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Non-linear regression models for time
to flowering in wild chickpea combine
genetic and climatic factors
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Abdullah Kahraman7, Abdulkadir Aydogan6, Douglas Cook5, Sergey Nuzhdin2 and Maria Samsonova1*
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Novosibirsk, Russia. 20-25 August 2018

Abstract

Background: Accurate prediction of crop flowering time is required for reaching maximal farm efficiency. Several
models developed to accomplish this goal are based on deep knowledge of plant phenology, requiring large
investment for every individual crop or new variety. Mathematical modeling can be used to make better use of more
shallow data and to extract information from it with higher efficiency. Cultivars of chickpea, Cicer arietanum, are
currently being improved by introgressing wild C. reticulatum biodiversity with very different flowering time
requirements. More understanding is required for how flowering time will depend on environmental conditions in
these cultivars developed by introgression of wild alleles.

Results: We built a novel model for flowering time of wild chickpeas collected at 21 different sites in Turkey and
grown in 4 distinct environmental conditions over several different years and seasons. We propose a general
approach, in which the analytic forms of dependence of flowering time on climatic parameters, their regression
coefficients, and a set of predictors are inferred automatically by stochastic minimization of the deviation of the model
output from data. By using a combination of Grammatical Evolution and Differential Evolution Entirely Parallel
method, we have identified a model that reflects the influence of effects of day length, temperature, humidity and
precipitation and has a coefficient of determination of R2 = 0.97.

Conclusions: We used our model to test two important hypotheses. We propose that chickpea phenology may be
strongly predicted by accession geographic origin, as well as local environmental conditions at the site of growth.
Indeed, the site of origin-by-growth environment interaction accounts for about 14.7% of variation in time period
from sowing to flowering. Secondly, as the adaptation to specific environments is blueprinted in genomes, the effects
of genes on flowering time may be conditioned on environmental factors. Genotype-by-environment interaction
accounts for about 17.2% of overall variation in flowering time. We also identified several genomic markers associated
with different reactions to climatic factor changes. Our methodology is general and can be further applied to extend
existing crop models, especially when phenological information is limited.
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Background
Chickpea (Cicer arietinum L.), is the second most culti-
vated grain legume crop, grown in more than 50 countries
of the world (ICARDA). Chickpea, which was originally
domesticated in Southeastern Turkey, has been adapted to
various environmental and climatic conditions across the
globe from subtropical conditions in South Asia and East
Africa to Northern regions of temperate North America.
The time duration for chickpea to reach its reproductive
phase is often limited by changing temperatures, rainfall
pattern, daylength or competition for use of land by other
crops in rotation [1, 2]. In Mediterranean and temper-
ate regions, chickpeas are sown in spring where the day
length and temperature increase towards the reproductive
period, while in subtropical regions (Center and South-
ern India, Ethiopia, Queensland Australia) it is planted
in the start of the dry season after the monsoonal rainy
season when daylengths tend to be shorter and temper-
atures cooler. In the more temperate northern parts of
India, the reproductive phase of spring-planted chickpea
coincides with decreasing temperature and day length,
whereas in the southern and the central parts of the coun-
try it falls within terminal drought (the end of the dry
season) [3, 4]. Hence, chickpea breeding has focused on
developing varieties differing in their growth duration to
be able to adapt to different latitudes and sowing regimes
[3, 5–7]. To achieve consistent yield, crop duration must
closely match the available growing season [8]. Chickpea
cultivars and landraces become increasingly temperature
responsive as from the Mediterranean through northern,
central and southern India, because these disparate ori-
gins have selected for contrasting phenological regulators
[3]. This information is invaluable for modeling crop per-
formance. For example, Vadez et al. (2012, 2013) [9–11]
considered climatic factors like expected rainfall to pre-
dict performance of chickpeas in different geographical
locations.

Several successful plant models like SSM [10, 12],
DSSAT [13–17], APSIM [18] and others [19, 20] have
been developed for legumes. These models use differential
equations to describe biophysical and biochemical pro-
cesses like photosynthesis, water uptake etc. and account
for impact of genotype, soil, weather and economic fac-
tors. The influence of weather conditions is assessed using
concepts like Heat Unit Index (HUI) [20], Crop Heat Units
(CHI), Degree Days (DD), Biological Days (BD) [9] – all of
them quantitatively characterizing the rate of progression
to the next phenological phase on a daily basis. Both DD
and BD could depend on temperature, water content and
photoperiod. This formalism was applied to develop indi-
vidual models for important crops. For example, DSSAT
was used to simulate growth and yield in soybean [21]
and chickpea [22] among several other crops [23–26]. For
more than three decades these models have been applied

in research projects of different countries. The SSM model
was successfully tested using independent data from a
wide range of growth [10, 12] and environmental condi-
tions including Iran [27] and water deficit in India [11].
Considerable manipulations are required to adapt the
DSSAT model to new environments and cultivars [28–32],
limiting the utilization of these models. As varieties are
constantly changing because of new releases that can cope
with emerging pathogens and pests, as well as shifting
consumer demands, the need for flexible models that can
adjust to new varieties is high.

