSE in estimating KFM as a percentage of M-G$T9 was 15.19% for OMC-Full, 14.15% for OMC-GP, and 

15.90% for IMC-Full while for AFM it was 12.62% for OMC-Full, 12.00% for OMC-GP, and 14.58% for 

IMC-Full. The correlation between joint moment estimates from the inverse dynamics analysis and all four 

EMG-driven analyses was between 0.94 and 0.97 for the ankle (r = 0.95 for IMC-GP) and between 0.89 and 

0.90 for the knee (r = 0.90 for IMC-GP). Likewise, across all four EMG-driven analyses, VAF varied between 

81 and 84% for KFM (83% VAF for IMC-GP) and between 93 and 96% for AFM (94% VAF for IMC-GP). 

 

 

Table 12: Estimation of knee and ankle flexion moment during the stance phase of gait for the 
IMC-GP (proposed technique), OMC-Full, OMC-GP, and IMC-Full analyses compared to the 
estimate from inverse dynamics (ID, ground truth) across the three test walking trials. 

          
  Peak  Time-Series 

Method Joint Mean 
(Nm) 

MAPE 
(%) 

MAE 
(Nm) 

r VAF 
(%) 

RMSE 
(Nm) 

RMSE 

(%BW*H) 

          ID Knee 64.47 - -  -  - - 
 Ankle 93.49 - -  -  - - 
          IMC-GP Knee 67.25 4 2.78  0.90 83 13.56 1.20 
 Ankle 62.17 34 31.32  0.95 94 15.18 1.34 
          OMC-Full Knee 65.43 5 3.05  0.90 82 13.78 1.22 
 Ankle 66.29 29 27.20  0.97 95 13.63 1.20 
          OMC-GP Knee 64.73 2 1.46  0.90 84 12.49 1.10 
 Ankle 66.77 29 26.72  0.97 96 12.96 1.14 
          IMC-Full Knee 68.32 8 5.52  0.89 81 15.13 1.34 
 Ankle 61.97 34 31.52  0.94 93 15.74 1.39 
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For individual muscle moments, very strong correlations (r = 0.91 – 0.99) were observed between 

estimates from the IMC-GP and OMC-Full analyses except for strong correlations (r = 0.80 – 0.90) for the 

PL ankle flexion muscle moment and the knee flexion muscle moment for all knee flexors (Table 13). The 

IMC-GP estimates explained between 89 and 100% VAF in the OMC-Full estimate. Across all muscles and 

for both the knee and ankle flexion moment, the estimation performance of the IMC-Full analysis was 

superior or comparable to both the OMC-GP and IMC-GP analyses except that the OMC-GP analysis 

outperformed IMC-Full in estimating TA ankle flexion muscle moment. Further, the estimation performance 

of the OMC-GP analysis was superior or comparable to the IMC-GP analysis for all muscles and DOFs. 

Figures 39 and 40 depict a graphical comparison of individual muscle moment for both the knee and ankle 

flexion DOF, respectively. 

 

Figure 38: Visual comparison of knee extension moment (left) and ankle plantarflexion 
moment (right) computed using inverse dynamics (ID, solid black line, ground truth), OMC-
Full (solid soft blue, ground truth for EMG-driven), OMC-GP (dashed blue), IMC-Full (dotted 
red), and IMC-GP (solid maroon, proposed technique) during the stance phase of gait. Lines 
indicate the median and the shaded area indicates the range across the three test walking trials 
(shaded area only shown for ID and IMC-GP). Positive values indicate an extension moment 
for the knee and a plantarflexion moment for the ankle and negative values indicate a flexion 
moment for the knee and a dorsiflexion moment for the ankle. 
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Table 13: Estimation of individual muscle moment for the knee and ankle flexion DOF during 
the stance phase of gait for the IMC-GP (proposed technique), OMC-GP, and IMC-Full analyses 
compared to the OMC-Full estimate (ground truth) across the three test walking trials. 

           
  IMC-GP  OMC-GP  IMC-Full 

Muscle Joint r VAF 
(%) 

RMSE 
(Nm) 

 r VAF 
(%) 

 r VAF 
(%) 

           TA Ankle 0.91 94 2.63  0.99 99  0.92 95 
PL Ankle 0.85 97 0.34  - -  - - 

SOL Ankle 0.98 99 3.52  0.98 99  0.99 100 
MG Ankle 0.99 99 1.11  - -  - - 

 Knee 0.99 99 1.16  - -  - - 
LG Ankle 0.99 99 0.31  - -  - - 

 Knee 0.97 99 0.47  - -  - - 
VM Knee 0.99 100 1.18  - -  - - 
VI Knee 0.99 100 0.66  0.99 100  1.00 100 
VL Knee 0.98 98 2.57  0.97 98  1.00 100 
RF Knee 0.97 98 1.38  0.98 99  0.98 99 

BFL Knee 0.82 92 2.43  0.90 95  0.94 97 
BFS Knee 0.80 92 1.56  0.90 95  0.97 99 
ST Knee 0.85 90 1.47  0.93 94  0.93 96 
SM Knee 0.90 89 0.97  0.95 93  0.94 95 

           
           

 

 

Figure 39: Visual comparison of individual muscle moment for the knee flexion DOF computed 
using OMC-Full (solid soft blue, ground truth), OMC-GP (dashed blue), IMC-Full (dotted red), 
and IMC-GP (solid maroon, proposed technique) during the stance phase of gait. Lines indicate 
the median and the shaded area indicates the range across the three test walking trials (shaded 
area only shown for OMC-Full and IMC-GP). Negative values indicate a knee extension moment. 
Positive values indicate a knee flexion moment. 
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6.8. Discussion 

6.8.1. On the results of the validation study 

Perhaps the most promising result from the current validation study is the estimation of KFM with 

strong correlations (r = 0.90) and relatively low errors (13.56 Nm RMSE, 1.20% BW*H nRMSE) using the 

proposed IMC-GP technique. Likewise, the peak knee extension moment during the loading phase of initial 

stance was estimated to within 2.78 Nm MAE. This amounts to 0.25% BW*H which is well below previously 

observed inter-limb differences for patients post-ACLR (e.g., 1.08% BW*H [329]) and differences between 

patients post-ACLR and healthy controls (e.g., 1.72% BW*H [329], 1.10% BW*H for patellar tendon graft 

[332]). As a percentage of body mass, the peak knee extension moment error (4.21% BM) is 87% less than 

the gender differences observed for patients 12 months post-ACLR (33.50% BM) reported by Asaeda et al. 

(2017) [333]. Further, the 4.21% BM error is 58% and 75% less than the differences observed by Teng et al. 

(2017) between patients six months post-ACLR compared to pre-surgery (10% BM reduction) and healthy 

controls (17% BM), respectively [331]. In the context of osteoarthritis, Chehab et al. (2014) found a 1% 

 

Figure 40: Visual comparison of individual muscle moment for the ankle flexion DOF computed 
using OMC-Full (solid soft blue, ground truth), OMC-GP (dashed blue), IMC-Full (dotted red), 
and IMC-GP (solid maroon, proposed technique) during the stance phase of gait. Lines indicate 
the median and the shaded area indicates the range across the three test walking trials (shaded 
area only shown for OMC-Full and IMC-GP). Negative values indicate a plantarflexion moment. 
Positive values indicate a dorsiflexion moment. 
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BW*H increase in baseline peak knee extension moment (four times larger than the error in the proposed 

technique) was associated with an average loss of 0.15 mm medial tibial cartilage thickness over 5 years [51]. 

Therefore, the absolute errors appear low enough to detect clinically meaningful differences. However, in 

this context, it is arguably more important that estimates correlate well with ground truth data. This validation 

study consisted of only three test walking trials, all for a normal walking speed, which is too few and too 

homogenous to appropriately evaluate correlation. Nonetheless, the proposed technique preliminarily appears 

able to track differences in the peak knee extension moment between the three test walking trials (Figure 41). 

Future work should investigate this further across multiple walking conditions (speed, load) and subjects. 

The proposed technique (IMC-GP) generally compared well to the gold standard OMC-Full analysis 

(OMC-based kinematics with a full set of EMG data) in the simulation of muscle contraction dynamics, 

especially for the muscles crossing the knee joint. The most apparent discrepancies were observed in the 

mean absolute percent errors (121 to 385%) for the PL and SOL cumulative muscle eccentric work and RF 

cumulative muscle concentric work. These large percent errors were driven by small work magnitudes 

associated with the type of work which was least for each muscle. For example, the SOL did 86% less 

 

Figure 41: Visual comparison of peak knee extension moment estimated from the IMC-GP 
analysis (maroon, proposed technique) and the inverse dynamics analysis (grey, ground truth) 
across all three test walking trials. 
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eccentric work than concentric work and the VM did 74% less concentric work than eccentric work during 

the stance phase. When considering the estimation of the cumulative muscle work associated with the type 

of work which was greatest for each muscle (e.g., concentric work for SOL, eccentric work for VM), the 

percent errors were much less (4 to 42% MAPE). Thus, the proposed technique performed better in estimating 

the power requirements of each muscle which characterize its dominant function during the stance phase of 

gait (e.g., propulsion in terminal stance for the SOL, absorbing load in initial stance for VM). A strong 

correlation (r = 0.87) was observed between estimates from the proposed technique and OMC-Full of the 

average work (across the three test trials) done by each muscle (again, for the type of work which was greatest 

for each muscle). Thus, the proposed technique was sensitive to variability in muscle work across muscles. 

