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Abstract: Ecological restoration is an increasingly important component of sustainable 

land management. We explore potential facilitative relationships for enhancing the cost-

effectiveness of restoring native forest understory, focusing on two factors: (1) overstory 

shade and (2) possible facilitation by a fern (Dryopteris wallichiana), one of few native 

colonists of pasture in our montane Hawaiˈi study system. We planted 720 understory tree 

seedlings and over 4000 seeds of six species under six planting treatments: a full factorial 

combination of low, medium and high light, situating plantings in either the presence or 

absence of a mature fern. After three years, 75% of outplanted seedlings survived. Seedling 

survivorship was significantly higher in the presence of a fern (79% vs. 71% without a 

fern) and in medium and low light conditions (81% vs. 64% in high light). Relative height 

was highest at low to medium light levels. After 2.2 years, 2.8% of the planted seeds 

germinated. We observed no significant differences in seed germination relative to light 

level or fern presence. Analyzing several approaches, we found nursery germination of 

seeds followed by outplanting ca. 20% less costly than direct seeding in the field. This 

study opens new questions about facilitation mechanisms that have the potential to increase 

the extent and effectiveness of restoration efforts. 

OPEN ACCESS 
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1. Introduction 

Ecological restoration of various habitats plays an increasing role in ecosystem management, 

supported with billions of dollars annually around the world [1–3]. China alone has invested over USD 

100 billion in restoring tens of millions of hectares of forest over the past two decades, for purposes of 

flood mitigation, landscape stabilization (especially in earthquake-prone areas), sandstorm control, 

carbon sequestration, and biodiversity conservation [4,5]. Ecosystem service motivations for 

restoration are becoming widespread [6–9]. There is thus a critical need to find practical, scalable, and 

economically efficient techniques and approaches for recreating desired ecosystems.  

The range of restoration techniques is limited by a suite of barriers. While some heavily modified 

systems may recover ecosystem structure with no assistance once active human disturbance has  

ceased [10], most efforts are impeded by such obstacles as: competition from non-native flora and 

fauna (including predation on seeds and seedlings) [11,12]; loss of ecosystem components (e.g., seed 

sources, seed dispersers, pollinators, specific plant species [13–15]); unfavorable physical conditions 

(e.g., light levels, edaphic characteristics, microclimate [16–18]); and high up-front financial costs [19,20]. 

Given these diverse challenges, aligning restoration approaches with successional processes is one 

approach to enhancing success [21,22]. For example, many studies show that tree plantations, whether 

native or non-native, can serve as ―nurse crops‖ for the establishment of native forest species, with 

light attenuation as one of their main benefits [23,24].  

Ecological restoration has the potential not only to benefit from successional theory but also to 

inform it [25]. Many theories of forest succession posit that light levels and the related shade tolerance 

of different species are key drivers of forest change trajectories. Studies of succession rarely focus on 

species-specific links between light availability, growth, and mortality  [26,27]. Studies of 

reforestation in tropical environments, however, have revealed species-specific differences in 

responses to light and other micro-environmental characteristics [28,29], and thus recommend that 

management be approached from a species level rather than from a community level [30]. Similarly, 

even though understory dynamics may play an important role in succession, successional theory pays 

little or no attention to the role of understory [31]. Yet, interspecific interactions, most of them 

involving the understory, may have significant effects on restoration outcomes; restoration action 

could take much better advantage of potential facilitative effects [32,33] and simultaneously increase 

understanding of the role of facilitation in succession. 

Here we explore understory plant restoration, seeking approaches for practical application at scales 

of tens to hundreds of hectares, or more. We focus on mesic forest on the western, leeward flank of the 

Mauna Loa volcano on Hawaiˈi Island, partly motivated by planned reintroduction of the Hawaiian 

Crow (Corvus hawaiiensis, ˈalalā) and possibly the Hawaiian Thrush (Myadestes obscures, ˈōmaˈo), 

frugivorous birds dependent on now-absent understory vegetation. While modification of native forest 
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began about 1500 years ago with the arrival of the first humans [34], prior to 1800 this region 

supported native forest above ca. 800 m asl. Over the past 200 years, forest was transformed by 

logging (of sandalwood (Santalum paniculatum) and then koa (Acacia koa)) and cattle ranching, as 

well as introduction of numerous non-native plants, ungulates, and other organisms [35,36]. Today, 

pressures on native forest remain high, from these sources as well as residential development and 

climate change [37,38].  

In this system, three of the most important perceived obstacles to restoration are high light, 

introduced grasses, and high costs. We explore the role that polypod ferns, under a variety of light 

levels, might play in mitigating these obstacles. Most of the scant literature on ferns and succession 

documents the negative competitive effect of native ferns on establishment and survival of other native 

plants [39–41]. The fern species discussed in these articles often spread asexually (rhizomally), 

forming dense mats on the forest floor. By contrast, here we explore the potential role of a native fern 

that lives as separate individuals.  