In an era of rapidly advancing genomic technolo-
gies and approaches, updated modeling approaches that
can be tailored to genotype-specific effects are essen-
tial. Next generation sequencing and high throughput
genotyping lead to identification of thousands of molec-
ular markers (SSR, SNP, STMS, ESTs, CISP, DArT) [33]
making it possible to construct chickpea genetic maps
[34, 35] and ultimately to dissect the effect of differ-
ent loci on key traits like flowering time. A combination
of Sanger, 454/FLX and Illumina reads have been used
to generate in transcriptome and genome assemblies for
chickpea [34, 36–38].

Due to these advances in sequencing technolo-
gies and data acquisition, the genome-wide association
study (GWAS) has become an important approach to
understand the genetics of natural variation and traits of
agricultural importance. Recent examples of GWAS in
agriculturally important plants include identification of
photoperiodic flowering time genes in sorghum [33], frost
tolerance genes in barley (Hordeum vulgare L.) [34]; leaf
architecture [35] and resistance to southern leaf blight
genes in maize [36] as well as several agricultural traits in
rice [37], to name a few. To extend GWAS to the analysis of
genotype-by-environment (G×E) interactions bioclimatic
variables can be used as a GWAS phenotype. Association
between bioclimatic variables at a site of an accession’s ori-
gin and SNPs can indicate climatic adaptation [39]. While
GWAS is a good method to identify genomic regions
associated with important traits, typical GWAS designs
require controlled planting of replicated accessions. This
can quickly become logistically daunting and expensive
across many sites.

Crop models may complement GWAS approaches by
accounting for the influence of environmental factors [16].
However the models developed in the pre-genomic era
considered genotype influence at best as a set of given
“genetic coefficients” that do not correspond to actual
genes [40]. Therefore these models were unable to sim-
ulate gene-by-environment interactions, thereby limiting
their utility in predicting phenological characteristics of
cultivars across different geographical locations and geno-
types [9]. Mathematical models and tools that combine
genetic and climate data to predict agronomic traits will
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greatly benefit breeders by simulating the performance
of any given well-characterized genotype in any given
well-characterized environment [41, 42].

While some of the current crop models consider the
influence of local environmental conditions and others
global climate changes for locally grown varieties, here,
we built a new model using the flowering time of two
species of wild chickpeas (Cicer reticulatum L. and C.
echinospermum) collected at 21 different sites in Turkey
and grown in 4 distinct environmental conditions. We
further use our model to test two important hypotheses.
Firstly, we propose that besides local environmental fac-
tors, chickpea phenology may be strongly predicted by
accession geographic origin. Secondly, as the adaptation
to specific environments is blueprinted in genomes, the
effects of genes on flowering time may be conditioned on
environmental factors. We check these hypotheses by sta-
tistical modeling of chickpea responses to climate change
scenarios conditional on geographic site of origin and
genotype.

Materials and methods
Dataset of wild chickpea accessions
The dataset consists of wild chickpea (Cicer reticulatum
L. and Cicer echinospermum). Accessions were collected
at 21 sites in five regions in Turkey (see Additional file 1:
Table S1) by von Wettberg et al. [43]. These wild acces-
sions were planted in climatically distinct sites in Turkey
(Sanliurfa and Ankara, autumn and spring-sowing) and
Australia (Floreat, near Perth, WA and Mt.Barker, WA).
Being grown in contrasting environments the phenotype
data on time to flowering is highly diverse. The distribu-
tion of time to flowering for the whole dataset is shown
in Fig. 1. The time to flowering ranges from 64 to 221
day. Details on the phenotyping experiment and its subse-
quent analysis will be presented in the future manuscripts
(Berger, J.: Analysis of phenotyping of wild chickpea in
diverse environments, in preparation).

Climatic data was downloaded from NNDC Climate
Data on-line [44]. The summary of agroclimatic factors
as well as results of testing their correlation with flower-
ing time are given in Additional file 1: Table S2 and S3,
respectively.

A companion paper studying the genetic association
of flowering time in one of the wild chickpeas (Cicer
reticulatum L.) has identified six suggestive polymorphic
sites associated with flowering time (Singh, A.: Genome-
wide association studies in wild chickpea, in preparation).
These SNPs were identified as the best SNPs after run-
ning a mixed linear model (MLM) in TASSEL, which
associated flowering time (phenotype) with the geno-
types using site/year/season as a factor to account for
their effect on phenotype. Additional file 1: Table S6
presents number of times the reference allele for a SNP

Fig. 1 Distribution of time to flowering for the whole dataset. The
range for time to flowering is from 64 to 221 day

associated with flowering time is present in plant geno-
types. To access genotype-environment interactions we
group plants into 18 groups – one for each alternative
(ALT) and reference (REF) allele combination (ALT/ALT,
REF/ALT and REF/REF) – for each SNP and built a
model (1) for each group.