As for the peak knee extension moments, further investigation is needed across more non-uniform walking 

conditions to appropriately evaluate correlation in estimating muscle work within the same muscle.  

The superiority in simulating muscle contraction for muscles crossing the knee joint when compared 

to those crossing the ankle joint was manifest in the estimation of muscle power. Strong correlations between 

IMC-GP and OMC-Full estimates of muscle power were observed for muscles crossing the knee joint and 

with 83 – 95% VAF as opposed to moderate correlations and only 16 – 37% VAF for uniarticular ankle 

muscles. This discrepancy in estimating muscle power appears mostly due to inaccuracies in estimating fiber 

length trajectories (Figure 35) as opposed to muscle force (Figure 36) as correlations between IMC-GP and 

OMC-Full estimates of muscle force were strongly to very strongly correlated for all muscles and likewise 

for fiber length except for weak correlations observed for SOL (r = -0.07) and TA (r = 0.15). Further, the 

results suggest the inaccuracies in IMC-estimated MTU kinematics may have contributed more to the error 

in simulating uniarticular ankle muscle contractions as opposed to inaccuracies in the GP synergy functions. 

The opposite was true for MTUs crossing the knee joint. These observations may be due to the fact that (1) 

three of the four input muscles to the GP synergy functions were plantarflexors and (2) estimated MTU 

kinematics compared very well to OMC estimates for those crossing the knee joint (more so than ankle 

MTUs).  
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The greater estimation error in ankle MTU kinematics is likely due to greater errors in estimating 

ankle dorsiflexion angle (especially in terminal stance) relative to that observed for knee flexion angle (Figure 

30). For example, the IMC-estimated ankle flexion moment arm (Figure 31) deviates from the OMC estimate 

in a temporal fashion similar to the dorsiflexion angle error (Figure 30). This phenomenon was observed to 

a lesser degree in the SOL and TA MTU length estimates (Figure 33). This may be expected as the 

dorsiflexion angle error is influenced by both the single-IMU, integration-based estimate of shank orientation 

in addition to the estimated foot kinematics from the simple foot-ground contact model. This foot-ground 

contact model was proposed in order to avoid having to place an additional IMU on the foot. Future work 

should investigate additional techniques to improve on this estimation including, for example, forward 

dynamic estimates of segment kinematics based on estimated joint moments. Nonetheless, these inaccuracies 

had a negligible effect in estimating individual muscle moments as all estimates from the IMC-GP analysis 

were strongly to very strongly correlated with OMC-Full estimates and with only 0.32 to 3.52 Nm RMSE. 

The error in estimating KFM for both OMC-Full (ground truth for EMG-driven) and IMC-GP 

(proposed technique) was primarily driven by an overestimated knee extension moment towards foot off 

(Figure 38). It is not clear what underlies this error. At the instant of foot off the knee is flexing (Figure 30) 

and thus the uniarticular knee extensor MTUs are lengthening (Figure 33) as are the muscle fibers (Figure 

35). Thus, these muscles are operating on the eccentric portion of the force-velocity curve (Figure 26) for 

which force production is greater. It may be that tuning of some force-velocity properties of these muscles 

would result in a better fit. For example, increasing the maximal shortening velocity would diminish the 

effects of increased force development for a lengthening fiber. However, the maximal shortening velocity <3 

was set to 15 optimal fiber lengths per second as done by Arnold et al. (2013) [373], which is already on the 

high end of what is typically used [223]. Given that the muscles are lengthening, one may also reason that 

the passive force-length properties of the muscle are contributing to this error. However, the RF is the only 

knee extensor with fiber lengths well above the optimum (Figure 35) wherein passive forces are developed 

(Figure 27). The knee flexion angle was about 40° at foot off and the knee extension moment arm was about 

5 cm at the same instant which is within the range (± 1.0 cm) of previous literature [364], [365], [392]. A 

reduction in the knee extensor moment arm would yield better results at foot off, but it may result in an 
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underestimate of the peak knee extension moment if the adjusted geometry affects moment arm in early 

stance. This and other explanations should be investigated further in future research. 

 

6.8.2. Comparison to other techniques 

Several techniques using only data from wearable sensors to estimate joint dynamics have 

previously been proposed to which our results may be compared. Concerning techniques based solely on 

machine learning models, Hahne and O’Keefe (2008) used data from seven EMG sensors as inputs to a neural 

network to estimate KFM and AFM with coefficients of determination (r2) equal to 0.54 and 0.84, 

respectively, compared to 0.81 and 0.90, respectively, for the proposed technique. Howell et al. (2013) used 

data from an instrumented insole with 12 force sensitive resistors as inputs to a linear model to estimate KFM 

and AFM with correlations of 0.89 and 0.97, respectively, which is comparable to the current study. 

Similarly, Jacobs and Ferris (2015) used data from an eight-sensor instrumented insole and a load cell placed 

over the Achilles’ tendon as inputs to a neural network to estimate AFM during walking at speeds of 1.0 and 

1.5 m/s with RMSE equal to 1.17 and 1.30% BW*L (where the leg length L was the height of the trochanter 

marker in the standing calibration trial) compared to 2.41% BW*L in the current study. The downside to 

these machine learning techniques is that they involve no simulation of muscle contraction dynamics and 

thus no insight into the function of individual muscles. Likewise, they are arguably less generalizable than 

physics-based techniques and two of these studies used sensor arrays that are, to date, not very common for 

remote monitoring (e.g., instrumented insole, load cell).  

Concerning physics-based techniques for comparison to the proposed technique, there are generally 

two approaches that have been proposed. One is to utilize techniques requiring only estimated segment 

kinematics that have been developed for OMC. Given segment kinematics, joint moment estimation is then 

based on inverse dynamics [215] or on estimates of muscle force (via optimization, not EMG-driven) with 

an underlying musculoskeletal model [393]. Karatsidis et al. (2016) implemented a version of the former 

using wearable sensor data only (17 IMUs) for estimating ground reaction forces and moments, but they did 

not report estimation of joint moment [394]. A version of the latter (driven by optimization-based muscle 
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force estimates) was implemented by Karatsidis et al. (2019) with wearable sensor data (17 IMUs placed on 

17 different segments) wherein joint moment was estimated for 11 healthy males across three walking speeds 

[24]. Knee and ankle flexion moment were estimated with correlation coefficients of 0.86 and 0.96, 

respectively, and with RMSE of 0.9% BW*H (16.7% M-G$T9) for the knee and 1.0% BW*H (10.1% M-G$T9) 

for the ankle. These results are comparable to the current study, but with very different sensor array 

complexity (sensors placed on 17 segments compared to two in the proposed technique). A second approach, 

proposed by Dorschky et al. (2019), is based on optimal control of a musculoskeletal model wherein the 

states of the model were optimized so as to track measured sensor signals (seven IMUs on seven different 

segments) via trajectory optimization [25]. Knee and ankle flexion moment were estimated for 10 healthy 

males across three walking speeds with correlation coefficients of 0.81 and 0.95, respectively, and with 

RMSE of 1.5% BW*H (27.1% M-G$T9) for the knee and 1.6% BW*H (14.4% M-G$T9) for the ankle (although 

estimation was for the full gait cycle and not just the stance phase of gait). Thus, the proposed technique 

presents improvements in estimation of KFM and with comparable performance for estimating AFM 

compared to the trajectory optimization approach, but with reduced sensor array complexity (sensors placed 

on 7 segments compared to two in the proposed technique). 

To the author’s knowledge, there is only one study (a recent conference paper [390]) using a hybrid 

machine learning- and physics-based technique similar to the proposed approach. Their method used machine 

learning (Gaussian mixture models) to inform both the mapping from a subset of EMG to a full set as well 

as the MTU kinematics. Only KFM was estimated with RMSE equal to 26% M-G$T9 for slow walking, 30% 

M-G$T9 for normal walking, and 20% M-G$T9 for fast walking compared to 15% M-G$T9 in the current study 

(although their estimates were for the full gait cycle as opposed to just the stance phase of gait). The GP 

synergy functions of this study estimated excitations with superior or comparable performance compared to 

their Gaussian mixture model for VL (r = 0.82 vs. 0.96 in the current study), BFL (r = 0.71 vs. 0.95 in the 

current study), ST (r = 0.81 vs. 0.80 in the current study), and plantaflexor musculature (r = 0.24 for the 

gastrocnemii vs. 0.98 for SOL in the current study), but not for the RF (r = 0.89 vs. 0.73 in the current study). 
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6.8.3. Verification of the musculoskeletal model and EMG-driven simulation 

It is important to compare the results of the EMG-driven simulation from the current study to 

previous work in order to verify the construct validity of the muscle model and of the OMC-Full analysis in 

general as an appropriate ground truth for validation. Falisse et al. (2016) estimated KFM with 12.84 Nm 

RMSE and with r2 equal to 0.71 compared to 13.78 Nm RMSE and r2 equal to 0.81 in the current study. 