We hypothesize that the presence of a fern may facilitate seed germination and seedling growth by 

providing low shade, and possibly enhancing moisture near the seedling by acting as a water funnel 

and/or fog capture screen (see Figure 1). The fern may also partially shade out vigorous non-native 

grasses. Apart from facilitating germination or survival of seedlings, ferns also may simply indicate 

micro-sites more suitable to plant growth, thus serving as management aids by targeting favorable 

locations for outplanting. In this experiment, we conducted both tree seedling outplanting and direct 

seeding to quantify success and cost of the two approaches, varying fern presence and light conditions 

(the latter as determined by canopy cover). We address three questions crucial in this system and more 

broadly: (1) Does the presence of a native understory fern, Dryopteris wallichiana, aid the survival 

and/or growth of outplanted seedlings or the germination of planted seeds? (2) How much shade (canopy 

cover) is required for seedling survival or seed germination? and (3) What are the costs of various 

restoration techniques (considering seed collection, propagation, site preparation, planting, and 

survivorship)? 

Figure 1. Dryopteris wallichiana, called the ―shuttlecock‖ fern in English because of its shape. 
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2. Methods 

2.1. Study Site 

We worked at Kona Hema Preserve in the South Kona district on the leeward side of Hawaiˈi Island 

(Figure 2). The area was grazed from ca. 1916 until 1998, when a pig-proof fence was constructed and 

cattle, pigs, and other ungulates were removed; since 2003 it has been ungulate-free apart from 

temporary incursions. Kona Hema is a 3,185 ha parcel that extends from ca. 915 m to 1750 m 

elevation. Average rainfall is ca. 900 mm per year, with fairly consistent rainfall year-round 

punctuated by summer and winter storms [42]. Rainfall is concentrated in an elevation band of  

ca. 900–1200 m asl, and is lower above and below this band [42]. The substrate at Kona Hema is a 

1500–3000 year old lava flow, overlain in parts by fingers of 1916 and 1926 flows (see Figure 2).  

Figure 2. Salient features of the Kona Hema Preserve. The twenty 50 m × 50 m 

outplanting sites are indicated as red squares. The dark lines running east-west are lava 

flows <100 years old.  

 

We situated our experiment at elevations between 1250 and 1450 m, where the primary land cover 

now comprises introduced pasture grasses, a native overstory of young Acacia koa (koa, mostly 5–25 

years old) and Metrosideros polymorpha (ˈōhiˈa), and an understory almost devoid of fruiting plant 

species. We worked on the 1500-3000 year old substrate (and not on the 1916 and 1926 flows, which 

have little soil and remain very sparsely populated, mostly by scattered M. polymorpha and Sadleria 

cyatheioides (ˈamaˈumaˈu).  

The two dominant non-native grasses are Pennisetum clandestinum (kikuyu) and Microlaena 

stipoides (meadow rice). P. clandestinum, the dominant cover in much pasture-land with low levels of 

shade, is a C4 grass that forms dense rhizomatous mats in the absence of ungulate grazing; it is 

difficult to clear, rebounds quickly, and impedes regeneration of other species [43]. M. stipoides is a 

C3 grass that begins to dominate as levels of shade increase. Relative to P. clandestinum, M. stipoides 

is relatively easy to clear and less vigorous in growth. 
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2.2. Outplanting and Direct Seeding Experiments 

2.2.1. Choice of Facilitator Species 

Dryopteris wallichiana (Figure 1), a pantropical polypod fern, is one of the most successful native 

colonizers of non-native grasslands in our study system. We selected D. wallichiana as a potential 

nurse plant in the experiment for several reasons: it is a notable component of forest structure prior to 

major human disturbance [43]; it survives along the spectrum from full sun to full shade; and it is one 

of the only native plants in Hawaiˈi that can outcompete non-native grasses. D. wallichiana appears to 

reproduce primarily sexually; individuals are often found at great distances from one another, allowing 

for wide spacing of experimental plantings. In addition, in some locations, we have observed 

disproportionate regeneration of understory seedlings within 10–50 cm of this fern than at other 

locations in the forest. 

2.2.2. Outplanting and Direct Seeding Species 

We used six understory species for outplanting and direct seeding, selected with a primary goal of 

creating habitat for C. hawaiiensis. Kona Hema is a possible site for reintroducing this island endemic, 

reported as extinct in the wild since 2002 [44]. Some plant species preferred by C. hawaiiensis were 

ruled out (for the time being) because of difficulty in propagation or extremely slow growth. We added 

one species not known to be preferred [45,46] (A. stellata) because it is thought to have been once 

abundant at Kona Hema; is especially easy to propagate and reestablish; has high cultural value; and is 

consumed by other frugivorous birds such as M. obscures. The six focal species, along with salient 

characteristics, are listed in Table 1. 

Table 1. Species used in outplantings and direct seeding experiments. Taxonomic and life 

history information from Wagner [43]. 

