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Hog producers’ operational decisions can be informed by an awareness of risks

associated with emergent and endemic diseases. Outbreaks of porcine epidemic

diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with

substantial losses across the hog production supply chain. Interestingly, a decreasing

trend in PEDv incidence is visible. We assert that changes in human behaviors may

underlie this trend. Disease prevention using biosecurity practices is used to minimize risk

of infection but its efficacy is conditional on human behavior and risk attitude. Standard

epidemiological models bring important insights into disease dynamics but have limited

predictive ability. Since research shows that human behavior plays a driving role in the

disease spread process, the explicit inclusion of human behavior into models adds an

important dimension to understanding disease spread. Here we analyze PEDv incidence

emerging from an agent-based model (ABM) that uses both epidemiological dynamics

and algorithms that incorporate heterogeneous human decisions. We investigate the

effects of shifting fractions of hog producers between risk tolerant and risk averse

positions. These shifts affect the dynamics describing willingness to increase biosecurity

as a response to disease threats and, indirectly, change infection probabilities and the

resultant intensity and impact of the disease outbreak. Our ABM generates empirically

verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts

(10% of the producer agents) toward a risk averse position can lead to a significant

decrease in total incidence. For significantly steeper decreases in disease incidence,

the model’s hog producer population needed at least 37.5% of risk averse. Our study

provides insight into the link between risk attitude, decisions related to biosecurity,

and consequent spread of disease within a livestock production system. We suggest

that it is possible to create positive, lasting changes in animal health by nudging the
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population of livestock producers toward more risk averse behaviors. We make a

case for integrating social and epidemiological aspects in disease spread models to

test intervention strategies intended to improve biosecurity and animal health at the

system scale.

Keywords: agent-based models, disease transmission, biosecurity, risk attitude, human behavior, porcine

epidemic diarrhea virus (PEDv), hog production

INTRODUCTION

In recent years, the hog production industry has been subjected
to incursions of both endemic and new diseases. In 2013, the
first outbreak of porcine epidemic diarrhea virus (PEDv) in
the U.S. shook the industry both economically and socially,
and required us to rethink effective disease-prevention strategies
(1, 2). PEDv is now an endemic disease and it is one of
the most severe infectious diseases in the hog industry with
∼80–100% morbidity and 50–90% mortality in suckling piglets
(3, 4). The virus can spread via direct, indirect and possibly
airborne transmission mechanisms (5–12). Direct transmission
involves animal-to-animal contact while indirect transmission
implies exposure to contaminated fomites. Furthermore, both
animal and environment can be reservoirs of the virus for long
periods, making it difficult to predict the time and place of new
outbreaks (13). There is no single successful control strategy
for PEDv, in part because of the complexity and large size of
the swine population, but also because of poorly-understood
transmission vectors, including inconsistent, and occasionally-
irrational behavior by humans in the industry. Thus, one aspect
of the problem has become clear: livestock disease spread is
not only epidemiological but also a matter of human behavior,
specifically the choices producers make to implement biosecurity
protocols or not (14).

Observed data published by the United States Department
of Agriculture (Swine Enteric Coronavirus Disease Situation
report—Mar 20181) show a high PEDv incidence in the winter
of 2014 followed by a significant decreasing trend over each
subsequent year (Figure 1). The data also exhibit seasonal cycles
with winter seasons generally carrying higher PEDv incidence.
While there are likely a number of factors influencing the
variability in the data, we became interested in the steady
decreasing trend. Since the pathways of virus transmission have
stayed the same through time, why has incidence decreased?
Likely, this is evidence of a change in the response to
disease within the production system. We therefore investigate
how shifts in human behaviors and risk mitigation strategies
longitudinally affect contagion dynamics.

Biosecurity has been considered the most important
prevention strategy for PEDv (14). Biosecurity practices such
as disinfecting footwear, showering and wearing clean clothes
before entering production premises, vehicle washing and
disinfecting can be employed to mitigate PEDv transmission
both within and between farms (15–17). Although producers
have access to biosecurity information and implementation

1http://www.aphis.usda.gov/animal-health/secd

FIGURE 1 | Time series of the number of confirmed new PEDv positive

premises by week. Gray bars report data for the U.S. and green bars for the

state of North Carolina (NC). The data are available for the period 06/01/2014

to 02/25/2018. Issued on June 5, 2014, a Federal Order required the reporting

of swine enteric coronavirus diseases including PEDv (https://www.aasv.org/

aasv%20website/Resources/Diseases/PorcineEpidemicDiarrhea.php). On

March 6, 2018, USDA rescinded the Federal Order (https://www.aphis.usda.

gov/aphis/newsroom/news/sa_by_date/sa-2018/secd-reporting). The dark

green line traces the decreasing trend in incidence in NC with a slope m =

−0.02. This is equivalent to an average decrease from about 20 new cases in

the month June, 2014 down to eight new cases in the same month in 2017.

instructions, their risk attitude can influence the willingness to
comply with biosecurity protocols (18, 19). Hereafter, we refer
to this operational willingness to obey the rules as “compliance”
with biosecurity protocols. Failure to comply with biosecurity
practices can lead to infection, increased mortality of pigs of
all ages and economic losses for the farm. A second aspect of
biosecurity is the willingness by managers and owners to invest
in biosecurity, for example purchasing truck-washing equipment
or installing air-filtration systems. For this reason, human
decision-making factors, in addition to epidemiological factors,
are essential pieces needed to understand disease dynamics and
their associated economic repercussions (20).