Besier et al. (2009) also reported r2 equal to 0.81 for estimating KFM and their model included the same 

muscles crossing the knee joint as in the current study. Likewise, Buchanan et al. (2005) estimated AFM with 

7.1 Nm RMSE and r2 equal to 0.94 compared to 13.63 Nm RMSE and r2 equal to 0.94 in the current study. 

The 7.1 Nm RMSE is close to half the observed error in the current study and could be explained by the fact 

that the objective function of the MTU parameter global optimization included only AFM whereas the 

objective in the current study sought to minimize both KFM and AFM simultaneously. Meyer et al. (2017) 

also report slightly lesser MAE (4.22 – 6.43 Nm MAE for KFM and 5.93 – 8.48 Nm MAE for AFM) for a 

walking speed of 0.8 m/s compared to the current study 10.20 Nm MAE for KFM and 10.98 Nm MAE for 

AFM). This may be due in part to the difference in walking speed (0.8 m/s vs. 1.48 m/s in the current study) 

which would explain the differences in joint moment magnitudes between studies. For example, Meyer et al. 

(2017) observed peak knee extension moment well below 50 Nm compared to 65 Nm in the current study. 

The simulated fiber length trajectories (Figure 35) are comparable to previously published data 

[373], [380]. For example, the BFL fiber length was monotone decreasing (constantly shortening) throughout 

stance which has been observed previously [380] and explains the null eccentric work observed for this 

muscle (Table 11). The muscle force trajectories (Figure 36) are also comparable to previous observations 

and appear to scale similarly as well [353]. For example, in the current study, the maximal muscle force 

throughout stance as a percentage of {3 was 25% for VM and 23% for VL near the instant of peak knee 

extension moment, 35% for MG and 22% for LG near the instant of peak ankle plantarflexion moment, and 

was 32% for BFL and 27% for ST near the instant of foot contact; and these all appear to be within 1 SD of 

the data reported by Besier et al. (2009) [353]. Honert and Zelik (2016) [395] reported plantarflexor MTU 

push-off work (note that MTU work is the sum of the tendon work and muscle work) equal to 21.2 J (walking 
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at 1.25 m/s) which is comparable to the 26.2 J plantarflexor muscle work observed in the current study 

(computed as the sum of the concentric work of the SOL, MG, LG, and PL). Further, Bogey et al. (2010) 

[396] report peak power of the LG and SOL equal to 26 and 108 W, respectively, which is comparable to the 

27 and 111 W computed for the OMC-Full analysis in the current study. However, the OMC-Full estimate 

of peak power for MG in the current study (82 W) was greater than their estimate (50 W).  

6.8.4. On the results of the Bayesian optimization 

This study also differs from previous work in the use of Bayesian optimization for tuning MTU 

parameters. Several activation dynamics [321], [377], [382], [383] and activation nonlinearity functions 

[209], [374], [384] have been proposed in previous research and it was not clear which model was most 

appropriate. The approach in previous work has been to choose a model for activation dynamics and 

activation-force nonlinearity and assign it to every muscle. The parameters of those models are then 

optimized via global optimization (e.g., simulated annealing [209], [397]), often in addition to the optimal 

fiber length and tendon slack length.  However, empirical evidence suggests activation dynamics may be 

muscle specific and related to fiber type distribution [348], which informed the activation muscle groupings 

in the current study. Further uncertainty was introduced surrounding the activation dynamics by using GP 

synergy functions to estimate some of the excitation signals. Thus, the decision was made to include these 

functions as tunable (categorical) parameters in the global optimization for which Bayesian optimization is 

suitable. This is a novel development and motivates future work. For example, the results of the optimization 

suggest activation dynamics and the nonlinearity functions may be muscle specific as all models were 

ascribed to at least one muscle except for the N1T2 activation dynamics model. However, the extent to which 

the optimization of the functions Ä̇ and (6 is superior to an arbitrary choice of those functions was not tested 

and should be investigated further.  

 

6.8.5. Limitations 

This study has several limitations that should be considered when interpreting these results. This 

validation was only for one healthy female across three normal walking speeds. Future work should 
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investigate the estimation error of the proposed technique across a larger sample size, multiple walking 

conditions (e.g., multi-speed, multi-load), and in impaired populations for which the proposed technique 

would be deployed. It is important to note that the GP synergy functions were trained on multi-speed, 

treadmill walking data and preliminary results have suggested these models may be able to interpolate and 

extrapolate between and outside of gait speeds used for model training [398]. Further, while neural control 

may be different between overground and treadmill gait [399], the results of this study suggest GP synergy 

function models based on treadmill walking data can extrapolate for estimation in overground gait (Table 9). 

The EMG-driven simulation of muscle contraction requires excitations be normalized by the MVC value 

which may vary throughout the day due to changes in the properties of the skin-electrode interface [400]. 

Thus, compensatory methods must be developed that are robust to these variations. The knee was modeled 

as a non-translational joint with a single rotational DOF. More complex knee joint models with translational 

DOFs have been proposed, however, this translation has been shown to be small during walking gait [401]. 

Moreover, by assuming negligible translation of the knee joint center in the sagittal plane, the distance 

between the knee joint center and the ankle joint center should be a constant value. Indeed, in this work, the 

range of this distance during the full range of motion knee flexion and extension movements of the functional 

calibration trial was less than 1.00 cm (0.62 cm). Joint moments were estimated for the sagittal plane only 

and muscles with negligible flexion moment were ignored as in previous studies [324], [353]. Future work 

should consider additional musculature so as to enable the estimation of frontal plane joint moment and joint 

contact forces which are especially relevant in an orthopedic context [32], [120], [326]. Finally, while the 

muscle contraction dynamics and inverse kinematics analysis are generally applicable, the foot-ground 

contact and GP synergy function models assume walking gait. This is not a problem for remote monitoring 

as bouts of walking activity are identified first in the processing pipeline [70]. However, it may be desirable 

to characterize the musculoskeletal system dynamics for other tasks in which case other task-specific models 

must be developed. The potential to develop task-general and person-general GP synergy functions was 

suggested in their original development (Chapter 5) [162] and may enable more general deployment of the 

proposed technique. 
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6.9. Conclusion 

 This study presents a comprehensive validation of a novel, hybrid machine learning- and physics-

based technique for simulating muscle contraction and characterizing joint dynamics during the stance phase 

of gait using only wearable sensor data. Gaussian process synergy functions were used to reduce the number 

of required EMG sensors for EMG-driven simulation. Data from two IMUs were used to inform the 

musculoskeletal kinematics via physics-based techniques and a simple foot-ground contact model. 

Importantly, the proposed technique requires sensor placement near the knee joint such that they could be 

seamlessly integrated into a knee brace for practical deployment. Peak knee extension moment was estimated 

to within 0.25% BW*H MAE and continuous knee and ankle flexion moment estimates were strongly 

correlated with ground truth inverse dynamics estimates. Joint moment estimation performance was 

comparable to gold standard EMG-driven techniques (i.e., marker-based motion capture, full set of EMG 

data) as well as other wearable sensor-based techniques with more complex sensor arrays. Finally, a novel 

Bayesian optimization approach was introduced that enables tuning MTU-specific functions related to the 

muscle contraction dynamics in addition to other continuous MTU parameters. These preliminary results 

motivate future development including validation on a larger sample size and across multiple walking 

conditions. 
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Chapter 7: Conclusion 

 

7.1. Summary of developments 

The aim of this project has been to lay the foundation for practical deployment of remote gait 

analysis techniques. The literature review in Chapter 1 demonstrated that despite a plethora of research 

dedicated to algorithm development for wearables-based human motion analysis, these techniques have not 

translated to practical deployment for remote monitoring. Several barriers to translation were discussed and 

in particular, methods that have been developed for estimation of the most clinically relevant biomechanics 

require complex sensor arrays with multiple sensors placed on multiple body segments. These complex 

sensor arrays discourage use and thus, the primary aim of this research was to develop algorithms that are 

capable of estimating clinically relevant biomechanics but with a reduced sensor array. 

Chapter 2 described the validation of an algorithm for detecting gait events using a single, thigh-

worn accelerometer. The major contributions from that work were a slight modification to the algorithm 

proposed by Aminian et al. (1999) [172] that enabled algorithm parameters to adapt with varying gait speed, 

the source code was made publicly available, and an analysis of the error in estimating the actual gait events 

(i.e., foot contact and foot off) rather than just temporal descriptors of gait quantified from those events (e.g., 

stride and stance time). The latter is an important distinction as it is often neglected in gait event detection 

validation studies but is important for techniques that use gait events to apply simplifying assumptions (e.g., 

the foot-ground contact model in Chapter 6). 

Chapter 3 described a general analytical framework for remote biomechanical analysis: (1) activity 

identification, (2) event detection, and (3) analysis. The major contribution from that work was an open-

source platform demonstrating how this approach could be applied for monitoring patients following knee 

surgery. To that end, a novel asymmetry measure was proposed that considered temporal descriptors of gait 

(e.g., duty factor), phase-specific mean muscle excitation, and between-leg similarity of like time-series (i.e., 

acceleration and excitation). This asymmetry measure was more sensitive to recovery time than was step 

count or time spent walking and better distinguished between patients at different stages of recovery. 
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 Following the development of the general analytical framework in Chapter 3, the remaining chapters focused 

on how to further improve step (3) of that process (biomechanical analysis), namely, to estimate other 

clinically relevant biomechanical variables that augment the aforementioned asymmetry analysis. 

Specifically, the aim was to characterize joint moment and muscle contraction dynamics with the caveat of 

using a reduced sensor array. 