Hawaiian 

name 
Latin name Family Habit Seed size 

Seed 

recalcitrant / 

orthodox? 

hō'awa  
Pittosporum 

hawaiianse 
Pittosporaceae Understory tree 

Medium (1 mm < x 

< 8 mm) 
orthodox 

kōlea 
Myrsine 

lessertiana 

Myrsinaceae 

 
Understory tree 

Medium 

(1 mm < x < 8 mm) 
recalcitrant 

maile 
Alyxia 

stellata 
Apocynaceae Liana 

Large  

(>8 mm) 
orthodox 

māmaki 
Pipturus 

albidus 
Urticaceae 

Shrub / small 

tree 

Small  

(<1 mm) 
orthodox 

naio 
Myoporum 

sandwichense 
Scrophulariaceae Understory tree 

Large  

(>8 mm) 
orthodox 

pilo 
Coprosma 

Montana 
Rubiaceae Understory tree 

Medium (1 mm < x 

< 8 mm) 
orthodox 

  

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEQQFjAA&url=http%3A%2F%2Fwww.pbase.com%2Fbkrownd%2Fmyrsinaceae&ei=0foDUaXhNeTWigLxqYDIBw&usg=AFQjCNFTn0ErhkjnKF4pq_YHhPN4usCDmA&sig2=EtzmNx9lQPCcw2g_ycn0GA&bvm=bv.41524429,d.cGE
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2.2.3. Study Design 

Plantings were done in 20 experimental plots, each 50 m × 50 m square, in areas dominated by  

P. clandestinum at higher light levels and by a mixture of M. stipoides and P. clandestinum at lower 

light levels. These areas reflect general conditions common both in this region and in many deforested 

tropical regions globally. Locations of the plots are indicated in Figure 2; plot centers were on average 

1090 meters apart. 

Our two experimental factors are light and fern presence (Table 2). Treatments included three light 

levels: high (―Open‖ treatment); medium, with shade provided by one tree to the north side of the 

planting (―Tree‖ treatment); and low, with shade provided by multiple trees surrounding the plant 

(―Canopy‖ treatment). Half of all treatments were situated near a mature D. wallichiana fern (20–30cm 

from the base) and half were not near (>2m from the base of the closest fern). In each plot, we 

designated six planting sites in each treatment, for a total of 36 planting sites per plot (3 light 

treatments × 2 fern treatments × 6 understory species = 36 planting microsites; see Figure 3). 

Table 2. Two-factorial experimental design. The two factors are light (with three 

conditions—open (high light), tree (medium light), and canopy (low light)) and fern (with 

two conditions—fern and no fern). 

 Fern Condition 

F – Fern N - No Fern 

 O - Open (High Light; 

0–20% canopy cover with an 

average of 15%) 

OF Treatment 

(Open, Fern) 

ON Treatment 

(Open, No fern) 

T - Tree (Medium Light; 

20–80% canopy cover with an 

average of 50%) 

TF Treatment 

(Tree, Fern) 

TN Treatment 

(Tree, No fern) 

C - Canopy (Low Light; 

>80% canopy cover with an 

average of 88%) 

CF Treatment 

(Canopy, Fern) 

CN Treatment 

(Canopy, No fern) 

2.2.4. Outplantings 

The Future Forests Nursery in Kailua Kona germinated all seedlings from seed collected at Kona 

Hema in 2008 (as much as possible, seed came from the same elevation as the plantings; additional 

seed came from slightly lower elevation forest (ca. 1000−1150 m) that was lightly grazed and retains a 

higher diversity of forest understory plants). Trees were grown in slightly tapered rectangular pots. 

Seedlings were from 3 to 8 months old when planted. In June−July 2009, we outplanted 720 seedlings 

of the six study species. In each of the 20 plots, we planted six individuals of each of the six species—

one of each species under each treatment, for a total of 36 outplantings per plot (Figure 3). 

L
ig

h
t 

C
o
n

d
it

io
n
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Figure 3. Schematic of plot design, with circles indicating the 36 planting microsites, each 

of which includes a seedling (depicted by a small green tree) and a seed planting area 

(depicted by a grate). Microsites indicated by blue circles are ―canopy‖ treatments (in areas 

of high tree density); those with red circles are ―tree‖ treatments (with trees only to the 

north; the trees are either single trees surrounded by pasture or trees along the forest edge); 

those with green circles are ―open‖ treatments (surrounded by no trees). Half of the 

microsites in each light level are ―fern‖ treatments, as indicated by the fern icon. For each 

treatment (combination of light level and fern/no-fern), there is one individual of each 

species planted.  

  

2.2.5. Direct Seeding 

The Future Forests nursery collected and prepared seeds of the six experimental species in Autumn 

2009 and Winter 2010. Nursery staff cleaned the seeds of fruit flesh to prevent decomposition, but 
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seeds were not soaked or otherwise treated prior to planting. In May 2010, we planted seeds in all six 

treatments in the same 36 planting sites per plot in which we outplanted seedlings. We planted one 

species per planting microsite to simplify analysis [47]; species of seeds planted and seedlings planted 

were paired randomly. We planted seeds 10–20 cm from the base of the D. wallichiana fern and at 

least 20 cm from the outplanted seedling. We planted six seeds of one species at each microsite for P. 

hawaiensis , M. sandwichense, C. Montana, and M. lessertiana. We planted three seeds at each  

A. stellata microsite because of scarcity of seeds available. P. albidus seeds were far too small (<1 mm) to 

count individually; we thus spread 0.1 dram of P. albidus seeds in each P. albidus microsite. 

2.2.6. Planting Technique 

We planted each of the 720 experimental seedlings in the center of a 1m diameter circle that had 

been sprayed with 1% solution of Glyphosate herbicide 10–35 days prior to planting. Glyphosate 

inhibits the plant’s photosynthetic pathway, killing any foliage it touches within 12 hours with 

essentially no effect on the plants’ surroundings (i.e., there is no interaction with the soil, and once the 

chemical is metabolized, it stops photosynthesis and is quickly inactivated). During application, the 

individual spraying the herbicide held a 1 m × 1 m piece of plywood against the fern, completely 

shielding fern foliage from contact with the herbicide.  