Regression model for time to flowering
We model a time period from sowing to flowering as a lin-
ear combination of N control functions Fn, n = 0, . . . , N−1
of agroclimatic factors. Thus, the model takes the form (1)

yi = β0 +
N−1∑

n=0
βn+1 ·Fn(Xi)+εi i = 0, . . . , I −1 (1)

where yi is modeled phenotype (time from sowing to flow-
ering) for each plant i from a group of the size I, βn are
coefficients, n = 0, . . . , N , that are to be found to min-
imize the discrepancy between data and model , Xi is a
vector of agroclimatic factors and εi is a standard error.
The number of coefficients is N+1 because β0 is an intercept.

In comparison with previous models in our approach
control functions Fn are automatically composed in ana-
lytic form from the expressions of climatic factors. Thus,
a wider range of non-linear dependencies between the
phenotype and factors is explored (see “Analytic form of
control function” on page 4).

To study the adaptation to environment of origin
we represent collection sites as L = 21 binary vari-
ables, where l = 1, . . . , L enumerates locations: Baris-
tepe1, Baristepe2, Baristepe3, Beslever, Cermik, Cudi,
Cudi2, Dereici, Destek, Egil, Gunasan, Kalkan, Karabahce,
Kayatepe, Kesentas, Ortanca, Oyali, Sarikaya, Savur1,
Sirnak1, Siv-Diyar (see column 1 in Additional file 1:
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Table S1). For each plant enumerated with i = 0, . . . , I − 1
one of the L variables dl

i takes the value ’1’ to indicate
collection site and others are ’0’. The interaction between
control function and location is modeled by an addi-
tional term in the regression function that has the form
of a weighted sum of N · L pairwise products of control
functions Fn and each binary site variable dl

i .
Consequently, a model with information about a collec-

tion site takes the form (2).

yi = β0+
N−1∑

n=0
βn+1 ·Fn(Xi)+

N−1∑

n=0

L∑

l=1
ζl·N+n ·Fn(Xi)·dl

i +εi

(2)

where in addition to notations used in (1) new regression
coefficients ζl·N+n define the influence of function Fn of
climatic factors on phenotype of plants collected at site
l so that condition ζl·N+n �= 0 points on plant adapta-
tion to the site. As a result, this model makes it possible
to regress a range of climatic variables describing the phe-
notyping site (e.g. day length, temperature, precipitation
etc.) independently for each of our 21 collection sites.

We denote K number of SNP and J = 3 combinations
of alternative (ALT) and reference (REF) alleles ALT/ALT,
ALT/REF and REF/REF by 0, 1, and 2, respectively. Then
to include GWAS results into the model we define J · K
groups of plants so that members of the same group have
the same combination of alleles in one of the SNP posi-
tions. Thus we define a matrix D with the number of rows
equal to the number of plants I and J · K columns. Then,
the elements of matrix D are defined by (3). Thus, the form
of the regression function adapts to the allele combination
of a plant by changing the weights of control functions.

d3k+j
i =

{
1 if in plant i the combination for SNP k is j
0 otherwise

(3)

Consequently, a model with genetic information takes
the form (4).

yi = β0 +
N−1∑

n=0
βn+1 · Fn(Xi) +

N−1∑

n=0

K−1∑

k=0

J−1∑

j=0
ρ(3k+j)N+n · Fn(Xi) · d3k+j

i + εi

(4)

where in addition to notations used in (1) new regression
coefficients ρ(3k+j)N+n, define the effect of genotype-by-
climatic factor interaction.

Analytic form of control function
In previous studies different forms of dependencies
between phenotype and climatic factors have been
considered [45–50]. For example, “segmented”, “beta”,
“quadratic” and “dent-like” functions were considered in
[10]. A product of quadratic functions of day length

and mean temperature was used in iterative regres-
sion analysis (IRA) [51] to characterize a developmental
speed per day. An interphase speed was calculated as a
product of the effects of day length, water deficit and
temperature in [52].

We propose a more general approach, in which the ana-
lytic form of a control function together with regression
coefficients and a set of predictors are inferred automat-
ically by stochastic minimization of the deviation of the
model output from data. We use a combination of Gram-
matical Evolution (GE) [53, 54], LASSO [55] and Differ-
ential Evolution Entirely Parallel (DEEP) [56, 57] method
to recover analytic form of Fn, find regression coefficients
and determine the set of climatic factors, respectively [58].
Differential Evolution was proposed by Storn and Price in
1995 [59] as a heuristic stochastic optimization method.
DEEP was developed by us for application in the field
of bioinformatics [56]. It includes several recently pro-
posed enhancements [57, 60]. More details can be found
in Additional file 1: Section S5.