From an applied perspective, clarifying the mechanisms that
link human risk attitude to biosecurity adoption and compliance
will aid in understanding long-term disease risks and help to
develop strategies for controlling disease incurrence (21). At the
forefront of disease prevention are people involved with daily on-
farm practices or decisions regarding the biosecurity standards
on a farm. However, not everybody perceives disease risk in
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the same way (20, 22) and biosecurity practices are not applied
homogenously and at the same level across farms (23, 24). Critical
research on human decision-making shows that behaviors are
not immutable and can be nudged toward standards that are
more beneficial both for the individual and the larger community
(25). In the case of disease for example, both the producer
and the production system can benefit from improved disease
control by shifting individual producers’ behaviors toward higher
biosecurity engagement (20). The integration of epidemiological
and social disciplines can provide insights (26) on the effect
of shifts in human behavior directed at protecting farms from
disease incursions.

A useful approach for studying the mechanisms by which
both epidemiological and human-behavioral factors affect disease
spread is in a simulated environment where factors can be
varied and tested for their effects. Epidemiological models
describe the biological and environmental components of disease
transmission and evolution (5, 10, 27–30) but do not address
the role of human behavior in the process of spreading disease
between animal production facilities (19). Melding epidemiology
with human behavioral science acknowledges that people play a
role in maintaining animal health and offers a potentially richer
framework to understand the dynamics of disease and inform
prevention strategies (18, 26).

Agent-BasedModels (ABMs) have been applied to study social
phenomena and analyze macroscopic patterns that emerge from
the interaction of a number of agents programmed to behave
according to specified rules (31, 32). ABMs are computational
models that attempt to capture the behavior of autonomous
agents within their environment. An ABM usually consists of:
(1) Agents, which represent actors characterized by attributes
and behaviors; (2) Agent relationships and functions for their
interactions and; (3) an environment in which the agents are
embedded and with which they can interact. Sometimes agents
can be part of a population and share characteristics and/or
behaviors. Agents can receive information and/or learn and
therefore have adaptive capabilities. The strength of ABMs is the
ability to model complex systems from the bottom up with agents
that have believable and realistic behaviors (33, 34). In situations
characterized by risk as in the onset of a disease outbreak, the
heterogeneity of human responses can lead to complex and
dynamic outcomes challenging to foresee. Therefore, modeling
agents with human-like characteristics including the ability to
appraise and respond to events also with non-rational behaviors,
is essential for social-ecological studies (18, 35). An example of
the potential of ABMs for epidemiological applications came
from the Models of Infectious Disease Agent Studies (MIDAS2).
In this collaborative effort, a set of ABMs was developed to
investigate avian flu transmission incorporating epidemiological,
environmental and social aspects and has been used to analyze
outbreaks, model outcomes of interventions involving human
behaviors and shape policies to help reduce the impact of
avian influenza (34). Because ABMs allow explicit modeling
of decision-making processes, interactions and networks, they
represent an effective approach for simulating the system

2https://www.epimodels.org/drupal-new/

structure of the swine industry, specifically by incorporating both
disease dynamics emerging from virus transmission with animal
and feed movement, and human decision processes influencing
biosecurity and movement interactions.

To form a better view of PEDv disease dynamics with the role
of human behavior, we built an ABM at the scale of a regional hog
production system. We modeled disease spread among a variety
of different agents: (1) producers with different holding types
(farrow-to-finish, farrow-to-wean, wean-to-feeder. . . ), (2) feed
mills, and (3) slaughter plants. The modeled hog supply chain
includes both single- and multi-site production with networks
of pig movement and feed deliveries. The other two main
ABM components are the epidemiological and human decision-
making components. The epidemiological component contains
the mechanisms of PEDv transmission (direct and indirect),
while the human behavioral component accounts for risk attitude
and decision-making that influence biosecurity in the system.
The elements of human decision-making and behavior were
selected to reflect patterns observed by industry professionals
to have major effects on farm biosecurity: (1) psychological
distancing (36) that leads to a relaxation of compliance with
biosecurity protocols as time passes without experiencing disease;
(2) responsiveness to disease presence and; (3) the willingness
of farm managers/owners to invest in biosecurity. The explicit
inclusion of human behavior into the ABM provides a dimension
for accounting for both the willingness to implement preventive
biosecurity measures and to comply with them. Thus, with agent-
based modeling we can represent the influence of responsiveness,
heterogeneity, information exchange, psychological distancing,
and interactions of humans and the environment.