We cleared grass (including stolons of P. clandestinum) using a hand sickle, and set it aside for use 

as mulch. We used a pick-axe to break grass roots and loosen soil to 8 cm depth within the 1m circle. 

We recorded the approximate sizes of rocks and roots, loosening rocks but not removing them from 

the 1m circle. We left rhizomes, both of target D. wallichiana ferns and of other ferns (almost all of 

them dead) intact (average number of rhizomes per circle was 0.5). We also left coarse woody debris 

(CWD) intact; CWD was present in 9% of microsites, covering on average 20% of those 1 m circles in 

which it was present. 

We conducted direct seeding quickly, in 1–2 minutes, to simulate the likely effort of restoration 

volunteers. We planted seeds in the same 1 m diameter circles as the seedlings, but ten months later; 

the grass had thus received herbicide treatment about 11 months before seed planting. To enhance 

direct seeding success, we covered seeds with a small amount of soil (a depth roughly three times the 

seeds’ diameter) that had been loosened with a 15 cm hoe. Because a common cause of failure in 

direct seeding efforts is seed predation [48,49], we then covered seeds with 30 cm
2
 of wire mesh with 

1 cm weave to protect them from Pternistis erckelii and Lophura leucomelano (both non-native 

pheasants) and Rattus rattus (black rats). 

2.3. Monitoring and Ecological Data Collection 

We measured canopy cover at each outplanting and seeding site with a Nikon hemispherical lens. 

We used data from the hemispherical photographs for analysis, calculating canopy cover from the 180° 

images using the Gap Light Analyzer software (produced by Simon Fraser University).  

To quantify survivorship and growth, we monitored all plantings (seedlings and seeds) at least 

yearly. Frequent monitoring assured that seedling locations were not lost (when seedlings grew slowly 

or died, it was often very difficult to find them). Table 3 details monitoring times. During all 

monitoring sessions, we collected data on multiple aspects of seed and seedlings: whether seeds had 
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germinated and, if they had, germinant height; seedling height (from ground level to the highest apical 

meristem); seedling crown width (two perpendicular measurements of the widest portion of the crown; 

crown length (from lowest branch to highest apical meristem); stem basal diameter (because many 

seedlings had not reached 1.3 m above ground, a standard measurement for tree diameter in forestry 

and ecology called ―Breast Height‖); and (up until, but not including, year 3) number of live leaves 

larger than 1 cm in length or width.  

Table 3. Monitoring Schedule. 

Date of monitoring 
Time elapsed since seedling 

outplanting 

Time elapsed since 

seed planting 

January 2010 6 months n/a 

July 2010 1 year 2 months 

Dec2010 1.5 years 7 months 

July 2011 2 years 14 months 

July 2012 3 years 26 months 

2.4. Economic Data Collection 

We obtained costs of each component of the project from the preserve manager, personnel of Future 

Forests Nursery, and our observations of the time required to complete each task. We estimated the 

average cost per surviving or germinating individual based on survivorship and germination rates in 

the various light conditions. Detailed calculations, including amounts for each component of final cost, 

are in the Supplementary Information. We made three key assumptions in these cost estimates: (1) paid 

labor was available for US$10/hour; (2) staff time for volunteer organization and supervision was 

available at US$25/hour; and (3) staff time required for volunteer coordination was 1.5 times planting time. 

2.5. Statistical Analysis 

We analyzed data using Generalized Linear Mixed Models [50,51], which allowed use of the full 

spectrum of data while accounting for the grouping of samples into plots and species. That is, since 

plants within the same plot were within 50 m of one another, they were not considered independent in 

analyses. Similarly, individuals of the same species were not considered independent, unless species 

was the explanatory variable in a particular analysis. 

We ran different analyses to account for the error structures of our response variables (see Table 4). 

We reduced resulting models in a backward stepwise manner, omitting explanatory variables that 

failed to explain significant variation in the response variable. For the seedling survivorship  

(a dichotomous response variable), we used a binomial error structure. For seedling relative height  

(a continuous response variable), we used a Gaussian error structure, and included only surviving 

seedlings in analysis. For germination success (count of germinated seeds), we used a Poisson error 

structure. See Table 4 for details on analyses conducted, and Table 5 for details and statistics on the 

model selection procedure. 



Sustainability 2013, 5                    

 

1326 

Table 4. Summary of GLMM analyses. 

Question Response variable(s) Fixed Effects 
Random 

Effects 

Error 

Structure 

Did seedling survivorship 

vary by treatment? 

Survivorship at 3 

years (Dead or Alive) 
Treatment Species, Plot Binomial 

Did seedling survivorship 

vary by species? 

Survivorship at 3 

years (Dead or Alive) 
Species Plot, Treatment Binomial 

Did seedling relative 

height vary by light level 

or fern? 

Relative Height 

(Height at 3 yrs / 

Height at planting) 

% Canopy, Fern 

presence/absence 
Species, Plot Gaussian 

Did seedling relative 

height vary by species? 

Relative Height 

(Height at 3 yrs / 

Height at planting) 

Species Plot, Treatment Gaussian 

Did seed germination rate 

vary by light level or fern 

presence? 