In GE, the analytic function form is built by decoding
the sequence called “word” of L integers called codons.
Decoding is performed according to simple rules of sub-
stitution that establish a correspondence between codons
and either an elementary arithmetic operation: ‘+‘, ‘-‘,
‘*‘, ‘/‘, or expression: X, (X - Const), 1/(X -
Const), where X is a name of a predictor and Const is
some constant number (see Additional file 1: Section S2).
To make estimation of regression coefficients with LASSO
method reliable we performed 4-fold cross-validation at
this stage so that the model was build using 75% of sam-
ples for training and the rest 25% was used for evaluation
of the model.

Statistical tests
We used standard statistical techniques for hypothesis
testing implemented in R system for statistical com-
puting [61]. We used multiple-way analysis of variance
(MANOVA) with the Pillai test statistic [62] and ANOVA
with the Fisher test statistic to check for significance
in the difference of effects of climatic factors on phe-
notype between locations and genotypes. For pairwise
comparison of the influence of climatic factors on phe-
notype between genotypes and locations we applied the
Wilcoxon-Mann-Whitney test.

The Spearman’s rank correlation was used to estimate
correlation between allele frequencies and climatic factors
at primary collection sites (geographic sites of origin).

Software tools
Although a few Grammatical Evolution (GE) implemen-
tations are freely available (see e.g. [54, 63]) they either
lack a specific set of expressions or show low performance
in experimental runs due to interpreted language (data
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not shown). Consequently a decision was made to imple-
ment GE in C++ using Armadillo [64], mlpack [65], HDF5
[66], HighFive [67] and Qt [68] as these packages pro-
vide efficient matrix operations, the LASSO method, data
input-output and utility functions, respectively. The code
is open-source on GitLab [69].

TASSEL (Trait Analysis by aSSociation, Evolution and
Linkage) [70] was developed in Java, and is compatible
with multiple operating systems (Windows, Linux and
Mac OS). TASSEL can implement several different GWAS
models like general linear model (GLM) and MLM using
a GUI or command line version of the software.

Results
We first performed ANOVA test to check for differences
in mean time to flowering between accessions collected
at different sites in Turkey to demonstrate that flower-
ing time is an adaptive trait in chickpea. The difference in
means was significant with criterion value F = 2.003 and
p = 0.005 < 0.05.

Model with interactions between climatic factors and
locations
Next, to estimate the effect of interaction between cli-
matic factors at phenotyping sites and sampling locations
in Turkey on flowering time we built a model (2). A series
of numerical experiments were performed, as several runs
are needed to obtain a reliable solution with stochastic
optimization. By several trial-and-error attempts (data not
shown) it was established that the number of control func-
tions N = 12 and the length of the “word” L = 5 were
the best parameters for the model. The population size for
DEEP was set to 500.

We obtained several solutions with coefficient of
determination > 0.85 and different analytic forms of
the control functions (data not shown). We selected
the model (5) as it reflects the influence of effects of
day length, temperature, humidity and precipitation in
the phenotyping environment and has coefficient of
determination R2 = 0.97.

TTF =59.49 + 74.95Dmin
x10 + 19.83/

(
Tmin

x5 − 0.03
) − 1.98Pmean

x10

− 53.18
(
Dmean

x50 + 1/
(
Umean

x10−15 − 23.31
)) − 13.04Dmean

x10−15

− (0.05 · Baristepe1+ 0.12 · Baristepe3+ 0.29 · Beslever
+ 0.31 · Dereici+ 0.45 · Kayatepe+ 0.03 · Kesentas
+ 0.74 · Siv− Diyar+ 0.01 · Sarikaya+ 0.10 · Sirnak1
+ 0.20 · Oyali) · (

Dmean
x50 + 1/

(
Umean

x10−15 − 23.31
))

+ (0.03 · Cudi2+ 0.16 · Destek+ 0.09 · Gunasan (5)

+ 0.46 · Kesentas+ 0.43 · Oyali
+ 0.28 · Sirnak1) · Dmin

x10

+ (0.41 · Cudi+ 0.05 · Karabahce− 0.003 · Kesentas
+ 0.02 · Oyali− 0.12 · Sirnak1) · Dmean

x10−15,

where Dmin
x10 , Dmean

x50 , Dmean
x10−15 denote minimum day length

over 10 days after sowing, mean day length over a period
of 50 days and from 10 to 15 days after sowing, respec-
tively, Tmin

x5 denotes minimum temperature over 5 days
after sowing, Umean

x10−15 denotes mean relative humidity
over an interval from 10 to 15 days after sowing and Pmean

x10
denotes average precipitation over 10 days after sowing.

The analysis of relative difference in the sum of squares
for a model with and without a term describing an inter-
action between climatic factor at the phenotyping site and
the accession geographic site of origin allows us to con-
clude that sampling collection site-by-phenotyping envi-
ronment interaction accounts for about 14.7% of variation
in time period from sowing to flowering.