Chapter 4 reviewed machine learning techniques that have been proposed for estimating 

biomechanical time-series with a reduced number of sensors. The major findings from that work were that 

EMG data were the most popular inputs, models for estimating muscle contraction dynamics were non-

existent, most algorithms are not open-source and not validated on impaired populations, non-parametric 

regression may be better suited for small datasets, and incorporating domain knowledge into the structure of 

the model may improve performance. 

The latter finding concerning incorporating domain knowledge motivated the pursuit of a hybrid 

technique combining physics and probabilistic models. In this approach, machine learning would be used 

only where the physics are least well understood or insufficiently informed. For the estimation of human joint 

dynamics, this approach may be implemented by using a probabilistic model to estimate a complete set of 

muscle excitations from a measured subset (reduced sensor array) which could then drive the muscle 

contraction dynamics using inertial sensor-based estimates of the system kinematics. This hybrid technique 

was developed and validated in Chapter 6 where the probabilistic model describing the synergistic 

relationship between muscles was developed and validated in Chapter 5. 

The major contributions of the work described in Chapter 5 were the development of a Gaussian 

process (GP) model of muscle synergy functions, validation of the model for estimating unmeasured muscle 

excitations and activations from a measured subset during gait, a comparison to an NNMF-based technique 

for estimating excitations, and a comprehensive analysis investigating the effect of different modeling 

choices (e.g., input/output muscles, different covariance functions) on estimation performance. Moreover, an 

open-source platform was published that streamlines the training of GP synergy function models. 
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Chapter 6 describes the validation of a hybrid technique for estimating joint moment and 

simulating muscle contraction dynamics. The major contribution of that work was the demonstration of the 

first wearables-only EMG-driven simulation of muscle contraction dynamics where machine learning was 

used only in the GP synergy model and that requires only four EMG and two IMU sensors located near the 

knee joint. Further, a novel Bayesian optimization approach was developed that enables optimizing 

categorical muscle-tendon unit parameters related to the muscle contraction dynamics (i.e., functions 

describing the activation dynamics and nonlinear activation-force relationship). Previous studies only 

optimize continuous, scalar parameters. Other contributions include a detailed analysis of the estimation 

performance of the approach including the separate effects of the IMU-based inverse-kinematics and the GP 

synergy models on the estimation error as well as for estimating different biomechancial variables: joint 

angle, muscle-tendon unit length, muscle excitation and activation, muscle fiber length and velocity, muscle 

force, muscle power, cumulative concentric and eccentric muscle work, as well as individual and net muscle 

moment. 

 

7.2. Implications for future work 

This work lays a foundation for the computational methods that might enable longitudinal tracking 

of joint and tissue loading. These techniques must undergo further validation across a larger sample size and 

in impaired populations for which they would be deployed. The GP muscle synergy function models present 

an exciting new research area that may have implications for probabilistic theories of motor control and that 

may enable novel clinical insight currently absent in remote patient monitoring. A line of inquiry of particular 

interest concerns the person- and task-generalizability of the model. If muscle synergies generalize across 

tasks and these phenomena are manifest in a broad enough range of activities, then it may be that given an 

equally broad enough training set, the GP synergy function models could capture those generalizations 

enabling estimation for tasks not represented in the training set. These should be explored in future research 

as well as sub-task generalization (e.g., across multiple gait speeds and inclines). 
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The GP synergy models require EMG data be normalized by the excitation value during a maximal 

voluntary contraction. This is further complicated in remote environments as the normalization constant 

obtained at one instant during a day may be different than if observed at another time in the day since the 

properties of the skin-electrode interface varies. One potential solution may be to train the GP synergy 

function models using input data that are normalized by the average value during the activity of interest (e.g., 

gait) and that estimate output muscle excitations that are normalized by the maximal voluntary contraction. 

This may also be necessary for exploring person-general models or for application on impaired persons who 

cannot perform maximal voluntary contractions.  

The largest source of error in the hybrid technique proposed in Chapter 6 appears to be related to 

estimating the foot kinematics. No sensor was placed on the foot and thus foot kinematics were informed by 

a simple foot-ground contact model. A future approach may be to estimate the foot kinematics via forward-

dynamics simulation (since the net ankle muscle moment can be characterized) wherein the foot segment 

generalized coordinates would augment the fiber length and muscle activation states in the system dynamics 

formulation. This is sufficient for estimation during the swing phase of gait as the foot distal contact forces 

are negligible. However, during stance, they are not negligible and thus the ground reaction force, ground 

reaction moment, and center of pressure would need to be modeled in this approach.  

Importantly, the hybrid technique in Chapter 6 required only four EMG and two IMUs that were 

located very near the knee joint. Thus, these sensors could seamlessly be integrated into a knee brace as an 

unobtrusive and convenient system for monitoring patients who may be prescribed such a device anyway 

(e.g., following surgery) and for whom these techniques would be especially relevant. To this end, work has 

begun to develop a prototype (Figure 42). This brace is being developed in collaboration with Dr. Ryan 

McGinnis and five senior engineering students at the University of Vermont as a part of their senior 

experience in engineering design: Nicole Donahue, James Doherty, Cole Garabed, Curtis Ianni, and Tori 

Weissman. 
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Figure 42: Instrumented knee brace prototype. All included sensors are sufficient to implement 
the hybrid estimation technique described in Chapter 6. 
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Appendix A: Quaternion Algebra 

 

Let q ∈ ℍ be a quaternion (denoted by lower-case roman font) defined as the sum of a vector part, 

— ∈ ℝC (denoted by lower-case, bolded, and italic font), and a scalar part, “J ∈ ℝ (denoted by lower-case 

italic font), as per 

q = — + “J A. 1 

or equivalently 

q = “!”U + “%”V + “C”W + “J A. 2 

where — = “!”U + “%”V + “C”W and {”U, ”V, ”W} is the natural basis for ℝC (orthonormal and right-handed). 

An arbitrary Cartesian or spatial vector, 8 ∈ ℝC, has a corresponding quaternion representation, v ∈ ℍ 

(where correspondence is denoted by using the same letter), called a pure quaternion, where the scalar part 

of v is zero so that v = 8 + 0. An arbitrary scalar, Ä ∈ ℝ, has a corresponding quaternion representation, α ∈

ℍ, wherein the vector part of α is the zero vector, ’ = 0”U + 0”V + 0”W, so that α = ’ + Ä. In addition to 

the linear combinations A.1 and A.2, it is common to represent the quaternion q equivalently as the column 

vector of coefficients 

q = [“! “% “C “J], A. 3 

or likewise 

q = ∂—, “J∏
,

A. 4 

where the superscript ÷ denotes the matrix transpose operation. In this work, the representation of q or — as 

the linear combination in eqs. A.1 and A.2 or as the column vector of coefficients in eqs. A.3 and A.4 will 

be used interchangeably, will be clear from the context, and will be of no consequence except for matrix 

operations; namely, matrix multiplication and transposition will imply the column vector representation. The 

sum of two quaternions, p + q, is computed as the sum of like terms via 

p + q = (3! + “!)”U + (3% + “%)”V + (3C + “C)”W + (3J + “J). A. 5 
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Thus, the zero element of ℍ or null quaternion, 0 such that q + 0 = q, is the scalar quaternion 

0 = ’ + 0. A. 6 

The quaternion product is based on the following relation: 

”X”Y = ◊
		−”X ∙ ”Y												(íU	> = =
				”X × ”Y											(íU	> ≠ = A. 7 

where ∙ denotes the dot product and × denotes the right-handed vector cross product. The product pq may be 

written 

pq = (3!”U + 3%”V + 3C”W + 3J)(“!”U + “%”V + “C”W + “J) A. 8 

and by the distributive property 

														pq = 3!“!”U”U + 3!“%”U”V + 3!“C”U”W + 3!“J”U +

																									3%“!”V”U + 3%“%”V”V + 3%“C”V”W + 3%“J”V +

																									3C“!”W”U + 3C“%”W”V + 3C“C”W”W + 3C“J”W +

			3J“!”U + 3J“%”V + 3J“C”W + 3J“J.

A. 9 

Substituting eq. A.7 into eq. A.9 and combining like terms yields 

pq = (3%“C − 3C“% + 3J“! + 3!“J)”U +

											(3C“! − 3!“C + 3J“% + 3%“J)”V +

											(3!“% − 3%“! + 3J“C + 3C“J)”W +

			3J“J − 3!“! − 3%“% − 3C“C.

A. 10 

which can be written 

pq = 3J— + “Jô + ô × — + 3J“J − ô ∙ — A. 11 

and thus if r = pq then g = 	3J— + “Jô + ô × — and UJ = 3J“J − ô ∙ —. Note that the quaternion product is 

associative but is not commutative due to the cross product in eq. A.11. Further, note that the product of a 

scalar quaternion, α = ’ + ÄJ, and an arbitrary quaternion, q = — + “J, results in the expected scalar 

multiplication αq = ÄJ— + ÄJ“J. For this reason, scalar quaternions will henceforth be referred to simply as 
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scalars and no distinction will be made between the two. The identity quaternion, 1 such that 1q = q, is the 

scalar 

1 = ’ + 1. A. 12 

Let 8m ∈ ℝC×C be the skew-symmetric matrix (i.e., 8m, = −8m) associated with the Cartesian vector 8 ∈ ℝC as 

per 

8m = †	

0 −<C <%
<C 0 −<!
−<% <! 0

	¢ A. 13 

such that ô × — = ôm—. Then, with ô ∙ — = ô,—, eq. A.11 can be written 

pq = X	
	ôm + 3J⁄C ô

−ô, 3J	
	Y q = P[q A. 14 

where ⁄+ ∈ ℝ+×+ is the M ×M identity matrix and the definition of P[ ∈ ℝJ×J is clear from eq. A.14. 