This paper presents and compares the disease-spread
consequences of human decision-making simulated using an
ABM of a swine production system. To this end, we design agent
populations with proportionately varied risk attitudes observed
from an online digital field experiment. These range from
risk averse strategies that allocate more preventative biosecurity
during outbreaks to risk tolerant attitudes that gamble with
very little biosecurity investment. As the risk attitude influences
the agent behavior in our ABM, we analyzed temporal patterns
of disease incidence emerging from the simulated scenarios
of heterogeneity in risk attitudes within the population of
producer agents.

METHODS

The agent-based model (ABM) used in this study was built
off a previous ABM called “Regional U.S. Hog Production
Network Biosecurity Model” (RUSHPNBM) originally created
by Wiltshire et al. (37) and Wiltshire (38). The purpose
of these ABMs has been the study of PEDv transmission
in swine production systems. The ABMs are developed in
AnyLogic3 software with all functions written in Java4. The
main developments of the model for the current study
include the addition of: (1) seasonal disease cycles; (2)

3https://www.anylogic.com
4https://www.oracle.com/technetwork/java/index.html
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environmental infection events simulating persistence of PEDv
in the environment which allowed for reoccurrence of the
disease at previously infected sites; (3) on-farm infections
from visitor vehicles other than hog or feed trucks; (4) agent
adaptive functionalities (e.g., human behavioral processes such
as willingness to adopt biosecurity and psychological distancing);
(5) risk attitude categories derived from digital field experiments
and; (6) webDb database for data input and output. The
model’s design and implementation relevant for the current
study are provided here and further details can be found
in the Supplementary Material and in Wiltshire (38) and
Wiltshire et al. (37). The main idea of the current ABM is to
model both forward and feedback processes that describe the
influence of (1) human risk attitude on biosecurity choices,
(2) biosecurity on the probability of disease transmission,
and (3) disease status on human decisions around biosecurity
mediated by risk attitude. The ABM’s process flow can be
divided into a structural, an epidemiological and a human
behavioral component (Figure 2), described in the following
sections. The values of the model parameters are given in the
(Supplementary Material).

Structural Component: ABM
Representation of the Swine Industry
The structural component simulates a hog production system
with agents representing production premises, feed mills and
slaughter plants. The hog production chain simulated for this
study is a system mirroring the density, operation types and sizes
of production units found in North Carolina with data provided
by the Farm Location and Agricultural Production Simulator
(FLAPS) tool which draws from the USDA Census of Agriculture
and aerial images (39). Feed mills and slaughter plants were
initialized at random locations with numbers obtained from
public data and expert advising. Hog production in the U.S. is
increasing, which has resulted in increased vertical integration.
Multiple sites are used in the production flow with specialized
sites for sows, weanlings, growers and finishing pigs, or any
combination of these growth stages. The ABM production agents
are therefore also characterized by one of six holding types
(farrow-to-wean, wean-to-feeder, feeder-to-finish, farrow-to-
finish, wean-to-finish, and feeder-to-finish), size (total number of
animals), and number of pig batches (groups of pigs of the same
age). Other structural parameters include the basic functions
of the hog production system such as the process of birth and
growth. Birth, growth and movements of pigs are modeled at
the group level using batches of pigs of the same age. The
production system of the hog industry requires transfer of hogs
from one holding type to the next and in the end to the slaughter
plant. For instance, in a three-site production system a pig
batch moves from farrow-to-wean to wean-to-feeder to feeder-
to-finish sites before finally being sent to the slaughter plant. Pig
batchmovement as well as feed deliveries generate heterogeneous
interactions among agents and are included in the ABM using
networks of transportation (Supplementary Figure 1). These
networks are modeled with agents having set trading and service
areas according to their industry role and characterized by
neighborhood structures.

Epidemiological Component: ABM
Representation of Disease Transmission
The ABM epidemiological component is network-based and
spatially explicit in that it simulates disease spread via both
direct and indirect mechanisms related to the movement of
animals and feed across the production network. It is coupled
with a stochastic state transition model including Susceptible
(S) and Infectious (I) states. Probability functions regulate the
transmission of disease in single agent interactions while the
network structure of animal and feed movement determine
the ultimate pattern of disease spread. Each simulated agent
(hog producers, slaughter plants, and feed mills) may become
infected (state I) during an interaction with another agent
with a probability that depends on the type of interaction, the
agent’s biosecurity and a seasonality factor. Specifically, each
type of movement interaction is associated with an independent
probability of infection calculated using a logistic function. The
logistic functions describe the infection probability’s dependence
on the agent’s biosecurity with coefficients derived from the
estimates provided using expert opinion. The seasonal variability
in PEDv infectivity is modeled as a sinusoidal adjustment
on the logistic probability function that varies with time and
ultimately generates higher infection probabilities in winter
and lower in summer. Explicit representation of disease spread
mechanisms and functions for our ABM are detailed in the
Supplementary Material section titled The agent-based model’s
epidemiological sub-model.