We found that day length-by-collection site interaction
is important for locations Baristepe3, Cudi, Cudi2, Destek,
Gunasan, Karabahce, and both day length and humidity-
by-collection site interaction are important for Baristepe1,
Beslever, Dereici, Kayatepe, Kesentas, Oyali, Siv-Diyar,
Sarikaya, and Sirnak1 sampling sites. There were no inter-
actions between climatic factors and collection sites in
Baristepe2, Cermik, Egil, Kalkan, Ortanca and Savur1.

Basic flowering time models for locations
To analyze how climatic factors at phenotyping sites affect
flowering time of plants collected at different locations
we built basic models (1) for groups of plants sampled at
each location separately. We present selected models with
the highest coefficients of determination

(
R2) between

simulated and observed flowering time for each group in
Additional file 1: Section S3. The distributions of time
to flowering for these groups are presented in Additional
file 1: Figure S2. Due to the stochastic nature of the proce-
dure ten runs were performed with the same algorithmic
parameters using different seeds for the random number
generator to obtain an ensemble of models. Various fac-
tors and their combinations were selected as predictors by
stochastic optimization.

Consequently, the effect of phenotyping environment
day length, temperature, precipitation, humidity and their
pairwise combinations on flowering time for plant groups
was estimated with a coefficient of determination aver-
aged over the ensemble of models, taking into account
only terms dependent on the factor in question. The
resulting coefficient values for each factor and factor com-
bination are presented for all collection sites in Additional
file 1: Figure S3–S7.

We compared the mean effect of climatic factors or fac-
tor combinations between accessions from different loca-
tions in Turkey with multiple-way ANOVA (MANOVA)
using the values of coefficients of determination obtained
in model runs as dependent variables and location as
an independent variable. A Pillai statistics of 1.697 with
p = 0.037 < 0.05 confirmed the statistical significance
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of differences in mean influences of factors and their
combinations on phenotype between locations.

Further, we applied one-way ANOVA to test the dif-
ference in effects on flowering time between accessions
from different locations for each climatic factor or fac-
tor combination individually. Temperature, precipitation
and their combination showed significant differences in
the means of coefficient of determination values with F =
3.617, p = 1.806e − 06 and F = 2.233, p = 0.003 and
F = 2.038, p = 0.008 respectively.

Analysis of the climatic factor effect on phenotype
We continue our analysis of effects of climatic factors on
flowering time for accessions from different locations with
a pair-wise comparison method. Firstly, the direction and
extent of each factor influence on phenotype was esti-
mated as a finite difference approximation of the partial
derivative of a regression function (1) in respect to the
factor. Figure 2 presents the box plots of factor influence
estimators calculated for model ensembles and for each
location.

It is evident that both effects of day length and tempera-
ture on flowering time are location-dependent. For acces-
sions collected at some locations increasing day length
(e.g. Egil) or temperature (e.g. Ortanca) speeds up the
rate of flowering, while at other locations the response to

these factors is reversed (e.g. Kesentas). Surprisingly there
was a consistent effect of precipitation across all acces-
sions whereby higher precipitation reduced the time to
flowering. This result is consistent with negative corre-
lation between precipitation measures and time to flow-
ering (see Additional file 1: Table S3). In comparison
with precipitation the influence of humidity is opposite
for most locations: the flowering time increases with rise
of humidity. The influences of factor combinations are
comparatively negligible.

Next, we compared the means of estimators of a fac-
tor’s influence on phenotype for location pairs with
a Wilcoxon-Mann-Whitney test. Statistically significant
differences in means between locations pairs are pre-
sented in Figs. 3, 4, 5, and 6 for day length, temperature,
precipitation and humidity, respectively.

Flowering time model with climatic factor-by-genotype
interaction
Different genotypes may react differently to climatic fac-
tors. Here we check this hypothesis using the flowering
time model (4) with the interaction term between climatic
factors and genotype. We identified six SNPs associated
with flowering time (see Additional file 1: Table S5). Here
we subdivided all the plants into 18 groups, each contain-
ing similar allele combination at one of six polymorphic

Fig. 2 Analysis of climatic factor effects on phenotype. Box plots of climatic factor influence estimators calculated for model ensembles and for each
location as a finite difference approximation of the partial derivative of a regression function (1) in respect to the factor. Each box covers two
quantiles from 25 to 75% of influence’s variation with a horizontal line at median value of the estimated influence. Empty circles represent outliers.
Boxes located higher than zero mark on vertical axis represent a positive influence of a factor on flowering time. In this case increasing the factor
speeds up flowering. Other boxes represent an opposite case. “DL”, “TEMP”, “P” and “U” correspond to factors related to day length, temperature,
precipitation and humidity, respectively
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Fig. 3 Results of pair-wise comparisons of day length influence on flowering time. Mann-Whitney-Wilcoxon test was applied to compare the means
of day length influence estimators for locations. Statistically significant differences in means are shown as red color gradation, cells with statistically
non-significant comparisons are left blank