Equivalently, since ôm— = −—mô, one has 

pq = X	
	−—m + “J⁄C —

−—, “J	
	Y p = Q\p. A. 15 

The real 4 × 4 matrices P[ and Q\ are called the left and right quaternion product matrices corresponding to 

the quaternions p and q, respectively. Thus, for clarity, qp = Q[p and qp = P\q. The magnitude or length 

of the quaternion q, denoted |q|, is a scalar computed as per 

|q|% = “!% + “%% + “C% + “J% A. 16 

or equivalently 

|q|% = q,q. A. 17 

The conjugate of q, denoted qÜ, is computed by negating the vector part: 

qÜ = [	−—, “J	], . A. 18 

By eqs. A.11 and A.18, one can show 
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qqÜ = qÜq = |q|%. A. 19 

Thus, if q is pure then qÜ = −q. Since, for |q|% ≠ 0, 

1 =
|q|%

|q|%
	 

																					=
qqÜ
		|q|%

=
qÜq
		|q|%

A. 20 

and with 1 being the identity quaternion, the multiplicative inverse of q, qD! where 1 = qqD! = qD!q, is 

qD! =
qÜ

		|q|%
. A. 21 

Therefore, 

qD! = qÜ					(íU					|q|% = 1 A. 22 

in which case q is called a unit quaternion. As for eqs. A.14 and A.15, we use Ṕ[ and Q́\ to denote the left 

and right quaternion product matrices corresponding to pÜ and qÜ, respectively, so that 

pÜqÜ = Ṕ[qÜ = Q́\pÜ A. 23 

and from eqs. A.14, A.15, and A.18 

Ṕ[ = P[, A. 24 

and 

Q́\ = Q\, . A. 25 

That is, conjugation and transposition are equivalent operations on a quaternion and its corresponding product 

matrix, respectively. Thus, if q is unit length, then by eqs. A.22 – A.25, one has 

Q\, = Q\D!					¥;6					Q[, = Q[D!. A. 26 

From eqs. A.11 and A.18, the conjugate of the quaternion product pq is the product of the conjugates in 

reverse order since 
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pqÜÜÜÜ = −3J— − “Jô − ô × — + 3J“J − ô ∙ — 

						= −3J— − “Jô + — × ô + 3J“J − ô ∙ — 

																																													= 3J(−—) + “J(−ô) + (−—) × (−ô) + 3J“J − (−ô) ∙ (−—) 

= qÜpÜ.																																																								 A. 27 

Thus, the magnitude of the quaternion product pq is the product of the magnitudes |p| and |q| since 

|pq| = (pq)(pqÜÜÜÜ) 

		= pqqÜpÜ 

		= |q|ppÜ 

			= |q||p|. A. 28 

Finally, we develop quaternion operations that are analogous to the vector cross product and dot product. Let 

v,w ∈ ℍ be the pure quaternions corresponding to the Cartesian vectors 8,fl ∈ ℝC, respectively. The 

quaternion product of the pure quaternions v and w is given from eq. A.11 where, since <J = NJ = 0,  

vw = 8 ×fl− 8 ∙ fl A. 29 

and also 

wv = −8 ×fl− 8 ∙ fl. A. 30 

Thus, 

1
2
(vw −wv) = 8 ×fl A. 31 

and 

−
1
2
(vw +wv) = 8 ∙ fl. A. 32 
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Appendix B: Quaternion Parametrization of Attitude 

 

Let ‡ ∈ ℝC be a unit length Cartesian vector (‡,‡ = 1) and q ∈ ℍ be parametrized as per 

q = [	é‡, V	], B. 1 

where 

V = cos
c
2

B. 2 

and 

é = sin
c
2
. B. 3 

Notice, q is a unit quaternion (q,q = 1) and thus qD! = qÜ by eq. A.22. Let v ∈ ℍ be the pure quaternion 

corresponding to an arbitrary Cartesian vector 8 ∈ ℝC with 8 ≠ ’. In the following, the triple product qvqÜ 

will be shown to correspond to a rotation of 8 about the axis ‡ through an angle c. By eq. A.11, 

vqÜ = (8 + 0)(−é‡ + V) 

					= V8 + é‡m8 + é‡,8 B. 4 

and thus 

qvqÜ = (é‡ + V)(V8 + é‡m8 + é‡,8)																																																																								 

			= V%8 + é%‡‡,8 + é%‡m%8 + 2Vé‡m8 + Vé‡,8 − Vé‡,8 − é%‡,‡m8. B. 5 

Let v* = qvqÜ in eq. B.5. Then, the scalar part of v′ is 

vJ* = Vé‡,8 − Vé‡,8 − é%‡,‡m8 

= 0																																										 B. 6 

since ‡,‡m = ’,. Therefore, v′ is pure and corresponds to the quaternion representation of the Cartesian 

vector 8* ∈ ℝC. Per eq. B.5, the vector part of v′ is 
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8* = V%8 + é%(‡‡, + ‡m%)8 + 2Vé‡m8. B. 7 

or equivalently 

8* = V%8 + é%8 + 2é%‡m%8 + 2Vé‡m8 B. 8 

since ‡‡, = ‡m% + ⁄C when ‡,‡ = 1. Using the trigonometric relations 

V% + é% = 1, B. 9 

2é% = 1 − V] , B. 10 

and  

2Vé = é] , B. 11 

where é] = sin c and V] = cos c, then eq. B.8 becomes 

8* = [⁄C + é]‡m + (1 − V])‡m%]8 B. 12 

which is the well-known Euler-Rodrigues rotation formula. We use ‚ to denote the 3 × 3 rotation matrix in 

eq. B.12 as per 

‚ = ⁄C + é]‡m + (1 − V])‡m% B. 13 

which is an element of the special orthogonal group, úù(3), since ‚D! = ‚, and det‚ = 1. Thus, combining 

eqs. B.6, B.12, and B.13, we have 

qvqÜ = X	
	‚8	

0
	Y = X	

	8*	

0
	Y = v* B. 14 

and, with qD! = qÜ, the inverse rotation is 

qÜv*q = X	
	‚,8*

0
	Y = v. B. 15 

Further, by eqs. A.14, A.15, A.23, and A.25, 

qvqÜ = Q[Q\, º	
	8	

0
	æ B. 16 
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where the 4 × 4 matrix Q[Q\,  has the form 

Q[Q\^ = X	
‰ ’

’, 1
	Y . B. 17 

with ‰ ∈ ℝC×C. Combining eqs. B.14, B.16, and B.17, we find ‰ = ‚ which is parametrized by q as per 

‚ =

⎣
⎢
⎢
⎢
⎡

		

“!% − “%% − “C% + “J% 2(“!“% − “C“J) 2(“!“C + “%“J)

2(“!“% + “C“J) −“!% + “%% − “C% + “J% 2(“%“C − “!“J)

2(“!“C − “%“J) 2(“%“C + “!“J) −“!% − “%% + “C% + “J%

		

⎦
⎥
⎥
⎥
⎤

. B. 18 

To be clear about the perspective of ‡ and ‚, note that if {õ} = {Î!_, Î%_, ÎC_} is a right-handed, orthonormal 

basis fixed to a rigid body where Î'_ is the representation of the >th basis vector with respect to the world 

frame	{è} then 

‚ = [	Î!_ Î%_ ÎC_	] B. 19 

so that 

8_ = ‚8@ B. 20 

where 86 denotes the representation of the Cartesian vector 8 ∈ ℝC with respect to the basis {√}, and one 

would imagine aligning {è} with {õ} by rotating {è} about the axis ‡ (expressed with respect to {è}) 

through the angle c.  

To explain rotation composition, consider a body frame {õ} initially aligned with the world frame 

{è} and that is rotated first about ‡!_ through c! and second about ‡%_ through c% where both ‡!_ and ‡%_ 

are expressed with respect to the (fixed) world frame {è}. Then q' = [	é'(‡'_), V' 	], is the unit quaternion 

associated with the >th rotation where é' = sin ]$
%

 and V' = cos ]$
%

. Let v@ ∈ ℍ be the pure quaternion associated 

with 8@ which is the representation of an arbitrary, non-zero Cartesian vector 8 ∈ ℝC with respect to {õ} and 

that is fixed in {õ} (i.e., 8@ is constant). Since {õ} and {è} are initially aligned, then also 8_ = 8@ initially. 

The representation of 8@ with respect to {è} after the first rotation, denoted 8!_ which is the vector part of 

the pure quaternion v!_, is computed using eq. B.14 as per 
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v!_ = q!v@qÜ! B. 21 

and after the second rotation 

v%_ = q%v!_qÜ%  

																	= q%q!v@qÜ!qÜ%. B. 22 

By eq. A.28, the quaternion q = q%q! and its conjugate qÜ = qÜ!qÜ% are also unit length. Therefore, q may be 

constructed using q = [é(‡_), V], where é% = —,—, ‡_ = éD!—, and V = “J in which case qv@qÜ in eq. 