Aside from the movement of contaminated pigs and feed, two
additional sources of infection are implemented: (1) from visitors
arriving at the production site and (2) from PEDv surviving
in the environment within or around a production site (5, 13,
40). In our ABM, we account for the first infection source by
simulating events of visitors on the production sites associated
with a logistic infection probability function dependent on the
producer agent’s biosecurity (Supplementary Tables 1, 3). To
account for the environmental infection, 0.3% of producers are
randomly infected during an event scheduled once a year on a
day selected from a triangular distribution defined on the range
from mid-September to mid-December with mode the first week
of November.

Human Behavioral Component: ABM
Representation of Biosecurity
Decision-Making
We explicitly investigated the importance of capturing human
behavior with interaction and feedbacks between humans and
the environment. The producer agents in our ABM have adaptive
capabilities and are reactive in that they do not learn but simply
respond to signals from other agents and the environment. In
the model, a population of veterinarian agents is encoded, each
with its own network of hog producers. Within the network,
the veterinarian tracks the number of hog producers affected
by disease and reports it back weekly. The producer agents
are encoded with a set of rules to simulate decisions to alter
biosecurity at their facility in response to the disease status
in their veterinarian network. Our goal was to explore the
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FIGURE 2 | Agent-based model (ABM) process flow. It highlights the ABM’s main components and processes of how the Porcine Epidemic Diarrhea virus (PEDv) can

spread through the network structure of the swine industry and is influenced by human behavior. The ABM structural component mimics the swine industry with three

types of agents: P, producer; FM, feed mill; and SP, slaughter plant. Agents interact via networks of hog and feed movement. The ABM epidemiological component

simulates the risk of PEDv transmission associated with movement through these network connections disease spreads. Human decisions on biosecurity also

influence infection risk. Disease spread depends on the probability of disease transmission on the networks and influences the biosecurity level on farms.

influence of reactive behaviors on biosecurity and ultimately
disease incidence.

To reflect heterogeneity of human risk attitude and allow
the evaluation of a variety of human behaviors, the ABM
has underlying human processes with parameters for risk
attitude, biosecurity investment, responsiveness to disease,
and psychological distancing. In particular, the agents’ risk-
attitude is directly linked to their response to disease by
determining the threshold number of neighboring infected
production premises necessary for an agent to react and
increase its biosecurity with a probability >0.9. We associate
risk aversion with higher propensity to adopt biosecurity. For
example, risk averse agents almost always increase biosecurity
as soon as there are three production premises infected in
their veterinarian network. On the opposite side of the risk
spectrum, risk tolerant agents increase their biosecurity quasi
certainly only when they know that there are nine or more
infected production premises in their veterinarian network.
In summary, the ABM agent behavior originates from a risk
attitude distribution with four categories (risk averse, risk
opportunists, risk neutral, and risk tolerant); four forms of
disease response, one for each risk attitude category are used
to simulate biosecurity response-to-disease strategies; and a
utility function for psychological distancing, which simulates
the waning of biosecurity compliance since an infection
event. The detailed description of parameters and methods
for the ABM human behavioral component are provided in
the Supplementary Material section The agent-based model’s
human behavioral component.

Risk-Attitude Scenarios Analysis
The goal of this study was to better understand the extent
to which shifts in the composition of risk attitudes in the
agent population change the incidence of PEDv outbreaks.
To this end, we ran a scenario analysis where we shifted
fractions of the producer population between risk tolerant and
risk averse categories and then evaluated the resulting PEDv
incidence. Six model scenarios were compared to a reference
baseline scenario (Table 1), assigned to the case where the
producer population is evenly distributed across all risk attitude
categories upon model initialization. The populations of feed
mill and slaughter plant agents were kept at even percentages
of agents across the four risk attitude groups in all seven
scenarios. The baseline scenario in particular was the reference
for being the model that we calibrated against observed data.
The ABM calibration was performed using AnyLogic software
with the built-in genetic algorithm by matching the observed
(Figure 1) and the simulated PEDv incidence. More information
about the calibration methods and results can be found in the
Supplementary Material, section Calibration of ABM’s human
behavioral component. For the six alternative scenarios (Table 1),
all the model parameters were kept fixed at the calibrated
values (Supplementary Table 1), while the initial proportion of
population in the risk attitude groups were varied. For this
analysis, the ABM was run over the time period spanning
from 12/27/2009 to 02/25/2018. The first part of this period
until 05/31/2014 was used to stabilize to model. The period
06/01/2014 to 02/25/2018 overlapping the observations’ time
series (Figure 1) produced the data for the analysis. We executed

Frontiers in Veterinary Science | www.frontiersin.org 5 June 2019 | Volume 6 | Article 196

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Bucini et al. Biosecurity Decisions Change Disease Incidence

TABLE 1 | Risk attitude scenarios.