Fig. 4 Results of pair-wise comparisons of temperature influence on flowering time. Mann-Whitney-Wilcoxon test was applied to compare the
means of temperature influence estimators for locations. Statistically significant differences in means are shown as red color gradation, cells with
statistically non-significant comparisons are left blank
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Fig. 5 Results of pair-wise comparisons of precipitation influence on flowering time. Mann-Whitney-Wilcoxon test was applied to compare the
means of precipitation influence estimators for locations. Statistically significant differences in means are shown as red color gradation, cells with
statistically non-significant comparisons are left blank

Fig. 6 Results of pair-wise comparisons of humidity influence on flowering time. Mann-Whitney-Wilcoxon test was applied to compare the means
of humidity influence estimators for locations. Statistically significant differences in means are shown as red color gradation, cells with statistically
non-significant comparisons are left blank
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sites (see the “Regression model for time to flowering”
section for more details). We further refer to these groups
as SNP groups.

Ten runs were performed with the same algorithmic
parameters but different seeds for random number gen-
erator. The model (6) with the best coefficient of deter-
mination R2 = 0.97 was selected for further analysis.

TTF = − 5.71 · Tmax
x5−10 − 3.87 · Tmax

x15−20 − 0.39 · (
1/

(
Dmin

x60 −293.08
) + Tmax

x10−15
)

+5.42 · Dsum
x10−15/

(
Dmin

x15−20 · Pmean
x50 + 1

)

+20.08 · (
Tmean

x5−10 + (
Umean

x10−15 − 0.004
)
/
(
Tmin

x5−10 − 210.12
))

+(0.06 · snp5AA+ 0.49 · snp3RR) · Tmax
x5−10

+ 0.05 · snp3AA · Tmax
x15−20

−(0.02 · snp1RR+ 0.002 · snp2AA+ 0.16 · snp2RR
+ 0.09 · snp3AA+ 0.50 · snp3RR+ 0.007 · snp4RR
+ 0.14 · snp5RR+ 0.04 · snp6RR) · (

1/
(
Dmin

x60 − 293.08
) + Tmax

x10−15
)

+0.11 · snp4RR · Dsum
x10−15/

(
Dmin

x15−20 · Pmean
x50 + 1

)

+0.54 · snp3AA · Tmean
x5−10,

(6)

where Dmin
x60 , Dmin

x15−20 denote minimum day length over 60
days after sowing and over a period from 15 to 20 day after
sowing, respectively; Dsum

x10−15 denotes sum of day lengths
over a period from 10 to 15; Tmax

x15−20, Tmax
x10−15 and Tmax

x5−10
denote maximum temperatures over a periods from 15
to 20, from 10 to 15 and from 5 to 10 days after sowing,
respectively; Tmean

x5−10 and Tmin
x5−10 denote mean and mini-

mum temperatures over a period from 5 to 10 days after
sowing, respectively; Umean

x10−15 denotes mean humidity of
an interval from 10 to 15 days after sowing and Pmean

x50
denotes mean precipitation of a period over 50 days after
sowing.

While SNPs were identified only in Cicer reticulanum
samples from 15 collection sites we are able to fit the
model to the whole dataset giving appropriate values to
the indicator variables – the elements of matrix D (see
formulae 3 and 4).

The analysis of relative difference in the sum of squares
for a model with and without the interaction terms
between climatic factors and each SNP group allows us
to conclude that genotype-by-environment interaction
accounts for about 17.2% of variation in time period from
sowing to flowering. All SNPs interact with temperature
and day length. Additionally, SNP3 interacts with relative
humidity and SNP4 interacts with precipitation.

To analyze the difference in response of SNP groups
to climatic factors we built regression models (1) for
each group separately. The distributions of time to
flowering for these groups are presented in Additional
file 1: Figure S8–S13. Selected models are presented in
Additional file 1: Section S4.

Due to the stochastic nature of the procedure ten runs
were performed with the same algorithmic parameters
using different seeds for the random number generator to
obtain an ensemble of models. Various agroclimatic fac-
tors and their combinations were selected as predictors by
stochastic optimization.

We calculated the coefficients of determination for
ensemble of models from which the terms that do not
contain a predictor of a climatic factor or a combina-
tion of factors analyzed were excluded. The box plots of
coefficient values for day length, temperature, precipita-
tion, humidity and their combinations are presented in
Additional file 1: Figure S14–S19 for all SNPs.

The multiple-way ANOVA (MANOVA) applied to
the coefficient of determination as dependent variable
and SNP group membership as an independent variable
showed that the difference in mean effects of climatic fac-
tors on SNP groups is statistically significant (Pillai satistic
value 1.287, p = 1.333e − 09 < 0.05).

Next we applied one-way ANOVA to test the influence
of each climatic factor individually. The significant differ-
ences in the means of the coefficient determination values
were observed for day length, humidity and the combi-
nation of precipitation and day length (F = 2.102, p =
0.009497 and F = 6.642, p = 5.159e − 12 and F = 1.904,
p = 0.0218 respectively).