Number of 

germinated seeds 

% Canopy, Fern 

presence/absence* 
Plot, Species Poisson 

Did seed germination rate 

vary by species? 

Number of 

germinated seeds 
Species Plot, Treatment Poisson 

(*For seed germination analyses, light and fern conditions were run as separate models because 

continuous and dichotomous variables cannot be jointly run with Poisson error structure). 

Table 5. Model selection process and results. 

   
Fern Light Fern*Light 

Response 

Variable 

Fixed 

Variable(s) 
AIC t / z P t / z P t / z P 

Height Fern*light 2074 −0.951 0.3421 −2.778 0.0057 1.102 0.271 

 
Fern + light 2065 0.192 0.848 −2.843 0.0046 --- --- 

 
Light 2061 --- --- −2.846 0.0046 --- --- 

Germinati

on 
Fern*light 435 −0.152 0.879 0.727 0.467 0.101 0.919 

 
Fern + light 433 −0.16 0.873 1.125 0.261 --- --- 

 
Light 336 --- --- 0.959 0.337 --- --- 

Survival Fern*light 688 0.498 0.619 −4.804 <0.0001 0.266 0.79 

 
Fern + light 686 2.283 0.022 −6.17 <0.0001 --- --- 

 
Light 689 --- --- −6.23 <0.0001 --- --- 

3. Results 

3.1 Seedling Survival 

Overall, 75% of our outplanted seedlings survived. Survival was significantly related to both fern 

presence and light level, with higher survival next to ferns (79% vs. 71% for seedlings not next to 

ferns; z = 2.283; p = 0.022) and in medium and low light levels (81% vs. 64% for seedlings in high 

light; z = −6.17; p < 0.0001) (see Figure 4). Seedling survivorship was higher in canopy and tree 

treatments than in open treatments (z = 5.277; p < 0.0001). We also found that seedling survivorship 
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was greater in the Tree-Fern (TF) than in the Tree-No Fern (TN) treatment (z = −2.199; p = 0.03). 

While the other light conditions demonstrate similar trends (Figure 4), we found no statistically 

significant differences between the Open-Fern (OF) and Open-No Fern (ON) treatments (z = −1.247  

p = 0.212) or the Canopy-Fern (CF) and Canopy-No Fern (CN) treatments (z = −1.263 p = 0.21). 

Seedling mortality in the Tree-Fern (TF) treatment was not significantly different from seedling 

mortality in the two Canopy treatments together (z = 0.115; p = 0.908). We re-ran analyses using only 

planting sites with live ferns at year three, finding slightly different z- and p-values, but no overall 

change in results (Figure 4). Details on post-hoc analyses of survivorship differences by treatment are 

in the Supplementary Information. 

Seedling survivorship was lower at higher (drier) elevations (z = −3.254; p = 0.00114), that is, 

~1400 m as compared to ~1250 m. Relative change in height did not differ significantly by elevation  

(t = −1.879; p = 0.061). 

Controlling for treatment and plot, seedling survivorship was higher for M. sandwichense (92% 

survivorship; z = 3.321 ; p = 0.0009) and for A. stellata (87% survivorship; z = 2.154; p = 0.0312), and 

lower for P. albidus (46% survivorship; z = −4.974 ; p < 0.0001), than for the remaining three species 

(which had an average of 76% survivorship between them) (Table 6). 

Figure 4. Seedling survivorship at three years, by treatment.  

 
Overall, seedling survivorship was higher next to ferns. When broken down by treatment, seedling 

survivorship was significantly greater for the Tree-Fern (TF) treatment than for the Tree-No Fern 

(TN) treatment, but not for the Open-Fern (OF) treatment vs. the Open-No Fern (ON) treatment, 

nor for the Canopy-Fern (CF) vs. the Canopy-No Fern (CF) treatment (these comparisons 

represented by lowercase letters). TF treatments exhibited no difference in seedling survivorship 

from Canopy treatments (CF and CN combined), but TN treatments exhibited lower survivorship 

than both canopy treatments (CF and CN combined). Seedling survivorship was significantly lower 

in open treatments than other light levels (these comparisons represented by uppercase letters). 
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Table 6. Results for Surviorship, Relative Height, and Seed Germination by species.  

Species 
Outplanting 

Survivorship 

Outplanting Relative 

Height (Average ± Std Dev.) 

Seed 

Germination 

M. sandwichense 92%
*
 3.8 (±1.9)

a
 0.1% 

A. stellata 87%* 1.7 (± 1.3)c 15.0% 

C. montana 79%
 3.7 (± 2.3)a 2.1% 

P. hawaiianse 75% 3.0 (± 1.6)b 0.8% 

M. lessertiana  73% 2.0 (± 1.0)c 1.9% 

P. albidus 46% 3.0 (±1.3)b 0.0% 

Seedling survivorship was higher for M. sandwichense and A. stellata (denoted by *) and lower for 

P. albidus (denoted by ) than for the remaining three species. Outplanting relative height was 

similar for M. sandwichense and C. montana (denoted by a); A. stellata and M. lessertiana (denoted 

by c); and P. hawaiianse and P. albidus (denoted by b). 

3.2. Seedling Relative Height 

We calculated seedling relative height as height at monitoring divided by height at planting. 