Scenario % risk averse producers % risk tolerant producers

Baseline 25 25

12.5% averse 12.5 37.5

17.5% averse 17.5 32.5

22.5% averse 22.5 27.5

27.5% averse 27.5 22.5

32.5% averse 32.5 17.5

37.5% averse 37.5 12.5

Each scenario represents a different initial condition in the model representing the

configuration of risk attitudes in the producer agent population. Columns 2 to 3 report the

relative percent of producer agents in each risk attitude group for the seven scenarios.

The baseline is the scenario used to calibrate the model. The percentages of producers

assigned to the risk neutral and risk averse categories are maintained fixed at 25% in all

the scenarios. The increase of risk averse percentage across scenarios aligns with a larger

section of the producer population adopting biosecurity with relatively higher probability

as a response to disease presence.

Monte Carlo experiments with 800 replicates for the seven
separate scenarios and collected disease incidence data.

Statistical analyses on incidence outputs from each scenario
were performed using R (41) software. We calculated summary
indicators such as total incidence and linear trend coefficients, to
characterize the output time series of PEDv incidence and then
applied non-parametric statistical tests to compare the indicators
across scenarios. Specifically we proceeded in the following ways
for each summary indicator:

• Total incidence: It is defined as the sum of incidence over
the simulated time period. We built distributions of total
incidence from the 800 Monte Carlo replicates for each
scenario. We then compared the distributions across scenarios
both visually with box-plots and statistically with non-
parametric tests. We applied non-parametric tests because
the data did not meet either the assumption of normality
(p > 0.0001 in Shapiro-Wilk test) or the assumption of
equal variances (p > 0.0001 in both Brown-Forsythe test and
Fligner-Killeen test). We first applied the k-sample Anderson-
Darling test with all the distributions of total incidence and
then compared the distributions pairwise with the two-sample
Kolmogorov-Smirnov test. Box-plots were used to show the
median, minimum, and maximum values and quantiles of the
simulated incidence totals for each scenario.

• Linear trend coefficients: A linear regression model was fit
to each of the 800 simulation runs for all scenarios and the
values for the coefficients intercept and slope were collected.
Box plots of intercept and slope showed the characteristics
of the underlying distribution of coefficients’ datasets. The
non-parametric k-sample Anderson-Darling test followed by
the two-sample Kolmogorov-Smirnov test were applied to
compare distributions across scenarios because the data did
not meet either the assumption of normality (p-value >

0.0001 in Shapiro-Wilk test) or the assumption of equal
variances (p-value > 0.0001 in Brown-Forsythe test and
Fligner-Killeen test). The Monte Carlo averages of both the
simulated incidence and trend coefficients were calculated to
display temporal patterns and trends for each scenario.

In all post hoc multiple pairwise comparisons with the
Kolmogorov-Smirnov test, a Bonferroni adjustment was applied
by testing individual hypotheses at the level α∗

= 0.05/21 (where
21 is the number of tests).

RESULTS

The scenario analysis performed in the study addressed the
sensitivity of PEDv incidence outputs given changes in the
proportions of producer agents assigned to the risk averse and
risk tolerant categories in the ABM. We performed statistical
tests to measure the effect of seven distributions of risk attitudes
(Table 1) on the spread of PEDv within the hog production
system simulated in our ABM. The results of the non-parametric
tests comparing the distributions of total incidence, linear trend’s
intercept and slope are shown by the compact letters above
the box-plots in Figures 3–5. Box-plots are presented to show
overall patterns of three indicators and visualize their distribution
characteristics across scenarios. The 12.5 and 37.5% averse
represent the two extreme scenarios. The baseline is the scenario
with an equal percentage (25%) of producers in both the risk
averse and risk tolerant categories.

Total Incidence Indicator
The compact letters in Figure 3 show that there are some
significant differences in the distributions of incidence totals
across scenarios. All scenarios except for the “22.5% averse” one,
which was only 10% less risk averse than the baseline scenario,
have distributions significantly different from the baseline
scenario. Generally, the scenarios with lower percentage of risk
averse producer agents (12.5%, 17.5% averse; compact letter “a”)
hadmore simulation runs that produced relatively high incidence
totals (larger interquartile ranges) compared to the other
scenarios. In contrast, scenario runs with higher proportions of
risk averse producer agents (32.5 and 37.5% averse; compact
letter “d”) lead to significantly different distributions of incidence
totals characterized by lower medians and narrower ranges. All
the scenarios appear to be right-skewed with some outlying
values indicating that in all Monte Carlo experiments there were
simulations where the system became very vulnerable to high
PEDv infection. This is particularly evident for scenarios 12.5
and 17.5% averse. Overall, the scenarios indicate that the ABM
is significantly sensitive to risk attitude shifts as small as 10%
producer agents moving from being risk tolerant to being risk
averse. Therefore, the total incidence indicator responds to the
risk attitude distribution within the population.