The next step in our analysis was the pair-wise com-
parison of climatic factor influences on flowering time
between SNP groups. The direction and extent of each
factor influence on phenotype was estimated as a finite
difference approximation of the partial derivative of a
regression function in respect to the factor. Additional
file 1: Figure S20 presents the box plots of factor influence
estimators calculated for model ensembles and for each
SNP group.

The means of estimators of a factor influence on phe-
notype averaged over SNP groups were compared with
a Mann-Whitney-Wilcoxon test. As is evident from an
analysis of Table 1, climatic factors had divergent effects
on genotypes with different reference alleles at five out
of six polymorphic position analyzed. As an example,
for SNP1 (T→G) day length has different effects on
plants with ALT/ALT and REF/ALT, as well as REF/REF
and ALT/ALT allele combinations. Precipitation influ-
ences plants with ALT/ALT and REF/REF combinations
differently. In case of SNP2 (A→G) we found clear dif-
ferences between genotypes with ALT/ALT and REF/REF
for combination of day length with either tempera-
ture or precipitation. For SNP3 (C→T) humidity affects
genotypes with ALT/ALT and REF/REF differently, day
length – temperature combination exerts different influ-
ence on ALT/ALT and ALT/REF genotypes, as well as
ALT/REF and REF/REF genotypes, day length – precip-
itation combination shows different effects on ALT/ALT
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Table 1 Statistically significant differences in effects of climatic
factors and their combinations on plant genotype

SNP Factor Genotype pairs P value

1 DL REF/ALT vs. REF/REF 0.035

1 P ALT/ALT vs. REF/REF 0.032

1 DL ALT/ALT vs. REF/REF 0.044

2 DL*TEMP ALT/ALT vs. REF/REF 0.021

2 DL*P ALT/ALT vs. REF/REF 0.040

3 DL*TEMP ALT/ALT vs. REF/ALT 0.017

3 U ALT/ALT vs. REF/REF 0.019

3 DL*TEMP REF/ALT vs. REF/REF 0.045

3 DL*P ALT/ALT vs. REF/ALT 0.049

5 DL ALT/ALT vs. REF/ALT 0.042

5 DL REF/ALT vs. REF/REF 0.043

5 P REF/ALT vs. REF/REF 0.021

6 DL ALT/ALT vs. REF/ALT 0.021

The pair-wise comparisons were performed with Mann-Whitney-Wilcoxon test. DL-
day lengthh, TEMP – temperature, P – precipitation; REF – reference allele, ALT –
alternative allele for polymorphic site

and REF/ALT genotypes. For SNP5 (C→A) there is differ-
ence in influence of day length on REF/REF and REF/ALT,
as well as REF/ALT and ALT/ALT genotypes. In addi-
tion, precipitation also affects differently ALT/REF and
REF/REF genotypes. Different effects of day length on

ALT/ALT and REF/ALT genotypes is evident for SNP6
(A→G).

To further understand the relationship between precip-
itation and the allele frequency of the SNPs, we correlated
the allele frequency of 15 populations (see Additional
file 1: Table S4) at the putative GWAS SNPs with the mean
annual precipitation at the primary collection sites of the
genotypes. Allele frequency of the SNPs 1, 4, 5 and 6 have
a linear relationship and are correlated with mean annual
precipitation. This is indicative of the alleles being fixed
in the populations which are found in the areas with high
mean precipitation (see Fig. 7). Spearman’s rank corre-
lation between mean annual temperature and the allele
frequency of the SNPs resulted in no significant relation-
ship. This is indicative of 2 possible scenarios, a) the mean
annual temperature value might not be indicative of crit-
ical time window affecting the time of flowering in the
genotypes, b) the SNP alleles are not in genes involved
in the pathways of temperature response (see Additional
file 1: Figure S1).

Discussion
The lifecycle of chickpea is strongly determined by
environmental factors. Consequently, its phenology is
likely strongly predicted by geographic origin and local
phenotyping environment, as demonstrated in domestic

Fig. 7 Correlations of mean annual precipitation (mean_annual_prec) with allele frequency of the 6 GWAS SNPs calculated for 15 populations of the
wild chickpeas (shown for completeness). Allele frequency of SNPs 1, 4,5 and 6 are correlated with mean annual precipitation. The allele frequencies
have a linear relationship at each of these significant SNPs, showing that these alleles are nearly fixed in the population in regions with high mean
annual precipitation
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chickpea cultivars and landraces originating from the
Mediterranean to southern India [3]. Here we investi-
gate this hypothesis in the wild progenitors of chickpea
by statistical modeling of chickpea responses to envi-
ronment conditional on geographic site of origin and
genotype. Usually the extent of G × E interaction due
to sampling site and environmental factors is modeled
by state-of-the-art techniques such as AMMI and fac-
torial regression or by using bioclimatic variables as a
GWAS phenotype. Here we implemented a more gen-
eral solution in which the analytic form of dependencies
between predictors (climatic factors, collection sites and
genotypes) and phenotype (flowering time) is automat-
ically inferred by a stochastic optimization technique.
Apart from automation the advantage of our approach
resides in its ability to quickly examine different fits to
the data and select the optimal one. We performed model
parameterization on a wild chickpea dataset collected at
21 different locations in Turkey [43] grown in 4 differ-
ent environments. GWAS analysis of the data identified
six polymorphic sites responsible for flowering time vari-
ation independent of environmental conditions (Singh,
A.: Genome-wide association studies in wild chickpea, in
preparation).