B.22 corresponds to the single rotation of 8@ about the axis ‡_ through the angle c where é = sin ]
%
 and V =

cos ]
%
. Now consider the same two successive rotations but with ‡!_ and ‡%_ expressed instantaneously with 

respect to {õ}, denoted ‡'@. Let q'@ be the quaternion associated with the rotation about ‡'@ through c' as per 

eq. B.14 and with q'@ = [é'(‡'@), V'],. Since {õ} and {è} are initially aligned, ‡!_ = ‡!@ and thus q! =

q!@. Then 

‡%_ = ‚!‡%@ B. 23 

where ‚! is parametrized by q! (or equivalently q!@) as in eq. B.18. Notice, from eqs. B.15 – B.17 and B.23, 

we can relate 

q% = q!@q%@qÜ!@ B. 24 

in which case the product q%q! in eq. B.22 becomes 

q%q! = q!@q%@ . B. 25 

In summary, if a unit quaternion is constructed as in eq. B.1 with the rotation axis ‡ expressed with respect 

to the (non-rotating) world frame {è}, then M successive rotations compose as per q+q+D!⋯q%q! whereas 

if the rotation axis is expressed instantaneously with respect to the (rotating) body frame {õ}, then M 

successive rotations compose in the reverse order as per q!@q%@⋯q+D!@ q+@ . 
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Appendix C: Quaternion Kinematics 

 

 Let v6 ∈ ℍ be the pure quaternion corresponding to 86 which is the representation of the 

Cartesian vector 8 ∈ ℝC with respect to the basis {√} and let q ∈ ℍ be the unit quaternion such that 

v_ = qv@qÜ C. 1 

where {è} is the non-rotating world frame and {õ} is a rotating, but non-translating, body frame. Further, 

let v@ be constant such that 8_ rotates with {õ}. Differentiating eq. C.1 with respect to time yields 

v̇_ = q̇v@qÜ + qv̇@qÜ + qv@qÜ̇ C. 2 

and since v@ is constant 

v̇_ = q̇v@qÜ + qv@qÜ̇. C. 3 

Left multiplication by qÜ and right multiplication by q in eq. C.3 gives 

qÜv̇_q = qÜq̇v@ + v@qÜ̇q. C. 4 

Since |q|% = 1 is constant, then 

qÜ̇q = −qÜq̇ C. 5 

by differentiating eq. A.19 with respect to time. Notice, eq. C.5 indicates that qÜ̇q is equal to the negative of 

its conjugate. Therefore, qÜ̇q must be pure in which case the equation for the scalar part of qÜ̇q yields the 

kinematic equality constraint equation 

q,q̇ = 0. C. 6 

Since 8_ only rotates, the velocity 8̇_ is given by 

8̇_ = ß_ × 8_ C. 7 
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where ß ∈ ℝC is the Cartesian vector corresponding to the angular velocity of {õ} and ß_ is the 

representation of ß with respect to {è}. Using eq. A.31, we have the equivalent quaternion operation 

corresponding to the cross product ß_ × 8_ in eq. C.7 as per 

v̇_ =
1
2
(ω_v_ − v_ω_). C. 8 

Subsituting eqs. C.5 and C.8 into eq. C.4 yields 

1
2
qÜω_v_q −

1
2
qÜv_ω_q = qÜq̇v@ − v@qÜq̇ C. 9 

Using qqÜ = 1 and eq. C.1, the left side of eq. C.9 can be written 

1
2
qÜω_v_q −

1
2
qÜv_ω_q =

1
2
qÜω_qqÜv_q −

1
2
qÜv_qqÜω_q 

																										=
1
2
ω@v@ −

1
2
v@ω@ . C. 10 

Equating eqs. C.9 and C.10, we relate 

1
2
ω@ = qÜq̇. C. 11 

Equivalently, using the left quaternion product matrix in eq. A.14 and accounting for the conjugation as in 

eq. A.24, we have 

ω@ = 2Q[,q̇ C. 12 

so that the first three rows of 2Q[, form the 3 × 4 matrix, denoted Ó`, that maps the quaternion velocity to 

the Cartesian angular velocity as per 

ß@ = Ó`q̇ C. 13 

with 

Ó` = 2[−—m + 3J⁄C −—,]. C. 14 

Left multiplication by q in eq. C.11 yields the quaternion kinematic equation given by 
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q̇ =
1
2
qω@ C. 15 

or equivalently using the right quaternion product matrix for ω@, denoted Ω\@, from eq. A.15 

q̇ =
1
2
Ω\@q. C. 16 

Let the subscript . in q1 denote the unit quaternion q in eq. C.1 representing the orientation of the rotating 

body frame {õ} at the time instant .. Assume the angular velocity is constant with respect to {õ} during the 

time interval . → . + Δ. with	Δ. > 0 such that ω@ in eq. C.15 is constant during the same time interval. 

Further, let ‡ and ċ denote the direction and magnitude of ß@, respectively, such that 

ß@ = ‡ċ C. 17 

and with ‡,‡ = 1. Then, the solution to eq. C.15 is 

q1Ea1 = q1 exp »
Ô.
2
ω@ C. 18 

where 0 < Ô. ≤ Δ.. Since the square of ω@ is the negative of its magnitude squared per eqs. A.17 and A.29, 

we have 

(ω@)% = −ċ% C. 19 

and thus, 

(ω@)C = −ċ%ß@

											= −ċC‡. C. 20
 

For higher powers, 

(ω@)J = ċJ									 C. 21 

(ω@)O = ċO‡						 C. 22 

			(ω@)B = −ċB									 C. 23 

			(ω@)b = −ċb‡						 C. 24 
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and so on, so that 

exp »
Ô.
2
ω@ = 1 +

Ô.
2
ω@ +

1
2
»
Ô.
2
ω@ 

%

+
1
3!

»
Ô.
2
ω@ 

C

+
1
4!

»
Ô.
2
ω@ 

J

+
1
5!

»
Ô.
2
ω@ 

O

+⋯																														 

= 1 +
Ô.ċ
2

‡ −
1
2
Z
Ô.ċ
2

]
%

−
1
3!

Z
Ô.ċ
2

]
C

‡ +
1
4!

Z
Ô.ċ
2

]
J

+
1
5!

Z
Ô.ċ
2

]
O

‡ −⋯											 

					= ∫Z
Ô.ċ
2

] −
1
3!

Z
Ô.ċ
2

]
C

+
1
5!

Z
Ô.ċ
2

]
O

−⋯ª‡ + ∫1 −
1
2
Z
Ô.ċ
2

]
%

+
1
4!
Z
Ô.ċ
2

]
J

−⋯ª 

= sin Z
Ô.ċ
2

]‡ + cosZ
Ô.ċ
2

] .																																																																																													 C. 25 

Thus, exp Òc1
%
ω@Ú in eq. C.18 is a unit quaternion corresponding to the rotation about ‡ (expressed with 

respect to {õ}) through the angle Ô.ċ via the operation eq. B.14. Finally, note that for an infinitesimal Ô., we 

have the asymptotic approximation 

exp»
Ô.
2
ω@ ~

Ô.ċ
2

‡ + 1									(íU									Ô. ≪ 1.																 C. 26 
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Appendix D: Optimization-Based Optical Motion Capture 

 

D.1. Optimization problem 

Let ô' ∈ ℝC be the Cartesian vector describing the position of the center of mass of segment > and 

let q' ∈ ℍ with |q'| = 1 be the unit quaternion describing the orientation of segment > relative to the inertial 

world frame {è} such that 

8_ = ‚'8@$ D. 1 

where ‚' ∈ úù(3) is the rotation matrix parametrized by q' as in eq. B.18, õ' denotes the frame {õ'} fixed 

to segment > (coincident with the segment’s principal axes of inertia), and 86 is the representation of the 

Cartesian vector 8 ∈ ℝC with respect to the basis {√}. Thus, 	ô' and q' comprise the seven generalized 

coordinates corresponding to segment > as described in section 6.4.2. Further, let R$
@$ be the constant (due to 

the rigid body assumption) 3 × 1 vector describing the position of marker ; with respect to the segment 

frame {õ'}, in which it is fixed, such that 

óò $
_ = ô'_ +‚'R$

@$ 	 D. 2 

where óò $
_is the position of marker ;	with respect to the basis {è} as in eq. 6.21. The problem of estimating 

the generalized coordinates based on measured marker positions was formulated as an optimization problem 

in eq. 6.22 and is restated here in a slightly different form: 

min
A

1
2
ı,ˆı D. 3 

subject to 16 equality constraints 

˜(2) = †

V!(2)

⋮

	V!B(2)	

¢ = ’!B×! D. 4 
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where ˆ is block diagonal with the 3 × 3 marker-specific weighting matrices è$ from eq. 6.22 on the 

diagonal, 2	 is the 28 × 1 column vector of generalized coordinates for the four-segment system described 

in section 6.4 organized as per 

2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
		ô!		

q!
⋮

ôJ
qJ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. D. 5 

As a clarifying example, note that ¯d = 3%! is the first positional coordinate of segment 2 and ¯%! = “CJ is 

the fourth rotational coordinate of segment 3 (the scalar part of qC). In the objective function of eq. D.3, ı 

is the 3M × 1 column vector of errors 

ı = †

		˘!		