The comparative box-plots provided an unexpected result
when analyzed in relation to the observed total incidence
(Figure 3, dashed black line). The ABM tends to underestimate
the total incidence. While all scenarios produced some
realizations with total incidence close to the observed one, none
had the median aligned around the observed total incidence.
The scenario with the most risk tolerant producers (12.5%
averse) provided the highest number of simulation runs close
to the observations in terms of total incidence. These results
may suggest that we need to adopt a baseline model that is
calibrated on an initial population of producers with relatively
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FIGURE 3 | Box-plot of the distributions of total PEDv incidence (sum of new infection cases over the simulated time period) for each scenario. Each scenario

represents a different distribution of risk attitudes within the population of producer agents in our ABM. The baseline-scenario population has equal proportions of

producer agents in the all four groups (risk averse, risk opportunistic, risk neutral, risk tolerant). Three scenarios (12.5, 17.5, and 22.5% averse) tested the effect of

reducing the number of risk averse producers by shifting a fraction (10, 30, or 50%) of producer agents from the risk averse to the risk tolerant category and are color

coded with red shades. The other three scenarios (27.5, 32.5, and 37.5% averse) tested the effect of increasing the number of risk averse producers by shifting a

fraction (10, 30, or 50%) of producer agents from the risk tolerant to the risk averse category and are color coded with blue shades. Each scenario distribution is

drawn from a Monte Carlo experiment with 800 replicates. The compact letter display indicates significance from pairwise comparison. For the scenarios sharing a

letter there is no evidence of a difference for that pair of distributions at adjusted α* = 0.002 level (Bonferroni adjustment for 21 comparisons). The black dashed line

marks the total incidence in the observed data.

higher percentage of risk tolerant. Alternatively, the current
baseline model could be correct and the observed data could
represent a rare case that happened to be actualized in reality.
Only independent data on risk attitude collected from a sample
of producers can help answer this question.

Trend Intercept and Slope Indicators
The linear regressions fit on the incidence data in relations
to time provided significant trends (Table 2). The R-squared
of the linear models are < 0.2 ± 0.14 reflecting the high
variability in the data mostly due to the seasonal cycles. Even
with the high variability, the data provide significant trends
and information about disease incidence change with time. The
median p-values show significant trend formost of the simulation
runs. The average p-values further indicate the presence of outlier
regressions with non-significant trends. Overall, the data support
the existence of significant changes in the incidence with time.

We found significant effects of risk attitude shifts in the
coefficients describing the linear trends of incidence through
time (Figures 4, 5). In general, the two extreme scenarios (12.5
and 37.5% averse) showed significantly different distributions
compared to the baseline scenario. For example, a shift of
risk averse agents from 25% (baseline) to 37.5% (more risk

averse population) results in a steeper median trend (20% more
negative), in other words, disease spread decreases faster. When
we look at intercepts, an initial producer population with 37.5%
risk averse agents created a situation where the PEDv virus had
less infectivity since the simulation start with a median intercept
of disease incidence 22% smaller than the intercept of the baseline
scenario. We could not claim statistical support for a difference
in the distribution of intercepts and slopes between the baseline
scenario and the close scenarios (17.5, 22.5, 27.5, and 32.5%
averse) except for the case of the intercept distribution for the
17.5% averse scenario (same compact letters in Figure 4).

In all scenarios, more than 75% of the simulation runs
provided a linear trend with negative slope and positive intercept
capturing the same linear trend shown in the observed historical
PEDv incidence. This means that most of the simulations
reproduced a situation where the disease incidence was higher
at start (June 2014) and decreased with time. Fewer runs (<25%)
in each scenario showed instead a positive trend indicating some
model realizations in which the PEDv outbreak led to a growing
incidence through time. These positive-trend cases emerge in the
stochastic approach of Monte Carlo experiments where, by the
law of large numbers (of simulations) more rare outcomes may
also be realized. These cases accentuate and call the attention to
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FIGURE 4 | Box-plot of the intercept distributions derived from the PEDv incidence trends for each scenario. Description details as in Figure 3.

FIGURE 5 | Box-plot of the slope distributions derived from the PEDv incidence trends for each scenario. Description details as in Figure 3.

the stochastic nature of disease spread dynamics indicating that
there can be unexpected outcomes of disease spread even when
the system is calibrated to contain and reduce infection.

The observed intercept and slope falls either outside or at the
edge of the inter-quartile range for all the scenarios indicating
that most of the model simulations realized a weaker decreasing
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TABLE 2 | Regression model fitness indicators.