We built two types of flowering time models – for
the whole dataset and for groups of plants, that either
originated from one sampling site or have similar allele
combination at one of the 6 SNP positions.

Using the models for the whole dataset we found that
14.7% and 17.2% of variation in time to flowering is
accounted for by interactions of climatic factors with
geographic origin of the plant and its genotype, respec-
tively. Contrary to previous approaches that measure the
combined sensitivity of the phenotype to all environmen-
tal factors, our approach makes it possible to identify
responses to specific environmental conditions and sam-
pling locations in individual accessions, collection sites
or SNP groups. In this case we have treated collection
site as a model parameter which describes the compos-
ite influence of geography (latitude, altitude etc.) climate
(day length, temperature) and biological interactions on
phenotype. We found that in total 15 out of 21 sampling
sites interact with different climatic factors at the phe-
notyping site, day length and humidity in particular. We
also showed that all of six polymorphic sites identified
in GWAS interact with temperature and day length, and
that SNP3 and SNP4 additionally interact with relative
humidity and precipitation respectively.

The influence of the geographic site of origin on plant
phenology was further confirmed by applying a group-
oriented approach. We found that wild chickpea acces-
sions originating from different collection sites react
differently to different environments. For example, plants
collected at Baristepe1 react differently to day length

change in comparison to plants from locations Baristepe3,
Destek, Egil, Ortanca, Savur1 and Sirnak1 (see Fig. 3).

Observing the relation between climatic factors at the
site of genotype collection, we hypothesized that there
should be an association between the allele frequency of
the GWAS SNPs and climatic factors at genotype collec-
tion site. This was confirmed by strong correlations of
allele frequency with collection site mean annual precipi-
tation in 4 of the 6 SNP groups (Fig. 7). Three of these four
SNPs, have fixed alleles (allele frequency 1) within popu-
lations with highest mean precipitation. This makes sense,
given strong selection for climate-appropriate flowering
time in Mediterranean annuals, which typically flower
early to avoid terminal drought in low rainfall regions,
but flower later to maximize their reproductive poten-
tial in longer season, high rainfall environments [71]. In
this context we were interested to discover that there was
no correlation of SNP allele frequencies with collection
site annual mean temperature. This may be explained by
strong site and SNP interaction for phenotyping temper-
ature whereby genotypes collected at different locations
responded differently to temperature (and precipitation).
Thus, increasing temperature led to earlier flowering in
some locations (e.g. Ortanca, Savur) and later flowering in
others (e.g. Kesentas) (see Fig. 2), that makes it impossible
to reveal dependencies between SNP frequencies and
temperature with standard correlation analysis.

We were also able to demonstrate that certain envi-
ronmental variables differently affect flowering time of
genotypes with different allele combinations at five out of
six polymorphic position analyzed. For example, different
allele combinations at SNP1 differently react on day length
change (see Table 1). This is an important characteristic of
the SNP that might be used in practice.

We believe that the models we have developed here
can be plugged into existing process-based models, such
as SSM, to build a new generation of crop models that
predicts aspects of crop performance based on genetic,
geographic, environmental and management data. In an
era of growing genomic information, these new models
are essential. Specific subroutines modeling selected bio-
logical processes could be modified to incorporate effects
on these variables without altering other processes within
the model. With Grammatical Evolution and DEEP this
can be achieved in automatic way, easing the adaptation of
crop models in breeding programs around the world.

Conclusions
Analyzing patterns of adaptation is a key for defining
strategies to cope with GxE interactions in breeding for
either wide or specific adaptation. The phenology of adap-
tive traits, like flowering time, may be strongly predicted
by plant geographic origin and local environmental fac-
tors. Here we tested this hypothesis by statistical modeling
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of wild chickpea flowering time responses to different
environmental conditions. Our results showed that 1)
geographic origin of a plant is indeed a good predictor
of flowering time in chickpea and 2) allele combinations
at GWAS hits associated with flowering time are “envi-
ronmentally responsive”, i.e. react differently to changes in
climatic factors.

Our methodology is generic and can be further applied
and extended to existing crop models.

Additional file

Additional file 1: Additional file 1 contains information on SNP based
groups, climatic data for these groups, details on Grammatical evolution
method. (PDF 634 kb)
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