⋮

˘+

¢ D. 6 

where M is the number of markers and ˘$ is the difference between the marker position based on the 

generalized coordinates (óò $
_ from eq. D.2) and the measured marker position ó$

_ from the optical motion 

capture system: 

˘$ = óò $
_ −ó$

_. D. 7 

 

D.2. Objective function 

As described in section 6.4.2, eq. D.3 is solved using the fmincon function in MATLAB R2019b 

with the interior-point algorithm and analytic Jacobian and Hessian matrices of the objective and constraint 

equations with respect to 2. Presented here are analytic expressions for those Jacobian and Hessian matrices. 

For the Jacobian of the objective, we have 

y
y2

»	
1
2
ı,ˆı	 = ı,ˆ

yı
y2

D. 8 
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where ef
eA

 is an M × 28 matrix structured as per 

yı
y2

=

⎣
⎢
⎢
⎢
⎢
⎡		
y˘!

y2
		

⋮

y˘+

y2 ⎦
⎥
⎥
⎥
⎥
⎤

. D. 9 

Let > index the segment to which marker ; is fixed. Then, from eqs. D.2 and D.7, the 3 × 28 matrix eg(
eA

 in 

eq. D.9 has the form 

y˘$

y2
= º	

y˘$

yô!

y˘$

yq!
⋯

y˘$

yôJ

y˘$

yqJ
	æ D. 10 

and, since ˘$ depends only on the coordinates corresponding to segment >, we have 

y˘$

y2
= º	’C×C ’C×J ⋯

y˘$

yô'

y˘$

yq'
⋯ ’C×C ’C×J	æ . D. 11 

From eq. D.7 

y˘$

yô'
= ⁄C. D. 12 

The 3 × 4 matrix eg(
eh$

 in eq. D.11 has the form 

y˘$

yq'
= X	

y˘$

y“'!

y˘$

y“'%

y˘$

y“'C

y˘$

y“'J
	Y D. 13 

and from eqs. D.2 and D.7 

y˘$

yq'
= X	

y‚'
y“'!

R$
@$ y‚'

y“'%
R$
@$ y‚'

y“'C
R$
@$ y‚'

y“'J
R$
@$ 	Y D. 14 

where, by eq. B.18, 

y‚'
y“'!

= 2†		

“'! “'% “'C
“'% −“'! −“'J
“'C “'J −“'!

		¢ , D. 15 
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y‚'
y“'%

= 2†		

−“'% “'! “'J
“'! “'% “'C
−“'J “'C −“'%

		¢ , D. 16 

y‚'
y“'C

= 2†		

−“'C −“'J “'!
“'J −“'C “'%
“'! “'% “'C

		¢ , D. 17 

 

and 

 

y‚'
y“'J

= 2†		

“'J −“'C “'!
“'C “'J −“'!
−“'% “'! “'J

		¢ . D. 18 

Let ˙8 be the 28 × 28 symmetric Hessian of the objective function, i.e., e
eA

Ò	ı,ˆ ef
eA
	Ú: 

˙8 =
yı,

y2
ˆ

yı
y2

+ı,ˆ
y
y2

»	
yı
y2

	 . D. 19 

The first term in eq. D.14 is given from eqs. D.9 – D.18. The element in row = and column L of the second 

term is given by 

º	ı,ˆ
y
y2

»	
yı
y2

	 	æ
),=

= ı,ˆ
y
y )̄

»	
yı
y¯=

	 . D. 20 

The vector ef
ei)

 in eq. D.20 is column L of the matrix ef
eA

 in eq. D.9. Thus, note that because e
ei2

Ò	eg(
ei)

	Ú =

’C×! for all L indexing positional coordinates (since the 3 × 1 vector eg(
ei)

 is constant and contains only zeros 

or ones per eq. D.12) as well as for all = indexing positional coordinates (since q' is independent of ô'), 

elements of e
ei2

Ò	ef
ei)

	Ú may be non-zero only for = and L indexing rotational coordinates for the same segment 

> and only for rows of 	ef
ei)

 corresponding to 	eg(
ei)

	 for all ; indexing markers attached to the same segment >. 
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Therefore, it will suffice to specify 	 e
ej$,

»	eg(
ej$3

	 	 for all combinations of ¥ and π for ¥ = π = {1,2,3,4}, which 

from eq. D.14 reduces to 	 e
ej$,

»	 ek$
ej$3

	 R$
@$. Let ”' be the >lm natural basis (e.g., ”% = [0 1 0],) and let 

diag(¸, <, N) be the diagonal matrix with ¸, <,	and N on the diagonal (following MATLAB notation) as per 

diag(¸, <, N) = †

	¸ 0 0	

	0 < 0	

	0 0 N	

¢ . D. 21 

Then, from eqs. D.15 – D.18, we have 

y
y“'"

Z	
y‚'
y“'"

	] = diag(	2, −2,−2) , D. 22 

y
y“'4

Z	
y‚'
y“'4

	] = diag(−2, 2, −2) , D. 23 

y
y“'5

Z	
y‚'
y“'5

	] = diag(−2,−2, 2) , D. 24 

y
y“'6

Z	
y‚'
y“'6

	] = 2⁄C, D. 25 

y
y“'4

Z	
y‚'
y“'"

	] = †

	0 2 0	

	2 0 0	

	0 0 0	

¢ , D. 26 

y
y“'5

Z	
y‚'
y“'"

	] = †

	0 0 2	

	0 0 0	

	2 0 0	

¢ , D. 27 

y
y“'5

Z	
y‚'
y“'4

	] = †

	0 0 0	

	0 0 2	

	0 2 0	

¢ , D. 28 

and 

y
y“'2

Z	
y‚'
y“'6

	] = 2”|) 					(íU					= = 1, 2, 3. D. 29 
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The remaining second partial derivatives are given due to the symmetry 

y
y“')

Z	
y˘$

y“'=
	] =

y
y“'=

Z	
y˘$

y“')
	] . D. 30 

 

D.3. Constraints 

The following provides analytic expressions for the 16 constraint equations, the Jacobian matrix 

of the constraints with respect to the generalized coordinates, and the Hessian matrix of the constraints in the 

Lagrangian (ℒ) for its use in the interior-point algorithm as a part of the fmincon function in MATLAB. The 

Lagrangian is given by 

ℒ =
1
2
ı,ˆı+ ˛,˜ D. 31 

where ˛ is the 16 × 1 column vector of Lagrange multipliers. The element in row = and column L of the 

16 × 28 Jacobian matrix en
eA

 is given by 

º		
y˜
y2

		æ
).=

=
yV)
y¯=

. D. 32 

The 28 × 28 Hessian matrix of the Lagrangian ℒ is given by 

y
y2

»	
yℒ
y2

	 = ˙8 +˙. D. 33 

where ˙8 was given in eq. D.19 and the matrix ˙. may be written 

˙. = vá)
y
y2

Z	
yV)
y2

	]	
!B

27"

. D. 34 

Note that 	e.2
eA
		is row = of the Jacobian matrix 	en

eA
	 and the element in row = and column L of ˙. is given by 

[	˙.	]),= = ˛,
y
y )̄

»	
y˜
y¯=

	 . D. 35 
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D.3.1. Unit-length quaternion constraints 

Four of the constraint equations enforce the unit length constraint for the quaternion parameters 

for each of the four segments. Let ˇ (for length) index the element of ˜ associated with this constraint for 

segment >. Then, 

Vo = q',q' − 1 D. 36 

in which case all elements of 	e.8
eA

	 are zero except for those indexing elements of q' where 

yVo
yq'

= 2q', . D. 37 

Likewise, e
ei2

Ò	e.8
ei)

	Ú = 0 for all = and L except for those indexing elements of q' where 

y
yq'

»	
yVo
yq'

	 = 2⁄J. D. 38 

D.3.2. Non-translational joint constraints 

Nine of the constraint equations (three for each joint) enforce the non-translational constraint of 

the joints (i.e., joints are not allowed to dislocate). Thus, if r'
@$ and r)

@2 are the constant 3 × 1 vectors pointing 

from ô' and ô), respectively, to the joint center of joint ! which articulates the segments indexed by > and = 

(expressed with respect to their respective body-fixed coordinate systems), then 

˜+, = ô'
_ +‚'r'

@$ − ô)
_ −‚)r)

@2 D. 39 

where the subscript M÷ (for non-translational) indexes the 3 × 1 component of ˜ corresponding to constraint 

eq. D.39 for joint !. The first and second partial derivatives of ˜+, are found similarly as for ˘$ in eq. D.10 

– D.18.  