Scenario Model R-squared Model p-values

Mean Std. dev. Median Mean Std. dev. Median

Baseline 0.2 0.14 0.18 0.03 0.12 6.40E-10

12.5% averse 0.18 0.14 0.15 0.04 0.13 1.87E-08

17.5% averse 0.19 0.14 0.18 0.03 0.13 4.14E-10

22.5% averse 0.2 0.14 0.19 0.04 0.15 1.85E-10

27.5% averse 0.2 0.14 0.18 0.02 0.11 3.65E-10

32.5% averse 0.2 0.14 0.18 0.03 0.12 8.75E-10

37.5% averse 0.2 0.14 0.19 0.03 0.13 2.34E-10

Summary statistics of p-values and R-squares of the linear regression models (trends) of

disease incidence vs. time. For each scenario, 800 regression models were fit.

trend compared to the observed one. This means that the ABM
parameterization tends to create dynamics of disease spread
with overall lower incidence across time than what occurred
in reality. The graphs in Figure 6 display the time series of
PEDv incidence for the observation data and for the scenario
averages, calculated across the 800 Monte Carlo runs, along
with their trends. Our outputs demonstrate that the mechanisms
and parameterization of the ABM are capable of reproducing
decreasing PEDv incidence through time thanks to the dynamics
of human behavior where agents could respond to PEDv presence
by increasing biosecurity. In other words, the human behavioral
assumptions built into our ABM influencing biosecurity and
disease transmission probabilities, allowed the realizations of
negative incidence trends. Furthermore, the higher propensity
to increase biosecurity assigned to risk averse agents did result
in lower incidence when there was a sufficient number of risk
averse agents in the population. Despite the fact that most of the
simulations missed the observed initial high peak of incidence,
the shaded areas displaying the averaged Monte Carlo outputs
plus and minus one standard deviation demonstrate that the
ABM did realize disease outbreaks with high peaks of incidence.

DISCUSSION

The epidemiological data on PEDv available for the period
of June 1st, 2014 to February 25th, 2018 shows a decreasing
trend in PEDv incidence. Because the characteristic pathways of
infection of the virus have not changed over time, we deduced
that something has been changing in the hog production system
that has improved the control of the virus. Both the literature
and collaborating stakeholders refer to human behaviors with
respect to both in compliance with and investment in biosecurity
as critical for disease-protection management. This implies a key
role of humans in the processes of controlling virus transmission.
To better understand how changes in behavioral patterns could
reflect changes in PEDv incidence, we developed an agent-based
model (ABM) able to examine the role of human risk attitude
to PEDv incidence within a simulated production system.
Our model outputs reproduced a significant decrease in PEDv
incidence through time. An important finding from our scenario
analysis was that the average decreasing trend is significantly

affected by the model’s initial state, defining the proportion of
the producer agents assigned to two risk categories, risk averse
and risk tolerant. An increase as small as 10% more risk averse
producer agents resulted in a 19% decrease in the median total
PEDv incidence, which is equivalent to 36 fewer PEDv cases
over the course of the analysis period (∼4 years). To observe
a significantly steeper decrease in incidence requires that more
than 37.5% of the population be in the risk averse category. The
implication is that biosecurity adoption and influencing factors
of adoption (for example risk attitude) are a critical consideration
when creating strategic plans or policies for disease control. Our
modeling analysis reinforces the message found not only in field-
specific papers but also in general papers such as in (42) who calls
for developing more effective approaches for integrating social
dynamics of epidemics to build more realistic models.

PEDv incidence data are highly variable and reflect the
complex social-ecological structure of the swine industry. While
the Monte Carlo results capture much of the system variability,
different parameter sets appear to more closely align with the
observed PEDv data (Figures 3–6), i.e., the initial conditions
allowed us to calculate the fraction of simulation runs whose
patterns are statistically close to the recorded incidence patterns.
An interesting finding is that a producer-agent population with
only 12.5% agents in the risk averse category resulted in statistical
indicators where the median is closer to the observed value.
In considering potential adjustments for our model, this result
suggests to use the risk-attitude distribution from 12.5% averse
scenario as a model set-up for realizations closer to the observed
PEDv pattern.

An aspect of complexity present in the observed data is
their variability at several time scales including weekly, seasonal,
and inter-annual variability. The inter-annual variability for
example is visible in the timing of the observed incidence
peaks (Figure 6 top panel, example: the 2015–2016 winter
peak occurred earlier than in 2014–2015). Our ABM uses a
sinusoidal function calibrated to peak in January and therefore
produces incidence oscillations that are more regular with time.
A variety of reasons can be postulated to explain the complex
variability in the observations including weather variability,
changes in production components and/or routes and stochastic
factors affecting disease spread. Our model simulates a closed
production system where all the hog and feed movements are
bounded within the region. Even if designed around the North
Carolina configuration of production premises, the model does
not include the complex network system that extends beyond
the state boundary into other U.S. states. These out-of-state
movements add potential for disease transmission and may
contribute to the higher observed incidence compared to the
averaged simulated one.