Relative height at three years was not significantly related to fern presence (t = −0.951; p = 0.342), but 

was related to light levels (t = −2.78; p = 0.0058), with the highest growth at intermediate and high 

levels of canopy cover (Tree and Canopy treatments). Species-specific differences in relative height do 

not address our primary study questions, but are relevant for management. Species’ changes in relative 

height fell into three significantly different groups (see Table 6). M. sandwichense and C. Montana had 

the greatest height increases, with averages of 3.77 (± SD 1.89, n = 110) and 3.72 (± SD 2.33, n = 95). 

A. stellata and M. lessertiana had the smallest height increases, with averages of 1.74 (± SD 1.34, 

n = 116) and 2.01 (± SD 0.999, n = 85), respectively. The remaining two species, P. hawaiianse and P. 

albidus, had intermediate average relative heights: 2.98 (± SD 1.56, n = 79) and 2.99 (± SD 1.32,  

n = 56). The Supplementary Information details post-hoc tests which determined the significant 

differences between these groupings. 

3.3. Seed Germination 

Because P. albidus seeds were too small to feasibly count, and because we did not observe 

germination of a single P. albidus seed, we omit P. albidus from germination calculations. Considering 

the other five species only, 2.8% (n = 3240) of planted seeds germinated. The number of germinated 

seeds did not vary significantly by light level (z = 1,158; p = 0.247) or fern presence (z = −0.211;  

p = 0.833). The proportion of seeds that germinated was greater for A. stellata than for all other species 

(z = 5.073; p < 0.00001; Table 6). 

3.4. Fern Size and Dieback 

Ferns were slightly smaller in open treatments than in canopy and tree treatments. At planting, 

mean frond length was 71.6 (± SD 17.5) cm in the open and 79.3 (± SD 16.75) cm in tree canopy 

treatments (t = 4.096, p = 0.0001); after three years and a notable drought in 2010-2011, average frond 

length was 51.5 (± SD 22.9) cm in the open and 57.8 (± SD 18.6) cm in tree and canopy treatments  
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(t = 2.409, p = 0.0168). Out of the 360 ferns adjacent to which we planted, 64% (230 ferns) still had live 

fronds after three years. Ferns had live fronds in 59% of Open micro-sites, 61% of Tree micro-sites, 

and 72% of Canopy micro-sites; differences in fern dieback between the treatments were not 

significant (CF-OF: z = −1.134, p = 0.257; CF-TF: z = 0.000, p = 1.000). Causes of variation in fern 

dieback were not clear, but drought is the most likely cause. 

3.5. Costs of Various Planting Regimes 

Taking into account most relevant expenses for our sixteen hypothetical planting scenarios and 

based on survivorship rates in our experiment, the projected cost per adult surviving plant was lowest 

in the Outplanting, Volunteers, Shade scenario ($7.59). The projected cost per survivor was highest in 

the Direct Seeding, Paid Personnel, Open plantings scenario ($20.11). See Table 7 for details. 

Table 7. Breakdown of per-plant projected costs for each of sixteen hypothetical 

restoration scenarios. 

  Scenario Details Outcomes 

  Labor rate 

Seed vs. 

Seedling Light levels 

Survivorship / 

Germination 

Rate 

Cost per 

surviving 

seedling 

Scenario           

Outplanting, Volunteers, Shade Low Seedling  Canopy + Tree 80.6%  $ 7.59  

Outplanting, Volunteers, All light Low Seedling  All light levels 75.1%  $ 8.14  

Outplanting, Volunteers, Open and 

Tree Low Seedling  Open + Tree 71.3%  $ 8.59  

Direct Seeding, no P. albidus, 

Volunteers, Shade Low Seed  Canopy + Tree 2.9%  $ 9.25  

Outplanting, Volunteers, Open only Low Seedling  Open only 64.2%  $ 9.53  

Direct Seeding, no P. albidus, 

Volunteers, All light Low Seed  All light levels 2.8%  $ 9.56  

Direct Seeding, no P. albidus, 

Volunteers, Open and Tree Low Seed  Open + Tree 2.7%  $ 9.72  

Direct Seeding, no P. albidus, 

Volunteers, Open only Low Seed  Open only 2.6%  $ 10.25  

Outplanting, Paid Personnel, Shade High Seedling  Canopy + Tree 80.6%  $ 12.63  

Outplanting, Paid Personnel, All 

light High Seedling  All light levels 75.1%  $ 13.55  

Outplanting, Paid Personnel, Open 

and Tree High Seedling  Open + Tree 71.3%  $ 14.29  

Outplanting, Paid Personnel, Open 

only High Seedling  Open only 64.2%  $ 15.86  

Direct Seeding, no P. albidus, Paid 

Personnel, Shade High Seed  Canopy + Tree 2.9%  $ 18.16  

Direct Seeding, no P. albidus, Paid 

Personnel, All light High Seed  All light levels 2.8%  $ 18.77  

Direct Seeding, no P. albidus, Paid 

Personnel, Open and Tree High Seed  Open + Tree 2.7%  $ 19.09  

Direct Seeding, no P. albidus, Paid 

Personnel, Open only High Seed  Open only 2.6%  $ 20.11  
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4. Discussion 

Extensive restoration efforts are underway across Hawaiˈi [18,52–54], some of them combining 

cultural and ecological restoration in novel and promising ways [55]. Globally, while some natural 

regeneration occurs in abandoned pasture land [56], in many systems pastures will not return to native 

forest without human intervention [57]. In Hawaiˈi, native forest is not growing on abandoned 

pastureland, possibly because of low resource-use efficiency of the native Hawaiian flora [58,59] and 

certainly because of competition from non-native grasses [60] and the fire cycle they help to create [61]. 