D.3.3. Revolute and universal joint constraints 

Three of the constraint equations enforce rotational constraints for one DOF revolute joints (e.g., 

the knee, two constraint equations) and two DOF universal joints (e.g., the ankle, one constraint equation). 
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For this development, let joint ! articulate segments √ and õ with corresponding segment-fixed bases {√} 

and {õ}, respectively. Let {"} = {≠!, ≠%, ≠C} be an orthonormal basis defining the joint coordinate system in 

a reference configuration where ≠' is the rotation axis for the >lm rotational DOF expressed with respect to 

the inertial frame {è}. Thus, for a revolute joint, ≠! is the single joint axis and ≠% and ≠C are unit length and 

mutually orthogonal to each other and to ≠!, but otherwise arbitrary. Likewise, for a universal joint, ≠! and 

≠% are joint axes for the first and second rotational DOFs while ≠C = ≠! × ≠%. Assume we have available the 

orientations of {√}, {õ}, and {"} for a reference configuration and those orientations are parametrized by the 

quaternion q' as per 

v_ = q'v'qÜ ' D. 40 

for > = √, õ," and where v ∈ ℍ is the pure quaternion associated with the Cartesian vector 8 ∈ ℝC. We will 

use the primed quaternion q'*  to denote the orientation of frame > in a displaced configuration relative to the 

reference configuration. Note that we may consider the basis {"} (from the reference configuration) as fixed 

in segment √ and õ such that it rotates with the segment in the same way as for frames {√} and {õ}. We 

introduce "6 and "@, respectively, to denote these bases which is necessary because the joint constraints are 

enforced on the joint quaternion qp that maps the representation of 8 with respect to {"6}, 8q9, to its 

representation with respect to {"@}, 8q:, via 

vq: = qpvq9qÜp. D. 41 

Note that in this case, the perspective of the joint would be “B to A” since the relation in eq. D.41 indicates 

that we would imagine aligning frame {"@} onto {"6} by rotating {"@} about the axis ‡ (expressed with 

respect to {è}) through the angle c that parametrizes qp as in eq. B.1 (see discussion following eq. B.18). 

To be clear, the bases {"6}, {"@}, and {"} all coincide in the reference configuration, but {"6} and {"@} may 

not be aligned for an arbitrary configuration. Further, for an arbitrary configuration, the orientation of {"6} 

relative to {√} and likewise {"@} relative to {õ} is constant and parametrized by the constant quaternions q.9 

and q.:, respectively, such that 

v' = q.$v
q$qÜ.$ D. 42 
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where 

q.$ = qÜ '
*qq$
* D. 43 

and since eq. D.42 holds for an arbitrary configuration, q.$ may be computed from the reference configuration 

as per 

q.$ = qÜ 'qq$ . D. 44 

Now, for an arbitrary displaced configuration, we have 

vq: = qÜ.:qÜ@
* q6* q.9v

q9qÜ.9qÜ6
* q@* q.: D. 45 

and by equating eqs. D.41 and D.45, clearly 

qp = qÜ.:qÜ@
* q6* q.9 . D. 46 

Using the left and right quaternion product matrices, eq. D.46 can be written 

qp = PQ@8;
^ q6* D. 47 

where Q@8;
^  is the left quaternion product matrix associated with qÜ@*  and the 4 × 4 matrix P is constant and 

given by 

P = Q.:8
, Q.9< . D. 48 

That is, Q.:8
,  is the left quaternion product matrix associated with qÜ.: and Q.9<  is the right quaternion product 

matrix associated with q.9. Equivalently, the joint quaternion may be expressed as per 

qp = PQ6<; q@
* D. 49 

where Q6<;  is the right quaternion product matrix associated with q6*  and the underline in Q6<;  is to denote 

the same product Q6<; qÜ@
*  but in terms of q@*  instead of its conjugate so that 

Q6<; q@
* = Q6<; qÜ@

* D. 50 

and 
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Q6<; =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

	−“66
* −“65

* “64
* “6"

* 	

“65
* −“66

* −“6"
* “64

* 	

	−“64
* “6"

* −“66
* “65

* 	

“6"
* “64

* “65
* “66

* 	

	

⎦
⎥
⎥
⎥
⎥
⎥
⎤

. D. 51 

The joint quaternion “p is expressed as in eqs. D.47 and D.49 in order to develop the partial derivatives of 

the constraints with respect to the generalized coordinates q6*  and q@* , respectively. 

Revolute joints 

If joint ! is a one DOF revolute joint, then qp has the form 

qp =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

		

sin
c!
2

0

0

cos
c!
2

		

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. D. 52 

Thus, the two constraint equations for revolute joints are the second C“p4G and third C“p5G  components of qp 

in eq. D.52. Let U% and UC (U for revolute) index the components of ˜ corresponding to “p4 and “p5, 

respectively, so that 

V-4 = “p4 D. 53 

and 

V-5 = “p5 . D. 54 

Then, 

V-= = ¨	PQ@8;
^ 	Æ

r,:
q6* D. 55 

							= ¨	PQ6<; 	Ær,:
q@* D. 56 
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where the subscript #,: indicates row # of the bracketed matrix (following MATLAB notation). Then all 

elements (columns) of the row vector 	
e.*=
eA

	 are zero except for those corresponding to elements of q6*  and q@*  

in which case 

yV-=
yq6*

= ¨PQ@8;
^ Æ

r,:
D. 57 

and 

yV-=
yq@*

= ¨PQ6<; Ær,:
. D. 58 

Likewise, e
ei2

Ò	
e.*=
ei)

	Ú = 0 for all = and L not indexing elements of q6*  and q@* . For = and L indexing elements 

of q6*  and q@* , we have 

y
yq6,

* Z	
yV-=
yq6*

	] = ’!×J, D. 59 

y
yq@,

* Z	
yV-=
yq@*

	] = ’!×J, D. 60 

y
yq@,

* Z	
yV-=
yq6*

	] = ∫	P
∂Q@8;

^

∂q@,*
	ª
r,:

, D. 61 

and 

y
yq6,

* Z	
yV-=
yq@*

	] = X	P
∂Q6<;
∂q6,*

	Y
r,:

D. 62 

where 

∂Q@8;
^

∂q@6*
= ⁄J, D. 63 

∂Q6<;
∂q66*

= diag(	−1,−1,−1, 1), D. 64 
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∂Q@8;
^

∂q@,*
= ∫		

−”|G −”G

”G, 0
		ª 					(íU					¥ = 1,2,3, D. 65 

and 

∂Q6<;
∂q6,*

= ∫		
”|G ”G

”G, 0
		ª 					(íU					¥ = 1,2,3. D. 66 

Universal joints 

If joint ! is modeled as a two DOF universal joint, then qp has the form 

qp = q!q% D. 67 

where 

q! =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

	

sin
c!
2

0

0

cos
c!
2

	

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

D. 68 

and 

q% =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

	

0

sin
c%
2

0

cos
c%
2

	

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

D. 69 

so that 
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qp =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

		

sin
c!
2
cos

c%
2

sin
c%
2
cos

c!
2

sin
c!
2
sin

c%
2

cos
c!
2
cos

c%
2

		

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. D. 70 

Thus, for a universal joint, we have 

“p" + “p4 = sin »
c!
2
+
c%
2
 D. 71 

and 

“p6 − “p5 = cos »
c!
2
+
c%
2
 D. 72 

yielding the constraint equation 

V2 = C“p" + “p4G
%
+ C“p6 − “p5G

%
− 1 

V2 = “p"“p4 − “p5“p6 																															 D. 73	 

which is clear from eq. D.70 and where ̧  (for universal) indexes the element of ̃  corresponding to constraint 

eq. D.73. Then, e.>
ei)

= 0 for all L not indexing elements of q6*  and q@* , but for L indexing elements of q6*  and 

q@* , we have 

yV2
yq'

* 	= 	
y“p"
yq'

* “p4 	+	
y“p4
yq'

* “p" 	−	
y“p5
yq'

* “p6 	−	
y“p6
yq'

* “p5 D. 74 

where, as in eq. D.57 and D.58, 

y“p=
yq6*

= ¨PQ@8;
^ Æ

r,:
, D. 75 
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and 

y“p=
yq@*

= ¨PQ6<; Ær,:
. D. 76 

Likewise, e
ei2

Ò	e.>
ei)

	Ú = 0 for all = and L not indexing elements of q6*  and q@* . For = and L indexing elements 

of q6*  and q@* , since  e
ej$,

; »	e.>
eh$

;	 = ’!×J, we have 

y
y“',

* Z	
yV2
yq'

* 	] =
y“p"
yq'

*
y“p4
y“',

* 		+		
y“p4
yq'

*
y“p"
y“',

* 		−		
y“p5
yq'

*
y“p6
y“',

* 		−		
y“p6
yq'

*
y“p5
y“',

* D. 77 

where 	
ej?=
ej$,

; 	 is column ¥ of 	
ej?=
eh$

; 	 in eqs. D.75 and D.76. Finally, 

y
y“@,

* Z	
yV2
y“63

* 	] 		= 			
y

y“@,
* Z

y“p"
y“63

* ]y“p4 		+		
y“p"
y“63

*
y“p4
y“@,

* 		+

																																					
y

y“@,
* Z

y“p4
y“63

* ]y“p" 		+		
y“p4
y“63

*
y“p"
y“@,

* 		+

																																	−
y

y“@,
* Z

y“p5
y“63

* ]y“p6 		−		
y“p5
y“63

*
y“p6
y“@,

* 		+

																											−
y

y“@,
* Z

y“p6
y“63

* ] y“p5 		−		
y“p6
y“63

*
y“p5
y“@,

*

D. 78	

where 	 e
ej:,

; Z
ej?=
ej93

; ]	 is column π of 	 e
ej:,

; »
ej?=
eh9;

 	 in eq. D.61 and vice versa for 	 e
ej9,

; Z	 e.>
ej:3

; 	]. 

 


	Towards Remote Gait Analysis: Combining Physics and Probabilistic Models for Estimating Human Joint Mechanics
	Recommended Citation

	Microsoft Word - gurchiek_dissertation_final.docx