Human behavior and decision making represent a challenge
in the animal production industry because of their complex
interconnectedness with protection from disease (18, 19, 23,
43, 44). By weaving human behavioral components into
epidemiological processes, our ABM is a unique tool for
evaluating the effects and efficacy of disease control strategies
compared to more traditional epidemiological models that lack
social dynamics. Our ABM was equipped with two behavioral
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FIGURE 6 | Model results for PEDv incidence for the seven risk attitude scenarios (Table 1). Observed PEDv Incidence and its linear trend are overlaid in green. (A)

Time series of averaged simulated PEDv incidence (lines) and one-standard-deviation bands derived from the 800 Monte Carlo runs for each scenario. (B) Zoom on

simulated outputs with overlaid trends obtained from averaged linear regressions on each simulation run. The green line represents the linear trend of the observed

data. The other colors are the same as described in the legend of the top panel.

processes that act in opposition: (1) responsiveness to regional
disease incidence with consequent increase in biosecurity and (2)
psychological distancing with consequent decrease in biosecurity
as time increases since an infection. Model calibration provided
the appropriate tension between the two processes to match the
observed decreasing trend in PEDv incidence. With these two
behavioral processes we were able to capture important features
of the PEDv dynamics as shown in our results. We recognize
however that there is a variety of interplaying socio-psychological
factors that influence decisions, as skillfully illustrated byMankad
(18). Yet our ABM is a simplified but progressive effort toward
more realistic representation of epidemics.

PEDv is highly contagious and lethal in piglets that has
resulted in substantial losses for the North America’s swine
industry. All industry actors are aware of the devastating
consequences of disease incursion. The regular reemergence of
PEDv indicates that there is still work to do on the epidemiology
and microbiology of the virus but also on the role of humans,
which necessitates the investigation of practices carried out
in the industry and behaviors that allow the virus to survive
and become active. Intensive research efforts in the past 5
years have brought new information about the viability of
the virus (5, 7, 12, 30, 40, 45–47), and vaccines have been
researched in various countries around the world. Vaccine

efficacy has shown to be low (48) although a recent study had
promising results with a new vaccine that was immunogenic and
effective in growing pigs (49). Prevention of the virus therefore
relies on good biosecurity practices with active participation
of producers and all industry stakeholders in this complex
supply chain network. Crucial for biosecurity to work is the
proper training of staff and a culture of compliance with
the protocols.

Human risk attitude is a driver when examining the role of
human behavior as a factor in disease transmission. Our study
suggests that shifting producer attitudes toward risk aversion is
beneficial for the whole production system because it will result
in reduced disease incidence. In balancing cost and benefits of
biosecurity, our modeling outputs show that an engaged effort
from the population of producers toward more risk averse,
biosecure behaviors (e.g., readiness to enhance biosecurity and
limiting psychological distancing) is effective in the control and
reduction of PEDv spread. Our study points at the substantial
opportunity provided by shifting behavior; however, from a
production system perspective, altering a substantial proportion
of a population’s behavior represents a significant challenge.
Yet, significant progress has been shown in other industries,
for example when we alter choice architecture and provide
behavioral nudges (25, 50).
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Here we demonstrated the need to better understand
the cognitive processes underlying decision-making about
biosecurity, and highlight possible realizations of the impact of
changing behavior on the spread of disease in the swine industry.
However, in this research we coded biosecurity investment
decisions based on the risk of acquiring a disease. Obviously,
disease risk is an important factor when considering biosecurity,
but it is not the only factor. A complex array of factors exists
that influence biosecurity decisions that differ by individual and
further depend upon the objectives of the organization, regional
policies, logistical factors, and the array of behaviors by other
actors in the swine network (e.g., feed mills, truck drivers,
veterinarians, slaughter plants, processors, auction houses, etc.).
Yet, research has shown that risk attitude can be an important
decision-making factor. Like all models, our “model is wrong, but
hopefully it is useful” (attributed to George Box 1976) because it
provides a quantitative approximation for how human behavior
and decisions can influence the spread of disease.

CONCLUSION

The onset of PEDv in the U.S. hog industry was a singular
experience for all stakeholders because of its high infectivity
and rapid spread. Data show however that in 4 years, PEDv’s
potent spread appeared constrained with overall incidence
reduced. Social dimensions can play a significant role in
the biosecurity decisions of swine producers. We geared
our epidemiological model with human behavioral processes
connected to biosecurity and disease, and demonstrated the
opportunity and impact associated with changing biosecurity
behavior on PEDv incidence or, with a more positive spin, a
healthier animal production systems. If on one side, targeted
interventions to critical nodes of a production system may prove
important to inhibit disease “super-spreaders,” on the other, our

study shows that shifts in the overall industry toward a more
risk averse culture can yield more biosecure facilities along with
consistent and long-term industry-wide protection from disease.
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