We employ an experimental approach to provide insight into potentially useful tools for achieving 

culturally and financially acceptable restoration targets [62]. An acceptable and feasible target in this 

case may be a system that conserves some biodiversity, notably by improving habitat for the critically 

endangered C. Hawaiiensis, while providing locally desired ecosystem services [63], such as enhanced 

groundwater recharge [64] and opportunities for collecting native plants for traditional use [65]. 

Our overall survival rate for seedlings (75%) is higher than that found similar efforts (that is, 

restoration outplantings in pasture grasses in the tropics); at high light levels in particular, our 

outplantings’ survivorship (64%) was higher than survivorship in similar studies [66]. Possible factors 

contributing to our high survivorship are greater care in planting, facilitation by ferns, and favorable 

moisture conditions at least at lower elevations – within our study area rainfall decreases slightly with 

elevation [42], and we found higher mortality at higher elevations (i.e., 1450 m vs. 1250 m). The 

species-specific differences in survivorship we found are consistent with past work; in an outplanting 

study in dry forest on Hawaiˈi Island, for instance, survival rates ranged from 23% to 91% across 

species [67]; similarly, in a study of restoration in degraded montane Costa Rican pasturelands, 

survival rates for native tree species planted in full sun ranged from about 0% to about 90% [66,68]. 

We found that planting seedlings in close proximity to a fern (20–30 cm from the base) 

significantly enhanced survivorship, as did medium and low light levels (that is, Tree and Canopy 

treatments). That the effect of the fern was still significant even in analysis including only ferns with 

live fronds at 3 years suggests a particularly strong relationship (because this analysis, which used only 

64% of fern treatments, had a substantially reduced sample size). The enhancement by ferns of 

seedling survival is particularly interesting given recent calls for research on the potential of 

interspecific facilitative interactions to aid restoration efforts [32,33]. In recent decades, the 

importance of facilitation in plant communities has received increasing study, enriching the formerly 

prevailing focus on competitive effects [69].  

The way that facilitative effects vary with environmental conditions, however, has received little 

attention [70] until recently. The ―stress gradient‖ theory proposes that facilitation increases as 

environmental conditions become more severe [71]. Thus, facilitative effects may be particularly 

strong in more extreme conditions, such as in alpine or arid environments [72], or in very dry years [73]. 

While we hypothesized that this might be the case in our study—that is, that the ferns would have the 

strongest effects on seedlings in the open treatments—our results do not support this. The high 

mortality of our fern nurse plants, however, may have masked their potential effect. In our Open 

treatments, only 59% of ferns survived to three years (as compared to 72% in Canopy treatments); 

while this difference in mortality was not significant, the high fern mortality in our most extreme light 

treatment may have precluded detection of the hypothesized signal. In addition, ferns in open 



Sustainability 2013, 5                    

 

1331 

treatments tended to be smaller than those in tree and canopy treatments; this smaller size may have 

further masked potential differentials in facilitation. 

The enhancement by ferns of seedling survival—including for only those seedlings whose treatment 

fern survived the full 3 years—indicates that ferns in our experiment do not compete with seedlings. 

Among our other hypothesized mechanisms of fern interaction–—as shade provider, a water collection 

screen, or indicator of more suitable planting sites–—all are consistent with our results and merit 

further study. In particular, that the fern effect was significant even with data encompassing microsites 

where ferns died back suggests support for, and encourages future research on, our ―suitable planting 

site indicator‖ hypothesis, which receives little attention in the scholarly literature. The ―nurse plant‖ 

hypothesis seems similarly under-studied and under-applied in restoration interventions worldwide [32,33]. 

The few studies that exist, including our study, encourage further work on ―nurse plants‖ and 

facilitation; for instance, studies on logged or grazed land comparing natural regeneration in the 

presence and absence of mature plants (hypothesized facilitators) found greater diversity and/or 

abundance of seedlings or saplings near mature plants [74–76]. Similarly, the few experiments testing 

the role of facilitation (specifically, proximity to mature plants) on restoration outplantings found that 

nurse plants aided seedling survivorship and/or growth [33,77]. The mechanisms at play remain  

little studied [32]. 

The large proportion (36%) of ferns that died back during our experiment complicates interpretation 

of the finding that the presence of a fern aided seedling survivorship. Although our modifications of 

the ferns’ immediate surroundings may have negatively impact the ferns despite our extreme care in 

planting, a more likely reason for fern dieback was the drought. We did not monitor ferns uninvolved 

in the experiment, but it appeared that many D. wallichiana died back during the extreme drought; 

land managers in the area have also observed fern ―death‖ in dry years [78]. Though differences in 

dieback were not significant between treatments, we observed slightly higher fern mortality in open 

treatments; it is possible that had this experiment taken place during a wetter period, there would have 

been less fern dieback in open (drier) areas in particular, and the fern’s impact in open treatments 

might have been significant. 

Our findings of higher survivorship and relatively higher seedling heights in medium and high 

canopy levels (Tree and Canopy treatments, respectively) are not surprising given the ecological habits 

of our outplanted species, all of which thrive in understory [43]. Recent research in a lowland moist 

forest in Hawaiˈi found that relative growth rates were higher at 25% light than at 10% and 5% light [79]; 

that study, though it did not place plants in light levels higher than 25%, is consistent with our finding 

of greatest growth in medium light levels. More generally, this finding is consistent with much work 

on regeneration and restoration in former pasturelands [67,80]. Species-specific differences in growth 

are also to be expected [68], though the particular differences we found have potentially far-reaching 

management implications . Most notably, the consistent success of M. sandwichense in open areas 

suggests that it may be adapted to a much wider, or different, range of conditions than that in which it 

currently exists. This is turn suggests both the use of M. sandwichense in future pasture restoration 

efforts and further research into its success. 

In other tropical pasture landscapes the most important factor in restoration may be seed dispersal [16]. 

Many systems in Hawaiˈi are in a Catch 22 situation: seed dispersal, especially of heavy-seeded 

species, is impeded because of changes in frugivorous bird populations; the return of these dispersers, 
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however, necessitates habitat including large-fruited flora. Another study conducted in Kona Hema 

Preserve found that inadequate seed dispersal and competition with a non-native grass limited seedling 

establishment [81]. We planted both seedlings and seeds, with one-time control of grasses, to explore 

options for overcoming these obstacles. 

Our overall 2.8% seed germination rate is on the same order of magnitude as germination rates 

found in many other direct seeding studies. In a P. Clandestinum-dominated dry forest system also on 

Hawaiˈi Island, for example, Brooks et al. [19] had 3.4% germination in areas with both herbiciding 

and ―broadcast‖ seeding, and about 0.5% germination for areas with herbiciding alone, seeding alone, 

or no treatment. Rates of germination can vary widely, however. Studies in abandoned pasture in Costa 

Rica observed germination rates from 0 to 78% [66]. In a tropical forest system in Thailand, a direct 

seeding experiment using wire mesh to protect seeds (as did our experiment) achieved 10% to 73% 

germination of seeds planted [48]. A study in a seasonal forest in Mexico planted seeds of mature-

forest species in three forest ages; between 5% and 41% of seeds germinated [82]. It is likely that low 

precipitation and an extreme drought [83] in 2009–2010 limited our germination rates.  

Other studies testing germination between different habitat types (including pasture vs. forested 

areas, and under nurse shrubs in pasture vs. under grass in pasture), like ours, found minimal or no 

differences in germination between habitat types. One explanation identified by many of these studies 

was that pasture grasses provide dense cover that leads to soil temperature and moisture similar to that 

in forests [77,82,84]. Different germination rates for different species are not surprising, as 

germination and establishment rates are often part of life history strategies [85]. For instance, larger 

seeded-species generally exhibit higher establishment rates than smaller seeds [86], a pattern borne out 

for large-seeded A. stellata in our study. 

For outplanted seedlings, nursery rearing of seedlings (including seed collection and preparation) 

comprised over 80% of restoration costs per plant. When success/survivorship rates are incorporated 

into costs, however, outplanting was ca. 20% more cost effective. By contrast, past comparisons of 

restoration costs have found direct seeding to be more cost-effective than outplanting, in Costa Rican 

and Californian sites [84,87]. In our case, the projected cost difference per survivor between direct 

seeding and outplanting is not large despite substantial differences in survival/germination. For 

instance, for shade-only and volunteer scenarios, in our system outplanting would cost ca. US$7.59 per 

survivor, while direct seeding would cost ca. US$9.25 per survivor.  

The decision of whether to outplant or direct seed will hinge upon numerous non-financial 

considerations. While the more common approach in restoration projects is outplanting [84], seeds 

have non-financial advantages over outplantings that may in some cases justify slightly higher costs. 

Direct seeding may increase long-term viability of forests by allowing those seeds and seedlings most 

suited to a particular location to germinate and thrive [88]. In addition, in places where non-native 

pathogens, invertebrates, or small amphibians are a concern, seeds may be preferable to avoid 

introductions that can inadvertently accompany nursery soil. In areas where access is difficult, such as 

mountainous terrain, the much greater ease of transporting seeds may be critical [48,49]. Because it 

requires substantially less planting time than outplanting, direct seeding may also be applicable to 

much larger spatial areas [19].  
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5. Conclusion 

This study explores options for restoring former pasturelands to native forest: planting near existing 

native species, planting in high or medium light levels (including planting next to solitary remnant 

trees or adjacent to forest edges), and direct seeding as compared to outplanting. Increased 

understanding of facilitation processes and how they vary with environmental gradients (whether those 

gradients are caused by human or non-human forces) may spur new ideas and tools for ecological 

restoration [32,33,70]. Similarly, an understanding of how particular species can thrive in various light 

conditions may increase possibilities for restoration [26,27]. Our results demonstrate that a variety of 

restoration techniques can be successful and cost-efficient, increasing the options available to 

restoration practitioners. These findings can aid restoration decision-making that takes into account 

both landscape characteristics (e.g., existing flora and light levels) and resources available  

(e.g., money, nursery space, and volunteers) to maximize desired benefits. 

Supplementary Material  

Supplementary information can be accessed at:  

http://www.mdpi.com/2071-1050/5/3/1317/s1. 
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